
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Evolution of Model Transformations

by Model Refactoring:

Long Version

Hartmut Ehrig, Karsten Ehrig and Claudia Ermel

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany
{ehrig,karstene,lieske}@cs.tu-berlin.de

Bericht-Nr. 2009/04, ISSN 1436-9915

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lieske%7D@cs.tu-berlin.de

Abstract

Model-to-model transformations between visual languages are often defined by typed,
attributed graph transformation systems. Here, the source and target languages of
the model transformation are given by type graphs (or meta models), and the rela-
tion between source and target model elements is captured by graph transformation
rules. On the other hand, refactoring is a technique to improve the structure of a
model in order to make it easier to comprehend, more maintainable and amenable to
change. Refactoring can be defined by graph transformation rules, too. In the con-
text of model transformation, problems arise when models of the source language
of a model transformation become subject to refactoring. It may well be the case
that after the refactoring, the model transformation rules are no longer applicable
because the refactoring induced structural changes in the models. In this paper, we
consider a graph-transformation-based evolution of model transformations which
adapts the model transformation rules to the refactored models. In the main result,
we show that under suitable assumptions, the evolution leads to an adapted model
transformation which is compatible with refactoring of the source and target models.
In a small case study, we apply our techniques to a well-known model transformation
from statecharts to Petri nets.

1 Introduction

Model-driven software development (MDD) is a discipline that relies on models and
that aims to develop, maintain and evolve software by performing model transfor-
mations [1]. The basic idea of model transformations is to more or less automatically
derive models of a certain target language from models of a source language, e.g.
by mapping the source language components of a domain specific language to Petri
nets, where model properties can be analyzed formally.

An intrinsic property of software (and their models) in a real-world environ-
ment is their need to evolve. As the model is enhanced, modified and adapted to
new requirements, it becomes more and more complex and drifts away from its
original design. Refactoring [2, 3], originally used in the industry for source code
re-structuring, aims at reducing the software complexity by “changing a software
system in such a way that it does not alter the external behavior of the code, yet
improves its internal structure” [2]. Recently, approaches for refactoring have been
lifted to the more abstract level of design models (model refactoring), supporting
in particular the refactoring of UML diagrams like class diagrams, statecharts and
activity diagrams [4, 5].

In this paper we tackle the problem which arises when model refactoring oper-
ations are applied to a model (or a modelling language) which is transformed by a
model transformation. Problems arise if the refactoring operations induce structural
model changes which cannot be handled by the model transformation. In order to
solve this problem, we propose a strategy for a systematic evolution of model trans-
formation specifications in accordance to the refactoring operations.

Model transformations between visual languages are conveniently defined in a
formal way by typed, attributed graph transformation [6–9]. To execute model trans-
formation rules and to check functional properties of model transformations (termi-
nation and confluence), the graph transformation engine AGG [10] is available.

On the other hand, various approaches exist using graph transformation to pro-
vide a formal specification of model refactorings [11–13]. Basically, a refactoring
operation is defined by a set of graph transformation rules typed over the modelling
language of the models to be refactored.

In our approach, we consider a construction allowing us to apply the refactoring
operation not only to models of the source or target language of a model transfor-
mation, but also to the model transformation rules. The approach is based on the
work of Parisi-Presicce who defined the transformation of graph grammars in [14].
In our main result, we show that under suitable assumptions, such an evolution of
the model transformation rules leads to an adapted model transformation which is
compatible with refactoring of the source and target models. In a small case study,
we apply our techniques to a well-known model transformation from statecharts to
Petri nets, when the statechart becomes subject to a refactoring.

This technical report is the long version of our contribution to the Workshop of
Graph Transformation and Visual Modeling Techniques 2009 [15].

2

The paper is structured as follows: After introducing our case study for refactor-
ing and model transformation in Section 2, we consider the notion of consistency of
a model transformation step and a refactoring step in Section 3, where the steps are
defined as single rule applications of the respective graph rules to a model state. In
Section 4, we extend this basis to sequences of rule applications and state our main
result for the consistent evolution of model transformations. We give an overview
over extension of our main results in Section 5, and look into some further refactor-
ings in Section 6. Section 7 compares our approach to related work, and in Section 8
we conclude the paper with an outlook to future work.

2 Example: Transforming and Refactoring Statecharts

2.1 Model Transformation State2PN from Statecharts to Petri Nets

In this section, we review the model transformation from a simple version of state-
charts into Petri nets, given in [6].

Example 1 (Type Graph of the SC2PN Model Transformation). The statechart type
graph TGS is shown in the left part of Fig. 1 and explicitly introduces several ideas
from the area of statecharts that are only implicitly present in the standard UML
metamodel (such as state configurations). We consider a network of state machines
StateMachine. A single state machine captures the behavior of any object of a specific
class by flattening the state hierarchy into state configurations and grouping parallel
transitions into steps. A Configuration is composed of a set of States that can be active
at the same time. A Step is composed of non-conflicting Transitions (which are, in turn,
binary relations between states) that can be fired in parallel. A step between two
configurations is triggered by a common Event for all its transitions. The effect of a
step is a set of Actions.

