
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

An Algebraic Approach to
Timed Petri Nets with Applications

to Communication Networks

Extended Version

Pascal Lingnau
Karsten Gabriel

Tony Modica

Technische Universität Berlin

Bericht-Nr. 2012 – 02
ISSN 1436-9915

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Algebraic Approach to

Timed Petri Nets with Applications

to Communication Networks

Extended Version

Pascal Lingnau
Karsten Gabriel

Tony Modica

Technische Universität Berlin, Germany

{pasling,kgabriel,modica}@cs.tu-berlin.de

Bericht-Nr. 2012/02
ISSN 1436-9915

Contents

1 Introduction 1

1.1 Aims . 2

1.2 Structure of the Paper . 3

2 Related Work 4

2.1 Coloured Petri Nets . 4

2.2 Other Tools . 4

2.3 Time Petri Nets . 5

2.4 Deterministic Timed Petri Nets . 5

2.5 PTI Nets . 5

3 Case Studies 5

3.1 Network Infrastructure . 6

3.2 Production Line . 7

4 P/T Nets and Systems 9

4.1 P/T Nets . 10

4.2 Category of P/T Nets . 11

4.3 Category of P/T Systems . 12

4.4 Structuring Techniques . 13

4.5 Processes of P/T Nets . 14

5 Timed P/T Nets 16

5.1 Requirements . 16

5.1.1 Model Time . 17

5.1.2 Time Duration . 17

5.1.3 Marking . 18

5.1.4 Firing Behaviour . 18

5.1.5 Net Structure . 18

5.2 Firing Behaviour . 20

5.2.1 Timed Marking, Selection and State 20

5.2.2 Activation and Firing . 26

5.3 Application to Case Studies . 28

5.3.1 Network Infrastructure . 28

5.3.2 Production Line . 35

6 Categories of Timed Net Classes 38

6.1 Category of Timed P/T Nets . 39

6.2 Category of Timed P/T Systems . 43

6.3 Category of Timed P/T States . 46

6.4 Functorial Relations of Timed Net Classes . 48

6.5 Functorial Relations to Untimed Net Classes 52

7 Structuring Techniques for Timed P/T Nets 56

7.1 Union of Timed P/T Nets . 57

7.2 Fusion of Timed P/T Nets . 60

7.3 Restriction of Timed P/T Nets . 62

7.4 M-Adhesive Category of Timed P/T Nets . 64

8 Conclusion 66
8.1 Outlook and Future Work . 67

A Categorical Fundamentals 72

B Detailed Proofs 74
B.1 Proof of Fact 6.3 (Category TPTNets) . 74
B.2 Proof of Fact 6.12 (Category TPTSys) . 75
B.3 Proof of Fact 6.17 (Category TPTStates) . 75
B.4 Lemma: Delay of Sums with Single Place . 76
B.5 Proof of Lemma 6.6 (Delay of Sums) . 78
B.6 Proof of Lemma 6.7 (Delay of Differences) . 78
B.7 Proof of Theorem 6.14 (Timed P/T-system morphisms preserve firing steps) . 78
B.8 Proof of Theorem 6.19 (Timed P/T-state morphisms preserve firing steps) . . 80
B.9 Proof of Fact 7.2 (Gluing of Timed P/T Nets is Pushout) 81
B.10 Proof of Fact 7.15 (Monomorphisms and Isomorphisms of Timed P/T Nets) . 82
B.11 Proof of Fact 7.16 (Closure-Properties of Time-Strict Injective Morphisms) . 84
B.12 Proof of Theorem 7.17 (Timed P/T Nets Are M-Adhesive) 85

An Algebraic Approach to Timed Petri Nets with Applications

to Communication Networks

Extended Version

Pascal Lingnau Karsten Gabriel Tony Modica

Abstract

In this report, we define a formalism for a time-extension to algebraic place/transition
(P/T) nets. This allows time durations to be assigned to the transitions of a P/T
net, representing delays present in the systems that are being modelled, which in turn
influence (restrict) the firing behaviour of the nets. This is especially useful when
modelling time-dependent systems.

The new contribution of this approach is the definition of categories for the timed
net classes of timed P/T nets, timed P/T systems and timed P/T states. Moreover,
we define functorial relations between these categories as well as functorial relations to
categories of untimed P/T nets and systems.

The first main result is the formalisation of morphisms for all three net classes that
preserve firing behaviour. The second main result is the equivalence of the categories
of timed P/T systems and states, establishing a relation between structurally identical
nets with a time offset. As a third main result we formalise structuring techniques for
timed P/T nets and show that timed P/T nets fit in the framework of M-adhesive
categories.

1 Introduction

Petri nets are a formalism widely used for modelling and analysing systems and processes.
First introduced by Carl Adam Petri in [Pet62], the notion of Petri nets (and P/T nets
in particular) has been refined and extended over the time [Rei85,Rei91,MM90]. Different
approaches, as well as extensions and enhancements exist, including algebraic high-level
(AHL-)Nets [EHP+02,Ehr04], P/T nets with individual tokens (PTI nets), [MGE+10], and
coloured Petri nets (CPNs) [Jen97,JKW07,JK09], among others.

Algebraic high-level nets are based on a combination of P/T nets and algebraic spec-
ifications, using data types and values, as well as terms and conditions defined by the
specification which influence the firing behaviour. PTI nets are P/T nets with individual
tokens, while coloured Petri nets use ML-data types and -expressions to control the firing
of transitions and include data with each token.

One aspect often needed when modelling systems of any kind is time-based analysis,
especially for real-time or in general time-critical systems. These include (but are not
limited to) embedded systems monitoring and controlling industrial appliances and real-
time communication over networks.

P/T nets do not inherently provide a way to model the passing of time or to restrict the
firing behaviour with regards to passing time. In order to be able to model time-dependent

1

1 Introduction

systems using P/T nets, the notion of P/T nets has to be modified to respect durations of
events in the system, effectively making transitions “take time”.

The modelling of time-critical systems has always been an important topic when it comes
to the planning and development of (especially) real-time software and hardware systems
and systems in general that are under some kind of time constraint. Being able to analyse
a model with respect to temporal aspects as well as reliability (i.e. universal reachability of
certain systems states, thus ruling out the possibility of deadlocks) is crucial when dealing
with these kinds of projects.

There have been several approaches to including a notion of time in P/T nets in the
past, such as time Petri nets [BD91] or deterministic timed Petri nets [BH07], often us-
ing designated time durations for transitions, and in some cases for places. The resulting
models can then be analysed with regards to the time values and also different aspects like
reachability and boundedness.

Currently the most common P/T net variant using a time notion are timed coloured
Petri nets, which are similar to AHL nets, but use ML-data types and -expressions to control
the firing behaviour of the underlying P/T net of a CPN model. The timed CPN extension
allows the definition of time durations for transitions and modifies the firing behaviour
accordingly.

The aforementioned P/T net variants however do not include ways to establish relations
between different nets, therefore it is not possible to apply rule-based graph transformation
and structuring techniques or specify processes for a given timed net, which is possible with
algebraic P/T nets.

1.1 Aims

The main goal of this paper is the algebraic definition of timed P/T (or TPT) Nets to incor-
porate the previously mentioned advantages of algebraic P/T nets, including net structure
and firing behaviour. The definition is based on algebraic P/T nets, enhancing them in
order to include time durations as well as tokens with timestamps, while staying as close to
the regular P/T net structure and firing behaviour as possible. Two case studies serve as
examples on how the formalism can be used to model time-dependent systems and include
certain conditions regarding their behaviour in the timed models.

We also define categories for different classes of timed nets. In category theory, a cate-
gory is comprised of a class of objects and a set of morphisms between these objects that
fulfill two basic properties, namely the associativity of morphisms and the existence of iden-
tity morphisms for each object. This very unrestrictive definition allows the objects and
morphisms to be entities of an arbitrary kind, and thus category theory is a way to describe
mathematical constructs in an abstract way. This in turn allows to extend properties that
are proven to be true for categories in general to any mathematical structure as long as it
can be defined as a category.

Defining categories of timed nets enables us to inherit certain properties, for example
allowing the definition of structuring techniques (like union and fusion, which are already
defined for algebraic P/T nets and are based on the categorical pushout construction), while
morphisms allow us to specify processes for timed P/T nets. A special class of categories,M-
adhesive categories (with a classM of monomorphisms, fulfilling certain properties) allows
the formalisation of rule-based transformation using the double pushout (DPO) approach.

The categories we define in this paper include those of timed P/T nets as well as timed
P/T-systems and states, which are comprised of a timed P/T-system and a global clock

2

1.2 Structure of the Paper

value. Afterwards, we define functors between these categories, as well as functors that map
timed P/T nets onto standard P/T nets. We also show that the categories of timed P/T
systems and timed P/T states are equivalent, in the way that for every timed P/T state,
modelling a system’s state with absolute time, there is a corresponding timed P/T system
with the same expressiveness, where the time is only modelled relatively. Vice versa, for a
timed P/T system modelling relative time, we obtain a corresponding timed P/T state by
adding a concrete clock value.

Moreover, we establish definitions for the structuring techniques union, fusion and re-
striction of timed P/T nets, analogous to the corresponding constructions for P/T nets.
Union allows the construction of nets by gluing two nets together at so-called gluing points,
while fusion glues together components of one net.

Finally, we outline how to extend the timed P/T net definition to timed AHL-nets, and
briefly compare timed AHL-nets with timed CPNs. In the following, we provide an overview
of the different sections.

1.2 Structure of the Paper

In Section 2, we take a look at different approaches to implementing a notion of time in P/T
nets or their variants. We provide a short overview on their main features and differences,
as well as some of the effects that the design decisions have with respect to the models.

In Section 3, we introduce two case studies, including a model of a computer network
as well as an example representing a factory production line. These examples then serve
as motivation for the definition of timed P/T nets and are also used as running examples
to illustrate these definitions. We first show the models as regular P/T nets, which are
extended to timed P/T nets in the following sections in order to fulfil special requirements
we impose on the models.

In Section 4, we provide a formal overview of P/T nets and P/T systems, including the
firing behaviour, P/T-net morphisms, and the structuring techniques union and fusion, as
well as the categories of P/T nets and P/T systems.

In Section 5, we formally define the notion of timed P/T nets together with a firing
behaviour based on timed markings, selections and states. Afterwards, we apply the newly
defined timed P/T net approach to the case studies from Section 3, extending the original
models and then simulating them as an example for the application of timed P/T nets.

In Section 6, we define the categories of timed P/T nets, timed P/T systems and timed
P/T states, analogously to the categories of P/T nets and P/T systems. Moreover, we
show that the morphisms of all three net classes preserve firing behaviour. We also define
functorial relations between the timed P/T systems and states, as well as skeleton functors
which translate timed P/T nets to P/T nets and timed P/T systems to P/T systems,
respectively. We then show that these skeleton functors preserve firing behaviour. We also
show that the categories of timed P/T systems and timed P/T states are equivalent, showing
that they are essentially the same.

In Section 7, we define structuring techniques union, fusion and restriction for timed
P/T nets analogously to those for algebraic P/T nets. Moreover, we show that the category
of timed P/T nets fits into the abstract categorical framework of M-adhesive categories
which means that our approach is suitable for rule-based transformation of timed P/T nets
in the sense of graph transformation.

The conclusion in Section 8 provides an overview on the main subjects of the paper,
as well as the main results. We also give a short outline of how the notion of timed P/T

3

2 Related Work

nets can be extended to timed AHL-nets, and conduct a brief comparison of the timed P/T
models shown in this paper with their timed CPN counterparts.

2 Related Work

In the past, there have already been a number of different approaches on how to introduce
a notion of time to various flavours of Petri nets. While some of these are largely different
from one another in the way they are integrated into the respective formalisation, they all
share the common purpose of implementing a way to describe, design, and analyse models
of time-dependent systems or processes.

In this section, we take a look at a selection of works in this area and roughly compare
the methods used in the respective approaches.

We also briefly discuss the approach of P/T nets with individual tokens (PTI Nets), as
the idea of timed selections in our approach of timed P/T nets is based on the concept of
selections in the PTI approach.

2.1 Coloured Petri Nets

Coloured Petri nets (CPNs) were first introduced by Kurt Jensen in [Jen97] and described
in detail by Jensen and Kristensen in [JK09]. In CPNs, a type (“colourset”) is assigned to
each place, allowing only tokens with values (“colours”) of that specific type (or colourset)
on each place. Expressions for edge inscriptions and transition conditions are denoted in
ML-Syntax. The data types used are ML data types.

There is also a timed CPN extension, which assigns a duration to a transition (or single
edge) and so called timestamps for each token, indicating the earliest point in time when a
token can be used for a transition. A transition that fires adds the duration of the transition
to the created tokens’ timestamps, so in general, they can not be used immediately, but
rather after the time the transition takes has passed. In a timed CPN model, not every
place has to be timed (i.e. the tokens on this place do not possess timestamps), and the set
of places of a timed CPN can contain both timed and untimed places.

There is also a tool provided for modelling timed CPNs, called “cpntools”, which pro-
vides ways to design and analyse coloured Petri nets, including state-space analysis and
model checking techniques (as described in [JKW07]), allowing for in-depth analysis and
verification of net behaviour.

The timed CPN firing behaviour requires that a transition fires at the earliest point
in time at which it is activated. This is a limitation that is in place to obtain a definite
firing behaviour (although in the case of a conflict, one of the activated transitions has
to be chosen at random). Therefore, during simulation, the global clock is monotonically
increasing, as there is no possibility of a transition being activated at a point in time that
has already passed.

2.2 Other Tools

Other notable tools for modeling variants of timed Petri nets include ROMEO, TINA and
ORIS, which all employ different methods of analysis, but generally employ state-space
analysis as well as model checking using different types of tree logic (LTL,CTL,TCTL).

A comparison of these tools can be found in [GLMR05].

4

2.3 Time Petri Nets

2.3 Time Petri Nets

Time Petri nets (TPNs), introduced by P. Merlin in 1974 and described by Berthomieu
and Diaz in [BD91], assign two labels to each transition, denoting the time that has to
pass before that transition can fire after being enabled (EFT, earliest firing time), and the
maximum time the transition can be enabled until it has to fire (LFT, latest firing time).

This firing behaviour is significantly different from that of timed coloured Petri nets,
allowing for much more refined models with more control over the behaviour of the models.

Berthomieu and Diaz also describe means to analyse Time Petri Nets, using a state-
space approach, while proving that the reachability and boundedness problems for TPNs
are undecidable ([BD91]).

2.4 Deterministic Timed Petri Nets

Deterministic timed Petri nets, introduced by B. Hruz and M.C. Zhou in [BH07], pursue a
rather unique approach for firing behaviour, actually introducing a delay between removal
of tokens upon firing of a transition and the creation of tokens on the output place. In
addition, each place has a designated delay, denoting the time before a created token can
be consumed from that place.

Deterministic timed Petri nets are based on timed marked graphs, with marked graphs
being a subclass of Petri nets, where each place of a marked graph has exactly one input
edge and one output edge, as described in [CCCS92].

2.5 PTI Nets

Petri Nets with individual tokens, first introduced in [MGE+10, MGH11], describe a for-
malism for Petri nets with tokens that are distinguishable from one another. Moving away
from the collective token approach, where the tokens in a marking are simply denoted by
a sum with no way to select a certain token from that sum, PTI nets use a set of specific
tokens that are mapped (via a function) onto the respective places they are located on.

Since in the indivual token approach the tokens are unique, there has to be an indication
of which tokens are consumed when firing a transition. This is done by choosing a selection
of tokens (which is contained in the current marking), under which the respective transition
is activated.

Note that in this paper we do not pursue an individual token approach in our definition
of timed P/T nets even though we use certain aspects from the PTI formalism.

The algebraic approach presented in this paper allows us to formalise relations between
timed nets via morphisms, allowing e. g. to specify a process of a timed P/T net, apply
structuring techniques such as union and fusion to timed P/T nets and also define categories
of different timed P/T net classes. Furthermore, we aim for a more liberal approach to
activation and firing behaviour, being as unrestrictive as possible.

3 Case Studies

This section contains two case studies serving as motivation for the definition of timed P/T
nets and as running examples to illustrate the definitions. The first case study is a model of
a computer network, similar to a token ring network, while the second example is a model

5

3 Case Studies

of a part of a production process. We introduce the two case studies as P/T nets first, then
outline the required extension to model them as timed P/T nets.

3.1 Network Infrastructure

The following example models a (computer) network with several nodes (clients), which
are connected to routers/switches. The client computers send data to the routers, which
forward these packets among each other until the data can be sent directly to the target
client. Figure 1 shows a sketch of this network.

Client 1

Client 2

Client 4 Client 3

 Router 4

forward

Router 2

Router 3

Router 1

forward

forward forward
Legend

Router

(allows up to 3

open connections

at a time)

Client

(sends and receives

data via routers)

send/receive

send/receive

send/receive send/receive

Figure 1: Network infrastructure

For the representation as a P/T net (Figure 2), we use one place for each client and
router, which are connected via transitions, representing the sending and receiving of data
from/to the clients, as well as the forwarding of packets between routers. The transitions
designated rcv1 through rcv4 are used for transferring data from a switch to a client, while
send1 through send4 model the transfer of data from a client to a switch. The switches
are interconnected via forwarding transitions (fwd1 through fwd4), used to forward data
between them.1 Note that forwarding is only possible in one direction (clockwise in the

1Usually like in the network model, there is an intuitive interpretation of a transition’s firing behaviour
that it passes a token from an incoming arrow to an outgoing arrow. Thus, we may say that a particular token
is passed through the net, although formally there is no implicit relation between consumed and produced
tokens in a firing step.

6

3.2 Production Line

figure). Additionally, each router has a “ready place”, which holds tokens that are consumed
and immediately produced again whenever a forward occurs. The number of tokens on one
of these places represents the maximum number of concurrent connections the router is
able to maintain. Due to the instant production of the tokens upon firing of a forwarding
transition, the number of tokens on the ready places has no effect in a regular P/T net,
even if many transactions occur at “the same time”.

Therefore, we need a way to express the duration such a transaction takes, which is
possible in timed P/T nets. This then allows the assigned durations to have a (restricting)
effect on the firing sequences possible in the simulation of the net, which yields a behaviour
that is more faithful to that of a real-world network.

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4
ready2

ready1

ready3

Figure 2: Network infrastructure a P/T net

Figure 3 shows a possible state of the network’s infrastructure as a P/T system (i.e. a
net with an initial marking), where each ready-place contains one token, and additionally
the fastclient place contains one token, while the slowclient place contains two tokens.

To illustrate the goal we want to achieve with timed P/T nets, Figure 4 shows the same
network with time durations assigned to the output edges of the transitions. Note that
these are not to be mistaken for the number of tokens created, but are still referring to
single tokens that should be created with that specific delay. If multiple tokens were to
be created by one output edge, this edge’s inscription would be a sum of time values, each
addend corresponding to one token. A similar notation is used for timed nets in Section 5.

3.2 Production Line

Consider the simple production line example shown in Figure 5. The tokens on the Worker
place represent workers who manufacture a product, which in turn is represented by tokens
placed on the Product place. The manufacturing process is represented by the produce
transition, which requires some utility, represented by the token on the Utility place. The

7

3 Case Studies

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4
ready2

ready1

ready3

Figure 3: State of network infrastructure as P/T system

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4
ready2

ready1

ready3

20

20

100

150

150

120

300

300

50

60

170

160

200

200

200

200

200

200

200

200

Figure 4: Network infrastructure as P/T net with durations on arcs

8

produce

Product

Worker

Utility

Workshop

break

Figure 5: Workshop model as P/T Net

possibility of a worker taking a break is given by the break transition.

Note that there are two workers while the Utility place only holds one token. In the
non-timed P/T net, however, the newly created utility token (from the produce transition)
can be used without restrictions, so the availability of only one utility does not have an
immediate effect on the firing behaviour. Similarly, the break transition does not have an
actual effect, since it only removes one token from the Worker place and recreates a token
on the same place.

produce

Product

Worker

Utility

Workshop

break

50 100

100

95

-5

Figure 6: Workshop as timed P/T Net

Again, to illustrate how a timed P/T net of the production line could be modelled,
Figure 6 shows the same net with time delays for the edges. Time values at the input edges
change the earliest point in time at which the input tokens can be used. In this case, a value
of -5 at the input edge of the break transition actually delays the time at which the worker
tokens can be used by 5 time units. We discuss the details in Section 5, after formally
defining the notion of timed P/T nets.

4 P/T Nets and Systems

This section contains an overview of algebraic P/T-nets in the sense of [MM90,ER97]. We
review the formal definition of P/T nets, including net structure and firing behaviour, and
also provide a short overview on the category of P/T nets. Afterwards, we review the notion
of P/T systems and their category. We also briefly demonstrate the structuring techniques
union and fusion.

Since we use the monoid notation for P/T nets, note that an element s ∈ X⊕ is a formal
sum s =

∑
n
i=1λixi with λi ∈ N, xi ∈ X which implies that in s, there are λi occurrences of

xi. As for the addition, for another sum s′ =
∑

n
i=1λ

′
ixi, we have s⊕ s′ =

∑
n
i=1(λi + λ′i)xi.

9

4 P/T Nets and Systems

4.1 P/T Nets

In the following segment, we provide a short overview of algebraic P/T nets.
P/T nets are based on sets of places and transitions that are connected by arcs. Arcs

can only directly connect a place to a transition (input edges) or a transition to a place
(output edges). The sum of places connected to a transition via an input arc is called
the predomain of that transition, analogously the places connected via an output arc are
called the post domain. When displaying a P/T net graphically, the usual conventions for
graphical representations are circles for places, rectangles for transitions and arrows for arcs.
Resources are represented by tokens (visualized by black dots) that are located on places,
indicating the availability of resources to a transition (which represents some kind of action).
A specific distribution of tokens on places is called a marking.

Arc inscriptions on the input arcs indicate how many tokens are needed on that arc’s
connected place in order to be able to “fire” the transition. Each input arc of the transition
must have its token number requirement satisfied for it in order to fire.

Upon firing, the respective number of tokens inscribed on the input arcs of the firing
transition are removed from the input places, then tokens are placed on the output places,
with the number of tokens created on each output place matching the respective output
arc’s inscription.

Continuous exercising of this so called “token game” simulates the modelled system and
allows for different types of analysis.

The following is a formal definition of P/T nets.

Definition 4.1 (P/T Net). A P/T Net N = (P, T, pre, post) consists of

• a set P of places,

• a set T of transitions, and

• functions pre, post : T → P⊕ describing the pre- and post domain of each transition

A P/T net can be depicted as T
pre //
post
// P⊕ .

Next, we define a marking, which is essentially the assignment of a number of tokens to
each place of a P/T net.

Definition 4.2 (Marking). Given a P/T net N = (P, T, pre, post). Then, a marking M is
an element M ∈ P⊕.

Example 4.3 (Marking of P/T Nets). Figure 7 shows a P/T net N1 = (P, T, pre, post) with
P = {p1, p2, p3, p4} and T = {t1, t2}. As for the pre- and post domains of t1, we have
pre(t1) = 3p1, post(t1) = p2⊕ 3p3 and for t2, pre(t2) = p1, post(t2) = p4.

The marking shown in the example is M = 3p1, since there are three tokens on the place
p1.

Another example is given by the network infrastructure P/T net in Figure 2, with places
P = {fastclient, slowclient, client3, client4, router1, router2, router3, router4,
ready1, ready2, ready3, ready4} and transitions
T = {send1, rcv1, send2, rcv2, send3, rcv3, send4, rcv4, fwd1, fwd2, fwd3, fwd4}. A mark-
ing of this net is shown in Figure 3, with marking M = fastclient ⊕ ready1 ⊕ ready2 ⊕
ready3⊕ ready4⊕ 2slowclient.

10

4.2 Category of P/T Nets

N1

t2

p1

t1

p3 p4

2 1

13

p2

1

Figure 7: P/T net N1 and marking M

Next, we define the firing behaviour of a P/T net, which decides when a transition is
activated, i.e. the conditions that have to be fulfilled so that a transition can fire. Upon
firing, the input tokens (according to the predomain of the firing transition) are removed,
and new tokens are placed on the output places of the transition.

Definition 4.4 (Activation, Firing Behaviour). Let N = (P, T, pre, post) be a P/T net and
M ∈ P⊕ a marking of N .

• A transition t ∈ T is activated under M , if pre(t) ≤M .

• A transition t that is activated under marking M can fire, written M
t−−→M ′, respec-

tively M [t〉 M ′, leading to the follower marking M ′ with

M ′ = M 	 pre(t)⊕ post(t).

Example 4.5 (Firing Step). In Figure 7, transition t1 is activated, since pre(t1) = 2p1,
M = 3p1, and so pre(t1) ≤ M . Therefore, t1 can fire, resulting in the follower marking M ′

shown in Figure 8. M ′ is calculated as

M ′ = M 	 pre(t1)⊕ post(t1) = (3p1)	 (2p1)⊕ (p2 ⊕ 3p3) = p1 ⊕ p2 ⊕ 3p3.

N

t2

p1

t1

p3 p4

2 1

13

p2

1

Figure 8: P/T net N after firing of t1

4.2 Category of P/T Nets

Here, we define morphisms between P/T nets, and subsequently the category PTNets. The
basics of category theory are covered in Appendix A.

11

4 P/T Nets and Systems

First, we define the notion of P/T net morphisms, which are mappings from one P/T
net onto another, defined componentwise on the sets of places and transitions, such that
the pre- and post domains of all transitions are preserved.

Definition 4.6 (P/T Net Morphism). Given P/T nets Ni = (Pi, Ti, prei, posti) with i =
1, 2. Then, a P/T net morphism f : N1 → N2 = (fP , fT) is a pair of mappings fP : P1 →
P2, fT : T1 → T2, such that the following diagram commutates componentwise for pre and
post:

T1

pre1 //
post1

//

fT

��

P⊕1

f⊕P
��

T2

pre2 //
post2

// P⊕2

Example 4.7 (P/T Net Morphism). Figure 9 shows P/T nets N1 and N2 with P/T-net
morphism f : N1 → N2 with fP (p1) = (p1), fP (p2) = fP (p3) = p23 and fT (t1) = (t1).
The morphism condition is fulfilled, because post2(fT (t1)) = post2(t1) = 2p23, f⊕P (post1(t1)) =
f⊕P (p2 ⊕ p3) = p23 ⊕ p23 = 2p23, and thus, post2(fT (t1)) = f⊕P (post1(t1)). Analogously, we
have pre2(fT (t1)) = f⊕P (pre1(t1)).

