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Electrification of Urban Waste Collection: Introducing a Simulation-

Based Methodology for Feasibility, Impact and Cost Analysis 

We introduce a multi-agent-based simulation methodology to investigate the 

feasibility and evaluate environmental and economic sustainability of an 

electrified urban waste collection. Electrification is a potential solution for 

transport decarbonization and already widely available for individual and public 

transport. However, the availability of electrified commercial vehicles like waste 

collection vehicles is still limited, despite their significant contribution to urban 

emissions. Moreover, there is a lack of clarity whether electric waste collection 

vehicles can persist in real word conditions and which system design is required. 

Therefore, we present a synthetic model for waste collection demand on a per-

link basis, using open available data. The tour planning is solved by an open-

source algorithm as a capacitated vehicle routing problem (CVRP). This 

generates plausible tours which handle the demand. The generated tours are 

simulated with an open-source transport simulation (MATSim) for both the diesel 

and the electric waste collection vehicles. To compare the life cycle costs, we 

analyze the data using total cost of ownership (TCO). Environmental impacts are 

evaluated based on a Well-to-Wheel approach. We present a comparison of the 

two propulsion types for the exemplary use case of Berlin. And we are able to 

generate a suitable planning to handle Berlin’s waste collection demand using 

battery electric vehicles only. The TCO calculation reveals that the electrification 

raises the total operator cost by 16-30 %, depending on the scenario and the 

battery size with conservative assumptions. Furthermore, the greenhouse gas 

emissions (GHG) can be reduced by 60-99%, depending on the carbon footprint 

of electric power generation. 

Keywords: urban freight transport, multi-agent, traffic simulation, electrification, 

decarbonization, sustainability, waste collection, vehicle routing problem  

Introduction and motivation 

The European Union and many countries have set ambitious targets for reducing 

greenhouse gas (GHG) emissions progressively until 2050 (European Commission, 

2018). Germany has committed itself to reduce GHG emissions by 55% by 2030 

compared to 1990 (Bundesministerium für Umwelt, Naturschutz Und Nukleare 



Sicherheit [BMU], 2016). To achieve this goal, profound transformation in all sectors is 

required. The aim for the transportation sector is a reduction of 42% by 2030 compared 

to 1990 (BMU, 2016). Besides climate action, the necessity to find alternate solutions 

for transportation is particularly pronounced in urban areas, due to the harmful effects 

of air pollution and noise (World Health Organization, Regional Office for Europe, 

2013).  

A mere optimization of the current system almost certainly will not be sufficient 

to reach theses ambitious goals. For example, it is found that solely reducing congestion 

will not lead to a sufficient reduction of GHG emissions and that a broader variety of 

strategies needs to be deployed (Ansari Esfeh & Kattan, 2020). In contrast, the 

electrification of the transport system is a promising approach to meet climate goals and 

reduce pollution simultaneously. Following this widely accepted fact, the project 

“zeroCUTS” (zero Carbon Urban Transport System: Analysis of strategies to fully de-

carbonize urban transport) (Deutsche Forschungsgemeinschaft, 2018) currently under 

way at Technische Universität Berlin addresses all segments of the urban transport 

system. First results are very promising. For example, Bischoff and Maciejewski show 

that the taxi traffic in Berlin could be electrified without a cost increase (Bischoff & 

Maciejewski, 2015). They also show that all private car traffic within the city of Berlin 

could be serviced by a fleet of autonomous vehicles, implying that they could also be 

electric and thus addressing motorized individual traffic (Bischoff & Maciejewski, 

2016). Something similar holds for urban bus traffic where field studies are widely 

under way (Jefferies & Göhlich, 2018). 

In contrast to passenger cars and buses, the prevalence and availability of 

electrified commercial vehicles is still limited (Gao, Lin, Davis, & Birky, 2018). This is 

especially true for municipal vehicles such as waste collection vehicles. Despite their 



small overall quantity, they contribute significantly to the emissions of the urban traffic 

system (Göhlich & Gräbener, 2016) and thus offer a great GHG and pollutant emission 

saving potential. However, the field of waste collections is only sparsely discussed in 

the scientific community (Goes, Bandeira, Gonçalves, D'Agosto, & Oliveira, 2019). 

Goes et al. choose to address the effect of eco-driving on the emissions of waste 

collection. They conclude that eco-driving has a positive effect. Still, they only focused 

on diesel fueled trucks (Goes et al., 2019). Gräbener et al. analyzed the effects of hybrid 

electric vehicle concepts for urban municipal applications. However, the sole 

application of BEV could not be addressed, yet (Graebener, Tarnowski, & Goehlich, 

2015). 