Fig. 1. Integration of Attributed Type Graphs for the Model Transformation SC2PN

The target modelling language are Petri nets. The Petri net type graph TGT is
shown in the right part of Fig. 1. In fact, we use elementary net systems [16], where

3

each place contains at most one token. In order to interrelate the source and target
modeling languages, we use reference types to construct an integrated attributed
type graph, as shown in Fig. 1. For instance, the reference node type RefState relates
the source type State to the target type Place.

The model transformation from statecharts into Petri nets is fully given by the
transformation rules defined in [6]. In this paper, we concentrate on the rules con-
structing the integrated model which contains elements of both source and target
language, and do not consider explicitly the restriction of the integrated model to
the target language of Petri nets.

The main model transformation rules are shown in Fig. 2. Note that we use a
shortcut notation for our rules where the left- and right-hand sides of each rule are
depicted in one graph. Nodes which exist only in the right-hand side (i.e. they are
generated by the rule) are coloured, and their adjacent arcs are also generated by
the rule. Moreover, all model transformation rules are non-deleting, and each rule
has a negative application condition (NAC) which equals the right-hand rule side
and prevents the rule to be applied more than once at the same match as before.

Fig. 2. Model Transformation Rules for SC2PN

Example 2 (SC2PN Model Transformation Rules). Each state in the statechart is
transformed to a corresponding place in the target Petri net model, where a to-
ken in such a place denotes that the corresponding state is active initially (rules
InitState2Place and State2Place). A separate place is generated for each valid event in
rule Event2Place. Each step in the statechart is transformed into a Petri net transition

4

(rule Step2Trans). Since the Petri net should simulate how to exit and enter the cor-
responding states in the statechart, input and output arcs of the transition have to
be generated accordingly (see rules StepFrom2PreArc and StepTo2PostArc). Furthermore,
firing a transition should consume the token of the trigger event (rule Trigger2PreArc),
and should generate tokens on (the places related to) the target event indicated as
the action (Action2PostArc).

2.2 Refactoring Operation for Statecharts

Not all possible model refactorings make it necessary to adapt the model transfor-
mation rules. One well-known refactoring is the so-called Pull-Up-Attribute which
removes an attribute type from all subtypes of a supertype and adds the attribute
type to the common supertype, instead. This kind of refactoring (changing only
the inheritance relation of a meta model) does not induce changes on the instance
models which remain valid as they are. Hence, model transformation rules remain
applicable after the refactoring, too. On the other hand, there are refactorings which
induce structural changes of the instance models. This kind of critical refactorings
make an adaption of the model transformation rules necessary and are considered
here. Fig. 3 shows an overview of changes in the type graph and the necessity of
changing (migrating) the corresponding models and/or model transformation rules,
as well.

Fig. 3. Relation between Refactorings at Meta-Model and at Model Level

Adding new types or deleting constraints are uncritical since existing models
remain valid with respect to the new type graph, as well. Critical refactoring oper-
ations are the addition of constraints, and the deletion of existing types (including
attribute types). Here, the added constraints may be violated by existing models,
and deleted types may be used in existing models, which must be refactored ac-
cordingly. If the intention of adding a new subtype is that certain model elements,
previously typed over the supertype, should now be typed over the new subtype,

5

then the models must be adapted, as well. Analogously, existing models might use
types which have been renamed or violate constraints after they have been modified,
depending on the character of the modification.

As running example, we present a refactoring operation for statecharts, where the
representation of initial states is changed from an attribute to a new node type. This
involves the deletion of an attribute type which is a critical refactoring according
to Fig. 3. The motivation for this statechart refactoring is to simplify the definition
of a concrete syntax for statecharts, where node types are mapped to figures. We
use this example later on to illustrate the evolution of a model transformation from
statecharts to Petri nets when such a model refactoring on statecharts has taken
place.

Example 3 (Refactoring Operation for Statecharts). Let the type graph for stat-
echarts be the one depicted in the left part of Fig. 1. For the definition of our
refactoring operation, this type graph is extended by two new node types Initial and
Normal, which are linked to the State node type. The refactoring operation markState is
modelled by the two graph rules in Fig. 4, where an Initial node is added to a state
whose isInit attribute is true (rule markInitial), and, vice versa, a Normal node is added
to a state whose isInit attribute is false (rule markNormal). Note that the isInit attribute
is deleted by the refactoring rules.

Fig. 4. Rules for Statechart Refactoring Operation markState

3 Consistency of Stepwise Model Transformation and
Refactoring

In this section, we give the formal definition how to adapt a model transformation to
a refactoring operation (Def. 1) and consider the relation of a model transformation
step and a refactoring step in Lemma 1.

A model transformation rule p1 ∈ P is adapted to a refactoring (given by refac-
toring rule q ∈ Q), by applying refactoring rule q to all rule graphs of model trans-
formation rule p1, resulting in the adapted model transformation rule p2. Note that
the construction of applying rules to rules is based on [14] and extended to rules
with NACs in [17].