N1

p1

t1

p3p2

1

N2

p1

t1

p23

2

f

1

1 1

Figure 9: P/T-net morphism

Fact 4.8 (P/T Met Morphisms Preserve Firing Behaviour). Given P/T nets Ni = (Pi, Ti,
prei, posti) with i = 1, 2, a marking M ∈ P⊕1 of N1 and a P/T net morphism f : N1 → N2.
Let t ∈ T1 be a transition in N1 which is activated under M. The for every firing step

M
t−−→M ′ in N1 there is a corresponding firing step f⊕P (M)

fT (t)−−−→ f⊕P (M ′) in N2.

Definition 4.9 (Category PTNets of P/T Nets). The class of all P/T nets along with
P/T net morphisms constitute the category PTNets.

The identities and composition are defined componentwise as identities and composition,
respectively, of places and transitions in the category Sets of sets and functions.

4.3 Category of P/T Systems

A P/T system is a tuple containing a P/T net along with an (initial) marking.

Definition 4.10 (P/T System). A P/T system or marked P/T net

S = (N,M)

is a P/T net N = (P, T, pre, post) with (initial) marking M ∈ P⊕.

12

4.4 Structuring Techniques

Definition 4.11 (P/T System Morphism). Given P/T systems Si = (Ni,Mi) with N =
(Pi, Ti, prei, posti) and Mi ∈ P⊕i for i = 1, 2. Then, a P/T-system morphism is a P/T-net
morphism f = (fP , fT) that fulfils the following condition:

∀p ∈ P1 : M1(p) ≤M2(fP (p))

The P/T-system morphism f is marking-strict, if the following condition is fulfilled:

∀p ∈ P1 : M1(p) = M2(fP (p))

Example 4.12 (P/T System Morphism). Figure 10 shows a P/T-system morphism f :
(N1,M1) → (N2,M2) with markings M1 of N1 and M2 of N2. The P/T-net morphism
condition is fulfilled as shown in the previous example.

As for the P/T-system morphism condition, we have M1 = p1⊕p2 and M2 = 2p1⊕2p23.
So, since M1(p1) = 1 ≤ 2 = M2(fP (p1)) and M1(p2) = 1 ≤ 2 = M2(fP (p2)), we have
M1(p) ≤ M2(fP (p)) for all p ∈ P1. Therefore, f is a (non-marking-strict) P/T-system
morphism.

N1

p1

t1

p3p2

1

N2

p1

t1

p23

2

f

1

1 1

Figure 10: P/T-system morphism

Definition 4.13 (Category PTSys of P/T Systems). The class of all P/T systems, along
with P/T-system morphisms, constitute the category PTSys. The composition of two P/T
system morphisms is defined as the composition of the corresponding P/T-net morphisms.

4.4 Structuring Techniques

In this subsection, we review two structuring techniques for P/T nets: union and fusion.
The union of two nets N1 and N2 over an interface N0 results in a new net N3, containing
N1 and N2, which are “glued” together at their common components in N0. union and
fusion are based on the categorical notions of pushout and coequaliser, which are covered
in Appendix A.

Definition 4.14 (Union of P/T Nets). Given P/T nets Ni = (Pi, Ti, prei, posti) for i =
0, 1, 2 with P/T net morphisms f1 : N0 → N1 and f2 : N1 → N2.

N0
f1 //

f2
��

(1)

N1

g1
��

N2 g2
// N3

Then, the union object N3 = (P3, T3, pre3, post3) is constructed componentwise as
pushouts in Sets for the sets of places (P3) and transitions (T3). pre3 and post3 are induced
by the pushout construction.

13

4 P/T Nets and Systems

Example 4.15 (Union of P/T Nets). Figure 11 shows the union of P/T nets N1, N2 with
N0 as the interface. The morphism f1 maps the places and transitions according to their
labels, while the mapping of f2 is non-injective, since f2P (p1) = f2P (p2) = p1, 2.

For g1 and g2, we have:

• g1P (p1) = g1P (p2) = p1, 2 , g1P (p4) = p4 , g1T (t1) = t1 , g1T (t5) = t5,

• g2P (p1, 2) = p1, 2 , g2P (p3) = p3 , g2T (t1) = t1 , g2T (t3) = t3.

f1

p1

N0 N1

N3N2

t1

p1,2

p1

t4

t1

t4

f2

g2

g1

t1

t3

p2
p2

p4

p3

t1
p1,2

t3

p3

p4

Figure 11: Union of P/T Nets

Remark 4.16 (Union is Pushout). Given a union object N3 of P/T nets N1, N2 with N0 as
the interface. Then, N3 is the pushout of N1, N2 with N0 as the interface.

Definition 4.17 (Fusion of P/T Nets). Given P/T nets N1 = (Pi, Ti, prei, posti) for i = 1, 2
with P/T net morphisms f, g : N1 → N2.

N1

f //
g
// N2

c // N3

Then, the fusion object N3 = (P3, T3, pre3, post3) with morphism c : N2 → N3 is con-
structed componentwise as coequalisers in Sets for the sets of places (P4) and transitions
(T4). pre3 and post3 are induced by the coequaliser construction.

Example 4.18 (Fusion of P/T Nets). Figure 12 shows the fusion of P/T nets N1, N2 with
fT (p1) = p1, gT (p1) = p′1, fT (p2) = p2, gT (p2) = p′2. In the resulting net N3, the place p1 is
the identification of the places p1, p

′
1 from N2.

Remark 4.19 (Fusion is Coequaliser). Given a fusion (N3, c) of P/T nets f, g : N1 → N2

then (N3, c) is the coequaliser of f, g : N1 → N2.

4.5 Processes of P/T Nets

The concept of processes in P/T nets is essential to model not only sequential, but especially
concurrent firing behaviour. A process of a P/T net is given by an occurrence net K together
with a P/T net morphism p : K → N .

14

4.5 Processes of P/T Nets

f
p1

N1 N2 N3

p1

g
c

p2

p1'

p2

p2'

p1

p2

Figure 12: Fusion of P/T Nets

Definition 4.20 (Occurrence Net). An occurrence net K is a P/T net K = (P, T, pre, post)
such that for all t ∈ T with pre(t) =

∑n
i=1 pi and notation •t = {p1, . . . , pn} for the pre

domain and similarly t• for the post domain, we have:

1. (Unarity) •t and t• are sets rather than multisets for all t ∈ T , i. e. for •t the places
p1, . . . , pn are pairwise distinct,

2. (No Forward Conflicts) •t ∩ •t′ = ∅ for all t, t′ ∈ T, t 6= t′,

3. (No Backward Conflicts) t • ∩t′• = ∅ for all t, t′ ∈ T, t 6= t′, and

4. (Strict Partial Order) the causal relation <K ⊆ (P] T) × (T] P) defined by the
transitive closure of

{(p, t) ∈ P × T | p ∈ •t} ∪ {(t, p) ∈ T × P | p ∈ t•}

is a finitary strict partial order, i. e. the causal relation is irreflexive and for each
element in the relation the set of its predecessors is finite.

Definition 4.21 (P/T Process). A P/T process of a P/T net N is a P/T morphism
p : K → N where K is an occurrence net.

Example 4.22 (P/T Process). Figure 13 shows a P/T net version Workshop-Net of our pro-
duction line example from Section 3. The P/T morphism p : Workshop-Proc →Workshop-Net ,
mapping every place and every transition to the place respectively transition with the
same name but without number, is a P/T process of the net Workshop-Net , because
Workshop-Proc is an occurrence net.

The net Workshop-Proc is unary, because all arcs in the net have a weight of 1. The
net has no backward or forward conflict, because all places are at most in the pre and post
domain, respectively, of one single transition. Moreover, the causal relation is a finitary
strict partial order, since the net is finite and does not contain any cycles.

15

5 Timed P/T Nets

The process models a scenario with two workers and one utility. The first worker starts
the production and then takes a break before continuing to work on a second product. The
second worker uses the free utility at some point between the two productions of the first
workers which can be before, after and/or while the first worker has its break.

produce

Product

Worker

Utility

Workshop-Net

produce1
produce2

produce3

Worker1

Utility1

Worker2

Utility2

Product1 Worker3

Worker4

Utility2

Product2

Product3

Worker5

Workshop-Proc

p

Utility3

break

break

Figure 13: Production line process

5 Timed P/T Nets

In this section, we provide a formal definition of timed P/T nets, largely based on the
monoidal definition of P/T nets. Beforehand, we outline the requirements towards a timed
P/T net framework, examining different options for certain aspects and explain the reasoning
behind the decisions made in the formalisation.

As for the formal definitions, we first define the net structure and timed markings,
selection and states. Based on this, we define the firing behaviour of timed P/T nets
including activation, firing steps and firing sequences.

Finally, we apply the definitions to the case studies presented in Section 3, showing the
simulation of the timed P/T nets representing the network and production line models.

5.1 Requirements

In this segment, we establish a series of requirements for a formalism for timed P/T nets.
This is a comprehensive list of features one would expect from such a construct, along with
different possible ways of designing each aspect.

Timed P/T nets are intended to be used to model and analyse time-dependent processes,
or in general systems that need to be able to react or finish their execution inside a specific

16

5.1 Requirements

time constraint (so called real-time systems). Another use would be analysis and optimi-
sation of a specific system or process with regard to the time that has passed. Therefore,
we need to be able to keep track of the time while simulating a model, as well as to have
available a way to assign a duration to each action (represented by transitions in the case of
P/T nets), which in turn needs to have an effect on the firing behaviour of the timed P/T
net, so that the passing of time actually has an effect on how the net behaves.

First, we discuss model time. This refers to the way time values are represented in
the model, and how a global clock can be implemented, in order to be able to tell when
events can occur or occur during the simulation. Next, a way of representing the duration
of actions (or in this case, transitions) needs to be found. Finally, we need to determine a
way to ensure that the duration of a transition actually has an effect on the firing behaviour
of the net, i. e. only allowing transitions to fire after the duration of another transition has
passed if it is directly dependent on tokens created by that transition.

5.1.1 Model Time

Before starting to remodel transitions and the firing behaviour, we need to decide on a data
type to represent time durations and instants of time in general. Basically, this is a decision
between having a discrete or continuous time model.

Discrete time means having a finite number of time steps between any two points in
time. There would not be a way to insert a time step in between two directly consecutive
points in time. The benefit of this approach would be simplicity in both modelling and
simulating nets.

However, if one would like to refine an action (transition) that takes one time unit, all
the durations in the model would have to be upscaled in order to allow for a more detailed
model.

Continuous time, in contrast, has an infinite number of time values between any two
values. This allows for later refinement of nets. In any case, it is less restrictive than discrete
time and ultimately allows the modeller to choose the level of detail they wish to apply to
their model.

Therefore, for the timed P/T net formalism, we use the set of real numbers R as the data
type for time values. Since the natural numbers are included in the set of real numbers, the
modeller is still free to only use those if they wish. For simpler models, the set of natural
numbers is sufficient and also the most intuitive way for representing the time values.

The timed P/T net formalism employs a global clock, which is a time value representing
the current model time. This clock is the basis for the decision whether or not a transition
can use the tokens on its input place, or if firing is only possible at a later global clock value.

5.1.2 Time Duration

A timed P/T net formalism needs to include a way to express the duration that actions in
the modelled system take. Since actions in a P/T net are represented by transitions, each
transition gets assigned durations for each incoming and outgoing edge.

While a single duration for each transition might be sufficient for many (simpler) ap-
plications, there may be cases in which some results of an action might be available before
another one is ready. As an example, consider a production facility, where one side-product
of a production step is ready at an earlier point in time than the actual final/main product.

Since a transition can consume and produce more than one token per connected place,
each output edge gets assigned a sum of time values, each sum element representing one

17

5 Timed P/T Nets

token’s time it takes until it is available after the transition has fired.

While time durations for outgoing edges might be easily understood as the time it takes
for that token to be “created” by the transition, time durations on input edges are more
complex and not as intuitively understandable. As we show later in this section, durations
on the input edges allow earlier (or demand later) consumption of a token than would
otherwise be allowed by the current global clock value.

5.1.3 Marking

We define a marking of a timed P/T net of one place, just like the edge inscriptions, as a
sum of timestamps located on that particular place. And, consequently, a marking of the
whole net is a sum of pairs of places and time values.

5.1.4 Firing Behaviour

The definitions of time durations in a timed P/T net take effect in the firing behaviour.
Perhaps the simplest approach would be just adding up all transition durations without
changing the firing behaviour. This, however, does not allow a detailed analysis (and simu-
lation) of processes and is therefore insufficient.

A more complex, but also intuitive, way is to delay token creation corresponding to
the time durations assigned to the transitions. However, this would mean keeping track of
every token that needs to be created, for example in the form of local clocks for each token
currently “in creation”, which would make firing behaviour and therefore simulation of a
net very complex.

The approach we introduce here is based on that used in coloured Petri nets (see [JK09]),
which assigns a so called timestamp (time value) to each token upon creation (by firing a
transition). This timestamp represents the earliest point in time at which this token can be
consumed by a transition, so that it will usually be assigned a later time stamp value than
the current model time, the time difference being this transition’s edge’s duration.

Timestamps have to be included in the definition of the activation of transitions, checking
whether the current time has advanced enough in order to consume all the required input
tokens. This method also covers the approach where token creation is delayed, and is
generally a more feasible approach regarding the definition of the firing behaviour.

5.1.5 Net Structure

Timed P/T Nets extend the notion of P/T nets by introducing time durations for edge
inscriptions, as well as a global clock. Tokens are being represented as their respective time
stamps, which indicate at what time a particular token can be used again in order to fire
a transition. A marking of a place is represented as a sum of time values, where one value
indicates when that token can be consumed by a transition.

In the following, we define timed P/T nets based on the definition of regular P/T nets,
with one set each for places and transitions, as well as functions pre and post, which map a
sum over the Cartesian product of places and time values to a transition, defining the edges
of the net with their respective durations.

Each tuple of a time value and place denotes one token that is created or consumed,
specifying the place it is created on or taken from, as well as the time offset until it becomes
available (after production) or the amount of time a token can be removed early from an
input place (as seen later when defining the firing behaviour).

18

5.1 Requirements

Apart from this, the definition is similar to that of standard P/T nets.

Definition 5.1 (Timed P/T Net). A timed P/T net or TPT net TN = (P, T, pre, post)
consists of

• a set P of places,

• a set T of transitions, and

• functions pre, post : T → (P × R)⊕

Remark 5.2 (Note on Graphical Representation). Graphical representations of timed P/T
nets are similar to those of untimed P/T nets, with some alterations. Places and transitions
are still depicted by circles and rectangles respectively and connected by arrows which
represent the edges.

Edge inscriptions are now sums (⊕) of time values, which means that the number of
tokens produced by an outgoing edge of a transition is now the number of addends in
that edge’s inscription. So for example an edge inscribed with a single zero (which is not
meaningful for untimed P/T nets) means that upon firing of the connected transition, one
token with no time offset is produced on the target place. Analogously to classic P/T nets,
an edge with no inscription means that there is a single token created or consumed with no
time delay, i.e. an empty edge is equivalent to an edge with a single zero.

Tokens, instead of being information-devoid objects, now carry a timestamp (which, as
discussed earlier, is the earliest point in time at which the token can be used), so the tokens
are now represented by numbers instead of black dots inside the places. This is not to be
confused with actual data represented by tokens for example in AHL-nets, but rather an
additional and independent type of information.

produce

Product

Worker

Utility

Workshop

break

50 100

100

95

-5

Figure 14: Workshop as timed P/T net

Example 5.3 (Timed P/T Net). Figure 14 shows the timed P/T net Workshop = (P, T, pre, post),
taken from the production line case study with

• P = {Utility, Product,Worker},

• T = {produce, break},

• pre(produce) = (Utility, 0)⊕ (Worker, 0)

• pre(break) = (Worker,−5),

19

5 Timed P/T Nets

• post(produce) = (Utility, 50)⊕ (Product, 100)⊕ (Worker, 100),

• post(break) = (Worker, 95).

5.2 Firing Behaviour

Now we define the firing behaviour of timed P/T nets. For this purpose we introduce
timed markings and selections of these markings, which are then used to define under which
conditions a transition is activated.

5.2.1 Timed Marking, Selection and State

For TPT nets, we define a timed marking which represents the distribution of tokens on the
places with their respective timestamps. Analogously to markings in P/T nets, we define
markings as an element of the commutative free monoid (P × R)⊕.

Definition 5.4 (Timed Marking). A timed marking of a TPT net TN = (P, T, pre, post)
is an element M ∈ (P × R)⊕.

Remark 5.5 (Representation of Timed Marking).

1. An untimed marking M can be written either in the form
∑n

i=1 pi or in the form∑n
i=1 λipi. In the first form for a place p, an index i with pi = p represents one token

on place p. In the second (shorter) form we usually have n = |P |, and λipi means that
there are λi ∈ N tokens on place pi.

Analogously, a timed marking M can be written either in the form
∑n

i=1(pi, ri) or in

the form
∑n

i=1

∑ni
j=1(pi, r

j
i). In the first form for a place p and index i with pi = p

we have a token with time-value ri on place p. In the second form we have a sum of
time-values

∑ni
j=1(pi, r

j
i) on place pi ∈ P .

2. Based on the short form for untimed markings, an untimed marking M =
∑n

i=1 λipi
can also be represented as a function M : P → N with M(pi) = λi. Analogously, a
timed marking M =

∑n
i=1

∑ni
j=1(pi, r

j
i) can be represented as a function M : P → R⊕

with M(pi) =
∑ni

j=1 r
j
i .

Example 5.6 (Timed Marking). In Figure 15, the marking of the timed P/T net Workshop
is

M = (Utility, 60)⊕ (Worker, 25)⊕ (Worker, 110)⊕ (Product, 110).

This means that there is one token with timestamp 60 on the place Utility, two tokens
on the Worker place with the timestamps 25 and 110, respectively. The Product place
contains one token with the timestamp 110.

We define a timed state as a tuple containing a timed net with a timed marking and the
current global clock value.

Definition 5.7 (Timed State). A timed state TS is a 3-tuple

TS = (TN,M, τ)

with timed P/T net TN , a marking M of TN and a global clock value τ ∈ R.

20

5.2 Firing Behaviour

produce

Product

Worker

Utility

Workshop

50 100

100

60

110
25

τ = 10

110

break
-5

95

Figure 15: Workshop net with timed marking and global clock value

Note that if the net that is being referred to is apparent from the context, we will
sometimes omit the net and call (M, τ) a timed state.

Example 5.8 (Timed State). We consider the the current timed state (TN,M, τ) as shown
in Figure 15 with

M = (Utility, 60)⊕ (Product, 110)⊕ (Worker, 26)⊕ (Worker, 110) and τ = 60.

Since timed states contain a clock value, we need to define a way to change this clock
value to retrieve a new timed state, a so-called time step. This is needed because firing
a transition does not advance the global clock, thus allowing actions to overlap in time.
Timesteps allow us to change the time to the desired clock value at which the next firing
step is to take place.

Definition 5.9 (Timestep). Given a timed state (TN,M, τ) with timed P/T net TN , a
marking M of TN and a clock value τ ∈ R as well as an arbitrary time difference ∆τ ∈ R.
Then, there is a time step resulting in the timed state (TN,M, τ + ∆τ), written

(TN,M, τ)
∆τ−−→ (TN,M, τ + ∆τ).

Example 5.10 (Timestep). Given a timed state (TN,M, 25) with timed P/T net TN , a
marking M of TN and the global clock value of 25. In order to advance the clock by 15 time

units, we apply the following time step: (TN,M, 25)
15−−→ (TN,M, 25 + 15) = (TN,M, 40).

Since we only need to consider a marking’s tokens in the immediate environment of the
predomain of a transition in order to check if it is activated, we define a selection of tokens
which is contained in that marking.

Remark 5.11 (Selections). We use an approach similar to selections in Petri nets with in-
dividual tokens [MGE+10] (see Section 2.5), where token selections are used for choosing
which tokens are used for firing a transition. We do, however, not use selections for the
follower markings, but instead provide a definition that is closer to the follower marking
definition in the firing behaviour of algebraic P/T nets.

21

5 Timed P/T Nets

Definition 5.12 (Timed Selection). Given a timed marking M ∈ (P × R)⊕ of a TPT net
TN = (P, T, pre, post), a timed selection of M is a marking S ≤M .
We call π⊕P (S) the location of S, where π⊕P (

∑n
i=1(pi, ri)) =

∑n
i=1 pi is the projection that

“forgets” the time-values.

Example 5.13 (Timed Selection). In Figure 15, a valid selection w. r. t. M is for instance
S = (Worker, 25)⊕ (Utility, 60), which has a location of π⊕P (S) = Worker ⊕ Utility.

Next, we define the firing behaviour of timed P/T nets. We begin by defining the
conditions for the activation of a transition. In classic P/T nets, a transition is activated
under a marking if there are enough tokens on the input places of that transition. In timed
P/T nets, we also need to take into account the timestamps of the involved tokens and
whether they are exceeded by the global clock in the net’s current state. The time values at
the input edges of the transitions are added to the global clock, which enables us to actually
remove a token from a place and use it in a transition early (with the edge’s time value
indicating how much earlier the tokens can be used for the transition).

We define the time-sorted list of tokens for a specific place. This is a function that
returns the tokens on a place for a given marking, represented as a list sorted by timestamps
(ascending).

Definition 5.14 (Time-Sorted List). Given a marking M ∈ (P × R)⊕ of a TPT net TN =
(P, T, pre, post). Then for each place p ∈ P the time-sorted list w.r.t. p is defined as

M [p] = [r1, . . . , rn] ∈ R∗

such that

M(p) =
n∑
i=1

ri (see Remark 5.5) and for 1 ≤ i < j ≤ n : ri ≤ rj .

Example 5.15 (Time-Sorted List). In Figure 15, the time-sorted list ofWorker isM [Worker] =
[25, 110].

In order to check whether the global clock is “late” enough in order for a transition
to fire, we need to be able to compare the timestamps in a marking to those of another
marking. For this purpose, we define the notion of time-delays in the following sense:

Definition 5.16 (Time-Delay). Given two timed markings M1,M2 ∈ (P × R)⊕ of a TPT
net TN = (P, T, pre, post). We define the following two types of delays:

• M1 is a location-strict delay of M2, written M1
←
= M2, if

1. they have the same location, i. e. π⊕P (M1) = π⊕P (M2), and

2. for all p ∈ P : M1[p] ≥M2[p].

• M1 is a delay of M2, written M1

←
≤M2, if there exists a marking M ′2 ≤M2, such that

M1
←
= M ′2.

Note that we also use the notation M2
→
= M1, which is equivalent to M1

←
= M2. We call

the timestamps in M1 later than those in M2.

22

5.2 Firing Behaviour

Remark 5.17 (Time-Delay). When comparing two time-sorted lists, it does not make a dif-
ference whether standard or lexicographical ordering is used, as the lengths of the compared
lists are always identical.

The intention behind the symbols chosen for delays is as follows: The bottom comparator
indicates which marking is larger (or that they are of equal location) w. r. t. the number of
tokens, while the arrow above points to the marking with the higher timestamps, i. e. in the
direction of the timestamps which are later.

Moreover, note that if M1 is a location-strict delay of M2 then it is also a delay of M2,
and there exists only the subsum M ′2 = M2 with M1

←
= M ′2.

Example 5.18 (Time-Delay). Consider the marking M1 = (p1, 3) ⊕ (p2, 2) ⊕ (p2, 5) of the
timed P/T net TN shown in Figure 16. The marking M2 = (p1, 4) ⊕ (p2, 3) ⊕ (p2, 8) is
a location-strict delay of M1, since the location of both markings is the same, and each
timestamp in M1 has a higher or equal timestamp in M2.

The marking M3 = (p1, 4)⊕ (p2, 2) is a (non-location-strict) delay of M1, since there is
M ′1 = (p1, 3)⊕ (p2, 2) ≤M1 with M3

←
= M ′1.

Marking M1

p2

t1 t2

p1

10

20

0

0

3

2

5

TN
p2

t1 t2

p1

10

20

0

0

4

3

8

TN

Marking M2

p2

t1 t2

p1

10

20

0

0

4

2

TN

Marking M3

Figure 16: Timed P/T net TN with markings

Definition 5.19 (Maximal Timed Selection). Given a timed marking M and a selection
S ≤ M . We call S a maximal timed selection of M , if for all selections S′ ≤ M with the
same location as S, the selection S is a delay of S′, i. e. S

←
= S′.

Next, we define a way to add a time value to a whole marking (or selection), thus
increasing the value of each timestamp. This is needed to take into account the value of the
global clock when later checking for activation of a transition.

Definition 5.20 (Timestamp Addition). Given a marking M =
∑n

i=0(pi, τi) of a TPT net
TN = (P, T, pre, post). We can then increase the timestamp of each of the marking’s tokens
by a given value τ , written M+τ , and defined by M+τ =

∑n
i=0(pi, τi + τ).

Example 5.21 (Timestamp Addition). Consider a marking M = (p1, 2)⊕ (p2, 3).
By adding a value of 5, we obtain the marking M+5 = (p1, 2+5)⊕(p2, 3+5) = (p1, 7)⊕(p2, 8)

23

5 Timed P/T Nets

Definition 5.22 (Time-Extended Function �×R). Given a function fP : P1 → P2. Then
we define the timed extension fP×R of fP as

fP×R = (fP × idR) : (P1 × R)→ (P2 × R).

Remark 5.23 (Time-Extended Function �×R). The time-extension �×R along with �⊕ ap-
plied to a function fP : P1 → P2 between places results in a function f⊕P×R : (P1 × R)⊕ →
(P2 × R)⊕ between markings over P1 and P2.