Until recently, European companies presented only few prototypes for electric 

municipal vehicles, which do not yet meet market requirements (Göhlich & Gräbener, 

2016). According to our own market analysis, this is about to change. Chinese 

manufacturers already produce electric municipal vehicles (Du & Ouyang, 2017). 

European manufacturers such as Volvo, Daimler and MAN plan to introduce suitable 

heavy duty electric urban trucks, in the near future. Furthermore, specialized 

manufacturers of municipal vehicles, e.g. Faun1, Geesinknorba2, and Zöller3 have 

presented electric prototypes, and the European market launch of these vehicles is 

imminent. 

However, there is still a lack of clarity whether these vehicles can persist in real 

working conditions, and which system design (battery capacity, battery type, charging 

                                                 

1 https://www.faun.com/en/products/alternative-drives/ 

2 https://www.geesinknorba.com/electric-driving/ 

3 https://www.zoeller-kipper.de/en/produkte/e-delta-2307-premium-electric-24v/ 



technology etc.) is required. Besides the technical feasibility, the changes in operating 

cost and the environmental impact of electric vehicles (EVs) compared to today’s 

internal combustion engine vehicles (ICEVs) remains an important issue. Especially the 

battery capacity is a critical parameter, since larger batteries provide higher ranges but 

also increase total cost and decrease payload. The technology selection of electric 

municipal vehicles must take energy consumption into account. While driving 

consumption can be quantified by standardized driving cycles, the energy consumption 

of the auxiliaries, which can account for a large proportion of the overall consumption 

(Graebener et al., 2015), depends on the specific working conditions.  

System simulation is required to answer those question in the early phase of 

technology planning. Therefore, this paper introduces a multi-agent-based simulation 

methodology to investigate the feasibility as well as the possible economic and 

environmental consequences of a completely electrified urban waste collection. The 

presented methodology is applied to the city of Berlin, which serves as a use case. 

Since the real-world vehicle trajectories are not available in many cases, we 

develop a synthetic model for waste collection demand on a per-link basis. Afterwards 

trajectories from the vehicle depots via collection points and dump back to the depot are 

generated. This is solved by a tour planning algorithm as a capacitated vehicle routing 

problem (CVRP). The generated tours are routed and simulated on the network of the 

MATSim Open Berlin Scenario (Ziemke, Kaddoura, & Nagel, 2019). 

The procedure is carried out for both a diesel and an electric waste collection 

vehicle which are fully specified for example in terms of consumption, gross vehicle 

weight and payload. To compare the ICEV and the EV in terms of life cycle costs and 

environmental impact during the use phase, we analyze the data using the total cost of 

ownership (TOC) and the Well-to-Wheel (WTW) methods. 



The paper addresses questions such as: How will fixed and variable costs differ 

between the fossil and the electric approach? How will tour structure and lengths as 

well as fleet size change? And more in general: How can urban waste collection be 

realistically modelled and simulated in order to assess the costs and environmental 

impacts of different propulsion types? 

State of the art 

As stated, in the present study we are interested in the consequences of a full 

electrification of waste collection in Berlin, while at the same time developing a method 

that can be used for arbitrary regions. In the following we investigate the state of the art 

in four different fields: 

(1) Generation of demand for pickups 

(2) Generation of pickup tours 

(3) Cost matrix for the pickup tours 

(4) Technology and operational parameters of waste collection vehicles 

Demand generation for waste collection 

Conventional waste management is a well-researched subject. Typical approaches 

couple demographic properties to waste generation per person or household, and then 

use the spatial layout of the region to obtain amounts of waste per road link or block 

(Arribas, Blazquez, & Lamas, 2010; Beigl, Lebersorger, & Salhofer, 2008; Ghose, 

Dikshit, & Sharma, 2006). Willemse uses GPS tracks to identify the collection area 

during the tour, but then generates pickup locations from census data (E. Willemse, 

2018). Others rely entirely on GPS tracks, i.e. slowly traversed links indicate pickup 

locations together with the time to serve them (Anghinolfi, Paolucci, Robba, & 

Taramasso, 2013; Ghiani, Guerrieri, Manni, & Manni, 2015). 



Tour generation 

Once the demand is known, vehicle tours need to be generated that start at the vehicle 

depot, iterate between pickups and delivery at the dump, and eventually return to the 

depot. Since the capacity-limited vehicles need to unload during the tour and resume 

collecting afterwards, these are capacitated vehicle routing problems (CVRPs). Many 

algorithms are discussed to solve problems such as CVRPs (Irnich, Toth, & Vigo, 2014) 

or arc algorithms (E. J. Willemse, 2016). Other approaches use particle swarm 

optimization (Hannan et al., 2018) or Boolean optimization methods (Laureri, 

Minciardi, & Robba, 2016). Ignoring the unload and resume collection capability 

simplifies the problem, but leads to too many and too short tours with too many vehicles 

(Martins-Turner & Nagel, 2019). 