6

Definition 1 (Application of Q-Productions to P-Productions).
Production q = (Lq ← Iq → Rq) is applicable to p1 : L1 → R1 with nac1 : L1 →

N1 leading to p2 : L2 → R2 with nac2 : L2 → R2 if we have m : Lq → L1 leading to

the following DPOs, written p1
q,m_ *4 p2 , where all morphisms are injective:

Lq

m

��
(1)

Iq
oo //

��
(2)

Rq

��
L1 Doo // L2

L1

p1

��
(3)

Doo //

��
(4)

L2

p2

��
R1 Eoo // R2

L1

nac1
��

(5)

Doo //

��
(6)

L2

nac2
��

N1 Foo // N2

Example 4 (Applying a Refactoring Rule to a Model Transformation Rule). Fig. 5
shows the application of refactoring rule markInitial from Fig. 4 to model transforma-
tion rule InitState2Place from Fig. 2, according to Def. 1.

Fig. 5. Applying Refactoring Rule markInitial to Model Transformation Rule InitState2Place

General Assumption: Let a visual modeling language V L be given by all models
(graphs) typed over a type graph. As basis for model transformation and refactoring,
we assume a common type graph TG which includes the type graphs for the source
and the target languages of the model transformation, as well as the extended type
graph for the refactoring. Let (MT, P) : V L1 → V L2 be a model transformation
(with P non-deleting with NACs), (MR1, Q) : V L1 → V L∗

1 be a model refactoring
(with Q bijective on nodes, without NACs), and (MR, Q) : P → P ∗ be a model
refactoring of rules according to Def. 1, and let TG be the common type graph for
V L1, V L2, V L∗

1, P and Q. All over, we assume injective rules and injective matches.
For simplicity, we do not handle the corresponding refactorings of the different type
graphs in this paper.

7

The following lemma shows the compatibility of a model transformation step
transforming source model G1 ∈ V L1 into target model G2 ∈ V L2 by applying rule
p1 ∈ P , and a refactoring step, changing G1 ∈ V L1 to G′

1 ∈ V L∗
1 by applying rule

q ∈ Q, where the refactored source model G′
1 is transformed by the refactored model

transformation rule p2 ∈ P ∗, resulting in model G′
2.

Lemma 1 (Direct Transformation and Refactoring Steps).

Given G1
p1,m1=⇒ G2 with p1 ∈ P and p1

q,m_*4 p2

with q ∈ Q, we have G1
q

=⇒ G′
1, G2

q
=⇒ G′

2 and
G′

1

p2=⇒ G′
2.

G1
p1,m1 +3

q

��
q,m

�
�

G2

q

��
G′

1 p2

+3 G′
2

Proof. Given p1 : L1 → R1 with nac1 : L1 → N1, we obtain p2 : L2 → R2 with
nac2 : L2 → N2 with pushouts (1)− (6) as in Def. 1.

Furthermore, we obtain from G1
p1,m1=⇒ G2 the pushout in the left square in the

diagram below, with pushouts (1)− (4), as shown in Def. 1. Next, we construct D1

as pushout complement in the left back square – using that Iq → Lq and hence
D → L1 is bijective on nodes, which implies that the gluing condition is satisfied –
and then G′

1 as pushout in the right back square. Then, D2 and G′
2 are constructed as

pushouts in the middle and right square, respectively, leading to induced morphisms
D2 → G2 and D2 → G′

2 such that all squares commute.
In the left cube, the left, right, back and top
squares are pushouts by construction. This im-
plies that also the front and bottom squares are
pushouts by pushout composition and decomposi-
tion. Hence, all squares of the left cube and, sim-
ilarly, also of the right cube are pushouts. This
leads to the DPOs of the direct transformations
G1

q
=⇒ G′

1, G2
q

=⇒ G′
2 and G′

1

p2,m2=⇒ G′
2.

Lq
m �� (1)

Iq

��

//oo

(2)

Rq

��
L1p1

�����

m1��

(3)
Doo

��

����
�

//

(4)

L2

��

p2

�����

R1

��

Eoo

��

// R2

��
G1

�����
D1

oo

�����
// G′

1
����

G2 D2
oo // G′

2

It remains to show that m2 : L2 → G′
1 satisfies

nac2 : L2 → N2, defined by pushouts (5) and
(6) in Def. 1, using that m1 : L1 → G1 satisfies
nac1 : L1 → N1. Assume that m2 6|= nac2, then we
have injective q2 : N2 → G′

1 with m2 = q2 ◦ nac2.
Pushout-pullback decomposition allows us to con-
struct pushouts (7) and (8) from the outer DPO,
leading to an injective q1 with q1 ◦ nac1 = m1.
This contradicts m1 |= nac1. Hence, we have
m2 |= nac2.

L1

nac1
��

m1

""

(5)

Doo //

��
(6)

L2

nac2
��

m2

||

N1

q1

��
(7)

Foo //

��
(8)

N2

q2

��
G1 D1

oo // G2

Example 5 (Model Transformation Step and Refactoring Step).
Fig. 6 shows the diagram relating the source and target model of the model

transformation step and the changed source and target models of the refactoring
step where p1 and p2 are given in Fig. 5.