Fact 5.24 (Linearity of Timestamp Addition). Given a timed P/T-net TN = (P, T, pre, post),
timed markings M1,M2 ∈ (P ×R)⊕ of TN , a time value τ ∈ R and a function fP : P → P ′.
Then we have

1. M1
→
= M2 ⇔M+τ

1
→
= M+τ

2 , and

2. f⊕P×R(M+τ) = f⊕P×R(M)+τ .

Proof.

1. Let M1
→
= M2 and let us assume that M+τ

1 6→= M+τ
2 . Then there is p ∈ P such that

M+τ
1 [p] 6≤M+τ

2 [p], which means that for M1[p] = r1 . . . rn and M2[p] = s1 . . . sn there
exists i ∈ {0, . . . , n} such that ri + τ > si + τ . But this means that ri > si and hence
M1 6

→
= M2 which is a contradiction.

The argumentation in the other direction works completely analogously.

2. Let M =
∑n

i=0 (pi, ri). Then we have

f⊕P×R(M+τ) = f⊕P×R((
n∑
i=0

(pi, ri))
+τ) = f⊕P×R(

n∑
i=0

(pi, ri + τ))

=
n∑
i=0

fP×R(pi, ri + τ) =
n∑
i=0

(fP (pi), ri + τ)

= (
n∑
i=0

(fP (pi), ri))
+τ = (

n∑
i=0

fP×R(pi, ri))
+τ

= (f⊕P×R(
n∑
i=0

(pi, ri)))
+τ = (f⊕P×R(M))+τ

In the following, we define the projection of a selection (of a specific marking) onto a
different marking, retaining the amount of tokens of the selection, however with different
timestamps.

Definition 5.25 (Projection of Selections). Given a timed P/T-net TN = (P, T, pre, post)
and timed markings

M1 =
n∑
i=1

ni∑
j=1

(pi, r
i
j) and M2 =

n∑
i=0

ni∑
j=1

(pi, s
i
j)

of TN with M1
→
= M2 and for all 1 ≤ i ≤ n, pi ∈ P :

M1[pi] = [ri1 . . . r
i
ni

] and M2[pi] = [si1 . . . s
i
ni

].

24

5.2 Firing Behaviour

Let S2 be a selection of M2. Then the projection of S2 to M1, written S2 ↓ M1, is defined
by

S2 ↓M1 =
∑

(pi,sij)≤S2

(pi, r
i
j)

.

Remark 5.26 (Projection of Selection). Note that the relation
→
= is reflexive which means

that for a marking M we have M
→
= M . Thus, for a selection S ≤ M we can obtain

S = S ↓M as the projection of itself to M .

Fact 5.27 (Projections are Selections). Given a timed P/T-net TN = (P, T, pre, post) and
timed markings M1 and M2 of TN with M1

→
= M2. Let S2 be a selection of M2. Then the

projection S1 = S2 ↓M1 is a selection of M1 with S1
→
= S2.

Proof. Due to the fact that M1
→
= M2, the markings M1 and M2 have the same location.

So we have markings

M1 =
n∑
i=1

ni∑
j=1

(pi, r
i
j) and M2 =

n∑
i=0

ni∑
j=1

(pi, s
i
j)

of TN where for all 1 ≤ i ≤ n, pi ∈ P :

M1[pi] = [ri1 . . . r
i
ni

] and M2[pi] = [si1 . . . s
i
ni

].

Now, (pi, s
i
j) ≤ S2 means (pi, s

i
j) ≤M2 and, thus, (pi, r

i
j) ≤M1. Hence, S2 ↓M1 as defined

above is a selection of M1.
Moreover, M1

→
= M2 implies that rij ≤ sij for all (pi, s

i
j) ≤ S2 which means that S1[pi] ≤ S2[pi]

for all pi ∈ P , i.e. S2 ↓M1
→
= S2.

Example 5.28 (Projection of Selections). Figure 17 shows two markings M1 and M2 with
M1

→
= M2, with selection S2 ≤ M2 shown as a subsum of M2. Furthermore, S2 ↓ M1 is

shown as a subsum of M1. As it can be seen in the illustration, M1 and M2 have the same
location, as do S2 ↓M1 and S2, and S2 ↓M1

→
= S2 holds.

25

5 Timed P/T Nets

M1

(p1,5)

(p2,8)

(p3,1)

(p2,4)

(p4,11)

S2↓M1

M2

(p1,9)

(p2,10)

(p3,1)

(p2,5)

(p4,31)

S2

=

Figure 17: Projection of Selections

5.2.2 Activation and Firing

Finally, we define the activation of a transition. Note that the input edges of transitions are
also involved when checking for activation, in particular a positive inscription on an input
edge enables the transition to consume tokens before the global clock actually ‘reaches’ the
timestamp of these tokens. Likewise, a negative inscription would delay the input tokens
even more. An example for this is given below.

Definition 5.29 (Activation). Given a timed P/T-net TN = (P, T, pre, post), with state
(TN,M, τ) and a selection S ≤ M . Then t ∈ T is activated under (S, τ) if pre(t)+τ is a
location-strict delay of S, i. e. pre(t)+τ ←= S.

Example 5.30 (Activation). In Figure 15, we have pre(produce)+60 = (Utility, 0 + 60) ⊕
(Worker, 0 + 60), which is a location-strict delay of the selection S = (Utility, 60) ⊕
(Worker, 25). Therefore, produce is activated under S at global time τ = 60.

Firing steps in timed P/T nets are defined very similar to those of algebraic P/T nets,
however the value of the global clock gets added to the newly created tokens in order to
incorporate the global time value. The resulting tokens then have timestamps with an offset
from the global clock value, given by the inscribed time values of the output edges of the
firing transition.

This corresponds for example to resources in a production line that are available only
from a certain point in time (indicated by the timestamp), meaning that a part of the line
depending on that resource (a transition) has to wait until it becomes available.

In general, the time values inscribed on the edges can be seen as representing the duration
of a transition (at the output edges), as well as indicating the possibility of removing a token
early (at the input edges, like mentioned above). Returning to the example of a production
line, the duration at an output edge denotes the time a production process (the transition)
takes until the resulting product is finished and available for the next step in the line.

Of course, negative time values are also permitted, thus allowing models that are not
limited to simple (positive) durations.

26

5.2 Firing Behaviour

Definition 5.31 (Firing Step). Given a timed P/T-net TN = (P, T, pre, post) with state
(TN,M, τ) of TN with a global clock value τ and t ∈ T activated under (S, τ) with S ≤M .
Then we say that there is a firing step

M
(t,S,τ)−−−−→M ′,

where the follower marking M’ is given by

M ′ = M 	 S ⊕ post(t)+τ .

Example 5.32 (Firing Step). In Figure 15, with the selection S = (Utility, 60)⊕(Worker, 25),
the follower marking after firing of produce at time τ = 60 is

M ′ = M 	 S ⊕ post(produce)+τ

= ((Utility, 60)⊕ (Worker, 25)⊕ (Worker, 110)⊕ (Product, 110))

	 ((Utility, 60)⊕ (Worker, 25))

⊕ (Worker, 100 + τ)⊕ (Utility, 50 + τ)⊕ (Product, 100 + τ)

= (Utility, 110)⊕ (Worker, 110)⊕ (Worker, 160)⊕ (Product, 110)

⊕ (Product, 160)

Then, we can concatenate multiple firing steps to a firing sequence. Note that a firing
step only results in a marking, not a particular state. The model time is advanced using
timesteps (explicitly or implicitly), thus advancing the time to the next desired value at
which a firing step can occur.

Definition 5.33 (Firing Sequence). Given a timed P/T state (TN,M0, τ0) with timed P/T
net TN = (P, T, pre, post), marking M0 of TN , global clock value τ0, and ti ∈ T activated
under (TN, Si, τi) for i ∈ {0, . . . , n− 1} and Si ≤Mi.

Then,

Seq = (TN,M0, τ0)
(t0,S0)−−−−→ (TN,M1, τ0)

∆τ0−−→ (TN,M1, τ1)
(t1,S1)−−−−→ . . . (TN,Mn−1, τn−2)

∆τn−2−−−−→ (TN,Mn−1, τn−1)
(tn−1,Sn−1)−−−−−−−−→ (TN,Mn, τn−1)

is a firing sequence in the net TN , if for all i ∈ {0, . . . , n− 1} : Mi
(ti,Si,τi)−−−−−→Mi+1 is a firing

step.
The following is a shorter variant of the same firing sequence, omitting the timesteps,

with the clock value at the time of firing included in the firing step notation.

Seq = M0
(t0,S0,τ0)−−−−−−→M1

(t1,S1,τ1)−−−−−−→ . . .
(tn−1,Sn−1,τn−1)−−−−−−−−−−−→Mn

Note that there is no constraint on the global clock values. This means that time values
can actually decrease while moving forward in the firing sequence. We can, however, enforce
different restrictions on firing sequences in order to achieve a certain behaviour:

The sequence Seq is called time-monotonic, if for 0 ≤ i < n, there is τi ≤ τi+1.

The firing sequence employs eager firing, if for all firing steps Mi
(ti,Si,τi)−−−−−→Mi+1 in Seq,

there is no firing step Mi
(t′i,S

′
i,τ
′
i)−−−−−→M ′i+1 with τ ′i < τi.

27

5 Timed P/T Nets

Example 5.34 (Firing Sequences). The somewhat liberal (compared to e. g. timed CPNs)
definition of firing sequences allows clock values in the firing sequence without any restriction
regarding their sequence. For example, the following is a valid firing sequence in the timed
net TN shown in Figure 18, as long as each firing step exists:

M1
(t1,S1,100)−−−−−−−→M2

(t2,S2,55)−−−−−−→M3
(t3,S3,250)−−−−−−−→M4

However, the most common usage of firing sequences are time-monotonic firing se-
quences, which requires the clock values to be monotonically increasing, such as the following
sequence:

M ′1
(t2,S2,55)−−−−−−→M ′2

(t1,S1,100)−−−−−−−→M ′3
(t3,S3,350)−−−−−−−→M ′4

Note that firing steps do not actually change the global clock. Only time steps can
change the global clock, while for the other net classes the clock value is determined by the
clock value in the firing step.

p2

t1 t2

20

TN

t3

10
30

100

55
250

p1

Figure 18: Timed P/T net TN

5.3 Application to Case Studies

With the notion of timed P/T nets defined, we can now apply the definitions to the case
studies from Section 3. We revisit the network and production line examples, simulating
the models using the newly defined timed P/T firing behaviour.

5.3.1 Network Infrastructure

We can now extend the example P/T net from Section 3 into a timed P/T net (Figure 19),
which means that each edge gets assigned a time duration, representing the time it takes
for that specific transition to finish.

In the timed P/T in Figure 19, we model that clients differ from each other in terms of
speed, resulting in a higher latency for the slowclient and a lower latency for the fastclient
compared to client3 and client4 (of which client3 is a little slower than client4). For

28

5.3 Application to Case Studies

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4
ready2

ready1

ready3

20

20

100

150

150

120

300

300

50

60

170

160

200

200

200

200

200

200

200

200

Figure 19: Network infrastructure - Timed P/T net

example, it takes client3 60 units of time to send a packet to the connected switch, while it
takes 50 units of time to move a packet from that switch to the client.

The routers take 200 time units after forwarding a packet, therefore the output edges of
the forward-transitions connected to the ready-places get assigned the duration 200. This
is a longer time duration than the actual forwarding takes, and will effectively delay the use
of a router’s forwarding transitions after it has delivered a packet to another router.

29

5 Timed P/T Nets

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4 ready2

ready1

ready3

20

20

100

150

150

120

300

300

50

60

170

160

0

0 0

0

20

134

85

200

200

200

200

200

200

200

200

Figure 20: Network infrastructure - Timed P/T net with marking

In Figure 20, we add a timed marking, assigning some tokens with timestamps to client
places. When simulating this model (i.e. continuously conducting the “token game”), the
packets that are present on the places representing the fast and slow clients are passed
around the network, and depending on which transitions are chosen to fire, can arrive
at other clients. The timestamps of the tokens continuously rise over the course of the
simulation, since all delays are positive (which is the intuitive usage of delays).

The following illustrations (Fig. 21 - 24) show the markings obtained by firing the
transitions send1, fwd1, fwd2, rcv3, in order, which simulates the sending of a packet from
fastclient to client3.

30

5.3 Application to Case Studies

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4 ready2

ready1

ready3

20

20

100

150

150

120

300

300

50

60

170

160

0

0 0

0

20

134

105

200

200

200

200

200

200

200

200

 τ = 85

Figure 21: After firing of send1 at global clock value 85

Figure 21 shows the net after send1 has been fired at global clock value 85. Note that
this is the earliest possible time at which the token on fastclient could have been used, since
its time stamp is 85, and the input edge of send1 is 0 (left empty in the visualisation, as per
notation).

The token created by send1 (representing the packet sent through the network) is as-
signed a delay of 20 time units, which is added to the clock value when firing, resulting in
a time stamp of 105.

31

5 Timed P/T Nets

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4 ready2

ready1

ready3

20

20

100

150

150

120

300

300

50

60

170

160

305

0
305

0

20

134
255

200

200

200

200

200

200

200

200

 τ = 105

Figure 22: After firing of fwd1 at 105

Figure 22 shows the net after fwd1 has been fired at global clock value 105. Note that
there are tokens created on the ready places of both involved routers with the designated
delay of 200 time units.

The “packet token” is now located on router2 with a timestamp of 255.

32

5.3 Application to Case Studies

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4 ready2

ready1

ready3

20

20

100

150

150

120

300

300

50

60

170

160

305

0
505

505

20

134

455

200

200

200

200

200

200

200

200

 τ = 305

Figure 23: After firing of fwd2 at global clock value 305

Figure 23 shows the net after fwd2 has been fired at global clock value 305. In this case,
305 is the earliest point in time at which fwd2 could have been fired due to the timestamp
of 305 of the token on ready2 (instead of 255, which is the timestamp of the “packet token”,
which could have been theoretically used for firing of rcv2 at time 255). The “packet token”
now has a timestamp of 455.

33

5 Timed P/T Nets

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4 ready2

ready1

ready3

20

20

100

150

150

120

300

300

50

60

170

160

305

0
505

505

20

134

625

200

200

200

200

200

200

200

200

 τ = 455

Figure 24: After firing of rcv3 at global clock value 455

Figure 24 shows the net after rcv3 has been fired at global clock value 455. Since the
only input place of rcv3 is router3, rcv3 can be fired at the clock value dictated by the
“packet token”. The newly created token gets assigned the timestamp 625, which is the
point in time at which the packet sent arrives at its destination.

34

5.3 Application to Case Studies

5.3.2 Production Line

In the production line example, we can now assign time durations to the transitions. Con-
sider the timed P/T net in Figure 25. The production step, represented by transition
produce, takes 100 time units for the product to be ready, while the utility (represented by
the token on the Utility place) is only used for 50 time units. The utility token is ready
to be used at global clock value 0, while the workers (represented by the two tokens on the
Worker place) are “ready” at global time 10 and 25, respectively. The break transition has
a time value of -5 for its input token, meaning that a worker token that is about to take
a break can do so not earlier than 5 time units after they would be available according to
their time stamp. This means that negative time values in the pre-domain of a transition
may delay the time at which the transition can be fired.

produce

Product

Worker

Utility

Workshop

50 100

100

0

10
25

break
-5

95

Figure 25: Production line as timed P/T net

Figure 26 shows the timed P/T net after produce has been fired at global clock value
τ = 10. The resulting product is ready 100 time units after (at clock value 110, indicated
by the token’s timestamp), whereas the utility is available again only 50 time units after
firing (at clock value 60). The worker is occupied until the product is finished, so the worker
token is also available at clock value 110.

Since the utility is available at global clock value 60, and there is a second worker
available, who is available at clock value 25, the produce transition can already fire again
at τ = 60.

Figure 27 shows the timed P/T net after produce has been fired at global clock value
τ = 60, placing a second product token on the Product place. The utility is available
at clock value 110, which is the same time at which the first worker token is ready again.
Therefore, the transition produce could fire again at τ = 110. However, we will fire the break
transition next, which we demonstrate in detail in the next illustration, since it incorporates
a negative time duration on the input edge.

Again, consider the state shown in Figure 27. Using the selection S = (Worker, 110), the
transition break is activated at τ = 115, since pre(break)+τ ←= S, i.e. (Worker,−5 + 115) =
(Worker, 110)

←
= (Worker, 110). Therefore, the transition break can fire at τ = 115. The

negative value of −5 on the input edge results in the selected worker token having to “wait”
5 time units after it is ready according to the global clock before it can be used in the

35

5 Timed P/T Nets

produce

Product

Worker

Utility

Workshop

50 100

100

60

110
25

τ = 10

110

break
-5

95

Figure 26: Production line after firing of produce at τ = 10

produce

Product

Worker

Utility

Workshop

50 100

100

110

110
160

τ = 60

110

160

break
-5

95

Figure 27: Production line after firing of produce at τ = 60

transition. Therefore, even though the token has a timestamp of 110, the transition is not
activated before the global clock value of 115. The output edge delay works the same way
as before, so the token created by break is usable at clock value 210.

Figure 28 shows the resulting state after break has been fired at time τ = 115.

A small modification to the production line net, as seen in Figure 29, shows another
possible application of having time values other than zeroes assigned to the input edges of
transitions. The produce transition now has a time value of 25 for the input token. This
means that the Utility can now be used 25 time units before the time indicated by the
token’s timestamp (possibly due to the utility being able to be shared between workers).

For the activation, this means that the transition is activated at a clock value 25 time
units before the input token’s timestamp would allow. In this case, produce is activated at
τ = 70 under the selection S = (Utility, 95) ⊕ (Worker, 10), because then S

→
= pre(t)+τ

holds true, since pre(produce) = (Utility, 25) ⊕ (Worker, 0) and thus pre(produce)+τ =
(Utility, 95)⊕ (Worker, 70)

←
= (Utility, 95)⊕ (Worker, 10).

Therefore, produce can fire already at clock value 70, resulting in the marking shown

36

5.3 Application to Case Studies

produce

Product

Worker

Utility

Workshop

50 100

100

110

210
160

τ = 115

break

110

160

-5

95

Figure 28: Production line after firing of break at τ = 115

produce

Product

Worker

Utility

Workshop

50 100

100

95

10
25

25

break
-5

95

Figure 29: Production line with pre-emptive token removal

in Figure 30. Afterwards, produce can fire at clock value 95, leading to the final marking
shown in Figure 31.

37

6 Categories of Timed Net Classes

produce

Product

Worker

Utility

Workshop

50 100

100

120

170
25

25

τ = 70

170

break
-5

95

Figure 30: Production line after firing of produce at τ = 70

produce

Product

Worker

Utility

Workshop

50 100

100

145

170
195

25

τ = 95

170

195

break
-5

95

Figure 31: Production line after firing of produce at τ = 95

6 Categories of Timed Net Classes

In this subsection we define the categories of timed P/T nets, timed P/T systems, as well
as timed P/T states. Based on the definition of timed P/T nets (Definition 5.1), we define
timed P/T systems analogously to P/T systems. Furthermore, we define the category of
timed P/T states, based on Definition 5.7.

The categories of timed P/T systems and timed P/T states are used to establish a corre-
lation between systems and states, showing that any timed P/T state can be expressed as a
timed P/T system and vice versa, using functors. We do this by showing that these functors
preserve the firing behaviour of the translated timed systems and states, respectively, and
that the functors establish an equivalence of the categories (meaning that there is a relation
between the categories that implies they are essentially the same).

Furthermore, we define “skeleton” functors that translate timed P/T nets and -systems
to regular P/T nets and systems, while preserving the firing behaviour of the respective
nets.

38

6.1 Category of Timed P/T Nets

Remark 6.1 (Examples). For the examples in this subsection, we use a subnet of the network
infrastructure case study in Section 3.1, using only the places client3, client4 and router3, as
well as the transitions connecting these places (rcv3, rcv4, send3, send4). The illustration
in Figure 32 shows which part of the network infrastructure timed P/T net is used.

client3

fastclient

slowclient

client4

send1 rcv1

send3

rcv3

send2

rcv2

send4

rcv4

router1

router2

router3

router4

fwd3

fwd1

fwd2

fwd4

ready4 ready2

ready1

ready3

20

20

100

150

150

120

300

300

5060

170

160

0
0

0

0
0

0 0
0

0

0
0

0

20

134

85

Figure 32: Subnet of the network infrastructure net

6.1 Category of Timed P/T Nets

Definition 6.2 (Timed P/T Morphism). Given timed P/T-nets TNi = (Pi, Ti, prei, posti),
for i ∈ {1, 2}. A timed P/T-net-morphism f : TN1 → TN2 is defined by f = (fP , fT), with
fP : P1 → P2 and fT : T1 → T2, such that for all t ∈ T1:

• pre2 ◦ fT (t)
←
= f⊕P×R ◦ pre1(t) , and

• post2 ◦ fT (t)
→
= f⊕P×R ◦ post1(t).

A timed P/T-morphism is called time-strict if for all t ∈ T

• pre2 ◦ fT (t) = f⊕P×R ◦ pre1(t), and

• post2 ◦ fT (t) = f⊕P×R ◦ post1(t).

If a morphism f is time-strict and injective, we shortly say that f is time-strict injective.

39

6 Categories of Timed Net Classes

Fact 6.3 (Category TPTNets of Timed P/T Nets). The category of timed P/T nets,
TPTNets consists of the class of all timed P/T nets as objects, as well as timed P/T
morphisms. The composition of two timed P/T morphisms g ◦ f is defined componentwise
as g ◦ f = ((g ◦ f)P , (g ◦ f)T) = (gP ◦ fP , gT ◦ fT). The identity morphism for each timed
P/T net A is defined as idA : A→ A : id = (idP , idT).

Proof. For the proof of Fact 6.3, see Appendix B.1.

client3 client4

send3

rcv3 send4

rcv4

router3

50

60

170

160

TN1 TN2

client34

send34

rcv34

router3

50

60

f

0

0

0

0

Figure 33: Timed P/T nets

Example 6.4 (Timed P/T Morphism). Consider the two timed nets TNi = (Pi, Ti, prei, posti)
for i = 1, 2 from Figure 33. Let f = (fP , fT) : TN1 → TN2 with

• fT (send3) = fT (send4) = send34, fT (rcv3) = fT (rcv4) = rcv34,

• fP (router3) = router3 and fP (client3) = fP (client4) = client34.

The following holds:

• f⊕P×R ◦ pre1(send4) = f⊕P×R ◦ pre1(send3) = (client34, 0) = pre2 ◦ fT (send3) = pre2 ◦
fT (send4),

• f⊕P×R ◦ post1(send3) = (router3, 160)
←
= (router3, 60) = post2 ◦ fT (send3),

• f⊕P×R ◦ post1(send4) = (router3, 60) = post2 ◦ fT (send3).

• f⊕P×R ◦ pre1(rcv3) = f⊕P×R ◦ pre1(rcv4) = (router3, 0) = pre2 ◦ fT (rcv3) = pre2 ◦
fT (rcv4),

• f⊕P×R ◦ post1(rcv3) = (client34, 170)
←
= (client34, 50) = post2 ◦ fT (rcv3),

• f⊕P×R ◦ post1(rcv4) = (client34, 170) = post2 ◦ fT (rcv3).

Thus, f is a timed P/T-morphism.

40

6.1 Category of Timed P/T Nets

Next, we show that timed P/T morphisms preserve firing steps. For this, we define
lemmas regarding the delay of sums and differences.

Lemma 6.5 (Location of Sums) Given a set P and timed markings A,B,C,D ∈ (P ×R)⊕

with π⊕P (A) = π⊕P (B) and π⊕P (C) = π⊕P (D). Then we also have that π⊕P (A⊕C) = π⊕P (B⊕D).

Proof. π⊕P (A⊕ C) = π⊕P (A)⊕ π⊕P (C) = π⊕P (B)⊕ π⊕P (D) = π⊕P (B ⊕D).

Lemma 6.6 (Delay of Sums) Given a set P and timed markings A,B,C,D ∈ (P × R)⊕

with A
←
= B and C

←
= D. Then we have A⊕ C ←= B ⊕D.

Proof-Idea. We show that (A⊕ C) and (B ⊕D) have the same location using Lemma 6.5.
Then by restriction to a single place p, we show that π⊕P (A|p⊕C|p) = π⊕P (B|p⊕D|p), which
holds for the complete sums, since it holds for all places p. For the detailed proof, we refer
to Appendix B.5.

Lemma 6.7 (Delay of Differences) Given a set P and timed markings A,B,C,D ∈ (P ×
R)⊕. Then if A

←
= B, D ≤ B and C = D ↓ A we have A	 C ←= B 	D.

Proof-Idea. Again, we show that (A 	 C) and (B 	 D) have the same location. Then,
we show that (A 	 C)[p] ≥ (B 	 D)[p] via the element-wise removal of elements from the
respective sums. For the detailed proof, we refer to Appendix B.6.

Theorem 6.8 (Timed P/T Morphisms Preserve Firing Behaviour) Given timed nets TNi =
(Pi, Ti, prei, posti) with i = 1, 2 , with marking M of TN1, selection S ≤M and a timed P/T

morphism f = (fP , fT), f : TN1 → TN2. Let t ∈ T1 be activated under S and M
(t,S,τ)−−−−→M ′

a firing step in TN1 with M ′ = M 	 S ⊕ post1(t)+τ .

Then, there is a firing step f⊕P×R(M)
(fT (t),f⊕P×R(S),τ)
−−−−−−−−−−−→M ′′ in TN2 with f⊕P×R(M ′)

←
= M ′′.

Proof. t ∈ T1 activated under S means that S
→
= pre1(t)+τ . Via Fact B.1 (monotonicity

of the time-enhanced function) and the timed P/T morphism condition follows f⊕P×R(S)
→
=

f⊕P×R(pre1(t)+τ) = f⊕P×R(pre1(t))+τ →= pre2(fT (t))+τ .

Since
→
= is an order, we get f⊕P×R(S)

→
= pre2(fT (t))+τ , which means that fT (t) is activated

under f⊕P×R(S).