Cost matrix/road network 

Vehicle routing problems (VRPs) are often defined on cost matrices, which specify the 

cost between each pair of locations (Irnich et al., 2014). Clearly, for waste collection 

such a matrix would be cumbersome to use, since its size would be the number of 

pickup locations squared. For a region with, say, 100,000 pickup locations, the matrix 

would be of size 1010. This implies 40 GB of memory footprint, already too large for 

typical desktop computers. An alternative is to derive the cost from one location to 

another by a call to a routing algorithm based on a network graph. As usual, this trades 

memory for computing time. 

Urban electric commercial vehicles 

As stated in section Introduction and Motivation, technology development for electric 

municipal vehicles is still premature. However, some research concerning the topic has 



been done. To adequately specify the waste collection EV, the current development 

state of battery cost and lifetime and driving consumption is reviewed. 

Battery price 

A recent publication predicts a price range for passenger car battery packs from 150-180 

$/kWh in 2019 (Nykvist, Sprei, & Nilsson, 2019). The Bloomberg 2019 EV Outlook 

identifies the current specific prices for car battery packs at 174 $/kWh in 2018 

(Bloomberg New Energy Finance, 2019). With the average exchange rate in 2018 of 

1,18 $/€, this is equivalent to about 147 €/kWh. A study from 2015 predicts a specific 

price range for commercial vehicle battery packs from 378-770 €/kWh in 2020 (Hacker, 

Waldenfels, & Mottschall, 2015). The price gap between commercial vehicle and 

passenger car batteries can be explained with higher lifetime requirements and lower 

quantities (Hacker et al., 2015). Nevertheless, the identified price ranges for passenger 

car batteries point out the future development potential for commercial vehicle battery 

prices. 

Battery lifetime 

The second important parameter is the possible life time of the battery, typically 

measured in equivalent full charging cycles until a remaining capacity of 80% is 

reached (Schimpe et al., 2018; Schmalstieg, Käbitz, Ecker, & Sauer, 2014). This 

parameter has a high impact on the TCO since it determines whether a battery 

replacement is necessary within the lifetime of the vehicle. The possible real-life cycles 

are strongly influenced by depth of discharge, charging rate and battery temperature. 

Maddi et al. show that Lithium Nickel Manganese Cobalt Oxide (NMC) cells can 

perform up to 4,000 full cycles at 45 °C before reaching end of life (EOL). This value 

drops to 50 cycles at 5 °C (Matadi et al., 2017). In 2018, a study was published which 



showed that temperature controlled NMC cells can perform up to 4,500 full cycles at 0 

°C ambient temperature with 3.5 C (Yang, Zhang, Ge, & Wang, 2018). 

Driving consumption 

Gao et al. use real world driving cycles for a simulation based consumption estimation. 

For a class eight waste collection vehicle a consumption of 2 kWh/km is calculated (3.2 

kWh/mile) (Gao et al., 2018). Based on their maximum driving distance and maximum 

speed, we assume that a rural cycle is used. Sripad and Visvanathan deal with uncertain 

input parameters by using a Monte Carlo simulation to calculate a consumption in a 

range from 1.38-1.81 kWh/km (2.2-2.9 kWh/mile) for a 36 t class 8 truck. The 

underlying driving profile remains unclear but based on the covered range, a highway 

profile can be assumed (Sripad & Viswanathan, 2017). Urban electric buses seem to 

have a comparable driving profile to the considered urban waste collection vehicles. 

Kievekas, Vepsalainen et al. use real driving data and a stochastic approach to calculate 

an average driving consumption of 0.914 kWh/km on a suburban bus route (Kivekas, 

Vepsalainen, & Tammi, 2018). It must be noted that their empty vehicle mass is about 3 

t less compared to the vehicle type considered in this paper. 

Methodology 

The presented methodology combines three elements: A transport simulation, a TCO 

analysis and a WTW analysis. The transport simulation in combination with the tour 

planning algorithm is used to generate a possible solution for waste collection in a given 

geographical region. Thereby it yields the necessary fleet size, distances driven and 

energy used for a specific vehicle type. We compare different propulsion systems using 

the TCO and WTW methods to investigate economic and environmental implications. 