8

Fig. 6. Relating Refactoring and Model Transformation Step

4 Sequences of Rule Applications

In this section, we extend our result from Lemma 1 on the compatibility of model
transformation and refactoring steps to sequences with rule sets Q, P and P ∗ ac-
cording to the general assumption in Section 3. Our main result in Thm. 1 states
that under certain compatibility assumptions which can be decided at rule level, a
complete model transformation sequence can be refactored, leading to a compat-
ibility diagram similar to the one in Lemma 1, but where now sequences of rule
applications are considered instead of single steps. For the proof of Thm. 1, we re-
quire compatibility of model transformation and refactoring rules, defined in Def. 2.
Furthermore, we use a lemma stating that a terminating transformation at rule level
leads to a terminating transformation at model level, as well (Lemma 2). We say
that graph G (resp. rule p∗) is terminal wrt. Q if no rule q ∈ Q can be applied to G
(resp. p∗).

Definition 2 (Q– (P, P∗)– Compatibility).
Q is (P, P ∗)-compatible if we have:

1. Independence Compatibility:

Given terminal p∗ wrt. Q, G1
p∗

=⇒ G2 and G1
q

=⇒ G′
1 (resp. G2

q
=⇒ G′

2) with
p∗ ∈ P ∗ and q ∈ Q, we have parallel (resp. sequential) independence including

NACs of G2
p∗⇐= G1

q
=⇒ G′

1 (resp. G1
p∗

=⇒ G2
q

=⇒ G′
2 for terminal G1 wrt. Q).

2. Termination Compatibility:

For each G terminal wrt. P and G
Q!

=⇒ G∗, also G∗ is terminal wrt. P ∗, where
Q! means to apply rules in Q as long as possible.

9

Example 6 (Compatibility of the SC2PN Model Transformation and the markState
Refactoring).

We continue our case study introduced in Examples 1 - 5. Fig. 7 shows the
refactored model transformation rules InitState2Place and State2Place. Note that all other
model transformation rules from Fig. 2 remain unchanged because the refactoring
rules cannot be applied to them.

Fig. 7. Refactored Model Transformation Rules for SC2PN

We now show that we have independence and termination compatibility as de-
fined in Def. 2:

1. Independence compatibility: Given terminal p∗ wrt. Q and q ∈ Q with G′
1

q⇐=

G1
p∗

=⇒ G2, we have parallel independence because the matches can only overlap
in State which is a gluing point for both rules. Moreover, we have NAC compatibil-
ity because the nodes and edges generated by the rules in Q are of different types
from those generated by p∗. Analogously, we can show sequential independence.

2. Termination compatibility: Given terminal G wrt. P and G
Q!

=⇒ G∗, then the
markState refactoring rules have been applied to all initial state nodes occuring
in a rule in P , and to all initial state nodes in G. So there is no match from a
rule p∗ ∈ P ∗ to G∗ where the NAC of p∗ would not prevent its application, and
hence, G∗ is terminal wrt. P ∗.

The following lemma states that a terminating transformation at rule level leads
to a terminating transformation at model level.

Lemma 2 (Direct Transformation and Terminating Refactoring).

Given G1
p1,m1=⇒ G2 with p1 ∈ P and p1

Q! _*4 p∗
1 terminating, we construct G∗

1

p∗1=⇒
G∗

2 and terminating G1
Q!

=⇒ G1∗ and G2
Q!

=⇒ G∗
2, provided that we have termination

of (MR1, Q) and independence compatibility (see Def. 2.1).

Proof. Let p1
Q! _ *4 p∗

1 terminate via (q1, .., qn) and G1
p1=⇒ G2, then we apply

Lemma 1 in each step, leading to diagrams (1) – (n).

G1
q1 +3

p1

��
(1)

G11
q2 +3

p11

��
(2)

G12

p12

��

qn +3

p1n−1

��

(n)

G1n
qn+1 +3

p1n p∗1
��

(n+1)

G1n+1

p∗1
��

qn+m+3

p∗1

��

(n+m)

G∗
1

p∗1
��

G2 q1

+3 G21 q2

+3 G22 qn
+3 G2n qn+1

+3 G2n+1 qn+m

+3 G∗
2

10

If G1n is not yet terminal wrt. Q, we can extend G1
∗

=⇒ G1n by G1n

Q!
=⇒ G∗

1

via (qn+1, .., qn+m) with terminal G∗
1 wrt. Q, using termination of (MR1, Q). Parallel

independence of G1n

p∗1=⇒ G2n

qn+1
=⇒ G1n+1 according to independence compatibility

allows us to construct diagram (n + 1) by the Local Church-Rosser Theorem with
NACs, and, similarly, diagrams (n + 2), .., (n + m). But now also G2

∗
=⇒ G∗

2 via

(q1, .., qn+m) is terminating because G∗
2

q
=⇒ G∗∗

2 would imply G∗
1

q
=⇒ G∗∗

1 by sequen-

tial independence of G∗
1

p∗1=⇒ G∗
2

q
=⇒ G∗∗

2 according to independence compatibility.

Now we state our main result saying that under certain compatibility assump-
tions which can be decided at rule level, a complete model transformation sequence
can be refactored, leading to a compatibility diagram similar to the one in Lemma 1,
but where now sequences of rule applications are considered instead of single steps.