Also from Fact B.1, we get f⊕P×R(S) ≤ f⊕P×R(M), so f⊕P×R(S) is a selection of f⊕P×R(M).

Therefore, there is a firing step f⊕P×R(M)
(fT (t),f⊕P×R(S),τ)
−−−−−−−−−−−→M ′′ in TN2.

As for the follower marking, f⊕P×R(M ′) = f⊕P×R(M	S⊕post1(t)+τ), we have f⊕P×R(M	
S⊕post1(t)+τ) = f⊕P×R(M	S)⊕f⊕P×R(post1(t)+τ) = f⊕P×R(M)	f⊕P×R(S)⊕f⊕P×R(post1(t)+τ).

Then, via Lemma 6.6, 6.7 and the morphism condition follows f⊕P×R(M) 	 f⊕P×R(S) ⊕
f⊕P×R(post1(t)+τ)

←
= f⊕P×R(M)	 f⊕P×R(S)⊕ post2(fT (t))+τ = M ′′.

Example 6.9 (Timed P/T Morphisms Preserve Firing Steps). Figure 34 shows the nets from
Example 6.4, respectively with a marking M .

Figure 35 shows the same nets after firing of transition rcv3 and fT (rcv3) = rcv34
respectively at time τ = 100, resulting in the marking M ′ of TN1 and marking M ′′ of TN2.

41

6 Categories of Timed Net Classes

Now,

M ′′ = (client34, 199)⊕ (client34, 250)⊕ (client34, 270)
→
= f⊕P×R((client3, 250)⊕ (client3, 270)⊕ (client4, 200))

= f⊕P×R(M ′)

Therefore, f preserves firing behaviour.

client3 client4

send3

rcv3 send4

rcv4

router3

50

60

170

160

TN1 TN2

client34

send34

rcv34

router3

50

60

f

0

0

0

0

100

200250

100

250
199

100 100

Figure 34: Timed P/T nets before firing

client3 client4

send3

rcv3 send4

rcv4

router3

50

60

170

160

TN1 TN2

client34

send34

rcv34

router3

50

60

f

0

0

0

0

270
200250

250

199

τ = 100τ = 100

150

100 100

Figure 35: Timed P/T nets after firing

The following lemma states a useful decomposition property of timed P/T morphisms.

Lemma 6.10 (Decomposition of Timed P/T Morphisms) Given timed P/T morphisms
f : TN0 → TN2, h : TN1 → TN2, and functions gP : P0 → P1, gT : T0 → T1 with

42

6.2 Category of Timed P/T Systems

hP ◦ gP = fP and hT ◦ gT = fT . If h is time-strict injective then g = (gP , gT) is a timed
P/T morphism.

TN0
g //

f

33TN1
h // TN2 P0

gP //

fP

55P1
hP // P2 T0

gT //

fT

55T1
hT // T2

Proof. We have to show that for all t ∈ T0 it holds that pre1 ◦ gT (t)
←
= g⊕P×R ◦ pre0(t) and

post1 ◦ gT (t)
→
= g⊕P×R ◦ post0(t).

So let t ∈ T0. We have

h⊕P ◦ π
⊕
P ◦ pre1 ◦ gT (t) = π⊕P ◦ h

⊕
P×R ◦ pre1 ◦ gT (t) = π⊕P ◦ pre2 ◦ hT ◦ gT (t)

= π⊕P ◦ pre2 ◦ fT (t) = π⊕P ◦ f
⊕
P×R ◦ pre0(t)

= f⊕P ◦ π
⊕
P ◦ pre0(t) = (hP ◦ gP)⊕ ◦ π⊕P ◦ pre0(t)

= h⊕P ◦ g
⊕
P ◦ π

⊕
P ◦ pre0(t) = h⊕P ◦ π

⊕
P ◦ g

⊕
P×R ◦ pre0(t).

Since h is injective, also h⊕P is injective which means that it is a monomorphism in Sets.
Thus, by the equation above, we have π⊕P ◦ pre1 ◦ gT (t) = π⊕P ◦ g

⊕
P×R ◦ pre0(t) which means

that pre1 ◦ gT (t) and g⊕P×R ◦ pre0(t) have the same location.

Due to time-strictness of h, we have pre2 ◦ hT = h⊕P×R ◦ pre1. Moreover, for a marking
M ∈ P1 × R with M =

∑n
i=1(pi, ri) we have

h⊕P×R(M) = h⊕P×R(

n∑
i=1

(pi, ri)) =

n∑
i=1

(hP (pi), ri)

This implies that for all p ∈ P1 there is

M [p] = h⊕P×R(M [hP (p)])

because hP is injective. Thus, we obtain

pre1 ◦ gT (t)[p] = h⊕P×R ◦ pre1 ◦ gT (t)[hP (p)] = pre2 ◦ hT ◦ gT (t)[hP (p)]

= pre2 ◦ fT (t)[hP (p)] ≥ f⊕P×R ◦ pre0(t)[hP (p)]

= h⊕P×R ◦ g
⊕
P×R ◦ pre0(t)[hP (p)] = g⊕P×R ◦ pre0(t)[p]

Hence, we have pre1 ◦ gT (t)
←
= g⊕P×R ◦ pre0(t). The proof for post domains works analo-

gously.

6.2 Category of Timed P/T Systems

Analogously to the category of timed P/T nets, we define the category of marked timed
P/T nets, called timed P/T systems.

Definition 6.11 (Timed P/T Systems and Morphisms). A timed P/T system (or marked
timed P/T net) is a pair (TN,M) with timed P/T net TN = (P, T, pre, post) and M is a
marking of TN .

43

6 Categories of Timed Net Classes

Given marked timed P/T-nets MNi = (TNi,Mi), for i ∈ {1, 2}, a timed P/T system
morphism (or marked timed P/T-net-morphism) f : MN1 → MN2 is a timed P/T mor-
phism f = (fP , fT) such that:

f⊕P×R(M1)
←
≤M2

A marked timed P/T-morphism f is called marking-strict if f is time-strict (see Defini-
tion 6.2) and

f⊕P×R(M1(p)) = M2(fP (p)) for all p ∈ P

Fact 6.12 (Category TPTSys of Timed P/T Systems). The category of marked timed
P/T systems, TPTSys consists of the class of all marked timed P/T nets as its objects, as
well as timed P/T system morphisms. Composition and identity are defined by composition
and identity of the respective timed P/T-morphisms, respectively nets.

Proof. For the detailed proof of Fact 6.12, we refer to Appendix B.2.

Example 6.13 (Timed P/T System Morphism). Consider the two timed P/T nets TN1, TN2

and the timed P/T morphism f from Example 6.4 with their respective markings shown in
Figure 36, constituting the timed P/T systems (TN1,M1) and (TN2,M2).

As shown in Example 6.4, f = (fP , fT) is a timed P/T-morphism.

The morphism condition of timed P/T-system morphisms requires that f⊕P×R(M1)
←
≤M2.

Since

f⊕P×R(M1) = f⊕P×R((router3, 100)⊕ (router3, 100)⊕ (client3, 250)⊕ (client4, 200))

= (router3, 100)⊕ (router3, 100)⊕ (client34, 250)⊕ (client34, 200)

= M2,

f is a timed P/T-system morphism.

client3 client4

send3

rcv3 send4

rcv4

router3

50

60

170

160

TN1 TN2

client34

send34

rcv34

router3

50

60

f

0

0

0

0

100

200250

100

250
199

100 100

Figure 36: Timed P/T systems before firing

44

6.2 Category of Timed P/T Systems

Theorem 6.14 (Timed P/T System Morphisms Preserve Firing Behaviour) Given timed
P/T-systems (TN1,M1), (TN2,M2) and a P/T-system morphism
f : (TN1,M1)→ (TN2,M2) with f = (fP , fT).

Let (TN1,M1)
(t1,S1,τ)−−−−−→ (TN1,M

′
1) be a firing step with S1 ≤M1.

Then, there is a firing step (TN2,M2)
(fT (t1),S2,τ)−−−−−−−−→ (TN2,M

′
2) with S2 = f⊕P×R(S1) ↓

M∗2 and S2 ≤ M∗2 ≤ M2 and f can be considered as a timed P/T-system morphism f :
(TN1,M

′
1)→ (TN2,M

′
2).

Proof-Idea. We prove the theorem by showing that the existence of a firing step in the
original system leads to the existence of an analogue firing step in the translated system via
the definitions of activation and timed P/T-system morphisms. Afterwards, we compute
the follower markings and show that the morphism condition is also fulfilled for the follower
markings in both nets.

For the complete proof, see Appendix B.7.

Example 6.15 (Timed P/T System Morphisms Preserve Firing Behaviour). Consider the two
timed P/T-systems (TN1,M1) and (TN2,M2) from Example 6.13. The illustration in Figure
37 shows the systems (TN1,M

′
1) and (TN2,M

′
2) respectively, after rcv3 and fT (rcv3) =

rcv34 have been fired at τ = 100.

For f to preserve firing behaviour, f has to be able to be considered as a P/T-system

morphism f : (TN1,M
′
1)→ (TN2,M

′
2), i.e. f⊕P×R(M ′1)

←
≤M ′2.

Since

f⊕P×R(M ′1) = f⊕P×R((router3, 100)⊕ (client3, 250)⊕ (client3, 270)⊕ (client4, 200))
←
= (router3, 100)⊕ (client34, 250)⊕ (client34, 270)⊕ (client34, 199)

= M ′2,

f is a P/T-system morphism and thus preserves firing behaviour.

client3 client4

send3

rcv3 send4

rcv4

router3

50

60

170

160

TN1 TN2

client34

send34

rcv34

router3

50

60

f

0

0

0

0

270
200250

250

199

τ = 100τ = 100

150

100 100

Figure 37: Timed P/T systems after firing

45

6 Categories of Timed Net Classes

6.3 Category of Timed P/T States

Analogously to the category of timed P/T systems, we define the category of timed P/T
states. Beforehand, we define the notion of timed P/T states.

Definition 6.16 (Timed P/T State and Morphisms). A timed P/T state (or TPT state) is
a 3-tuple (TN,M, τ) with timed P/T net TN = (P, T, pre, post), a marking M of TN and
a global clock value τ ∈ R.

Given timed P/T states (TNi,Mi, τi), for i = 1, 2. A timed P/T state morphism f :
(TN1,M1, τ1)→ (TN2,M2, τ2) is a timed P/T morphism f = (fP , fT) such that:

f⊕P×R(M1)+∆τ
←
≤M2 where ∆τ = τ2 − τ1.

The conditions for strictness of timed P/T-system morphisms also apply to timed P/T
state morphisms: A timed P/T state morphism f is strict, if it is time-strict and

f⊕P×R(M1(p)) = M2(fP (p)) for all p ∈ P.

Fact 6.17 (Category TPTStates of Timed P/T States). The category of timed P/T states,
TPTStates consists of the class of all timed P/T states as its objects, as well as timed
P/T state morphisms. The composition of two timed P/T state morphisms g ◦ f is defined
componentwise as g ◦ f = ((g ◦ f)P , (g ◦ f)T) = (gP ◦ fP , gT ◦ fT). The identity morphism
for each timed P/T state A = (TN,M, τ) is defined as idA : A→ A : id = (idP , idT).

Proof. For the detailed proof of Fact 6.17, see Appendix B.3.

Example 6.18 (Timed P/T State Morphism). Consider the two timed P/T nets TN1, TN2

from Figure 38 with their respective markings and clock values, constituting the timed
P/T-systems (TN1,M1, τ1) and (TN2,M2, τ2) with τ1 = 100, τ2 = 150.

As shown in example 6.4, f = (fP , fT) is a timed P/T morphism.

The timed P/T-state morphism condition requires that f⊕P×R(M1)+∆τ
←
≤M2 with ∆τ =

τ2 − τ1.
We have ∆τ = τ2 − τ1 = 50 and

f⊕P×R(M1) = f⊕P×R((router3, 100)⊕ (router3, 100)⊕ (client3, 250)⊕ (client4, 200))

= (router3, 100)⊕ (router3, 100)⊕ (client34, 250)⊕ (client34, 200),

so

f⊕P×R(M1)+∆τ = (router3, 150)⊕ (router3, 150)⊕ (client34, 300)⊕ (client34, 250) = M2

Therefore, f is a timed P/T-state morphism.

46

6.3 Category of Timed P/T States

client3 client4

send3

rcv3 send4

rcv4

router3

50

60

170

160

TN1 TN2

client34

send34

rcv34

router3

50

60

f

0

0

0

0

100

200250

150

300
250

τ = 100 τ = 150

100 150

Figure 38: Timed P/T states before firing

Theorem 6.19 (Timed P/T State Morphisms Preserve Firing Behaviour) Given timed
P/T-states (TN1,M1, τ1), (TN2,M2, τ2) and P/T-state morphism
f : (TN1,M1, τ1)→ (TN2,M2, τ2) with f = (fP , fT).

Let (TN1,M1, τ1)
(t1,S1,τ1)−−−−−−→ (TN1,M

′
1, τ1) be a firing step with S1 ≤M1.

Then, there is a firing step (TN2,M2, τ2)
(fT (t1),S2,τ2)−−−−−−−−−→ (TN2,M

′
2, τ2) with

S2 := f⊕P×R(S1) ↓ M∗2 and S2 ≤ M∗2 ≤ M2 and f can be considered as a timed P/T-state
morphism f : (TN1,M

′
1, τ1)→ (TN2,M

′
2, τ2).

Proof-Idea. We prove the theorem by showing that the existence of a firing step in the
original system leads to the existence of an analogue firing step in the translated system
via the definitions of activation and timed P/T-state morphisms. Afterwards, we compute
the follower markings and show that the morphism condition is also fulfilled for the follower
markings in both nets.

For the complete proof, see Appendix B.8.

Example 6.20 (Timed P/T State Morphisms Preserve Firing Behaviour). Consider the two
timed P/T-states (TN1,M1, τ1) and (TN2,M2, τ2) from Figure 6.18. The illustration in
Figure 39 shows the states (TN1,M

′
1, τ1) and (TN2,M

′
2, τ2) respectively, after rcv3 has

been fired at the respective clock values τ1 = 100 and τ2 = 150.
For f to preserve firing behaviour, f has to be able to be considered as a P/T-state

morphism f : (TN1,M
′
1, τ1)→ (TN2,M

′
2, τ2), i.e. f⊕P×R(M ′1)+∆τ

←
≤M ′2 with ∆τ = τ2− τ1 =

50.
Since

f⊕P×R(M ′1)+∆τ = f⊕P×R((router3, 100)⊕ (client3, 250)⊕ (client3, 270)

⊕ (client4, 200))+∆τ

= (router3, 150)⊕ (client34, 300)⊕ (client34, 320)⊕ (client34, 250)

= M ′2,

we have that f preserves firing behaviour.

47

6 Categories of Timed Net Classes

client3 client4

send3

rcv3 send4

rcv4

router3

50

60

170

160

TN1 TN2

client34

send34

rcv34

router3

50

60

f

0

0

0

0

270
200250

200

300
250

τ = 100 τ = 150

100 150

Figure 39: Timed P/T states after firing

6.4 Functorial Relations of Timed Net Classes

In this subsection, we define two functors Rel and Abs between the categories TPTSys and
TPTState defined in Section 6.

First, we define the functor Rel , which maps timed P/T-states to timed P/T-systems
(and their morphisms accordingly). This functor subtracts the global clock value of the
timed P/T-state from all time stamps in the marking of the net, resulting in a timed P/T
system with a marking with a relative time offset from the original marking, dependent on
the clock value of the state.

Definition 6.21 (Functor Rel). The functor Rel is defined as Rel : TPTStates →
TPTSys with

Rel(TN,M, τ) = (TN,M−τ)

for the objects of TPTStates and

Rel(fP , fT) = (fP , fT)

for the morphisms.

Well-definedness.

Rel(f) is timed P/T system morphism:
First, we have to show that for a timed P/T state morphism f : TS → TS′, there
is a timed P/T system morphism Rel(f) : Rel(TS) → Rel(TS′). For this, since the
components fP , fT are preserved by Rel , we have to show that the timed P/T system
morphism condition is fulfilled. For nets TS = (TN,M, τ) and TS′ = (TN ′,M ′, τ ′),
by definition of Rel , we have Rel(TS) = (TN,M−τ) and analogously Rel(TS′) =
(TN ′,M ′−τ

′
).

Since there is f : TS → TS′, it holds that f⊕P×R(M)+τ ′−τ ←≤ M ′. Then, we can

subtract τ ′ from both sides, leading to f⊕P×R(M−τ)
←
≤ M ′−τ

′
. This is required by the

timed P/T system morphism condition, which is therefore fulfilled.

48

6.4 Functorial Relations of Timed Net Classes

Preservation of identity and composition:
Next, we need to show that the functor preserves identities and composition of mor-
phisms:

Identity: Rel(idN) = Rel(idP , idT)N = (idP , idT)Rel(N) = idRel(N).

Composition: Rel(g ◦ f) = Rel(gP ◦ fP , gT ◦ fT) = (gP ◦ fP , gT ◦ fT) = (gP , gT) ◦
(fP , fT) = Rel(gP , gT) ◦ Rel(fP , fT)

Analogously, the functor Abs maps timed P/T-systems and -morphisms to timed P/T-
states and -morphisms. This functor simply retains the net and marking and adds the
absolute global clock value of 0 to obtain a timed P/T state.

Definition 6.22 (FunctorAbs). The functor Abs is defined as Abs : TPTSys→ TPTStates
with

Abs(TN,M) = (TN,M, 0)

for the objects of TPTSys and

Abs(fP , fT) = (fP , fT)

for the morphisms, respectively.

Well-definedness.

Abs(f) is timed P/T state morphism:
Again, we first have to show that for a timed P/T system morphism f : TS → TS′,
there is a timed P/T state morphism Abs(f) : Abs(TS) → Abs(TS′). For this, since
the components fP , fT are preserved by Abs, we have to show that the timed P/T
state morphism condition is fulfilled. For nets TS = (TN,M) and TS′ = (TN ′,M ′),
by definition of Rel , we have Rel(TS) = (TN,M, 0) and analogously Rel(TS′) =
(TN ′,M ′, 0).

Since there is f : TS → TS′, it holds that f⊕P×R(M)
←
≤M ′. Since τ = τ ′ = 0, we have

M+τ ′−τ = M+0−0 = M , and thus f⊕P×R(M)+τ ′−τ ←≤ M ′ also holds. This is required
by the timed P/T state morphism condition, which is therefore fulfilled.

Preservation of identity and composition:
Next, we need to show that the functor preserves identities and composition of mor-
phisms:

Identity: Abs(idN) = Abs(idP , idT)N = (idP , idT)Abs(N) = idAbs(N).

Composition: Abs(g ◦ f) = Abs(gP ◦ fP , gT ◦ fT) = Abs(gP ◦ fP) ◦ Abs(gT ◦ fT) =
Abs(g) ◦Abs(f).

We now show that the categories TPTStates and TPTSys are equivalent, i.e. there
is a relation between the two categories that indicates that they are essentially the same.

49

6 Categories of Timed Net Classes

Theorem 6.23 (Equivalence of Categories TPTStates and TPTSys) The categories
TPTStates and TPTSys are equivalent.

For the definition of category equivalence, we refer to Definition A.9 in Appendix A.

Proof. We have to show that Rel ◦Abs ∼= IdTPTSys and Abs ◦ Rel ∼= IdTPTStates.

Rel ◦Abs ∼= IdTPTSys: For objects (TN,M, τ), we have

Rel(Abs(TN,M)) = Rel(TN,M, 0) = (TN,M−0) = (TN,M).

For morphisms f = (fP , fT), we have that

Rel(Abs(f)) = Rel(Abs(fP , fT)) = Rel(fP , fT) = (fP , fT) = f.

Therefore, Rel ◦Abs = IdTPTSys, which implies that Rel ◦Abs ∼= IdTPTSys.

Abs ◦ Rel ∼= IdTPTStates: For objects, we have

Abs(Rel(TN,M, τ)) = Abs(TN,M−τ) = (TN,M−τ , 0)

and for morphisms f = (fP , fT) that

Abs(Rel(f)) = Abs(Rel(fP , fT)) = Abs(fP , fT) = (fP , fT) = f.

We have to show that there is a natural transformation α : IdTPTStates → Abs ◦ Rel
that is an isomorphism. So we have to show that for all TPT states TS = (TN,M, τ)
there is a TPT-state morphism αTS : TS → Abs ◦ Rel(TS) that is an isomorphism.

From the definitions of Abs and Rel follows

Abs ◦ Rel(TN,M, τ) = (TN,M−τ , 0).

Then, there exists a morphism α : (TN,M, τ) → (TN,M−τ , 0) with α = (idP , idT)
for which the timed P/T state morphism condition is fulfilled:

α⊕P×R(M)+∆τ = M−τ with ∆τ = 0− τ = −τ.

Then, there exists a morphism β : (TN,M−τ , 0) → (TN,M, τ) with β = (idP , idT).
For β, the morphism condition is also fulfilled:

β⊕P×R(M)−τ+∆τ = M with ∆τ = τ − 0 = τ.

Thus, α is an isomorphism, hence Abs ◦ Rel ∼= IdTPTState.

Therefore, the categories TPTStates and TPTSys are equivalent.

Example 6.24. Figure 40 shows the application of Rel ◦Abs and Abs ◦Rel , respectively. For
the former case, the resulting timed P/T system is identical to the original system, with the
intermediary timed P/T state being different only in the contained clock value of τ = 0.

For the latter case, there are morphisms from TState to TState′ and vice versa, since
they only differ in the global time offset of 150 time units. Therefore the morphism condition

f⊕P×R(M1)+∆τ
←
≤M2 where ∆τ = τ2 − τ1

is fulfilled for both morphisms.

50

6.4 Functorial Relations of Timed Net Classes

TSys

client34

send34

rcv34

router3

50

60

Abs

0

0

0

150
100

τ = 0

0

TState TSys

Rel

client34

send34

rcv34

router3

50

60

0

0

0

150
100

0

client34

send34

rcv34

router3

50

60

0

0

0

150
100

0

TState

client34

send34

rcv34

router3

50

60

0

0

0

150
100

0

client34

send34

rcv34

router3

50

60

0

0

150

300
250

τ = 150

150

TSys

client34

send34

rcv34

router3

50

60

0

0

0

150
100

τ = 0

0

TState‘

AbsRel

Figure 40: Equivalence of TPTStates and TPTSys

Remark 6.25 (Normalisation of Timed States). The composition of Abs ◦Rel provides a way
to normalise a timed state to the global clock value of zero. When applying the composition
of the two functors to a timed state, we obtain a new timed state where all timestamps in
the marking are reduced by the clock value of the original state. This way, all timed states
that are only different by a time offset can be mapped to their respective “normal form”.

Example 6.26 (Normalisation of Timed States). Figure 41 shows two timed states (TS1 and
TS2) that are normalised to the same timed state (TS3), their normal form.

51

6 Categories of Timed Net Classes

TS1

client34

send34

rcv34

router3

50

60

Abs○Rel

0

0

0

150
100

τ = 0

0

client34

send34

rcv34

router3

50

60

0

0

150

300
250

τ = 150

150

TS2

client34

send34

rcv34

router3

50

60

0

0

50

200
150

τ = 50

50

TS3

Abs○Rel

Abs○Rel

Figure 41: Normalised timed states

6.5 Functorial Relations to Untimed Net Classes

Here, we define functors TSkel and TSkelSys, which map timed P/T nets and timed P/T
systems to P/T nets and P/T systems (as well as their morphisms), respectively. These
functors remove all information regarding time-stamps from the nets, resulting in timed
P/T nets and systems without any time-values, but retaining the locations of markings as
well as pre-/post domains of transitions.

We also show that both functors preserve firing behaviour, which means that a firing
step in the translated timed P/T nets and systems indicate the existence of a firing step in
the respective resulting P/T nets and systems.

Definition 6.27 (Skeleton Functor TSkel). The functor TSkel : TPTNets→ PTNets is
defined by TSkel(P, T, pre, post) = (P, T, pre∗, post∗), where pre∗(t) = π⊕P (pre(t)), post∗(t) =
π⊕P (post(t)) for all t ∈ T for the objects of TPTStates. For the morphisms, we define
TSkel(fP , fT) = (fP , fT).

Well-definedness. Given timed P/T nets TN1 = (P1, T1, pre1, post1) and

52

6.5 Functorial Relations to Untimed Net Classes

TN2 = (P2, T2, pre2, post2) and timed P/T morphism f : TN1 → TN2. Since the locations
of the pre- and post domains of any transition t in TN1 and fT (t) in TN2 are the same,
i.e. π⊕P (pre1(t)) = f⊕P (π⊕P (pre2(fT (t)))) (analogous for post), the P/T system morphism
condition of TSkel(f) for any timed P/T morphism f is satisfied:

pre∗2(fT (t)) = π⊕P (fT (pre2(t))) = f⊕P (π⊕P (pre1(t))) = f⊕P (pre∗1(t))

Therefore, for all objects A,B in TPTNets with morphism f : A → B, a morphism
TSkel(f) : TSkel(A) → TSkel(B) exists in PTNets. The preservation of identities and
composition follows directly from the definition of the morphism component of the functor.

Example 6.28 (Skeleton Functor TSkel). Figure 42 shows timed P/T nets TN, TN ′ with
morphism f : TN → TN ′, as well as the P/T nets obtained from applying TSkel to the
nets and morphism. Note that the edge inscriptions in the timed P/T nets are sums of
time values, while in the regular P/T nets, they denote the amount of tokens created or
consumed. The transitions rcv3 and rcv4 each create two tokens in both net variants. The
morphism condition for regular P/T nets is also fulfilled, so f : N → N ′ exists.

Fact 6.29 (Functor TSkel Preserves Firing Behaviour). Given timed P/T net TN =
(P, T, pre, post), marking M of TN and a selection S ≤ M , a transition t ∈ T and a
clock value τ ∈ R. Let TSkel(TN) = N∗ with N∗ = (P, T, pre∗, post∗) . Then for every

M∗ ≥ π⊕P (M) with a firing step M
t,S,τ−−−→M ′ in TN , there is also a firing step M∗

t−−→M
′∗

in N∗.