MATSim and jsprit 

The Multi-Agent Transport Simulation (MATSim) approach builds microscopic models 

of the transport phenomena under investigation (Horni, Nagel, & Axhausen, 2016). 

“Microscopic” means that the relevant entities of the system are individually resolved. 

The approach, as in any economic assessment exercise, is: 

(1) Building a model of the base case (ICEV) 

(2) Building a model of the policy case 

(3) Comparing costs and benefits 

Here, the model of the base case is a model of urban waste collection with ICEVs. For a 

microscopic approach, this entails (a) a model of the demand for each day of the week, 

and (b) a method to generate plausible vehicle tours that serve that demand. The 

demand generation is done synthetically, based on available average numbers, plausible 

assumptions and spatial information, in particular locations of vehicle depots, dumps, 

and the street network. This is similar to the non-GPS based methods described earlier 

(see section Demand Generation for Waste Collection), albeit simpler.  

Afterwards, trajectories from the vehicle depots, iterating between collection 

points and dump and finally back to the depot, have to be generated. This is modelled as 

a shipment problem, where each shipment is from the pickup location to the dump. 

Vehicles are capacity (here in terms of payload) constrained, leading to multiple trips to 

the dump during a tour (Martins-Turner & Nagel, 2019). Also, tours are time 

constrained, which leads to multiple tours run simultaneously. Our approach uses the 

software jsprit4, which is already integrated with MATSim, and which is indeed able to 

                                                 

4 https://github.com/graphhopper/jsprit 



provide heuristic solutions for such shipment problems. For this study, vehicle depots 

are assumed to provide an unconstrained number of identical vehicles. 

The investigation case is generated similarly. While an equal demand is 

assumed, the EVs have different payloads and a range constraint. Evidently, the 

resulting tours may be different. 

Total cost of ownership 

The TCO analysis is a commonly accepted method in strategic cost management. It is 

used to calculate the financial impact of procurement decisions regarding not only 

purchase but also variable costs over the products lifetime (Geissdörfer, Gleich, & 

Wald, 2009; Götze & Weber, 2008). This method has proven to be useful to compare 

different technological options in the early planning phase of electric mobility solutions 

(Goehlich, Spangenberg, & Kunith, 2013). Hence this method is suitable for the 

application in this work. Our approach is based on (Jefferies & Göhlich, 2018). 

We assume a product lifetime of 10 years for vehicles and 20 years for charging 

infrastructure, and annualize the capital expenditure using an average interest rate of 4% 

according to (Jefferies & Göhlich, 2018). The operational costs are calculated 

exemplarily for two typical work days based on simulation results. 

Research concerning electric passenger cars shows less maintenance effort 

compared to ICEVs (Propfe, Redelbach, Santini, & Friedrich, 2012). However, the 

resulting change in maintenance costs has not yet been quantified reliably for the 

considered vehicle type. Therefore, we assume the maintenance costs for the EVs using 

the same costs as for the ICEVs, despite the presumed savings for EVs. 

Well-to-wheel 

To analyze the environmental impact of the simulated waste collection scenarios, GHG 



emissions from the production of diesel and electricity as well as from their use in the 

vehicles are estimated following the WTW methodology (Edwards, Larivé, Rickeard, 

Lonza, & Maas, 2014). 

In contrast to a life cycle assessment (LCA) over the whole life cycle of a 

product (Deutsches Institut für Normung, 2009), this approach focuses on the 

comparison of GHG emissions from the use phase of the ICEV and the EV (Edwards et 

al., 2014). Nonetheless, the whole upstream chains of diesel and electricity, including 

extraction, production and distribution are considered (Deutsches Institut für Normung, 

2013). 

For the WTW analysis we choose the tool openLCA 1.8.05 with the database 

Ecoinvent v3.5 (Wernet et al., 2016). We use the IPCC 2013 method to calculate GHG 

emissions (Eggleston, Buendia, & Miwa, 2006). As the electricity data in Ecoinvent 

v3.5 is collected for the year 2014, we will calculate the GHG emissions assuming 473 

gCO2eq/kWh for Germany in 2018 (Eggleston et al., 2006; Icha & Kuhs, 2019). 

Taking German climate goals for the year 2030 into account, we will calculate 

GHG emissions from electricity production assuming 347 gCO2eq/kWh and assuming 

only renewable energies for electricity production, resulting in 25 gCO2eq/kWh 

(Wietschel, Kühnbach, & Rüdiger, 2019). 

Case study 

Our case study is carried out for Berlin, the largest city and capital of Germany with 

currently 3.75 million inhabitants living in an area of 891 km2 (Amt für Statistik Berlin-

Brandenburg). 