Theorem 1 (Evolution of Model Transformations by Model Refactoring).
Given a model transformation (MT, P) : V L1 → V L2 (with P nondeleting with
NACs), a model refactoring (MR1, Q) : V L1 → V L∗

1 (with Q bijective on nodes,
without NACs), and a model refactoring (MR, Q) : P → P ∗ according to Def. 1
with common type graph TG for V L1, V L2, V L∗

1, P and Q, such that

1. (MT, P), (MR1, Q) and (MR, Q) are terminating,
2. Q is locally confluent,
3. Q is (P, P ∗)-compatible (see Def. 2),

then we have V L∗
2 typed over TG with extended

4. terminating model refactoring
(MR2, Q) : V L2 → V L∗

2, and
5. terminating model transformation

(MT ∗, P ∗) : V L∗
1 → V L∗

2 with
6. commutativity of the diagram to the right.

V L1
(MT,P) //

(MR1,Q)
��

V L2

(MR2,Q)
��

V L∗
1 (MT ∗,P ∗)

// V L∗
2

Proof. Given G1 ∈ V L1, G1
Q!

=⇒ G∗
1, G1

P !
=⇒ G2 via (p1, .., pn), and pi

Q! _*4 p∗
i for

(i = 1, .., n), where termination is given by assumption 1. Now, we use Lemma 2
above to construct the following sequence (1)− (n):

G1
p1 +3

Q!

��
(1)

G11
p2 +3

Q!
��

Q!
��

(2)

G12
+3

Q!
��

Q!
��

pn+3

(n)

G1n = G2

Q!

��
G∗

1 p∗1

+3 G∗
11 = G+

11 p∗2

+3 G∗
12 = G+

12
+3

p∗n

+3 G∗
1n = G∗

2

Note that G11
Q!

=⇒ G∗
11 and G11

Q!
=⇒ G+

11 are in general defined by different Q-

sequences induced by p1
Q! _*4 p∗

1 and p2
Q! _*4 p∗

2 , respectively. But termination
and local confluence of Q by assumptions 1 and 2 implies unique normal forms and
hence, G∗

11 = G+
11 (up to isomorphism), and similarly G∗

12 = G+
12, .., G

∗
1n−1

= G+
1n−1

.

11

Finally, G∗
1 =⇒ G∗

2 via (p∗
1, .., p

∗
n) is terminating by termination compatibility

according to assumption 3. Hence, we have diagram (A) for each G1 ∈ V L1, with

G2 ∈ V L2, G
∗
1 ∈ V L∗

1 and G∗
2 ∈ V L∗

2, where V L∗
2 = {G∗

2|∃G2 ∈ V L2 : G2
Q!

=⇒ G∗
2},

which implies terminating (MR2, Q) : V L2 → V L∗
2 and (MT ∗, P ∗) : V L∗

1 → V L∗
2

with commutativity of diagram (B):

G1
P ! +3

Q!
��

(A)

G2

Q!
��

G∗
1 P ∗!

+3 G∗
2

V L1

(MR1,Q)
��

(MT,P) //

(B)

V L2

(MR2,Q)
��

V L∗
1 (MT ∗,P ∗)

// V L∗
2

Remark 1. If (MT, P) and (MT ∗, P ∗) are not functional, then commutativity of

diagram (B) means that for each G1
P !

=⇒ G2 exists a corresponding G∗
1

P ∗!
=⇒ G∗

2 such
that diagram (A) commutes.

Example 7 (Refactoring of the SC2PN Model Transformation).
In order to apply Theorem 1, we have to show the required properties :

1. The original model transformation (MT, P) = SC2PN is terminating by [6].
The refactoring operation markState is terminating, because rules markInitial and
markNormal delete one attribute each, and therefore each rule is only applica-
ble once at a match to a State node. The refactoring of the model transfor-
mation rules (MR, Q) is terminating, because at most one rule q ∈ Q with
Q = {markInitial, markNormal} is applicable once.

2. The refactoring rules in Q are locally confluent: rules markInitial and markNormal are
parallel independent because their left-hand sides overlap in gluing point State

only. Moreover, there is at most one match of markInitial resp. markNormal at the
same State.

3. Q is (P, P ∗)-compatible as shown in Example 6.

According to the application of Theorem 1, we obtain the terminating model
refactoring (MR2, Q), and the terminating model transformation (MT ∗, P ∗) for each
possible statechart which is transformed to a Petri net using (MT, P), i.e. the rules
in P , and which is refactored using the refactoring (MR1, Q), i.e. the rules in Q. As
result we have the commutative diagram below, where V L1 is the visual language
of statecharts,
V L∗

1 is the statechart language, extended by the
new node types Initial and Normal for the markState

refactoring, V L2 is the integrated language of stat-
echarts and Petri nets (defined by the type graph
in Fig. 1), and V L∗

2 is the integrated language of
extended statecharts and Petri nets.

V L1

(MT,P) //

(MR1,Q)
��

V L2

(MR2,Q)
��

V L∗
1 (MT ∗,P ∗)

// V L∗
2

12

5 Extensions of Main Results

5.1 General Model Refactoring Rules Q

We have assumed that Q-rules are nondeleting (bijective) on nodes. This was essen-

tial in Lemma 1 to construct the transformation G1
q

=⇒ G′
1.