Proof. t is activated in TN under S at time τ , i.e. t ∈ T activated under S means that
S
→
= pre(t)+τ . Since S ≤M , we have M ≥ S →= pre(t)+τ . Then,

S
→
= pre(t)+τ ⇒ π⊕P (S) = pre∗(t)+τ ⇒ π⊕P (S) ≤ π⊕P (M)

⇒ pre∗(t)+τ ≤ π⊕P (M) ≤M∗

Therefore, M∗ ≥ pre∗(t∗), so t is activated in TN∗ and there is a firing step M∗
t−−→ M

′∗

in TN∗.

Definition 6.30 (Skeleton Functor TSkelSys). The functor TSkelSys is defined as TSkelSys :
TPTSys → PTSys with TSkelSys(TN,M) = (N∗,M∗), where N∗ = (P, T, pre∗, post∗)
with pre∗(t) = π⊕P (pre(t)), post∗(t) = π⊕P (M) for all t ∈ T and M∗ = π⊕P (post(t)) for the
objects of TPTSys. For the morphisms, we define Rel(fP , fT) = (fP , fT).

Well-definedness. Given timed P/T systems (TN1,M1), (TN2,M2), with
TNi = (Pi, Ti, prei, posti) for i = 1..2 and timed P/T system morphism f : TN1 → TN2.
Since the locations of the pre- and post domains of any transition t in TN and fT (t) in TN ′

is the same, i.e. π⊕P (pre1(t)) = f⊕P (π⊕P (pre2(fT (t)))) (analogous for post), the P/T system
morphism condition of TSkelSys(f) for any timed P/T-system morphism f is satisfied:

pre∗2(fT (t)) = π⊕P (fT (pre2(t))) = f⊕P (π⊕P (pre1(t))) = f⊕P (pre∗1(t))

The same is true for the Marking, since the location is the same: f⊕P×R(M1) = (M2).
Therefore, for all objects A,B in TPTSys with morphism f : A → B, a morphism

TSkel(f) : TSkel(A) → TSkel(B) exists in PTSys. The preservation of identities and
composition follows directly from the definition of the morphism component of the functor.

53

6 Categories of Timed Net Classes

TN

f

TN‘

TSkel TSkel TSkel

TSkel(TN)

TSkel(f)

TSkel(TN‘)

client3 client4

send3

rcv3 send4

rcv4

router3

50⊕40

60

170⊕100

160

client34

send34

rcv34

router3

50⊕40

60

0

0

0

0

client3 client4

send3

rcv3 send4

rcv4

router3

client34

send34

rcv34

router3

2

2 2

Figure 42: Functor TSkel

Example 6.31 (Skeleton Functor TSkelSys). Figure 43 shows timed P/T systems TSys, TSys′

with morphism f : TSys → TSys′, as well as the P/T systems obtained from applying
TSkelSys to the nets and morphism. Again, the edge inscriptions in the timed P/T systems
are sums of time values, while in the regular P/T systems, they denote the amount of tokens
created or consumed. The markings are preserved as black tokens. The morphism condition
for regular P/T nets is also fulfilled, so f : N → N ′ exists.

Fact 6.32 (Functor TSkelSys Preserves Firing Behaviour). Given timed P/T-system (TN,
M) with TN = (P, T, pre, post), marking M of TN and a selection S of M , a transi-
tion t ∈ T and a clock value τ ∈ R. Let TSkelSys(TN,M) = (N∗,M∗) with N∗ =

(P, T, pre∗, post∗). If there is a firing step (TN,M)
t,S,τ−−−→ (TN ′,M ′) in TN , there is also a

firing step (N∗,M∗)
t−−→ (N

′∗,M
′∗) in N∗ .

Proof. Since the only difference between timed P/T systems and timed P/T nets is the
explicit marking contained in the system, the proof is analogous to Proof 6.5.

54

6.5 Functorial Relations to Untimed Net Classes

TSys

f

TSys‘

TSkelSys

TSkelSys

(TSys)

TSkelSys(f)

TSkelSys

(TSys‘)

client3 client4

send3

rcv3 send4

rcv4

router3

50⊕40

60

170⊕100

160

client34

send34

rcv34

router3

50⊕40

60

0

0

0

0

client3 client4

send3

rcv3 send4

rcv4

router3

client34

send34

rcv34

router3

2

2 2

20

0

40 30

10

TSkelSys

TSkelSys

Figure 43: Example mapping of functor TSkelSys

Example 6.33 (TSkelSys Preserves Firing Behaviour). Figure 44 shows the timed P/T sys-
tems TSys = (TN,M), TSys′ = (TN,M ′), representing the same timed P/T net, with the
marking M ′ being the marking after rcv34 has been fired at global clock value 10 with se-
lection S = (router3, 10). Analogously, the corresponding P/T systems TSkelSys(TSys),
TSkelSys(TSys′) are shown, which are obtained by applying TSkelSys to both timed P/T
systems. The resulting system TSkelSys(TSys) can also fire with the translated marking,
which results in the system TSkelSys(TSys′).

55

7 Structuring Techniques for Timed P/T Nets

TSys

TSkelSys
TSkelSys

(TSys)

client34

send34

rcv34

router3

50⊕40

60

0

0

client34

send34

rcv34

router3

2

30

10

client34

send34

rcv34

router3

2

TSkelSys

(Tsys‘)

TSys‘

client34

send34

rcv34

router3

50⊕40

60

0

0

30

60

(rcv34,S,10)

rcv34

50

TSkelSys

Figure 44: Preservation of Firing Behaviour by TSkelSys

7 Structuring Techniques for Timed P/T Nets

In this section, we define three structuring techniques for timed P/T nets: union, fusion
and restriction. These are based on the categorical constructs of pushouts, coequalisers,
and pullbacks, respectively.

Union and fusion are both means of structuring timed P/T nets by identifying parts
of one (in the case of fusion) or more (in the case of union) timed P/T nets. Both are
defined in [EHKP91b, EHKP91a, PPE+05] for algebraic P/T nets, based on pushouts and
coequalisers (see also Section 4). We provide similar definitions, with adaptions respecting
the definition of timed P/T nets. Further, the restriction of a timed P/T net is a structuring
technique that allows to restrict a timed P/T morphism (and especially its domain) to a
given subnet of its codomain.

Moreover, we show that the pushouts and pullbacks of timed P/T nets—computed as
union and restriction of timed P/T nets, respectively—are compatible with each other in
the sense of the vertical van Kampen property, leading to anM-adhesive category [EGH10]
of timed P/T nets.

56

7.1 Union of Timed P/T Nets

7.1 Union of Timed P/T Nets

Union allows obtaining one net from two single nets, identifying certain places and transi-
tions in the union object, determined by the so-called interface net, with morphisms mapping
its places and transitions to those of the nets to unify.

First, we define the construction of a gluing in the category TPTNets, which yields
a union object when applied to two nets with an interface. We then show that the gluing
construction is a pushout in TPTNets. The definitions and proofs are analogous to those
for algebraic P/T nets, however the presence of time values in the pre-/post domains require
certain additional prerequisites.

For the pushouts, we restrict the definition to pushouts along one time-strict, injective
morphism. Even with this constraint, the union is still usable as a structuring technique,
since it still allows for unification of places and transitions.

In comparison to a general union, this variant places some restrictions on the time values
in the pre-/post domains due to the time-strict morphism.

TN1
f //

g

��
(1)

TN2

g′

��
TN3

f ′
// TN4

(a) Pushout in
TPTNets

P1
fP //

gP
��

(2)

P2

g′P
��

P3
f ′P

// P4

(b) Pushout of places
in Sets

T1
fT //

gT
��

(3)

T2

g′T
��

T3
f ′T

// T4

(c) Pushout of transi-
tions in Sets

Figure 45: Pushouts of timed P/T nets, places and transitions

Definition 7.1 (Gluing of Timed P/T Nets). Given timed P/T nets TNi = (Pi, Ti, prei, posti),
with i = 1 . . . 3, injective and time-strict timed P/T morphism f : TN1 → TN2 and
timed P/T morphism g : TN1 → TN3. Then, the gluing TN4 = (P4, T4, pre4, post4)
of TN2 and TN3 along f and g, written TN4 = TN2 +TN1,f,g TN3 with morphisms
f ′ : TN3 → TN4, g

′ : TN2 → TN4 is constructed as follows:

• P4 is constructed as pushout in Sets, as depicted in Figure 45b,

• T4 is constructed as pushout in Sets, as depicted in Figure 45c,

• pre4(t) =

{
f ′⊕P×R(pre3(t∗)) if ∃t∗ ∈ T3, f

′
T (t∗) = t

g′⊕P×R(pre2(t′)) if @t∗ ∈ T3, f
′
T (t∗) = t ∧ ∃t′ ∈ T2 : g′T (t′) = t, and

• post4(t) =

{
f ′⊕P×R(post3(t∗)) if ∃t∗ ∈ T3, f

′
T (t∗) = t

g′⊕P×R(post2(t′)) if @t∗ ∈ T3, f
′
T (t∗) = t ∧ ∃t′ ∈ T2 : g′T (t′) = t

Well-definedness of f ′, g′, TN4: To show: f ′, g′ are well-defined timed P/T morphisms. Since
f is injective, f ′ is also injective. Given transition t ∈ T4. For pre4(t), we either have
pre4(t) = g′⊕P×R(pre2(t′)) with t′ ∈ T2, g

′
T (t′) = t or pre4(t) = f ′⊕P×R(pre3(t′)) with

t′ ∈ T2, g
′
T (t′) = t. Since f is time-strict, from the timed P/T morphism condition follows

f ′⊕P×R ◦ g⊕P×R ◦ pre1(t1)
←
= g′⊕P×R ◦ f⊕P×R ◦ pre1(t1) for all t1 ∈ T1. Therefore, the morphism

condition for f ′ is satisfied, since pre4(t) = f ′⊕P×R(pre3(t′)), with f ′T (t′) = t, t′ ∈ T3. In the

57

7 Structuring Techniques for Timed P/T Nets

remaining case, pre4(t) = g′⊕P×R(pre2(t′)), with g′T (t′) = t, t′ ∈ T2. For post, the proof is
analogous.

For the well-definedness of TN4, since the cases in the definitions of pre4 and post4 are
mutually exclusive, f ′ and g′ are jointly surjective. Therefore TN4 is well-defined.

Fact 7.2 (Gluing of Timed P/T Nets is Pushout). Given a gluing TN4 = TN2 +TN1,f,gTN3

with TNi = (Pi, Ti, prei, posti), injective and time-strict timed P/T morphism f : TN1 →
TN2 and timed P/T morphism g : TN1 → TN3 and morphisms f ′ : TN3 → TN4, g

′ :
TN2 → TN4. Then, the gluing object TN4 is a pushout of TN2 and TN3 along TN1 in
TPTNets.

Proof-Idea. We show that the universal property is fulfilled by the gluing construction by
showing that the comparison morphism induced by the pushout construction is a well-
defined timed P/T morphism, and that it is unique. For the complete proof, see Appendix
B.9.

Example 7.3 (Union of Timed P/T Nets). Figure 46 shows a union of two timed nets TN2,
TN3. TN1 serves as the interface, with f1P (p1) = p1, f1P (p2) = p2 and f2P (p1) = f2P (p2) =
p1, 2. This results in the two nets being unified in TN4 with p1, 2 being the unification place.
The non-injective mapping of p1 and p2 by f2 results in p1 and p2 from TN2 being glued
together, resulting in the place p1, 2.

In Sets, monomorphisms are closed under pushout, meaning that in the following dia-
gram, if fT is a monomorphism, so is f ′T .

A
fT //

gT
��

(1)

B

g′T
��

C
f ′T

// D

We show that in the category of timed P/T nets, this also holds true for time-strict in-
jective morphisms, i.e. in a pushout square, the morphism opposite of a time-strict injective
morphism is also time-strict and injective.

Fact 7.4 (Time-Strict Injective Morphisms are Closed under Pushouts). Given the pushout
of timed P/T nets in Figure 45a. If (1) is a pushout and f = (fP , fT) is time-strict and
injective, then f ′ = (f ′P , f

′
T) is time-strict and injective also.

Proof. By Fact 7.2, a pushout along time-strict injective morphism f is a gluing as defined
in Definition 7.1. Therefore, we have pushouts (2),(3) (as shown in Figures 45b,45c) in Sets
by definition of pushouts in Definition 7.1. Since fP , fT are injective, and monomorphisms
are closed under pushout in Sets, f ′P and f ′T are injective as well, therefore f ′ is injective.

It remains to show that for all t ∈ T3, we have pre4(f ′T (t)) = f⊕P×R(pre3(t)) and

post4(f ′T (t)) = f⊕P×R(post3(t)) respectively, which follows directly from the gluing construc-
tion in Definition 7.1.

In order to show that the category TPTNets has binary coproducts, which is the
categorical equivalent of the disjoint union, we first show that it has initial objects, which,
if used as the interface object of a, pushout results in a binary coproduct.

58

7.1 Union of Timed P/T Nets

f1
p1

TN1 TN2

TN4TN3

t1 p1,2

p1

t4

t1

t4

f2

g1

g2

t1

t3

p2
p2

p4

p3

t1 p1,2

t3

p3p4

10
10

5 5
20 20

Figure 46: Union of Timed P/T Nets

Fact 7.5 (TPTNets has Initial Objects). The empty timed P/T net, E = (PE , TE , preE ,
postE) with PE = ∅, TE = ∅, preE : ∅ → ∅, postE : ∅ → ∅, is initial object in TPTNets.
Moreover, the induced morphism e : E → TN for every timed net TN is time-strict.

Proof. For any timed P/T net TN = (P, T, pre, post), there is exactly one morphism e :
E → TN with e = (eP , eT), eP : ∅ → P , eT : ∅ → T , namely the empty morphism. Now,
eP , eT are the unique functions in Sets induced by initial object ∅, therefore e is the unique
morphism E → TN for all timed nets TN . The morphism condition is satisfied for the
empty morphism because there are no transitions that can violate the condition, therefore
it is well-defined. For the same reason, it is also time-strict.

Fact 7.6 (TPTNets has Binary Coproducts). The category TPTNets has binary coprod-
ucts, i.e. for two timed P/T nets TNx = (Px, Tx, prex, postx) for x = 1, 2, there is a timed
P/T net C with morphisms i1 : TN1 → C, i2 : TN2 → C such that for all nets D with
morphisms j1 : TN1 → D, j2 : TN2 → D, there exists a unique morphism h : C → D with
h ◦ i1 = j1 and h ◦ i2 = j2.

59

7 Structuring Techniques for Timed P/T Nets

Proof. Since TPTNets has initial objects (Fact 7.5), pushouts along time-strict injective
morphisms (Fact 7.2) and furthermore the empty morphism is time-strict and injective,
TPTNets has binary coproducts, which can be computed as pushout over the initial object.

Example 7.7 (TPTNets has Binary Coproducts). Figure 47 shows the coproduct C of timed
P/T nets TN1, TN2 with inclusion morphisms i1, i2. Note that no gluing takes place, even
though both TN1 and TN2 have a place named router1. Instead, i1(router1) = router1
and i2(router1) = router1′.

TN1

C

TN2

i1 i2

fwd1fwd4

30

fastclient

send1 rcv1

router1

10

20

fwd1fwd4

30

router1

ready1

fastclient

send1 rcv1

router1

10

20

router1'

Figure 47: Coproduct of Timed P/T Nets

7.2 Fusion of Timed P/T Nets

Fusion allows the identification of two or more places (or transitions) in a net. This is
achieved by using one interface net with two morphisms. The elements that are mapped
equally by different elements in the interface net become unified in the fusion net.

First, we define the construction of the fusion of timed P/T nets. Like with union,
we restrict fusions to time-strict injective morphisms. We then show that the fusion is a
coequaliser in the category of timed P/T nets.

Definition 7.8 (Fusion of Timed P/T Nets). Given time-strict injective timed P/T mor-
phisms f, g : TN1 → TN2 with TNi = (Pi, Ti, prei, posti).

TN1

f //
g
// TN2

c //

d ##G
GG

GG
GG

G TN3

h
��

TN

Then, the fusion object TN3 of f and g with morphism c : TN2 → TN3 are constructed
as follows:

• (P3, cP) is coequaliser of fP , gP in Sets,

• (T3, cT) is coequaliser of fT , gT in Sets,

60

7.2 Fusion of Timed P/T Nets

• pre3(t) = c⊕P×R(pre2(t′)), with cT (t′) = t for all t′ ∈ TN2, and

• post3(t) = c⊕P×R(post2(t′)), with cT (t′) = t for all t′ ∈ TN2.

Well-definedness.

Well-definedness of TN3: To show: pre3, post3 are functions.

1 For all t ∈ T3, there is M ∈ (P × R)⊕ with pre(t) = M .
Since cP , cT are coequalisers in Sets, these functions are epimorphisms, i. e. they
are surjective functions. Therefore, for all t ∈ T3, there exists t′ ∈ T2 with
cT (t′) = t, and we have pre3(t) = c⊕P×R(pre2(t′)).

2 It remains to show that the result of pre3(t) is unique for every t ∈ T3. Thus, we
have to show that for t1, t2 ∈ T2 with cT (t1) = cT (t2), we have c⊕P×R(pre2(t1)) =

c⊕P×R(pre2(t2)).
Let t1, t2 ∈ T2 with cT (t1) = cT (t2). By construction of coequalisers in Sets,
there is t0 ∈ T1 with fT (t0) = t1 and gT (t0) = t2. Since f,g are time-strict and
injective, we obtain

c⊕P×R(pre2(t1)) = c⊕P×R(pre2(fT (t0))) = c⊕P×R(f⊕P×R(pre1(t0)))

= (cP ◦ fP)⊕×R(pre1(t0))
Coeq.

= (cP ◦ gP)⊕×R(pre1(t0))

= c⊕P×R(g⊕P×R(pre1(t0))) = c⊕P×R(pre2(gT (t0)))

= c⊕P×R(pre2(t2)).

Thus, pre3 is well-defined. The well-definedness of post3 follows analogously.

Therefore, TN3 is a well-defined timed P/T net.

Well-definedness of c: Since (P3, cP) and (T3, cT) are Coequalisers of fP , gP , respec-
tively fT , gT , c ◦ f = (cP ◦ fP , cT ◦ fT) = (cP ◦ gP , cT ◦ gT) = c ◦ g. From the definition
of pre3 and post3 follows pre3 ◦ cT = c⊕P×R ◦ pre2, and post3 ◦ cT = c⊕P×R ◦ post2.

Therefore, c is a well-defined timed P/T morphism.

Fact 7.9 (Fusion of Timed P/T Nets is Coequaliser). Given time-strict injective timed P/T
morphisms f, g : TN1 → TN2 with TNi = (Pi, Ti, prei, posti).

Then, the fusion object TN3 of f and g is coequaliser object of f and g and the morphism
c : TN2 → TN3 is coequaliser.

Proof. Universal property: Given the timed P/T net TN4 with morphism d : TN2 →
TN4 (as seen in the figure above) with d ◦ f = d ◦ g. From the componentwise
construction of the coequaliser in Sets follows that there are unique morphisms hP , hT
with hT ◦ cT = dT , hP ◦ cP = dP .

Let cT (t′) = t with t′ ∈ T2, t ∈ T3.

For the morphism condition, we have

h⊕P×R ◦ pre3(t) = h⊕P×R ◦ c
⊕
P×R ◦ pre2(t)

= d⊕P×R ◦ pre2(t) = pre4 ◦ dT (t)

= pre4 ◦ hT ◦ cT (t) = pre4 ◦ hT (t′)

61

7 Structuring Techniques for Timed P/T Nets

Therefore, h is well-defined.

The uniqueness follows from the uniqueness of hP , hT in Sets.

Example 7.10 (Fusion of Timed P/T Nets). Figure 48 shows a fusion of two timed nets.
Given are timed P/T morphisms f, g with fT (p1) = p1 and gT (p1) = p1′. This results in
these two places being unified in TN4 in the place p1, so that the pre- and post domains of
p1 in TN3 matches those of p1 and p1′ in TN2.

TN2

TN1

TN3

t2

t1

p1

p1'

p1 f

g

c

20

p2

40
t2

t1

20

p2

40

Figure 48: Fusion of Timed P/T Nets

7.3 Restriction of Timed P/T Nets

The restriction of a timed P/T net is a structuring technique that allows to restrict a timed
P/T morphism (and especially its domain) to a given subnet of its codomain.

Definition 7.11 (Restriction of Timed P/T Nets). Given timed P/T morphisms f : TN1 →
TN3 and g : TN2 → TN3, where f is time-strict injective. The restriction g′ : TN0 → TN1

of g along f together with f ′ : TN0 → TN2 is defined as follows:

• TN0 = (P0, T0, pre0, post0) with

– P0 is constructed as pullback (2) in Sets as depicted in Figure 49b,

– T0 is constructed as pullback (3) in Sets as depicted in Figure 49c,

– pre0 = f ′−1⊕
P×R ◦ pre2 ◦ f ′T , and

– post0 = f ′−1⊕
P×R ◦ post2 ◦ f ′T ;

• f ′ = (f ′P , f
′
T), and g′ = (g′P , g

′
T).

62

7.3 Restriction of Timed P/T Nets

TN0

g′

��

f ′
// TN1

f
��

TN2 g
// TN3

(1)

(a) Restriction of
timed P/T Nets

P0

g′P
��

f ′P

// P1

fP
��

P2 gP
// P3

(2)

(b) Pullback of
Places

T0

g′T
��

f ′T

// T1

fT
��

T2 gT
// T3

(2)

(c) Pullback of
Transitions

Figure 49: Restriction and pullback diagrams

Well-definedness. We have to show that pre0 and post0 are well-defined functions, and that
f ′ and g′ are timed P/T morphisms.

Pre and post functions. Since we assume that f is time-strict injective, there are fP and
fT injective and thus monomorphisms in Sets. Then, by closure of monomorphisms
under pullbacks, we obtain that also f ′P and f ′T are monomorphisms and hence they
are injective functions.

So, for the well-definedness of pre0 and post0 we have to show that for all t ∈ T0

and (p, r) ≤ pre2(f ′T (t)) there is also a place p0 ∈ P0 with f ′P (p0) = p, and the
same for the post domain. So, let t ∈ T0 and (p, r) ≤ pre2(f ′T (t)) which means that
p ≤ π⊕P (pre2(f ′T (t))). Since timed P/T morphisms preserve the location of pre and
post domains, we also have

gP (p) ≤ π⊕P (g⊕P×R(pre2(f ′T (t)))) = π⊕P (pre3(gT (f ′T (t)))) = π⊕P (pre3(fT (g′T (t))))

= π⊕P (f⊕P×R(pre1(g′T (t)))) = f⊕P (π⊕P (pre1(g′T (t)))).

This means that there is also p′ ∈ P1 such that fP (p′) = gP (p) which by pullback (2)
in Sets implies that there exists p0 ∈ P0 with f ′P (p0) = p and g′P (p0) = p′.

The proof for the post domain works analogously.

f ′ is timed P/T morphism. We have to show that for all t ∈ T0 there is pre2 ◦ f ′T (t)
←
=

f ′⊕P×R ◦ pre0(t) and post2 ◦ f ′T (t)
→
= f ′⊕P×R ◦ post0(t).

Let t ∈ T0, then we have

f ′⊕P×R ◦ pre0(t) = f ′⊕P×R ◦ f
′−1⊕
P×R ◦ pre2 ◦ f ′T (t)

= (f ′P×R ◦ f ′−1
P×R)⊕ ◦ pre2 ◦ f ′T (t) = pre2 ◦ f ′T (t)

and

f ′⊕P×R ◦ post0(t) = f ′⊕P×R ◦ f
′−1⊕
P×R ◦ post2 ◦ f

′
T (t)

= (f ′P×R ◦ f ′−1
P×R)⊕ ◦ post2 ◦ f ′T (t) = post2 ◦ f ′T (t).

Thus, f ′ is a timed P/T morphism. Note that we also have shown that f ′ is time-
strict. Moreover, since injective functions are monomorphisms which are closed under
pullbacks, from injective functions fP and fT we know that also f ′P and f ′T are injective.
Hence, f ′ is time-strict injective.

63

7 Structuring Techniques for Timed P/T Nets

g′ is a timed P/T morphism.

Due to timed P/T morphism g ◦ f ′ : TN0 → TN3 and time-strict injective morphism
f : TN1 → TN3, by Lemma 6.10 we obtain that also g′ is a timed P/T morphism.

Fact 7.12 (Restriction of Timed P/T Nets is Pullback). Given timed P/T morphisms
f : TN1 → TN3 and g : TN2 → TN3, where f is time-strict injective, and the restriction
g′ : TN0 → TN1 with f ′ : TN0 → TN2 of g along f . Then diagram (1) in Figure 49a is a
pullback in TPTNets.

Proof. Note due to definition of restrictions, we have also the pullbacks (2) and (3) in Sets
depicted in Figure 49. We have to show that (1) commutes and that the universal property of
pullbacks is satisfied. The commutativity of (1) follows by commutativity of its components
in (2) and (3).

Let TN4 be a timed P/T net and h : TN4 → TN1, k : TN4 → TN2 timed P/T
morphisms with f ◦h = g◦k. Then we also have fP ◦hP = gP ◦kP and fT ◦hT = gT ◦kT which
by pullbacks (2) and (3) in Sets imply unique functions mP : P4 → P0 with g′P ◦mP = hP
and f ′P ◦mP = kP , and mT : T4 → T0 with g′T ◦mT = hT and f ′T ◦mT = kT .

As shown in the proof of the well-definedness of f ′ in Definition 7.11, we have that
f ′ is time-strict injective. Then, by morphism k : TN4 → TN2 and time-strict injective
morphism f ′ : TN0 → TN2 due to Lemma 6.10 we know that m = (mP ,mT) is a timed
P/T morphism. The uniqueness of m follows from uniqueness of its components.

Corollary 7.13 (Time-Strict Injective Morphisms are Closed under Pullbacks) Given a
pullback (1) of timed P/T nets as in Figure 49a along time-strict injective morphism f .
Then also f ′ is time-strict injective.