                                                 

5 http://www.openlca.org/ 



Road network 

For the present investigation, we use a road network model consisting of links and 

nodes, link-based demands for waste collection, individually modelled synthetic 

vehicles, and individual vehicle depots and dumps. The road network is the regular 

network of the public available MATSim Open Berlin Scenario (Ziemke et al., 2019), 

where the network is originally derived from OpenStreetMap6. 

Generating a synthetic demand for waste collection 

What now follows is a model to synthetically generate a plausible spatially resolved 

demand for waste collection. According to the annual report of the Berlin waste 

management company, the overall amount of waste from households and small 

businesses in 2018 is 813,495 t/a (Berliner Stadtreinigung, 2018). With the assumption 

that all 3.75 million inhabitants generate this amount equally, this results in an average 

of 217 kg/(a*person). This number, multiplied by the number of inhabitants per district 

and divided by the number of weeks per year, results in the typical weekly amount per 

district. Each of the 96 districts has a fixed assignment to one of the four vehicle depots; 

this effectively decomposes the problem into four independent sub-problems.  

Real-world pickup schedules for Berlin are not publicly accessible. Therefore, it 

is necessary to synthetically generate a plausible collection schedule. In Berlin, some 

areas are served once per week, some twice. For each vehicle depot sub-problem, the 

districts with the lowest waste density are identified, and assumed to be served once per 

week, on Wednesdays. All other districts are assumed to be served twice: on Mondays 

                                                 

6 http://www.openstreetmap.org 



and Thursdays or on Tuesdays and Fridays. These subgroups are combined such that the 

waste amounts are approximately equal between depots.  

Since we assume an equal generated waste amount per day, Mondays and 

Tuesdays will have more waste than Thursdays and Fridays. For balancing purposes, 

some districts were moved into the “low density” group, and then some of the “low 

density” districts were moved to Thursday or Friday collections while maintaining the 

once-per-week frequency. The waste is transported to five dumps where the delivered 

amounts are known (Berliner Stadtreinigung, 2018); therefore, each district is assigned 

to a dump for each collection day so that the spatial layout is plausible, and the resulting 

weekly waste amounts per dump are realistic. The result of this process is a synthetic 

collection schedule which assigns to each district a depot, one or more collection days, 

and for each collection day a dump. 

The link-based demand for collection is now created at each link of the network 

depending on the free speed, length and the district where the road is located. In 

general, all roads with a free speed higher than 50 km/h are excluded, so that no 

collection will be created on motorways. The demand for collection is then distributed 

to the remaining links, proportionally to their length, which reflects the assumption that 

in each district the population is distributed equally along the remaining links. The 

number of waste bins per link is then obtained by dividing this amount by the bin size. 

For the VRP, each demand per link is encoded as one shipment, regardless of the length 

and the amount of waste, which needs to go from the collection point to the disposal 

station. The number of bins per shipment is only relevant for the necessary time per 

pickup. 

The objective function consists of the costs, defined as the sum of fixed costs for 

each employed vehicle and variable costs per km. The fixed costs include depreciation, 



insurance and the personnel costs of the crew, where it is assumed that the crew is paid 

for the full day no matter how long the tour. The variable costs are the costs for the 

energy (e.g. fuel or electric power). Additionally, there are the following constraints: 

• All collection vehicles have capacity (payload) constraints and thus have to 

unload at the dumps. Each disposal of a fully loaded vehicle is assumed to take 

45 minutes, which is also assumed to be used as the legally required break of the 

vehicle crew. 

• All collection vehicles have time constraints. They need to be back at the depot 

after 8 hours and the earliest departure is 6 am. 

A vehicle tour as a heuristic solution of the VRP thus starts at the depot, then iterates 

between multiple waste collections and the dump, and returns to the depot. The solution 

consists of individually specified trajectories for all the vehicles necessary for fulfilling 

the complete demand of each specific collection day. An example of a tour is shown in 

Figure 2. 

Vehicle parameters 

Realistic parameters for both the diesel and the electric waste collection vehicle are 

defined in order to quantify the results of the simulation in terms of energy 

consumption, WTW emissions and TCO. 

An ICEV with Euro 6 emission standards is chosen for the base case. It 

represents the newest vehicle generations currently in service, in order to show the 

present-day potential of combustion engines. The specifications of the vehicle are 

received from personal interviews with a large German waste management authority.  

For the investigation case, a commercially available, small-scale-produced 

electric waste collection vehicle is chosen to reflect the current market situation and to 



get reliable price information. While vehicle and battery specifications and driving 

consumption are available online (E-Force One AG7), price information and 

consumption for waste collection were received from personal encounter with the 

vehicle (E-Force One AG) and collector (Geesinknorba Group8) manufacturers. 