In a direct proof of the main result, this can be
avoided if we have parallel independence (with
NACs) of all P - and Q-rules. By the Local Church-
Rosser Theorem, this would lead to the diagram to
the right, with P ∗ = P , where Q-rules are not ap-
plied to P .

V L1

(MT,P) //

(MR1,Q)
��

V L2

(MR2,Q)
��

V L∗
1 (MT ∗,P)

// V L∗
2

In our example, however, we do not have parallel independence of P - and Q-
rules, but of P ∗- and Q-rules, as required by Q-(P, P ∗-) compatibility. In fact, our
refactoring rule q is not parallel independent of the model transformation rule p1

but parallel independent of the refactored model transformation rule p∗
1. This is also

the case for all other refactored model transformation rules p∗
i because L∗

i does not
contain the attribute ”IsInit = true”.

5.2 Model Refactoring Rules with NACs

We have assumed that Q-rules have no NACs. Now, we consider Q-rules which
are still nondeleting on nodes, but with NACs. In Lemma 1, we assume to have

p1
q,m_*4 p2 with m |= nacq and have to show for G1

q,m1◦m
=⇒ G′

1 and G2
q,g1◦m1◦m

=⇒ G′
2

that m1 ◦m |= nacq implies g1 ◦m1 ◦m |= nacq. This means, we have to require that
m |= nacq implies g1 ◦m1 ◦m |= nacq because this also implies m1 ◦m |= nacq.

In Lemma 2, we need the following more general NAC-compatibility of Q: When-

ever G1i

p1i=⇒ G2i
is derivable from G1

p1=⇒ G2 with p1 ∈ P and p1i

qi,mi=⇒ p1i+1
satisfies

nacqi
, then also the extension of match mi : Lqi

→ L1i
to G1i

and G2i
satisfies nacqi

for i = 1, .., n. Moreover, we need independence compatibility for rules Q,P and
P ∗ with NACs. For the last step, we need local confluence of rules Q with NACs.
Both can be obtained from the corresponding Local Church-Rosser Theorem and
the Local Confluence Theorem with NACs [18].

5.3 Extended Application of Refactoring Rules to Model
Transformation Rules

In Def. 1, the application of a Q-rule q to a P -rule p1 : L1 → R1 with nac1 : L1 → N1

was only possible if we had a match m : Lq → L1.
If this is not possible, we can also consider
the case that we have a match m : Lq →
R1 satisfying nacq and no L1-deletion, i.e. we
have the pushout-complement E in (1) and
d : L1 → E, such that (3) commutes (see the
diagram to the right).

Lq

(1)m

��

Iq

(2)

��

loo r // Rq

��
L2 = L1

(3)
d

<<
p1 // R1 E

r1oo r2 // R2

13

In this case, the resulting rule p2 is given by p2 : L2 = L1
d−→ E

r2−→ R2, where
r2 is defined by pushout (2). In this case we need more restrictive assumptions to
obtain the main result.

6 Additional Refactoring Rules

In this section, we consider a few more refactorings for our example and validate the
compatibility criteria discussed in Section 4.

6.1 Refactoring State2SimpleState

Fig. 8 shows refactoring rules for renaming State nodes into SimpleState nodes which
may be applied after the refactoring in Section 2.2.

Fig. 8. Refactoring Rules for State2SimpleState

First, rule copyState creates new SimpleState nodes while the attribute value of stname

is copied to sname. This rule is applied only once for each State with NAC=R. Secondly,
rule relinkTrans removes any incoming arc from State and links it to the previously
inserted SimpleState node. AnyNode should be treated as superclass of all nodes of the
extended SC2PN type graph (i.e. replaced with Trans, Initial, Normal and RefState).

Fig. 9 shows two of the refactored model transformation rules after applying
the State2SimpleState refactoring to the model transformation rules resulting of the
markState refactoring.

Fig. 9. Refactored Model Transformation Rules of SC2PN after markState and State2SimpleState

Finally, all isolated State nodes should be removed by restriction to the adapted
type graph.

14

We first show that we have Q– (P, P∗)– compatibility (i.e. independence and
termination compatibility) as defined in Def. 2:

– Independence compatibility: Given terminal p∗
1 wrt. Q and q ∈ Q with G′

1

q⇐=

G1
p∗

=⇒ G2, we must show that we have parallel independence. For q = copyState,
we have the situation that there cannot be a graph G where q and any refactored
model transformation rule p∗

i (see e.g. Fig. 9) are both applicable: On the one
hand, any p∗

i is applicable only when a State and the corresponding SimpleState
with the same value for their name attributes exist in the graph. On the other
hand, the NAC of copyState forbids its application in this case.
For q = relink, we have parallel independence for all rule p∗

i , as no rule deletes
elements that are needed by the other rule. We do not have to consider NACs
here.

– Termination compatibility: Given terminal G wrt. P and G
Q!

=⇒ G∗, then the
State2SimpleState refactoring rules have been applied to all state nodes occuring
in a rule in P , and to all state nodes in G. So there is no match from a rule
p∗ ∈ P ∗ to G∗ where the NAC of p∗ would not prevent its application, and
hence, G∗ is terminal wrt. P ∗.