Proof. By Fact 7.12 we know that the pullback can be constructed as restriction. The fact
that f ′ is time-strict injective is already shown in the proof of the well-definedness of f ′ in
Definition 7.11.

7.4 M-Adhesive Category of Timed P/T Nets

An M-adhesive category [EGH10] consists of a category C together with a class M of
monomorphisms as defined in Definition 7.14 below. The concept ofM-adhesive categories
generalizes that of adhesive [LS04], adhesive HLR [EHPP06], and weak adhesive HLR cat-
egories [EEPT06].

The concepts of adhesive [LS04] and (weak) adhesive high-level-replacement (HLR)
[EEPT06] categories have been a break-through for the double pushout approach (DPO)
of algebraic graph transformations [Roz97]. Almost all main results in the DPO-approach
have been formulated and proven in these categorical frameworks and instantiated to a large
variety of HLR systems, including different kinds of graph and Petri net transformation sys-
tems. These main results include the Local Church-Rosser, Parallelism, and Concurrency
Theorems, the Embedding and Extension Theorem, completeness of critical pairs, and the
Local Confluence Theorem. In [EGH10] it is shown that these results are also valid in the
more general framework of M-adhesive categories.

Definition 7.14 (M-Adhesive Category). An M-adhesive category (C,M) is a category
C together with a class M of monomorphisms satisfying:

64

7.4 M-Adhesive Category of Timed P/T Nets

• the class M is closed under isomorphisms, composition (f, g ∈ M⇒ g ◦ f ∈ M) and
decomposition (g ◦ f, g ∈M⇒ f ∈M),

• C has pushouts and pullbacks along M-morphisms,

• M-morphisms are closed under pushouts and pullbacks, and

• the vertical weak van Kampen (short VK) property holds. This means that pushouts
alongM-morphisms areM-VK squares, i. e., a pushout (1) in Figure 50a with m ∈M
is an M-VK square, if for all commutative cubes (2) in Figure 50b with (1) in the
bottom, all vertical morphisms a, b, c, d ∈M and pullbacks in the back faces we have
that the top face is a pushout if and only if the front faces are pullbacks.