In electric powertrains, the battery is the main cost driver. Furthermore, the 

weight of the battery has a considerable impact on the possible payload. Therefore, two 

different batteries are selected: A large battery which enables longer ranges but also 

causes a reduced payload and a higher purchase price and a small battery which allows 

for an equal payload compared to the ICEV but has more significant range restrictions. 

Further specifications of the ICEV and both EVs are shown  in table 1. 

Table 1: Vehicle type specifications (manufacturer information) 

 
ICEV 

 
EV1  

(large battery) 
EV2  

(small battery) 
GVW [kg] 26,000 26,000 26,000 
Payload [kg] 11,500 10,500 11,500 
Capacity [m3] 22 22 22 
Average fuel consumption [l/100km] 73 - 
Fuel consumption driving  60 [l/100km] 100 [kWh/100km] 
Fuel consumption collecting  0.5 [l/1000kg] 1.4 [kWh/1000kg] 
Purchase Price Chassis and Collector [€] 210,000 452,250 
Battery Capacity (usable) [kWh] - 310 155 
Battery weight [kg] - 2,940 1,470 
Battery price [€] - 234,000 126,000 
Cycles to 80% remaining capacity [-] - 4,000 4,000 
Cell chemistry - NMC 

 

                                                 

7 https://www.eforce.ch/ 

8 https://www.geesinknorba.com 



To assess the reliability of the parameters stated by the manufacturer, the 

specific battery price, the possible charging cycles and the driving consumption are 

compared to the state of the art (see section Urban Electric Commercial Vehicles). 

Since the usable capacity is given, the installed capacity has to be calculated. 

Latest battery technology allows for  80-85% usable SOC (Rehman et al.; Sauer, 

Sinhuber, Rogge, Rohlfs, & Winter, 2016). Assuming 80%, the specific prices are 604 

€/kWh for the large and 650 €/kWh for the small battery. These values are on the high 

end of the identified price range (see section Urban Electric Commercial Vehicles) and 

thus can be considered a conservative choice.  

The selected NMC battery is equipped with a water based temperature control 

system. Consequently the results of (Yang et al., 2018) can be applied. As the proposed 

charging rate is significantly lower than 3.5 C and 4,000 instead of 4,500 full cycles are 

stated, the dimensioning appears viable. 

The range for the driving consumption specified by the manufacturer (0.8-1.2 

kWh/km) is significantly lower than reported in studies dealing with similar trucks. This 

could be the result of fundamentally different driving profiles. Nevertheless, the mean 

of the range given by the manufacturer is chosen: 1 kWh/km. This value is slightly 

higher than the consumption of the lighter electric bus with a comparable driving profile 

reported in (Kivekas et al., 2018).  

Charging infrastructure parameters 

In the presented use case, a single shift operation of eight hours daily is assumed. This 

leads to up to 16 hours of dwell time which can be used for charging. Therefore, one 22 

kW charger for every vehicle is suitable even for the 310 kWh battery. The cost for 

hardware, grid connection, approval, and setup for one charger is set to 10,000 € 

(Nationale Plattform Elektromobilität, 2015). 



Results 

For the case study we investigate two different synthetically generated weekdays for the 

waste collection in the city of Berlin: Monday as representing the collection days of the 

districts with higher demand density and Wednesday as the day collecting the waste in 

the districts with lower demand density. The collection with ICEVs (base case) is 

compared to the collection with EVs (investigation cases). 

Vehicle trajectories and base case: collection with diesel vehicles 

Different waste collection areas for a typical synthetic weekday are depicted in Figure 

1. As stated earlier, this is then solved as a pickup-and-delivery VRP, where all vehicles 

are originally located at their depots. In operation they alternate between waste 

collection and disposal (dump) until all waste is removed, and then return to their 

depots. The number of necessary vehicles is an output of the algorithm. For 

computational reasons, this is solved separately for each district; each district is denoted 

by a polygon in Figure 1. 

 

Figure 1: Simulated waste collection on a typical synthetic weekday. Different colors 

refer to districts served by different vehicle depots. 



Important properties of the problem for a typical synthetic weekday are as follows: 

• Volume of each waste bin: 1,100 l 

• Service time per waste bin: 41 s  

• Number of shipments: 12,113 (Monday), 17,808 (Wednesday) 

• Waste to collect: 3,123 t (Monday), 3,100 t (Wednesday) 

The solution algorithm, jsprit, is run for 100 iterations. A typical route is shown in 

Figure 2. Clearly, the result of this will not be optimal; rather, it has to be interpreted as 

a “feasible solution”. Because the optimization problem is different for each synthetic 

weekday, the results are also different. The necessary number of vehicles runs between 

198 and 218; the total distance is between 10,535 and 14,225 km; the longest tour for a 

single vehicle is 112 km.  