We now can show the required properties for applying Theorem 1:

1. We already know that the original model transformation SC2PN is terminat-
ing [6]. The refactoring operation State2SimpleState is terminating because of
the NAC of rule copyState, and the arc replacement operation defined by rule
relink, which can be applied exactly once for each existing arc pointing to a State
node.

2. The refactoring rules in Q are locally confluent since they are parallel independent
for non-overlapping matches. For overlapping matches, rule relink can only be
applied when rule copyState has been applied before.

3. Q is (P, P ∗)-compatible as shown above.

6.2 Refactoring UnifyNames

Fig. 10 shows refactoring rules for unifying the name attributes (stname and plname)
from nodes State and Place to name. The old attribute name is deleted in the left-hand
side of the rule while the new name is inserted on the right-hand side.

Fig. 10. Refactoring Rules for UnifyNames

15

Fig. 11 shows two of the refactored model transformation rules after applying the
UnifyNames refactoring to the model transformation rules resulting of the markState
refactoring.

Fig. 11. Refactored Model Transformation Rules of SC2PN after markState and UnifyNames

Again, we first show that we have Q– (P, P∗)– compatibility (i.e. independence
and termination compatibility) as defined in Def. 2:

– Independence compatibility: Given terminal p∗
1 wrt. Q and q ∈ Q with G′

1

q⇐=

G1
p∗

=⇒ G2, we must show that we have parallel independence. For q = uni-
fySName, we have the situation that there cannot be a graph G where q and
any refactored model transformation rule p∗

i (see e.g. Fig. 11) are both appli-
cable: On the one hand, any p∗

i is applicable only to a State with an attribute
name assigned to n and without an attribute stname. On the other hand, rule
unifySName is applicable only to a State with an attribute stname assigned to
n. Analogously, q = unifySName is parallel independent of all refactored model
transformation rule p∗

i .
For q = relink, we have parallel independence for all rule p∗

i , as no rule deletes
elements that are needed by the other rule. We do not have to consider NACs
here.

– Termination compatibility: Given terminal G wrt. P and G
Q!

=⇒ G∗, then the
unifySName refactoring rules have been applied to all state and place nodes
occuring in a rule in P , and to all state and place nodes in G. So there is no
match from a rule p∗ ∈ P ∗ to G∗ where the NAC of p∗ would not prevent its
application, and hence, G∗ is terminal wrt. P ∗.

We now can show the required properties for applying Theorem 1:

1. We already know that the original model transformation SC2PN is terminat-
ing [6]. The refactoring operation UnifyName is terminating because both rules
are applicable as many times as there are State attributes of type stname and
Place attributes of type plname.

2. The refactoring rules in Q are locally confluent since they are parallel indepen-
dent.

3. Q is (P, P ∗)-compatible as shown above.

16

7 Related Work

Refactoring of information systems is a common technique for software evolution
through transformation [19, 3]. Automated transformation within domain specific
languages including version support has been considered in [20, 21].

Refactoring by graph transformation rules plays an important role for software
system refactoring by providing a graphical way for rule definition and an under-
lying algebraic framework for analyzing refactoring dependencies [12] and to assure
behavior preservation in model refactoring using transformations with borrowed con-
texts [22]. Moreover suitable verification techniques are available, e.g. architectural
refactoring by rule extraction [23].

From a technical point of view, in this paper we apply model refactoring rules Q
deleting (on edges) to non-deleting transformation rules P , which is in some sense
dual to the S2A-construction of animation rules PA from simulation rules PS in
[17], where non-deleting rules Q are applied to deleting rules PS. Both kinds of rule
transformations are based on the construction in [14] but have been extended by
NACs and by the possibility to transform generated or deleted rule objects, as well.

Within the Eclipse Modeling Framework [24] model refactoring has already been
implemented using graph transformation concepts [25]. While software refactoring
is a common technique, a general theory for refactoring of model transformations
has still been missing.

8 Conclusion

In this paper, we consider a graph-transformation-based evolution of model trans-
formations which adapts model transformation rules to refactored models. In the
main result, we show that under suitable assumptions, the evolution leads to an
adapted model transformation which is compatible with refactoring of the source
and target models. In a small case study, we apply our techniques to refactor a
model transformation from statecharts to Petri nets.

As future research, we intend to consider refactoring operations at type graph
level based on our approach on transformations of type graphs with inheritance [26].
Moreover, up to now, we have studied model transformations resulting in an inte-
grated model which contains both source and target language elements. A restriction
to the target model presently means that we get the same target model as before
refactoring the source model and the model transformation rules. Additionally, we
plan to handle target language refactorings analogously to refactorings of the source
language.