A
f

~~~~
~~
~~
~~ m

  @
@@

@@
@@

@

(1)C

n   @
@@

@@
@@

@ B

g~~~~
~~
~~
~~

D

(a) M-VK square

A′f ′

rreeeeee
eeeeee

ee m′

))RRR
RRR

a

��

C ′

n′
((RRR

RRR

c

��

B′

g′fff
ffffff

f
rrfff

b

��

D′

d

��

(2)

A

(1)

f
rr

m
))

C
n ))SSS
SSS B

grreeeeeee
eeeeee

e

D

(b) VK cube

Figure 50: M-VK square and VK cube

Fact 7.15 (Monomorphisms and Isomorphisms of Timed P/T Nets). Given a timed P/T
morphism f : TN1 → TN2.

Monomorphisms. f is a monomorphism in TPTNets if and only if fP and fT are
monomorphisms in Sets.

Isomorphisms. f is an isomorphism in TPTNets if and only if fP and fT are isomor-
phisms in Sets and f is time-strict.

Proof. For the proof see Appendix B.10.

Fact 7.16 (Closure-Properties of Time-Strict Injective Morphisms). Time-strict injective
timed P/T morphisms are closed under composition, decomposition and isomorphisms in
the following sense:

Composition. Given two time-strict injective morphisms f : TN1 → TN2 and g : TN2 →
TN3 then also g ◦ f is time-strict injective.

Decomposition. Given two morphisms f : TN1 → TN2 and g : TN2 → TN3 such that g
and g ◦ f are time-strict injective, then also f is time-strict injective.

Isomorphism. Given an isomorphism f : TN1 → TN2, then f is time-strict injective.

Proof. For the proof see Appendix B.11.

65



8 Conclusion

Theorem 7.17 (Timed P/T Nets Are M-Adhesive) The category (TPTNets,Mstrict) is
an M-adhesive category, where Mstrict = {f ∈MorTPTNets | f is time-strict injective}.

Proof Idea. We have to show that (TPTNets,Mstrict) satisfies the conditions ofM-adhesive
categories in Definition 7.14. First, by Facts 7.15 and 7.16 we know that the class Mstrict

is a class of monomorphisms closed under composition, decomposition and isomorphism.

From Fact 7.2 it follows that the category TPTNets has pushouts along Mstrict -
morphisms. Moreover, from Fact 7.12 it follows that the category TPTNets has pullbacks
along Mstrict -morphisms.

Further, by Fact 7.4Mstrict -morphisms are closed under pushouts and by Corollary 7.13
Mstrict -morphisms are also closed under pullbacks.

It remains to show that the vertical weak VK property is satisfied which is explicitly
shown in the detailed proof in Appendix B.12.

8 Conclusion

In this technical report, we have established a formalism for timed P/T nets, based on
algebraic P/T nets and different features and approaches from other Petri net extensions,
namely PTI nets and timed CPNs.

The algebraic approach presented in this paper allows formalising relations between
timed nets via morphisms, allowing us to define categories for the different timed P/T net
classes, specify processes of a net and apply structuring techniques such as union and fusion
to timed P/T nets. Furthermore, the rather liberal definition of the firing behaviour allows
for more freedom designing and simulating timed P/T nets.

The resulting timed P/T net formalism allows the modelling and analysis of time-critical
systems or processes that contain events or sub-processes which take up a specified amount
of time, and where timely arrival at a target state is crucial.

We have presented two examples of models (network infrastructure and workshop mod-
els) with desired requirements regarding the transition firing behaviour of the respective
P/T nets, which would be either impossible to implement using classic P/T nets or require
extensive changes to the model in order to achieve the desired behaviour.

After summarising other approaches and discussing different possible approaches to im-
plementing the required features, we have given a formalisation that extends that of algebraic
P/T nets, adding features for implementing the notion of time where needed: A global clock
is employed, which is used to determine at which point in time a transition fires. Each token
now possesses a timestamp that represents the earliest point in time (the earliest global clock
value) at which it can be used in a transition. This is accounted for in the definitions of the
net markings and the pre- and post domain of transitions, which are now sums of tuples of
places and time value (instead of sums of places). The activation of transitions is altered
accordingly, requiring the global clock value to be higher or equal than the timestamps of
the tokens that are to be consumed. The tokens that are consumed upon firing, and thus
subtracted from the net marking, are contained in a so-called selection. The firing step then
subtracts the token selection from the current marking and adds tokens according to the
post domain of the transition fired. These newly created tokens are assigned timestamps
relative to the clock value at which the transition fires, indicating when they can be used
for another firing step.

We have then defined categories of timed P/T nets, timed P/T-systems (analogous
to P/T systems, where the objects are nets with markings) and timed P/T-states, which

66



8.1 Outlook and Future Work

contain a net, a marking and a global clock value. For the categories of timed P/T-systems
and timed P/T-states, we have defined functors Rel and Abs, which map timed P/T-systems
onto equivalent timed P/T-states and vice versa. We have shown the categories of timed
P/T-systems and timed P/T-states to be equivalent, meaning that they are essentially the
same.

Additionally, we have defined skeleton functors TSkel and TSkelSys that map timed
P/T-systems and timed P/T-states to regular P/T-nets and P/T-systems respectively, while
preserving their firing behaviour.

Finally, we have defined structuring techniques union, fusion and restriction, analogous
to structuring techniques for untimed algebraic P/T nets, and shown that the results are
pushouts, coequalisers, and pullbacks, respectively. Using the structuring techniques union
and restriction, we have shown that the category of timed P/T nets with the class M of
time-strict injective morphisms fits into the abstract categorical framework of M-adhesive
categories. This means that our approach is suitable for rule-based transformation of timed
P/T nets in the sense of graph transformation.

8.1 Outlook and Future Work

Aside from the approach for formalising timed Petri nets shown in this paper, there is a
variety of topics not covered yet, as well as different possibilities for the enhancement of the
timed P/T net notion.

One interesting topic is the definition of timed P/T processes analogously to P/T pro-
cesses (see Section 4). This can be done by defining timed occurrence nets K in the way
that their timed skeleton TSkel(K) is an untimed occurrence net. A timed P/T process of a
timed P/T net N is then a timed P/T morphism p : K → N where K is a timed occurrence
net. In future research we want to analyse the properties of such timed processes in order
to analyse the concurrent behaviour of timed P/T nets.

Another interesting topic is the rule-based reconfiguration of timed P/T nets. As we
have shown in this work, the category of timed P/T net fits into the framework of M-
adhesive categories. Therefore, in principle it is possible to use the well-known analysis
results of M-adhesive categories for the analysis of the reconfiguration of timed P/T nets.
In future work we will analyse transformation systems of timed P/T nets. For this purpose
it will be important to have a condition for the existence of transformations of timed P/T
nets like the gluing condition for P/T nets which is a necessary and sufficient condition for
the existence of direct transformations of P/T nets.

For more complex models, a timed version of algebraic high-level nets is a viable exten-
sion, allowing for more detailed and complex models using expressions and conditions.

Algebraic high-level (AHL) nets are a powerful modelling technique in theoretical com-
puter science. Based on algebraic P/T nets, AHL-nets use algebraic specifications as a basis
for data types and firing conditions, as well as expressions for consumed and created tokens
(i.e. the edge inscriptions).

An AHL-Net AN = (Σ, P, T, pre, post, cond, type,A) consists of a signature Σ = (S,OP ;
X) with additional variables X, a set of places P, a set of transitions T, pre and post domain
functions pre, post : T → (TΣ(X) ⊗ P )⊕, firing conditions cond : T → Pfin(Eqns(Σ;X)),
the typing function for places type : P → S, and a Σ-Algebra A. The signature Σ = (S,OP )
consists of sorts S and operation symbols OP , while TΣ(X) is the set of terms with variables
over X. The restricted product ⊗ is defined by

(TΣ(X)⊗ P ) = {(term, p)|term ∈ TΣ(X)type(p), p ∈ P}

67



8 Conclusion

and Eqns(Σ;X) are all equations over the signature Σ with variables X.
A marking of an AHL-net AN is given by M ∈ CP⊕, where CP = (A⊗P ) = {(a, p)|a ∈

Atype(p), p ∈ P}, and M =
∑n

i=1 λi(ai, pi) means that pi ∈ P contains λi ∈ N data tokens
ai ∈ Atype(pi).

The set of variables V ar(t) ⊆ X of a transition t ∈ T are the variables of the net
inscriptions in pre(t), post(t) and cond(t). Let v : V ar(t) → A be a variable assignment
with term evaluation v : TΣ(V ar(t)) → A, then (t, v) is a consistent transition assignment
iff condAN (t) is validated in A under v. The set CT of consistent transition assignments is
defined by CT = {(t, v)|(t, v) consistent transition assignment }.

A transition t ∈ T is enabled in M under v iff (t, v) ∈ CT and preA(t, v) ≤ M , where
preA : CT → CP⊕ is defined by preA(t, v) = v̂(pre(t)) ∈ (A ⊗ P )⊕ and v̂ : (TΣ(V ar(t)) ⊗
P )⊕ → (A⊗ P )⊕ is the obvious extension of v to sums of terms and places (similar postA :
CT → CP⊕). Then the follower marking is computed by M ′ = M	preA(t, v)⊕postA(t, v).

An AHL-net morphism f : AN1 → AN2 is given by f = (fP , fT ) with functions fP :
P1 → P2 and fT : T1 → T2, and is compatible with the pre and post domain, condition and
typing functions. The category AHLNet consists of AHL-nets (with a signature Σ and
algebra A), and AHL-net morphisms, with the composition of AHL-net morphisms defined
componentwise for the sets of places and transitions.

By including a signature morphism and a generalized algebra morphism in the AHL-net
morphisms, it is also possible to define a category of AHL-nets with different signatures and
algebras for each net (see [PER95]).

The firing behaviour of AHL-nets is defined analogously to that of low-level P/T nets,
with the difference that in AHL-nets, tokens contain data values instead of being data-
less black tokens. In addition, for the activation of a transition, an assignment asg of the
variables in the environment (the pre- and post domains) of the transition is required, such
that the assigned pre domain is included in the current marking and the firing conditions of
the transition are satisfied under asg. The follower marking is then computed by evaluating
the edge expressions, using the assignment.

In order to incorporate time dependency in AHL-nets, all the concepts of (low-level)
timed P/T nets have to be applied to AHL-nets, meaning that tokens now carry time
stamps (in addition to their data), denoting the earliest point in time at which it can be
used by a transition. Also, a time duration is assigned to every edge expression, yielding
the same behaviour as low-level timed nets.

Consider the following example, which is based on a timed CPN network example from
[JK09], remodelled with a timed AHL net.

This type of timed AHL nets is similar to the timed CPN approach, however (as seen
in the definition of timed P/T nets) there are vast differences in the underlying formalisms.

Example 8.1 (Timed AHL-Net). Figure 53 shows the timed AHL variant of a network
example taken from [JK09], which is shown in Figure 51. The necessary ML definitions
are given in Figure 52. The firing behaviour of the timed AHL net is analogous to that of
timed P/T nets, with the edge inscriptions now being sums of tuples of time values and
variable names. The packet type is a product of a natural number and a string. For the
operations, we have add, which adds two natural numbers and returns the result, concat,
which concatenates two strings, and packet, which is a constructor for the packet type and
takes a natural number and a string.

The two variants of the net are similar, but there are some differences due to the features
of the modelling techniques used. Instead of a conditional edge inscription for packet loss, as
seen in the timed CPN, for the timed AHL net, we use two transitions which are in conflict,

68



8.1 Outlook and Future Work

thus deciding non-deterministically whether or not a packet arrives. Also, two transitions
are used for the receiving of a packet, the used one depending on whether or not the received
packet is the expected packet.

In order to compare the two nets, we choose equivalent markings for both nets. The
PacketstoSend place holds the packets that are to be sent across the network. A packet is
a tuple of a natural number, indicating its position in the order the packets are sent, and
the string, which is the data payload. An example packet would be (2,“b”). The NextSend
and NextRec places both hold the natural number 1. These represent the number of the
packet that is expected to be received. All these tokens possess a timestamp of 0, i. e. they
can be used immediately. For this example, we place the packet (3,“c”) on the place B in
both nets with a timestamp of 120. The Received place contains the previously received
string “ab” with a timestamp of 100, and the NextRec place contains the number 3 (also
with a timestamp of 100), indicating that the packet that is expected to be received has the
number 3.

We first cover the original timed CPN net variant as shown in Figure 51. In a timed CPN,
a step Y ∈ BEMS (which contains tuples (t, b) of transitions t and variable assignments b)
is activated at time t′ under the marking (M, t∗), if

• ∀(t, b) ∈ Y : G(t)〈b〉, i.e. all transition guards are fulfilled under the variable assign-
ments,

•
++
MS

∑
(t,b)∈Y E(p, t)〈b〉 �= M(p) ∀ untimed p ∈ P , i.e. there are enough input tokens

available for the untimed places

•
+++
MS

∑
(t,b)∈Y (E(p, t)〈b〉)+t′ �= M(p) ∀ timed p ∈ P , i.e. there are enough input

tokens available with appropriate timestamps for the timed places,

• t∗ ≤ t′, i.e. the new clock value is larger or equal to the old clock value, and

• t’ is the lowest time value for which the previous conditions are true.

In our example, there are no transition guards, the number of tokens is sufficient (with
appropriate timestamps). We define t∗ = 100 and t′ = 120, so t∗ ≤ t′.

From the current marking M , the follower marking M ′ is then computed as

M ′(p) = (M(p)−−−
+++
MS

∑
(t,b)∈Y

(E(p, t)〈b〉)+t′) + + +
+++
MS

∑
(t,b)∈Y

(E(t, p)〈b〉)+t′ ,

removing the input tokens and adding the output tokens, always adding the new time value
t′.

In our example, the resulting marking has tokens
1̀4@137 on NextRec and C and 1̀“acb′′@137 on Received.

69



8 Conclusion

Packets to 

Send

D C

Send 

Packet

(n,d) (n,d)@+Wait

(n,d)

nn

nk

n

NextSend

INT×STRING

(n,d)
A B

ReceiveNextRec

Received

STRING

INT

Transmit 

Ack

Receive 

Ack

Transmit 

Packet

INT×STRING INT×STRING
@+9 @+Delay()

@+17

@+Delay()@+7

INT

INT

INT

k

if n=k then 

k+1 else k

if n=k then 

data^d else data

if success then 

1`(n,d) else 

empty

if success then 

1`n else empty

if n=k then 

k+1 else k

(n,d)
data

1

1

1`3@100

1

1

1

1`(3,“c“)@120 1`“ab“@100

Figure 51: Network as Timed CPN

colset INT = int timed;

colset STRING = string timed;

colset INTxSTRING = product INT * STRING timed;

colset BOOL = bool;

var n,k : INT;

var d,data : STRING;

var success : BOOL;

val Wait = 100;

fun Delay () = discrete(25,75);

Figure 52: ML definitions for the network timed CPN

Next, we discuss the AHL-net variant shown in Figure 53. There are slight changes
from regular AHL-nets in the notation due to the added time values. Markings (and edge
inscriptions) are now sums of tuples of a variable and a time value. If no time value is given
for a token, the timestamp associated with that token is assumed to be zero.

In the AHL-net variant, there are some structural changes from the original timed CPN.
The non-deterministic loss of packets is now done via an extra transitions for the places
where packet loss can occur. These transitions, when fired, remove a packet from the input

70



8.1 Outlook and Future Work

place and have no output edges. The operation packet is a constructor for the packet type,
which are tuples of natural numbers and text strings. The num operation takes a packet
and returns its natural number, while the eq operation checks two numbers for equality.
Finally, the concat operation concatenates two strings.

In order for the transition Receive to be activated in marking M under the variable
assignment v, the conditions of Receive have to be valid under the assignment and there
has to be a sufficient number of tokens on the input places. In our example, the only possible
assignment is v(p) = (3, “c′′) and v(k) = 3. The input tokens are obviously sufficient.

In addition to the AHL firing conditions, the timed P/T net firing conditions are in
effect. This means that Receive can fire at global clock value 120, since one of the three
input tokens has a timestamp of 120, while the other two have timestamps of 100.

Firing the transition at clock value τ = 120 yields the follower marking computed by
M ′ = M 	 preA(t, v) ⊕ postA(t, v)+τ , with M ′(Received) = (“abc′′, 137), M ′(nextRec) =
(4, 137) and M ′(C) = (4, 137).

Send Packet

p = packet(n,x)

toSend: 

packet

p (p,109)

nextSend: 

nat

(n,9)

(p,9)

A: packet

B: packet

p Transmit Packet

Receive Ack

C: natD: nat

Receive Ack

nextRec: 

nat

n

k

Wrong Packet

eq(num(p),k) = false

p
data

(store,17)

n

(n,7)x

Received: 

string

n

Packet Loss

p

p

Packet Loss 2
n

n

Receive

p = packet(k,x)

store = concat(data,x)

b = k + 1

p

(b,17)

k(k,17) (b,17)

(k,17)

((3,“c“),

120)

(“ab“,

100)

(3,

100)

Figure 53: Network as Timed AHL net

71



A Categorical Fundamentals

A Categorical Fundamentals

This section contains a short overview on the required fundamentals of category theory, as
defined e. g. in [EEPT06,EMC+01].

Definition A.1 (Category). A category C = (ObC ,MorC , ◦, id) consists of

• a class ObC of objects,

• a set of morphisms MorC(A,B) for any two objects A,B ∈ ObC

• the composition operation ◦ for any three objects
A,B,C ∈ ObC with ◦ : MorC(A,B)×MorC(B,C)→MorC(A,C)

• for each object A ∈ ObC the identity idA ∈MorC(A,A)

such that the following conditions are fulfilled:

Associativity For all f ∈ MorC(A,B), g ∈ MorC(B,C), h ∈ MorC(C,D) the following
holds: (h ◦ g) ◦ f = h ◦ (g ◦ f).

Neutrality For all f ∈MorC(A,B) the following holds: f ◦ idA = f and idB ◦ f = f .

Definition A.2 (Category Sets). The category Sets of sets and functions is defined as
Sets = (ObSets,MorSets, ◦, id) with

• the class of sets ObSets as objects,

• MorSets(M,N), the set of functions from M to N for any two sets M and N as mor-
phisms,

• the composition ◦, which is the function composition, meaning for f : M → N and
g : N → K, g ◦ f : M → K is defined by (g ◦ f)(x) = g(f(x)) for all x ∈M , and

• the identity id, which are the identity functions, i.e. idM : M → M is defined by
idM (x) = x for all x ∈M .

Definition A.3 (Pushout). A pushout of two morphisms f1 : A0 → A1 and f2 : A0 → A2

of a category C is an object A3, called the pushout object, along with two morphisms
g1 : A1 → A3 and g2 : A2 → A3 in C, such that (PO) in the diagram below commutates and
the following universal property is fulfilled: For all objects A and morphisms g′1 : A1 → A
and g′2 : A2 → A in C with g′1 ◦ f1 = g′2 ◦ f2, exactly one morphism g : A3 → A exists in C,
so that (1) and (2) in the diagram below commutate:

A0

(PO)f2
��

f1 // A1

g1
�� g′1

(1)

��

A2 g2
//

g′2

(2)

//

A3

g
  A

AA
AA

AA
A

A

72



Definition A.4 (Coequaliser). Given a category C = (ObC ,MorC , ◦, id) with A,B ∈ ObC ,
f, g ∈MorC with f, g : A→ B.

A
f //
g
// B

c //

d   @
@@

@@
@@

@ C

h
��
D

An object C ∈ ObC with a morphism c : B → C is called coequaliser of f, g, if c◦f = c◦g
and the following universal property is fulfilled:

For all morphisms in d : B → D in MorC with d◦f = d◦g, there exists unique morphism
h : C → D with h ◦ c = d.

Definition A.5 (Initial Object). An object A of a category C is an initial object in C, if
for each object B ∈ ObC there exists a unique morphism f : A → B. This means that for
all objects B ∈ ObC , the set MorC(A,B) contains exactly one element.

Definition A.6 (Functor). Given two categories C,D. A functor F = (FOb, FMor) : C→ D
is given by

• A function FOb : ObC → ObD

• For each two objects A,B ∈ ObC a function

FMor(A,B) : MorC(A,B)→MorD(FOb(A), FOb(B))

so that

– for all C-morphisms f : A→ B and g : B → C, the following holds:

FMor(A,C)(g ◦C f) = FMor(B,C)(g) ◦D FMor(A,B)(f)

– for all A ∈ ObC , the following holds:

FMor(A,A)(idCA) = idDFOb(A)

Definition A.7 (Natural Transformation). Given functors F : C → D and G : C → D.
Then a functor transformation α : F ⇒ G with α = (αA)A∈ObC is a family of morphisms
αA : F (A)→ G(A) with A ∈ ObC , so that

αB ◦ F (f) = G(f) ◦ αA

for all C-morphisms f : A→ B

Definition A.8 (Functor Category). Given two categories C and D.
The functor category [C,D] is comprised of the class of all functors F : C → D as

its objects and all natural transformations as its morphisms. The composition of natural
transformations α : F ⇒ G and β : G ⇒ H is the componentwise composition in D,
which means that β ◦α = (βA ◦αA)A∈ObC . The identities are given by the identical natural
transformations defined componentwise over the identities idF (A) ∈ D.

Definition A.9 (Equivalence of Categories). Given two categories C,D. C and D are
equivalent, if there are functors I : C→ D, J : D→ C, so that

J ◦ I ' IdC ∈ [C,C] and I ◦ J ' IdD ∈ [D,D]

73



B Detailed Proofs

B Detailed Proofs

Fact B.1 (Monotonicity of �⊕×R). Given a timed P/T-net TN = (P, T, pre, post), timed
markings M1,M2 ∈ (P × R)⊕ of TN and a function fP : P → P ′, then

M1
→
= M2 ⇒ f⊕P×R(M1)

→
= f⊕P×R(M2).

Proof. Let M1
→
= M2 and let us assume that

M ′1 := f⊕P×R(M1) 6→= f⊕P×R(M2) =: M ′2,

i.e. there is p′ ∈ P ′ such that for M ′1[p′] = r′1 . . . r
′
n and M ′2[p′] = s′1 . . . s

′
n there is i ∈

{1, . . . , n} such that r′i > s′i. Since M ′2 is the image of M2 w.r.t. f⊕P×R we know from∑i
j=1(p′, s′j) ≤ M ′2 that for 1 ≤ j ≤ i there are (pj , sj) ≤ M2 such that fP×R(pj , sj) =

(p′, s′j). By the definition of fP×R this implies that fP (pj) = p′.

Moreover, from M1
→
= M2 we obtain that for 1 ≤ j ≤ i there are (pj , rj) ≤ M1 such that

rj ≤ sj . Thus, for 1 ≤ j ≤ i we obtain (p′, rj) = fP×R(pj , rj) ≤M ′1 and there is

rj ≤ sj ≤ s′i < r′i.

So we have i many elements (p′, rj) ≤M ′1 such that rj < ri which contradicts the fact that
M ′1[p′] is a time-sorted list. Hence, our assumption was wrong and there is f⊕P×R(M1)

→
=

f⊕P×R(M2).

B.1 Proof of Fact 6.3 (Category TPTNets)

TPTNets is Category. Given timed P/T nets Ni = (Pi, Ti, prei, posti) with i = 1 . . . 3 and
timed P/T morphisms f : N1 → N2 and g : N2 → N3.

Composition is timed P/T morphism
Since f, g are timed P/T morphisms, the following applies:

(1) f⊕P×R ◦ pre1(t)
→
= pre2 ◦ fT (t) ∧ f⊕P×R ◦ post1(t)

←
= post2 ◦ fT (t)

for f, and analogously for g

(2) g⊕P×R ◦ pre2(t)
→
= pre3 ◦ gT (t) ∧ g⊕P×R ◦ post2(t)

←
= post3 ◦ gT (t)

To show: (g ◦ f)⊕P×R ◦ pre1(t) = pre3 ◦ (g ◦ f)T (t) ∀t ∈ T .

We show this using Fact B.1:

(g ◦ f)⊕P×R ◦ pre1(t)

= g⊕P×R(f⊕P×R(pre1(t)))
→
=

(1)
g⊕P×R(pre2(fT (t)))

→
=

(2)
pre3(gT (fT (t)))

= pre3((g ◦ f)T (t))

Analogously for post.

Therefore, the composition of two timed P/T morphisms is also a P/T morphism.

74



B.2 Proof of Fact 6.12 (Category TPTSys)

Associativity axiom is satisfied
To show: (h ◦ g) ◦ f = h ◦ (g ◦ f).
Given strict timed P/T morphisms f : A→ B, g : B → C, h : C → D.
Via Associativity in Sets follows:
(h◦g)◦f = ((hP ◦gP )◦fP , (hT ◦gT )◦fT ) = (hP ◦ (gP ◦fP ), hT ◦ (gT ◦fT )) = h◦ (g ◦f)

Identity axiom is satisfied
To show: f ◦ idA = f, idB ◦ f = f .
Given strict timed P/T morphisms f : A→ B, idA : A→ A, idB : B → B.

Via identity in Sets follows: f ◦ idA = (fP ◦ idAP
, fT ◦ idAT

) = (fP , fT ) = f

Via identity in Sets follows: idB ◦ f = (idBP
◦ fP , idBT

◦ fT ) = (fP , fT ) = f

Therefore, TPTNets is a category.

B.2 Proof of Fact 6.12 (Category TPTSys)

TPTSys is Category. Given marked timed P/T nets (TNi,Mi) with i = 1 . . . 3 and timed
P/T morphisms f : (TN1,M1)→ (TN2,M2) and g : (TN2,M2)→ (TN3,M3).

From the definition of morphisms in TPTSys follows:

(1) f⊕P×R(M1)
←
≤M2

(2) g⊕P×R(M2)
←
≤M3

To show: ∀p ∈ P1 : (g ◦ f)⊕P×R(M1(p))
←
≤M3(gP (p))

(g ◦ f)⊕P×R(M1) = g⊕P×R(f⊕P×R(M1))
←
≤

(1)

g⊕P×R(M2)
←
≤

(2)

M3.
The associativity and identity axioms are fulfilled, as shown for the category TPTNets.
Therefore, TPTSys is a category.

B.3 Proof of Fact 6.17 (Category TPTStates)

TPTStates is Category. Given timed P/T-states (TNi,Mi, τi) with i = 1 . . . 3 and timed
P/T-state morphisms f : (TN1,M1, τ1)→ (TN2,M2, τ2)
and g : (TN2,M2, τ2)→ (TN3,M3, τ3).

Composition is timed P/T-state morphism
Since f, g are timed P/T-state morphisms, the following applies:

(1) f⊕P×R(M1)+(τ2−τ1)
←
≤M2

(2) g⊕P×R(M2)+(τ3−τ2)
←
≤M3

To show: (g ◦ f)⊕P×R(M1)+(τ3−τ1)
←
≤M3

We show this using Fact B.1:

(g ◦ f)⊕P×R(M1)+(τ3−τ1)

= g⊕P×R(f⊕P×R(M1)+(τ2−τ1))+(τ3−τ2)
←
≤

(1)

g⊕P×R(M2)+(τ3−τ2)
←
≤

(2)

M3

75



B Detailed Proofs

The same can be shown analogously for post.

Therefore, the composition of two timed P/T-state morphisms is also a timed P/T-
state morphism.

The associativity and identity axioms are fulfilled, as shown for the category TPTSys.

Therefore, TPTStates is a category.

B.4 Lemma: Delay of Sums with Single Place

Lemma B.2 (Delay of Sums with Single Place) Given a set p = {p} and timed markings
A,B,C,D ∈ (P × R)⊕ with A

←
= B and C

←
= D.

Then we have A⊕ C ←= B ⊕D.

Proof. We do a mathematical induction over the size n of A to show that the fact stated
above holds for all n ∈ N (and |A| = n).

basis. n = 0.
This means that |A| = 0, i.e. A is an empty sum. Moreover, by A

←
= B, we have

π⊕P (A) = π⊕P (B) which implies that |A| = |B| and hence B is empty as well.

Thus, we have A⊕ C = 0⊕ C = C
←
= D = 0⊕D = B ⊕D.

basis. n = 1.
This means that A = (p, a) and B = (p, b) with a, b ∈ R, and we have a ≥ b. Moreover,
we have π⊕P (A⊕ C) = π⊕P (B ⊕B) by Lemma 6.5.

From π⊕P (C) = π⊕P (D), we know that C[p] and D[p] have the same length m. So let
C[p] = [C1, . . . , Cm] and D[p] = [D1, . . . , Dm].

Furthermore, we know that (A⊕C)[p] and (B⊕D)[p] have the same length of m+ 1,
so let (A⊕ C)[p] = [E1, . . . , Em+1] and (B ⊕D)[p] = [F1, . . . , Fm+1].

We have to show that (A ⊕ C)[p] ≥ (B ⊕ D)[p], i.e. that for all i ∈ {1, . . . ,m + 1},
there is Ei ≥ Fi.

It is important to note that (A ⊕ C)[p] is almost identical to the list C[p] in that it
has the same order of elements with the only difference being that the element a is
inserted at some point in the list. The same holds for the lists (B ⊕ D)[p], which is
basically identical to the list D[p], in which the element b has been inserted.

Now, let i ∈ 1, . . . ,m+ 1.

Case 1: Ei < a.
This means that a is inserted somewhere after index i which in turn means that
Ei = Ci.

Case 1.1: Fi < b.
This means that b has been inserted after index i and we have Fi = Di and
thus Ei = Ci ≥ Di = Fi.

Case 1.2: Fi = b.
This means that b ≤ Di, because (B ⊕D)[p] is a time-sorted list. Thus, we
have Ei = Ci ≥ Di ≥ b = Fi.

76



B.4 Lemma: Delay of Sums with Single Place

Case 1.3: Fi > b.
This means that b has been inserted before index i and we have that Fi =
Di−1. From time-sorted list (B ⊕ D)[p] follows that Di−1 ≤ Di and hence
Ei = Ci ≥ Di ≥ Di−1 = Fi.

Case 2: Ei = a.
This means that Ei−1 = Ci−1 ≤ Ei.
Case 2.1: Fi ≤ b.

Then, we have Ei = a ≥ b ≥ Fi.
Case 2.2: Fi > b.

This means that b has been inserted at an index greater than i, which means
that Fi = Di−1 and we have Ei ≥ Ci−1 ≥ Di−1 = F .

Case 3: Ei > a.
This means that a is inserted before index i and we have Ei = Ci−1 > a.

Case 3.1: Fi ≤ b.
Then, we have Ei > a ≥ b ≥ Fi.

Case 3.2: Fi > b.
This means that b is inserted before index i as well, hence it follows that
Fi = Di−1 and we have Ei = Ci−1 ≥ Di−1 = Fi.

In all cases, we have that Ei ≥ Fi which means that (A ⊕ C)[p] ≥ (B ⊕ D)[p] and
hence A⊕ C ←= B ⊕D for |A| = 1.

induction hypothesis.
For n ∈ N and timed markings A,B,C,D ∈ (P×R)⊕ with |A| = n,A

←
= B and C

←
= D

it holds that A⊕ C ←= B ⊕D.

induction step.
We consider the case that |A| = n+ 1.

Since A
←
= B and thus π⊕P (A) = π⊕P (B), we have |A| = |B| = n + 1. So let A[p] =

[A1, . . . , An, An+1] and B[p] = [B1, . . . , Bn, Bn+1] with A1, . . . , An+1, B1, . . . , Bn+1 ∈
R.

This means that (p,An+1) ≤ A and (p,Bn+1) ≤ B, implying that there exist markings
E = A	 (p,An+1) and F = B 	 (p,Bn+1).

Moreover, we have time-sorted lists E[p] = [A1, . . . , An] and F [p] = [B1, . . . , Bn].
Obviously, there is |E| = |F | = n and we have E

←
= F .

Using the induction hypothesis, we obtain G := E ⊕ C ←= F ⊕D =: H.
Furthermore, we have
A⊕ C = (A	 (p,An+1))⊕ (p,An+1)⊕ C = E ⊕ (p,An+1)⊕ C = G⊕ (p,An+1)
and analogously B ⊕D = H ⊕ (p,Bn+1).

It remains to show that G⊕ (p,An+1) ≤ H ⊕ (p,Bn+1). We have π⊕P (p,An+1) = p =

π⊕P (p,Bn+1) and An+1 ≥ Bn+1 which means that (p,An+1)
←
= (p,Bn+1).

As shown in the case for n = 1 in the induction basis it follows that G⊕ (p,An+1)
←
=

H ⊕ (p,Bn+1). Therefore, we have A⊕ C ←= B ⊕D.

77



B Detailed Proofs

B.5 Proof of Lemma 6.6 (Delay of Sums)

Proof of Lemma 6.6 (Delay of Sums). Since A
←
= B and C

←
= D, we have π⊕P (A) = π⊕P (B)

and π⊕P (C) = π⊕P (D), implying π⊕P (A ⊕ C) = π⊕P (B ⊕ D) by Lemma 6.6. Therefore, the
sums have the same location. It remains to show that (A⊕C)[p] ≥ (B⊕D)[p] for all p ∈ P .

So let p ∈ P . Note that A and B, as well as C and D in particular have the same
locations if restricted to p, i.e. π⊕P (A|p) = π⊕P (B|p) and π⊕P (C|p) = π⊕P (D|p).

Moreover, for any timed marking M, there is M |p[P ] = M [P ] by the definition of M [p].
So we have A|p[P ] = A[p] ≥ B[p] = B|p[p] since A

←
= B, and analogously C|p[p] ≥ D|p[p]

follows from C
←
= D.

Thus, we have A|p
←
= B|p and C|p

←
= D|p. By Lemma B.2 we obtain A|p⊕C|p

←
= B|p⊕D|p.

Hence, we have
(A⊕C)[p] = (A⊕C)|p[p] = (A|p⊕C|p)[p] ≥ (B|p⊕D|p)[p] = (B⊕D)|p[p] = (B⊕D)[p].

B.6 Proof of Lemma 6.7 (Delay of Differences)

Proof of Lemma 6.7 (Delay of Differences). First, note that by Fact 5.27, there is A ≤ C
which means that A	 C and B 	D exist.

Now, we know that A and B have the same location, so let

A =
n∑
i=1

ni∑
j=1

(pi, a
i
j) and B =

n∑
i=1

ni∑
j=1

(pi, b
i
j) such that for i ∈ 1, . . . , n, pi ∈ P there is

A[pi] = [ai1, . . . , a
i
ni] and B[pi] = [bi1, . . . , b

i
ni].

By definition of projection of selections (definition 5.25), we have
C = D ↓ A =

∑
(pi,bij)∈D

(pi, a
i
j) =

∑
(pi,bij)∈D

pi = π⊕P (D).

Thus, we have π⊕P (A	 C) = π⊕P (A)	 π⊕P (C) = π⊕P (B)	 π⊕P (D) = π⊕P (B 	D).

It remains to show that for all p ∈ P there is (A 	 C)[p] ≥ (B 	 D)[p]. So let p ∈ P .
Then there is some i ∈ 1, . . . , n such that p = pi according to sums A and B as denoted
above.

For every j ∈ 1, . . . , ni with (pi, a
i
j) ≤ A 	 C ≤ A, there is (pi, a

i
j) 6≤ C. From the fact

that C = D ↓ A it follows that (pi, b
i
j) 6≤ D and thus (pi, b

i
j) ≤ B 	D.

So let (A 	 C)[pi] = [c1, . . . , cm] and (B 	 D)[pi] = [d1, . . . , dm]. The time-sorted lists
(A 	 C)[pi] and (B 	 D)[pi] can be obtained from the lists A[pi] and B[pi] by removing
elements in both of the lists at corresponding positions. Therefore, for every k ∈ 1, . . . ,m,
there is some j ∈ 1, . . . , ni such that ck = aij and dk = bij . Hence, we have ck = aij ≥ bij = dk

which means that (A	 C)[pi] ≥ (B 	D)[pi], and thus we have A	 C ←= B 	D.

B.7 Proof of Theorem 6.14 (Timed P/T-system morphisms preserve fir-
ing steps)

Proof of Theorem 6.14. Existence of Firing Step in (TN2,M
′
2):

We have to show that when a firing step in (TN1,M1) exists, there also exists one in
(TN2,M2).

Since there is a firing step (TN1,M1)
(t1,S1,τ)−−−−−→ (TN1,M

′
1), t1 ∈ T1 is activated under

S1 at τ , which means that

S1
→
= pre1(t1)+τ (1)

78



B.7 Proof of Theorem 6.14 (Timed P/T-system morphisms preserve firing steps)

We now show that there is a selection S2 ≤ M2, so that fT (t1) is activated under S2

at τ , i.e. pre2(fT (t1))+τ ←= S2.

Since S1 is a selection of M1, via Fact B.1 it follows that f⊕P×R(S1) is a selection of

f⊕P×R(M1).

From the timed P/T system morphism condition follows that f⊕P×R(M1)
←
≤M2, which

(by definition 5.16) means that there exists M∗2 ≤M2, so that f⊕P×R(M1)
←
= M∗2 .

Then, by Lemma 5.25 (projection of selections), there exists S2 := f⊕P×R(S1) ↓ M∗2
with S2 ≤M∗2 ≤M2, i.e. S2 ≤M2, and S2

→
= f⊕P×R(S1).

From this, via Fact B.1 (monotonicity of the time-enhanced function, referred to below
as (2)) and the timed P/T morphism condition (referred to as (3)) follows

S2
→
= f⊕P×R(S1)

→
=

(1),(2)
f⊕P×R(pre1(t1)+τ ) = f⊕P×R(pre1(t))+τ →=

(3)
pre2(fT (t))+τ .

Hence, fT (t1) is activated under S2 at τ).

Thus, a firing step (TN2,M2)
(fT (t1),f⊕P×R(S1)↓M∗2 ,τ)
−−−−−−−−−−−−−−−→ (TN2,M

′
2) exists.

f is also timed P/T-system morphism f : (TN1,M
′
1)→ (TN2,M

′
2):

For the morphism condition, we have to show that f⊕P×R(M ′1)
←
≤M ′2, i.e. the morphism

condition is also true for the follower markings.

From the definition of firing steps, we obtain the computation of the follower marking

f⊕P×R(M ′1) = f⊕P×R(M1 	 S1 ⊕ post1(t)+τ ).

Then, we obtain

f⊕P×R(M1 	 S1 ⊕ post1(t)+τ )

= f⊕P×R(M1 	 S1)⊕ f⊕P×R(post1(t)+τ )

= f⊕P×R(M1)	 f⊕P×R(S1)⊕ f⊕P×R(post1(t)+τ ).

Via Lemma 6.6 and the morphism condition follows

f⊕P×R(M1)	f⊕P×R(S1)⊕f⊕P×R(post1(t)+τ )
←
= f⊕P×R(M1)	f⊕P×R(S1)⊕post2(fT (t1))+τ

From this, via Lemma 6.7, we obtain (replacing the resulting term with the letter X
for better readability)

f⊕P×R(M1)	 f⊕P×R(S1)⊕ post2(fT (t1))+τ ←= M∗2 	 S2 ⊕ post2(fT (t1))+τ =: X

Moreover, we obtain

X ≤ (M∗2 	 S2 ⊕ post2(fT (t1))+τ )⊕ (M2 	M∗2 )

= M2 	M∗2 ⊕M∗2 	 S2 ⊕ post2(fT (t1))+τ

= M2 	 S2 ⊕ post2(fT (t1))+τ = M ′2.

Thus, f⊕P×R(M ′1)
←
≤M ′2.

Therefore, f can be considered as a P/T-system morphism
f : (TN1,M

′
1)→ (TN2,M

′
2).

79



B Detailed Proofs

B.8 Proof of Theorem 6.19 (Timed P/T-state morphisms preserve firing
steps)

Proof of Theorem 6.19. Existence of Firing Step in (TN2,M
′
2, τ2):

We have to show that when a firing step in (TN1,M1, τ1) exists, there also exists one
in (TN2,M2, τ2).

Since there is a firing step (TN1,M1, τ1)
(t1,S1,τ1)−−−−−−→ (TN1,M

′
1, τ1), t ∈ T1 is activated

under S1 at τ1, which means that

S1
→
= pre1(t1)+τ1 (1)

We now show that there is a selection S2 ≤ M2, so that fT (t1) is activated under S2

at τ2, i.e. pre2(fT (t1))+τ2 ←= S2. Since S1 is a selection of M1, via Fact B.1 it follows
that f⊕P×R(S1) is a selection of f⊕P×R(M1).

From the timed P/T state morphism condition follows that f⊕P×R(M1)+(τ2−τ1)
←
≤M2,

which means that there exists M∗2 ≤M2, so that f⊕P×R(M1)+(τ2−τ1) ←= M∗2 .

Then, by Lemma 5.25 (projection of selections), there exists S2 := f⊕P×R(S1) ↓ M∗2
with S2 ≤M∗2 ≤M2, i.e. S2 ≤M2, with S2

→
= f⊕P×R(S1)+τ2−τ1 .

From this, via Fact B.1 (monotonicity of the time-enhanced function, referred to below
as (2)), and the timed P/T morphism condition (referred to as (3)) follows

S2
→
= f⊕P×R(S1)+τ2−τ1 →=

(1),(2)
f⊕P×R(pre1(t1)+τ1)+τ2−τ1

= f⊕P×R(pre1(t1))+τ1+τ2−τ1 →=
(3)

pre2(fT (t1))+τ2

Hence, fT (t1) is activated under (S2, τ2).

Thus, a firing step (TN2,M2, τ2)
(fT (t1),S2,τ2)−−−−−−−−−→ (TN2,M

′
2, τ2) exists.

f is also timed P/T state morphism f : (TN1,M
′
1)→ (TN2,M

′
2):

For the morphism condition, we have to show that f⊕P×R(M ′1)+(τ2−τ1)
←
≤ M ′2, i.e. the

morphism condition is also true for the follower markings.

From the definition of firing steps, we obtain the computation of the follower marking

M ′2 = M2 	 S2 ⊕ post2(fT (t1))+τ2

Then, vie the timed P/T state morphism condition, we obtain

M2 	 S2 ⊕ post2(fT (t1))+τ2

→
≥ f⊕P×R(M1)+τ2−τ1 	 (f⊕P×R(S1)+τ2−τ1 ↓M∗2 )⊕ post2(fT (t1))+τ2 .

Via the timed P/T-morphism condition and the definition of the projection of selec-
tions ↓ follows

f⊕P×R(M1)+τ2−τ1 	 (f⊕P×R(S1)+τ2−τ1 ↓M∗2 )⊕ post2(fT (t1))+τ2

→
= f⊕P×R(M1)+τ2−τ1 	 (f⊕P×R(S1)+τ2−τ1 ↓M∗2 )⊕ f⊕P×R(pre1(t1))+τ2

→
= f⊕P×R(M1)+τ2−τ1 	 f⊕P×R(S1)+τ2−τ1 ⊕ f⊕P×R(pre1(t1))+τ2

80



B.9 Proof of Fact 7.2 (Gluing of Timed P/T Nets is Pushout)

Then, via successive application of Lemma 6.6 and 6.7, we obtain

f⊕P×R(M1)+τ2−τ1 	 f⊕P×R(S1)+τ2−τ1 ⊕ f⊕P×R(post1(t1))+τ2

→
= f⊕P×R(M1)+τ2−τ1 	 (f⊕P×R(S1 ⊕ post1(t1))+τ2)+τ2−τ1

→
= f⊕P×R(M1 	 S1 ⊕ post1(t1)+τ1)+τ2−τ1 = f⊕P×R(M ′1)+τ2−τ1

Thus, f⊕P×R(M ′1)+(τ2−τ1)
←
≤M ′2. Therefore, f can be considered a P/T-state morphism

f : (TN1,M
′
1, τ1)→ (TN2,M

′
2, τ2).

B.9 Proof of Fact 7.2 (Gluing of Timed P/T Nets is Pushout)

Proof. Universal property: Given timed P/T net TN = (P, T, pre, post) with morphisms
x : TN2 → TN, x = (xP , xT ) and y : TN3 → TN, y = (yP , yT ), so that x ◦ f = y ◦ g.
Then, there exists a unique morphism h : TN4 → TN , so that h◦g′ = x and h◦f ′ = y.

• Existence: Since h is induced by the pushout construction in Sets, it remains to
be shown that h is a well-defined timed P/T morphism.

T3

f

++
f ′T

//

pre3
��

T4

pre4
��

hT
// T

pre

��
(P3 × R)⊕

πP
��

f⊕P×R

// (P4 × R)⊕

πP
��

h⊕P×R

// (P × R)⊕

πP
��

P⊕3

y⊕P

33
f⊕P // P⊕4

h⊕P // P⊕

For the locations of pre, we have:

– Case 1: ∃t′ ∈ T3 : f ′T (t′) = t.
To show: π⊕P (pre(hT (t))) = π⊕P (h⊕P×R(pre4(t))).

π⊕P (pre(hT (t))) = π⊕P (pre(hT (f ′T (t′))))

= π⊕P (pre(yT (t′))) = π⊕P (y⊕P×R(pre3(t′)))

= y⊕P×R(π⊕P (pre3(t′))) = (hP ◦ f ′P )⊕(π⊕P (pre3(t′)))

= h⊕p (f ′
⊕
P (π⊕P (pre3(t′))))

= h⊕P (π⊕P (f ′
⊕
P×R(pre3(t′)))) = h⊕P (π⊕P (pre4(f ′T (t′))))

= h⊕P (π⊕P (pre4(t))) = π⊕P (h⊕P×R(pre4(t)))

– Case 2: @t∗ ∈ T3 : f ′T (t∗) = t ∧ ∃t′ ∈ T2 : g′T (t′) = t.
To show: π⊕P (pre(hT (t))) = π⊕P (h⊕P×R(pre4(t))).

81



B Detailed Proofs

π⊕P (pre(hT (t))) = π⊕P (pre(hT (g′T (t′))))

= π⊕P (pre(xT (t′))) = π⊕P (x⊕P×R(pre3(t′)))

= x⊕P×R(π⊕P (pre3(t′))) = (hP ◦ g′P )⊕(π⊕P (pre3(t′)))

= h⊕p (g′
⊕
P (π⊕P (pre3(t′))))

= h⊕P (π⊕P (g′
⊕
P×R(pre3(t′)))) = h⊕P (π⊕P (pre4(g′T (t′))))

= h⊕P (π⊕P (pre4(t))) = π⊕P (h⊕P×R(pre4(t)))

For the locations of post, the proof is analogous.

Next, we show that the morphism condition is satisfied, i.e. we have to show
that ∀p ∈ P4 : pre(hT (t))[p] ≥ h⊕P×R(pre4(t))[p], and ∀p ∈ P4 : post(hT (t))[p] ≤
h⊕P×R(post4(t))[p]

– Case 1: ∃t′ ∈ T3 : f ′T (t′) = t, i.e. hT (t) = hT (f ′T (t′)) = yT (t′).

pre(hT (t))[p] = pre(yT (t′))[p] ≥ y⊕P×R(pre3(t′))[p]

= (hP ◦ f ′P )⊕×R(pre3(t′))[p]

= h⊕P×R(f ′
⊕
P×R(pre3(t′)))[p]

Via the definition of pre4, we obtain
h⊕P×R(f ′⊕P×R(pre3(t′)))[p] = h⊕P×R(pre4(f ′T (t′)))[p] = h⊕P×R(pre4(t))[p].

– Case 2: @t′ ∈ T3 : f ′T (t′) = t.
By construction of T4 as pushout of T2 and T3 it follows that there exists
t∗ ∈ T2 with g′T (t∗) = t, i.e. hT (t) = hT (g′T (t∗)) = xT (t∗). Then,

pre(hT (t))[p] = pre(xT (t∗))[p] ≥ x⊕P×R(pre3(t∗))[p]

= (hP ◦ g′P )⊕×R(pre3(t∗))[p]

= h⊕P×R(g′
⊕
P×R(pre3(t∗)))[p]

Via the definition of pre4, we obtain
h⊕P×R(g′⊕P×R(pre3(t∗)))[p] = h⊕P×R(pre4(g′T (t∗)))[p] = h⊕P×R(pre4(t))[p].

For post, the proof works analogously.

• Uniqueness: Assume there is h′ 6= h with h′ ◦ g′ = x and h′ ◦ f ′ = y. Since the
pushout is constructed componentwise in Sets, there is a unique morphism for
both the place and transition components, hP and hT , i.e. h = (hP , hT ) and
h′ = (hP , hT ).

B.10 Proof of Fact 7.15 (Monomorphisms and Isomorphisms of Timed
P/T Nets)

Proof. Monomorphisms. First, we consider fP and fT being monomorphisms, and show
that then also f is a monomorphism.

82



B.10 Proof of Fact 7.15 (Monomorphisms and Isomorphisms of Timed P/T Nets)

Let g, h : TN0 → TN1 be timed P/T morphisms with f ◦ g = f ◦ h. Then we have

fP ◦ gP = (f ◦ g)P = (f ◦ h)P = fP ◦ gP

implying gP = hP due to the fact that fP is a monomorphism. Analogously, fT ◦gT =
fT ◦ hT implies gT = hT because also fT is a monomorphism. Hence, we have
g = (gP , gT ) = (hP , hT ) = h which means that f is a monomorphism.

Now, let f be a monomorphism. We have to show that also fP and fT are monomor-
phisms.

Let gP , hP : P0 → P1 be functions with fP ◦ gP = fP ◦ hP . We define a timed
P/T net TN0 = (P0, T0, pre0, post0) with T0 = ∅, and pre0 and post0 being empty
functions. Then, by defining g = (gP , gT ) and h = (hP , hT ) with empty functions gT
and hT , we have that g, h : TN0 → TN1 are timed P/T morphisms, since there is no
t ∈ T0 which could violate the required condition. Moreover, we have that fT ◦gT and
fT ◦ hT both are empty functions which means that fT ◦ gT = fT ◦ hT . Thus, we have
f ◦ g = f ◦ h, implying g = h. Hence, we also have gP = hP which means that fP is a
monomorphism.

Finally, let gT , hT : T0 → T1 be functions with fT ◦ gT = fT ◦ hT . We define a timed
P/T net TN0 = (P0, T0, pre0, post0) with

• P0 = {p ∈ P1 | ∃t ∈ T0 : p ≤ π⊕P (pre1(gT (t))) or p ≤ π⊕P (post1(gT (t))),

• pre0(t) = pre1(gT (t)), and

• post0(t) = post1(gT (t))

Obviously, pre0 and post0 are well-defined, because the definition of P0 ensures that
all places occurring in pre1(gT (t)) or post1(gT (t)) are elements of P0. Further, we
define morphisms g = (gP , gT ) and h = (hP , hT ) with gP and hP being inclusions. We
show that g, h : TN0 → TN1 are well-defined timed P/T morphisms. Let t ∈ T0. We
have

f⊕P×R ◦ g
⊕
P×R ◦ pre0(t) = f⊕P×R ◦ g

⊕
P×R ◦ pre1(gT (t)) = f⊕P×R ◦ pre1 ◦ gT (t)

and

f⊕P×R ◦ h
⊕
P×R ◦ pre0(t) = f⊕P×R ◦ h

⊕
P×R(pre1(gT (t))) = f⊕P×R ◦ pre1(gT (t))

= pre2 ◦ fT ◦ gT (t) = pre2 ◦ fT ◦ hT (t)

= f⊕P×Rpre1 ◦ hT (t)

As shown above, f being a monomorphism implies that also fP is a monomorphism.
So fP is injective which also holds for f⊕P×R. Thus, by monomorphism f⊕P×R in Sets we

obtain by the equations above that g⊕P×R ◦pre0(t) = pre1 ◦ gT (t) and h⊕P×R ◦pre0(t) =
pre1 ◦ hT (t). Hence, g and h are (time-strict) timed P/T morphisms.

So, since gP and hT both are inclusions, it follows that gP = hP which especially
means that fP ◦ gP = fP ◦ hP . Thus, we also have f ◦ g = f ◦ h which by the fact
that f is a monomorphism implies that g = h, and therefore gT = hT . Hence, fT is a
monomorphism.

83



B Detailed Proofs

Isomorphisms. First, let fP and fT be isomorphisms and f time-strict injective. We
show that f is an isomorphism in TPTNets. By isomorphisms fP and fT in Sets
there are functions gP : P2 → P1, gT : T2 → T1 such that gP and fP , and gT and fT
are inverse isomorphisms. We define g = (gP , gT ) and show that g is a timed P/T
morphism. Using the fact that f is time-strict, we have

pre1 ◦ gT = id⊕P1×R ◦ pre1 ◦ gT = (gP ◦ fP )⊕×R ◦ pre1 ◦ gT
= g⊕P×R ◦ f

⊕
P×R ◦ pre1 ◦ gT = g⊕P×R ◦ pre2 ◦ fT ◦ gT

= g⊕P×R ◦ pre2 ◦ idT2 = g⊕P×R ◦ pre2

and, analogously, post1 ◦ gT = g⊕P×R ◦ post2. Hence, g is a (time-strict) timed P/T
morphism. Finally, we have

g ◦ f = (gP , gT ) ◦ (fP , fT ) = (gP ◦ fP , gT ◦ fT ) = (idP1 , idT1) = idTN1

and analogously we obtain f ◦ g = idTN2 which means that f and g are inverse iso-
morphisms in TPTNets.

Now, let f be an isomorphism in TPTNets. We show that fP and fT are isomorphic
functions, and that f is time-strict. From f being an isomorphism, it follows that there
is an inverse isomorphism g = (gP , gT ) : TN2 → TN1. Then, since commutativity
of timed P/T morphisms implies commutativity of underlying functions, it follows
immediately that fP and gP , and fT and gT are mutually inverse isomorphic functions.
So, it remains to show that f is time-strict, i. e. that we have pre2 ◦ fT (t) = f⊕P×R ◦
pre1(t) and post2◦fT (t) = f⊕P×R◦post1(t). By the fact that f is timed P/T morphism,

we already have that pre2 ◦ fT (t)
←
= f⊕P×R ◦pre1(t) and post2 ◦ fT (t)

→
= f⊕P×R ◦post1(t).

Moreover, by timed P/T morphism g which is inverse to f , we obtain

pre2 ◦ fT (t) = id⊗P2×R ◦ pre2 ◦ fT (t) = (fP ◦ gP )⊗×R ◦ pre2 ◦ fT (t)

= f⊕P×R ◦ g
⊕
P×R ◦ pre2 ◦ fT (t)

→
= f⊕P×R ◦ pre1 ◦ gT ◦ fT (t)

= f⊕P×R ◦ pre1 ◦ idT1(t) = f⊕P×R ◦ pre1(t)

Thus, since the location-strict delay relation
←
= is a partial order, it follows that pre2 ◦

fT (t) = f⊕P×R◦pre1(t). The proof for post2◦fT (t) = f⊕P×R◦post1(t) works analogously.
Hence, f is time-strict.

B.11 Proof of Fact 7.16 (Closure-Properties of Time-Strict Injective Mor-
phisms)

Proof. Composition. Since injective functions are closed under composition, we have
that the components of g ◦ f are injective, and thus, also g ◦ f is injective. It remains
to show that g ◦ f is time-strict. Using the fact that f and g are time-strict, we get:

pre3 ◦ (g ◦ f)T = pre3 ◦ gT ◦ fT = g⊕P×R ◦ pre2 ◦ fT
= g⊕P×R ◦ f

⊕
P×R ◦ pre1

84



B.12 Proof of Theorem 7.17 (Timed P/T Nets Are M-Adhesive)

post3 ◦ (g ◦ f)T = post3 ◦ gT ◦ fT = g⊕P×R ◦ post2 ◦ fT
= g⊕P×R ◦ f

⊕
P×R ◦ post1

Hence, g ◦ f is time-strict and injective.

Decomposition. g◦f and g being injective means that (g◦f)P = gP ◦fP , gP , gT ◦fT and
gT are injective. So, by decomposition of injective functions we obtain that fP and fT
are injective, and hence also f is injective. It remains to show that f is time-strict.
Since g ◦ f and g are time-strict, we have:

g⊕P×R ◦ pre2 ◦ fT = pre3 ◦ gT ◦ fT = pre3 ◦ (g ◦ f)T

= (g ◦ f)⊕P×R ◦ pre1 = g⊕P×R ◦ f
⊕
P×R ◦ pre1

Due to injectivity of gP there is also g⊕P×R injective and thus it is a monomorphism in

Sets. Hence, the equation above implies pre2 ◦ fT = f⊕P×R ◦ pre1. The proof for the
post domain works analogously.

Isomorphism. By Fact 7.15 we know that for a timed P/T morphism f being an iso-
morphism means that fP and fT are isomorphisms in Sets, i. e. they are bijective
functions, and f is time-strict. Since bijectivity implies injectivity, we have that all
isomorphisms in TPTNets are time-strict injective.

B.12 Proof of Theorem 7.17 (Timed P/T Nets Are M-Adhesive)

Proof. We have to show that (TPTNets,Mstrict) satisfies the conditions of M-adhesive
categories in Definition 7.14. First, the class Mstrict is a class of monomorphisms since
by Fact 7.15 injective morphisms (i. e. morphisms with injective components which are
monomorphisms in Sets) are monomorphisms in TPTNets. The class Mstrict of all time-
strict injective morphisms is closed under composition, decomposition and isomorphisms as
shown in Fact 7.16.

From Fact 7.2 it follows that the category TPTNets has pushouts along Mstrict -
morphisms which can be constructed as gluings of timed P/T nets as defined in Defini-
tion 7.1. Moreover, from Fact 7.12 it follows that the category TPTNets has pullbacks
along Mstrict -morphisms which can be constructed as restrictions of timed P/T nets as
defined in Definition 7.11.

Further, by Fact 7.4Mstrict -morphisms are closed under pushouts and by Corollary 7.13
Mstrict -morphisms are also closed under pullbacks. It remains to show that the vertical VK
property holds. So, we consider a pushout (1) as shown in Figure 54a with m ∈ Mstrict

and a cube (2) as shown in Figure 54b with (1) in the bottom, all vertical morphisms
a, b, c, d ∈Mstrict , and pullbacks in the back faces.

By construction of pushouts and pullbacks as gluings and restrictions, respectively, we
also have corresponding pushouts and pullbacks in the P - and T -components, i. e. we have
that the bottoms of the cubes (3) and (4) in Sets, shown in Figure 55, are pushouts, and
the back faces are pullbacks.

Top face pushout implies front faces pullbacks. Let the top face of the cube (2) be a
pushout. Then we also have that the top faces of the cubes (3) and (4) are pushouts.
In [EEPT06] it is shown that the category (Sets,Minj) with the class Minj of all

85



B Detailed Proofs

A
f