 

Figure 2: Typical trajectory of one waste collection vehicle 

As a sensitivity test, the same optimizations were run with much smaller bin sizes of 

240 l, where the service time per bin is 20 s. The necessary number of vehicles runs 



between 233 and 256; the total distance is between 11,863 and 14,733 km; the longest 

tour for a single vehicle is 108 km.  

Figure 3 shows the distribution of the tour length for the different simulation setups. 

The collection profile on Wednesday differs from the other weekdays. We will present 

results for Monday as a typical day and Wednesday as the exceptional day.  

 

Figure 3: Distribution of tour length for the different simulation setups 

Investigation Case: Collection with Electric Vehicles 

As a first investigation, the above study is re-run with the waste collection EV with a 

310 kWh battery and a reduced payload of 10.5 t. Nevertheless, under the same 

conditions as in section Vehicle Trajectories and Base Case: Collection with Diesel 

Vehicles, the results end up in the same range, sometimes even with fewer vehicles or 

kilometers. At the same time, the battery capacity of 310 kWh is by far not exhausted: 



the most energy-intensive tour demands 142 kWh (Wednesday, large bins).  

Because of the large unused battery capacity, a second electric vehicle is 

considered (cf. table 1). It has a smaller battery with 155 kWh. Because of the reduced 

battery weight it has the same payload as the ICEV (11.5 tons). These trucks can replace 

the ICEVs one by one. The most energy-intensive tour consumes 139 kWh 

(Wednesday, large bins), which is feasible with this battery. As a result, one overnight 

charging cycle per day is sufficient for every individual tour. During the assumed 10-

year lifetime of the vehicles (250 workdays/a), the 4,000 possible cycles are by far not 

reached. Thus, no battery change is required. 

Figure 4 shows the distribution of energy consumption for each tour in the 

different model setups. The energy consumption for waste lifting and compactification 

is included and comes out as about 30% of the energy consumption. 

 

Figure 4: Distribution of energy consumption per tour and vehicle for the different 

simulation setups 



Discussion of tour optimization results 

To get insight on the impact of the number of jsprit iterations, the optimizations for one 

district (644 collections, 1,100 l bins, ICEVs) were run for 50, 500, 4,000 and 12,000 

iterations. Those 12,000 iterations took 15 hours of computing time, while 50 iterations 

took 25 minutes. The results were as follows:  

• The number of vehicles went down as 14, 14, 13, 12. 

• The average kilometers per vehicle went as 68, 67, 72, 81. 

• The maximum number of kilometers of any vehicle went as 101, 99, 99, 98. 

Evidently, the algorithm strives to reduce the number of vehicles because of their high 

fixed costs. The average number of kilometers in consequence increases. In contrast, the 

maximum number of kilometers of any vehicle does not increase, which is good news 

with respect to electrification and specification of battery size. 

Operator costs 

Figure 5 shows the total operator cost on fleet level for two synthetic weekdays with 

different collection profiles and the influence of the two considered bin sizes for both 

days. The cost is split into its most relevant shares.  

The simulation runs with the assumption that staff always works full time. As a 

result, shortening vehicle tours has no staff cost consequences. When reducing the 

number of vehicles, we assume that the staff size can be reduced in the long run. With 

these assumptions we find that the electrification causes an increase in operating cost of 

29.4% with the large (EV1) and 17.5% with the small battery (EV2) in the worst case. 

The high impact of staff cost with up to 71.4% of the base case’s costs is well visible. 

This value drops slightly for the EVs but with 57.7% and 60.7% still is the main factor. 



Simultaneously the share of vehicle purchase price increases from 11.8% of the 

operating cost for the ICEV to 31.5% for EV1 and 27.9% for EV2. This is countered by 

a reduction of energy cost share by about 3.7% for both EVs. Generally, it is noticeable 

that energy costs have a minor impact on total costs. 

The alteration of cost among the analyzed scenarios (bin size and collection 

profile) are mainly due to changes in fleet size. 

 

Figure 5: Total daily operator cost on fleet level 

Well-to-wheel 

To evaluate the environmental impacts, the cases are analyzed. In order to assume the 

same conditions in terms of distances travelled and waste collected, EV2 is used (cf. 

table 1). Figure 6 displays the GHG emissions of the waste collection for both simulated 

typical synthetic days. Total CO2eq emissions for the WTW approach of the ICEV and 

EVs, both with data from Ecoinvent v3.5 are displayed (Wernet et al., 2016). 