17

References

1. Beydeda, S., Book, M., Gruhn, V., eds.: Model-Driven Software Development. Springer-Verlag, Hei-
delberg (2005)

2. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
3. Mens, T., Tourwé, T.: A survey of software refactoring. Transactions on Software Engineering 30(2)

(2004) 126–139
4. Boger, M., Sturm, T., Fragemann, P.: Refactoring Browser for UML. In: Proc. 3rd Intl Conf. on

eXtreme Programming and Flexible Processes in Software Engineering, Alghero, Sardinia. (2002) 77–
81

5. Sunyé, G., Pollet, D., LeTraon, Y., Jézéquel, J.M.: Refactoring UML Models. In: Proc. UML 2001.
Volume 2185 of LNCS., Heidelberg, Springer-Verlag (2001) 134–138

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theoretical Computer Science. Springer Verlag (2006)

7. Mens, T., Van Gorp, P., Varrò, D., Karsai, G.: Applying a Model Transformation Taxonomy to Graph
Transformation Technology . In: Proc. International Workshop on Graph and Model Transformation
(GraMoT’05). Volume 152 of ENTCS., Elsevier Science (2005) 143–159

8. Königs, A.: Model Transformation with Triple Graph Grammars. In: Model Transformations in
Practice Satellite Workshop of MODELS 2005, Montego Bay, Jamaica. (2005)

9. Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations based on Typed
Attributed Graph Transformation. In: Proc. International Workshop on Graph and Model Transfor-
mation (GraMoT’05). Volume 152 of ENTCS., Tallinn, Estonia, Elsevier Science (2005)

10. : AGG (2009) http://tfs.cs.tu-berlin.de/agg.
11. Mens, T., Taentzer, G., Müller, D.: Model-driven software refactoring. In Rech, J., Bunse, C., eds.:

Model-Driven Software Development: Integrating Quality Assurance. Idea Group Inc. (2005) 170–203
12. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph transformation.

Software and System Modeling 6(3) (2007) 269–285
13. Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, N., Van Gorp, P., Varro, D.: Using Graph Trans-

formation for Practical Model Driven Software Engineering. In Beydeda, S., Book, M., Gruhn, V.,
eds.: Model-driven Software Development. Springer (2005) 91–118

14. Parisi-Presicce, F.: Transformation of Graph Grammars. In: 5th Int. Workshop on Graph Grammars
and their Application to Computer Science. Volume 1073 of LNCS., Springer (1996)

15. Ehrig, H., Ehrig, K., Ermel, C.: Evolution of model transformations by model refactoring. In: Proc.
Workshop of Graph Transformation and Visual Modeling Techniques (GT-VMT’09). (2009)

16. Reisig, W.: Petri Nets: An Introduction. Volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer Verlag (1985)

17. Ehrig, H., Ermel, C.: Semantical Correctness and Completeness of Model Transformations using Graph
and Rule Transformation. In: Proc. International Conference on Graph Transformation (ICGT’08).
Volume 5214 of LNCS., Heidelberg, Springer Verlag (2008) 194–210

18. Lambers, L., Ehrig, H., Prange, U., Orejas, F.: Embedding and Confluence of Graph Transformations
with Negative Application Conditions. In Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G., eds.: Proc.
International Conference on Graph Transformation (ICGT’08). Volume 5214 of LNCS., Heidelberg,
Springer Verlag (2008) 162–177

19. Löwe, M., König, H., Peters, M., Schulz, C.: Refactoring Information Systems. In Favre, J.M., Heckel,
R., Mens, T., eds.: Proceedings of the Third Workshop on Software Evolution through Transformations:
Embracing the Chance (SeTra 2006). Volume 3., Natal, Brazil, Electronic Communications of the
EASST (2006)

20. Bell, P.: Automated Transformation of Statements within Evolving Domain Specific Languages. In
Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.P., eds.: Proceedings of the 7th OOPSLA Workshop
on Domain-Specific Modeling. Volume TR-38., Finland, Computer Science and Information System
Reports, Technical Reports, University of Jyvskyl (2007)

21. de Geest, G., Savelkoul, A., Alikoski, A.: Building a framework to support Domain Specific Lan-
guage evolution using Microsoft DSL Tools. In Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.P., eds.:
Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling. Volume TR-38., Finland,
Computer Science and Information System Reports, Technical Reports, University of Jyvskyl (2007)

22. Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior Preservation in Model Refactoring
using DPO Transformations with Borrowed Contexts. In: Proc. International Conference on Graph
Transformation (ICGT’08). Volume 5214 of LNCS., Heidelberg, Springer Verlag (2008)

18

23. Bisztray, D., Heckel, R., Ehrig, H.: Verification of Architectural Refactorings by Rule Extraction. In
Fiadeiro, J., Inverardi, P., eds.: Proc. Fundamental Approaches to Software Engineering (FASE’08).
Volume 4961 of LNCS., Springer Verlag (2008) 347–361

24. Eclipse Consortium: Eclipse Modeling Framework (EMF) – Version 2.4. (2008)
http://www.eclipse.org/emf.

25. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical Definition of
In-Place Transformations in the Eclipse Modeling Framework. In: Proc. 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS’06), Genova, Italy (2006)

26. Ehrig, H., Ermel, C., Hermann, F.: Transformation of Type Graphs with Inheritance for Ensuring
Security in E-Government Networks. In Wirsing, M., Chechik, M., eds.: Proc. International Confer-
ence on Fundamental Aspects of Software Engineering (FASE’09). LNCS, Heidelberg, Springer Verlag
(2009) To appear.

19