Additionally, the CO2eq emissions for the EVs using estimations for Germany’s 

electricity mixes in 2018 and 2030, and using estimations for a fully renewable 

electricity generation emissions are depicted.  

Taking a closer look at the results calculated with electricity data from the year 

2014 (Ecoinvent v3.5), the GHG emissions caused by the EVs are around 59-63% 

smaller than the emissions caused by the ICEVs. For Germany’s current electricity mix, 

EVs’ GHG emissions are around 71-74% smaller compared to the ICEVs’ GHG 

emissions. Taking projected future electricity mixes into account, the GHG emissions 

by the EVs are around 79-81% smaller than the GHG emissions caused by ICEVs. If 

the EVs are powered only by renewable energies, 98-99% of GHG emissions can be 

saved compared to the ICEVs. Note that even with only renewable energies, there are 

still GHG emissions, caused by the upstream chains of renewable energy production. 

 

Figure 6: Well-to-wheel GHG emissions on fleet level 

Conclusion and outlook 

Our results show that the electrification of the waste collection in urban areas is 

feasible based on current technology. As shown above it is possible to configure a waste 

collection EV with the same payload as the ICEV together with a sufficient range: The 

simulated Berlin waste collection vehicles typically perform daily tours of less than 100 



km, which can be run by a truck with a fully charged medium sized battery without 

recharging.  

The proposed methodology provides realistic vehicle trajectories for 

conventional ICEV and BEV. The actual fleet of the Berlin waste operator with approx. 

300 vehicles is somewhat larger than our “synthesized fleet” with about 220 vehicles. 

But firstly we neither consider a vehicle reserve nor extreme waste occurrences (e. g. 

typically after Christmas). And secondly this difference applies to both the conventional 

and the electric fleet. Therefore, the relative comparison of life cycle costs and 

environmental impact of both fleets remains valid. 

Our TCO analysis shows a moderate cost increase, between 18 and 30% for the 

electric fleet, However, it can be expected that this cost disadvantage of an EV fleet will 

decrease substantially in the near future. Heavy duty EVs are just entering the market 

and scale effects due to mass production have not been exploited yet. Furthermore, a 

reduction of battery cost can be expected for commercial vehicles analogously to 

passenger cars.  

Another important aspect is the energy consumption of the EVs. In our 

simulation we chose an average value. Especially on cold winter days an electric cabin 

heating could cause significantly higher energy demand.  

Also the impact of the uncertainty of the mentioned average consumption as 

discussed in section Urban Electric Commercial Vehicles cannot be ignored. However, 

the majority of the vehicles use significantly less than 100 kWh per tour with the made 

assumptions, leaving a satisfactory safety margin even with the small battery (Figure 4). 

Furthermore, the large battery offers a safety margin of 54% for the highest simulated 

energy demand. Therefore, even a doubling of the consumption could be handled. 

Consequently, the operator could deploy a fleet of vehicles with small batteries (155 



kWh) supplemented by a few vehicles with larger batteries to handle the longest tours, 

resulting in a cost increase somewhere between the above mentioned 18 and 30%.  

To further increase range or decrease battery size, (fast) charging options during 

dwell times are possible. This would lead to cost savings from smaller batteries, but also 

entail to additional investment costs for additional chargers. We are planning to address 

these issues in future publications. Here, findings from publications about the intelligent 

placement of fast charging stations for electric city buses such as (Kunith, 

Mendelevitch, & Goehlich, 2017) will be expanded. 

Our WTW analysis shows a significant reduction of GHG emissions of the EV 

fleet in comparison to the ICEVs. Additionally, GHG emissions with the predicted 

electricity mix in 2030 could be lowered by approx. 27% compared to Germany’s 

current electricity mix and by approx. 95% using only renewable energies. Nonetheless, 

future research should evaluate the whole life cycle of the vehicles, including 

production (in particular the production of the EVs’ battery) and end of life of the 

vehicles. However, this requires close cooperation with manufacturers, which we are 

currently working on. Furthermore, the use phase could be calculated more precisely, 

for example with the help of a vehicle simulation, to take use-case dependent conditions 

such as location-specific topology, weather conditions or actual payload and driver 

influences into account. At the same time, more impact categories should be considered 

for evaluating the environmental impacts of the ICEVs and EVs, which consider air 

quality and human toxicity as well. 

Eventually our results on electrification of urban waste collection will become 

part of our study on a fully de-carbonized urban transport system. 
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