~~~~
~~
~~
~~ m

 @
@@

@@
@@

@

(1)C

n @
@@

@@
@@

@ B

g~~~~
~~
~~
~~

D

(a) M-VK square

A′f ′

rreeeeee
eeeeee

ee m′

))RRR
RRR

a

��

C ′

n′
((RRR

RRR

c

��

B′

g′fff
ffffff

f
rrfff

b

��

D′

d

��

(2)

A

(1)

f
rr

m
))

C
n))SSS
SSS B

grreeeeeee
eeeeee

e

D

(b) VK cube

Figure 54: M-VK square and VK cube

PA′f ′P
rreeeeee

eeeeee
ee m′P

))SSS
SS

aP

��

PC′

n′P
))RRR

RR

cP

��

PB′
g′P

eeeeee
eeee

rree

bP

��

PD′

dP

��

(3)

PAfP
rr

mP

))
PC

nP
))SSS

SSS PB
gPrreeeeee
eeeeee

ee

PD

(a) VK cube of places

TA′f ′T
rreeeeee

eeeeee
ee m′T

))RRR
RR

aT

��

TC′

n′T
((RRR

RR

cT

��

TB′
g′T
ffffff

ffff
rrff

bT

��

TD′

dT

��

(4)

TAfT
rr

mT

))
TC

nT
))SSS

SSS TB
gTrreeeeee
eeeeee

ee

TD

(b) VK cube of transitions

Figure 55: VK cubes of places and transitions

injective functions is M-adhesive. Moreover, we have that mP ,mT ∈ Minj , and all
vertical morphisms aP , bP , cP , dP , aT , bT , cT , dT ∈Minj . So, the vertical VK property
implies that the front faces of cubes (3) and (4) are pullbacks in Sets, i. e. we have
pullbacks (5)-(8) in Figure 56a in Sets.

Now, we construct the pullbacks (9) and (10) in TPTNets along Mstrict -morphism
d, shown in Figure 56b. Since pullbacks along time-strict injective morphisms can be
constructed as restrictions, according to Definition 7.11 we have pullbacks (11)-(14)
in Sets, also shown in Figure 56b.

Then by uniqueness of pullbacks up to isomorphism, there is an isomorphisms iP :
PB′ → PB̄ with b̄P ◦iP = bP and ḡP ◦iP = g′P by pullbacks (5) and (11), an isomorphism
iT : TB′ → TB̄ with b̄T ◦ iT = bT and ḡT ◦ iT = g′T by pullbacks (7) and (13).
Analogously, due to pullbacks (6) and (12), and (8) and (14), there are isomorphisms
jP : PC′ → PC and jT : TC′ → TC with c̄P ◦ jP = cP , n̄P ◦ jP = n′P , c̄T ◦ jT = cT , and
n̄T ◦ jT = n′T .

Moreover, by closure ofMstrict -morphisms under pullbacks, from d ∈Mstrict it follows
that also b̄, c̄ ∈Mstrict . So, we have a morphism b : B′ → B and a time-strict injective
morphism b̄ : B̄ → B with b̄P ◦ iP = bP and b̄T ◦ iT = bT which by Lemma 6.10 implies
that i = (iP , iT) is a timed P/T morphism. Analogously, morphism c : C ′ → C and
time-strict injective morphism c̄ : C̄ → C with c̄P ◦ jP = cP and c̄T ◦ jT = cT implies
that j = (jP , jT) is a timed P/T morphism.

Further, commutativity of the P - and T -components implies commutativity of the

86

B.12 Proof of Theorem 7.17 (Timed P/T Nets Are M-Adhesive)

PB′

bP
��

g′P // PD′

dP
��

(5) (6)

PC′
n′Poo

cP
��

PB gP
// D CnP

oo

TB′

bT
��

g′T // TD′

dT
��

(7) (8)

TC′
n′Too

cT
��

TB gT
// D CnT

oo

(a) Pullbacks (5)-(8) in Sets

B̄

b̄
��

ḡ // D′

d
��

(9) (10)

C̄
n̄oo

c̄
��

B g
// D Cn
oo

PB̄

b̄P
��

ḡP // PD′

dP
��

(11) (12)

PC̄
n̄Poo

c̄P
��

PB gP
// D CnP

oo

TB̄

b̄T
��

ḡT // TD′

dT
��

(13) (14)

TC̄
n̄Too

c̄T
��

TB gT
// D CnT

oo

(b) Pullbacks (9), (10) in TPTNets, and pullbacks (11)-(14) in Sets

Figure 56: Pullbacks in TPTNets and Sets

corresponding timed P/T morphisms, i. e. we have b̄ ◦ i = b and c̄ ◦ j = c. By
closure ofMstrict -morphisms under decomposition and b̄, b, c̄, c ∈Mstrict it follows that
i, j ∈ Mstrict . Hence, i : B′ → B̄ and j : C ′toC̄ are time-strict injective morphisms
with isomorphic components which by Fact 7.15 impliest that i and j are isomorphisms
in TPTNets. Finally, due to uniqueness of pullbacks it follows that the front faces
of cube (2) in Figure 54b are pullbacks in TPTNets.

Front faces pullbacks imply top face pushout. Now let the front faces of the cube
(2) in Figure 54b be pullbacks. Then, considering again the cubes in Figure 55, we
have pushouts in the bottoms and all side faces are pullbacks which implies that the
top faces are pushouts by VK property in (Sets,Minj).

By m ∈ Mstrict and closure of Mstrict -morphisms under pullbacks, we have that
also m′ ∈ Mstrict , allowing us to construct the pushout (15) in TPTNets as gluing
of timed P/T nets, shown in Figure 57, implying pushouts (16) and (17) in Sets
according to Definition 7.1.

A′
g′ //

m′

��

C ′

n̄
��

B′
ḡ
// D̄

(15)

PA′
g′P //

m′P
��

PC′

n̄P

��
PB′ ḡP

// PD̄

(16)

TA′
g′T //

m′T
��

TC′

n̄T

��
TB′ ḡT

// TD̄

(17)

Figure 57: Pushout (15) in TPTNets, and pushouts (16),(17) in Sets

Then, by commutativity of the top face of cube (2) in Figure 54b due to the universal
property of pushouts there is a unique timed P/T morphism d̄ : D̄ → D′ with

d̄ ◦ ḡ = g′ and d̄ ◦ n̄ = n′.

Note that we also have corresponding commutativity of the components which means
that d̄P and d̄T are also the unique functions induced by pushouts (16) and (17) in
Sets. Moreover, due to pushout (16) and the pushout in the top of cube (3) by

87

B Detailed Proofs

uniqueness of pushouts it follows that d̄P is an isomorphism. Analogously, by pushout
(17) and the pushout in the top of cube (4) we have that d̄T is an isomorphism. In
order to show that also d̄ is an isomorphism, according to Fact 7.15 it remains to show
that d̄ is time-strict. i. e. that for all t ∈ TD̄ we have preD′ ◦ d̄T (t) = d̄⊕P×R ◦ preD̄(t)

and postD′ ◦ d̄T (t) = d̄⊕P×R ◦ postD̄(t).

Let t ∈ TD̄. By construction of pushout (15) as gluing according to Definition 7.1, we
can distinguish the following two cases:

Case 1. There is t∗ ∈ TC′ with n̄T (t∗) = t.

Then by Definition 7.1 we have preD̄(t) = n̄⊕P×R(preC′(t
∗)). Moreover, m ∈

Mstrict by closure under pushouts implies n ∈ Mstrict . This in turn implies
n′ ∈Mstrict by closure under pullbacks. Thus, we have:

d̄⊕P×R ◦ preD̄(t) = d̄⊕P×R ◦ n̄
⊕
P×R ◦ preC′(t

∗) = (d̄P ◦ n̄P)⊕×R ◦ preC′(t
∗)

= n′⊕P×R ◦ preC′(t
∗) = preD′ ◦ n′T (t∗)

= preD′ ◦ d̄T ◦ n̄T (t∗) = preD′ ◦ d̄T (t)

Case 2. There is no t∗ ∈ TC′ with n̄T (t∗) = t.

By uniqueness of pushouts, we can w. l. o. g. assume that also the pushout in the
bottom of cube (2) in Figure 54b is constructed as a gluing of timed P/T nets as
defined in Definition 7.1.

Since there is no t∗ ∈ TC′ with n̄T (t∗) = t, by n′T = d̄T ◦ n̄T and injective d̄T it
follows that there is also no t∗ ∈ TC′ with n′T (t∗) = d̄T (t). So due to the pullback
in the right front of cube (4) in Figure 55b there is also no t∗ ∈ TC with nT (t∗) =
dT ◦ d̄T (t). Hence, according to gluing D of B and C over A, by Definition 7.1
there is t̄ ∈ TB with gT (t̄) = dT ◦ d̄T (t) and preD ◦ dT ◦ d̄T (t) = g⊕P×R ◦ preB(t̄).

Further, by the pullback in the left front of cube (4) in Figure 55b there is t′ ∈ TB′
with bT (t′) = t̄ and g′T (t′) = d̄T (t). Then by d̄T (ḡT (t′)) = g′T (t′) = d̄T (t) and
injective d̄T we obtain that ḡT (t′) = t. Thus, according to Definition 7.1 by the
fact that D̄ is a gluing of B′ and C ′, we have that preD̄(t) = ḡ⊕P×R ◦ preB′(t′).
So, using the fact that b, d ∈Mstrict are time-strict, we obtain

d⊕P×R ◦ d̄
⊕
P×R ◦ preD̄(t) = d⊕P×R ◦ d̄

⊕
P×R ◦ ḡ

⊕
P×R ◦ preB′(t

′)

= d⊕P×R ◦ (d̄P ◦ ḡP)⊕×R ◦ preB′(t
′)

= d⊕P×R ◦ g
′⊕
P×R ◦ preB′(t

′)

= (dP ◦ g′P)⊕×R ◦ preB′(t
′)

= (gP ◦ bP)⊕×R ◦ preB′(t
′)

= g⊕P×R ◦ b
⊕
P×R ◦ preB′(t

′)

= g⊕P×R ◦ preB ◦ bT (t′)

= g⊕P×R ◦ preB(t̄)

= preD ◦ dT ◦ d̄T (t)

= d⊕P×R ◦ preD′ ◦ d̄T (t)

So we have d⊕P×R ◦ d̄
⊕
P×R ◦ preD̄(t) = d⊕P×R ◦ preD′ ◦ d̄T (t) which especially holds

for the case 1 above, and therefore it holds for all t ∈ TD̄. Thus, we have

88

B.12 Proof of Theorem 7.17 (Timed P/T Nets Are M-Adhesive)

d⊕P×R ◦ d̄
⊕
P×R ◦ preD̄ = d⊕P×R ◦ preD′ ◦ d̄T . Since d ∈Mstrict is injective, also d⊕P×R

is injective and hence it is a monomorphism in Sets. Thus, we have d̄⊕P×R◦preD̄ =
preD′ ◦ d̄T . The proof for the post domains works analogously.

So we have that d̄ is time-strict, and its components are isomorphisms which by
Fact 7.15 implies that it is an isomorphism in TPTNets. Hence, by uniqueness of
pushouts up to isomorphism, we obtain that the top face of cube (2) in Figure 54b is
a pushout.

89

References

References

[BD91] Bernard Berthomieu and Michael Diaz. Modeling and verification of time de-
pendent systems using time petri nets. IEEE Transactions on Software Engi-
neering, Vol. 17, No. 3, March 1991, 1991.

[BH07] MengChu Zhou Branislav Hruz. Modeling and Control of Discrete-event Dy-
namic Systems: with Petri Nets and Other Tools. Springer, 2007.

[CCCS92] Javier Campos, Giovanni Chiola, Jos M. Colom, and Manuel Silva. Properties
and performance bounds for timed marked graphs. IEEE Transactions on
Circuits and Systems - I: Fundamental Theory and Applications, 39:386–401,
1992.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. EATCS Monographs in Theor. Comp. Science. Springer
Verlag, 2006.

[EGH10] Hartmut Ehrig, Ulrike Golas, and Frank Hermann. Categorical Frameworks
for Graph Transformation and HLR Systems based on the DPO Approach.
Bulletin of the EATCS, 102:111–121, 2010.

[EHKP91a] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From graph gram-
mars to high level replacement systems. In 4th Int. Workshop on Graph Gram-
mars and their Application to Computer Science, volume 532 of Lecture Notes
in Computer Science, pages 269–291. Springer Verlag, 1991.

[EHKP91b] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and
concurrency in high-level replacement systems. Math. Struct. in Comp. Science,
1:361–404, 1991.

[EHP+02] Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Paolo Baldan, and Reiko
Heckel. Formal and natural computing. chapter High-level net processes, pages
191–219. Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[EHPP06] H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive High-Level Re-
placement Systems: A New Categorical Framework for Graph Transformation.
Fundamenta Informaticae, 74(1):1–29, 2006.

[Ehr04] H. Ehrig. Behaviour and Instantiation of High-Level Petri Net Processes. Fun-
damenta Informaticae, 64:1–37, 2004.

[EMC+01] H. Ehrig, B. Mahr, F. Cornelius, M. Grosse-Rhode, P. Zeitz, G. Schröter,
and K. Robering. Mathematisch Strukturelle Grundlagen der Informatik, 2.
überarbeitete Auflage. Springer, 2001.

[ER97] H. Ehrig and W. Reisig. An Algebraic View on Petri Nets. Bulletin of the
EATCS, pages 52–58, February 1997.

[GLMR05] Guillaume Gardey, Didier Lime, Morgan Magnin, and Olivier H. Roux. Romo:
A tool for analyzing time petri nets. pages 418–423, 2005.

90

References

[Jen97] Kurt Jensen. A brief introduction to coloured petri nets. In TACAS, pages
203–208, 1997.

[JK09] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and
cpn tools for modelling and validation of concurrent systems. In International
Journal on Software Tools for Technology Transfer, page 2007, 2007.

[LS04] S. Lack and P. Sobociński. Adhesive Categories. In Proc. FOSSACS 2004,
volume 2987 of LNCS, pages 273–288. Springer, 2004.

[MGE+10] Tony Modica, Karsten Gabriel, Hartmut Ehrig, Kathrin Hoffmann, Sarkaft
Shareef, Claudia Ermel, Ulrike Golas, Frank Hermann, and Enrico Biermann.
Low- and High-Level Petri Nets with Individual Tokens. Technical Report
2009/13, Technische Universität Berlin, 2010. http://www.eecs.tu-berlin.

de/menue/forschung/forschungsberichte/2009.

[MGH11] Tony Modica, Karsten Gabriel, and Kathrin Hoffmann. Formalization of
Petri Nets with Individual Tokens as Basis for DPO Net Transformations. In
H. Ehrig, C. Ermel, and K. Hoffmann, editors, Proc. of 4th Workshop on Petri
Nets and Graph Transformation (PNGT), volume 40. European Association of
Software Science and Technology, 2011.

[MM90] J. Meseguer and U. Montanari. Petri nets are monoids. Information and
Computation, 88(2):105–155s, 1990.

[PER95] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation
systems. Mathematical Structures in Computer Science, 5:217–256, 1995.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut fr Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962.

[PPE+05] J. Padberg, U. Prange, H. Ehrig, C. Ermel, and K. Hoffmann. Skript petrinetze.
pages 13–14, 52, 62ff, 2005.

[Rei85] W. Reisig. Petrinetze, eine Einfhrung. Springer Verlag Berlin, 1985.

[Rei91] Wolfgang Reisig. Petri nets and algebraic specifications. Theoretical Computer
Science, 80(1):1–34, March 1991.

[Roz97] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation. Vol 1: Foundations. World Scientific, 1997.

91

http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009

	Introduction
	Aims
	Structure of the Paper

	Related Work
	Coloured Petri Nets
	Other Tools
	Time Petri Nets
	Deterministic Timed Petri Nets
	PTI Nets

	Case Studies
	Network Infrastructure
	Production Line

	P/T Nets and Systems
	P/T Nets
	Category of P/T Nets
	Category of P/T Systems
	Structuring Techniques
	Processes of P/T Nets

	Timed P/T Nets
	Requirements
	Model Time
	Time Duration
	Marking
	Firing Behaviour
	Net Structure

	Firing Behaviour
	Timed Marking, Selection and State
	Activation and Firing

	Application to Case Studies
	Network Infrastructure
	Production Line

	Categories of Timed Net Classes
	Category of Timed P/T Nets
	Category of Timed P/T Systems
	Category of Timed P/T States
	Functorial Relations of Timed Net Classes
	Functorial Relations to Untimed Net Classes

	Structuring Techniques for Timed P/T Nets
	Union of Timed P/T Nets
	Fusion of Timed P/T Nets
	Restriction of Timed P/T Nets
	M-Adhesive Category of Timed P/T Nets

	Conclusion
	Outlook and Future Work

	Categorical Fundamentals
	Detailed Proofs
	Proof of Fact 6.3 (Category TPTNets)
	Proof of Fact 6.12 (Category TPTSys)
	Proof of Fact 6.17 (Category TPTStates)
	Lemma: Delay of Sums with Single Place
	Proof of Lemma 6.6 (Delay of Sums)
	Proof of Lemma 6.7 (Delay of Differences)
	Proof of Theorem 6.14 (Timed P/T-system morphisms preserve firing steps)
	Proof of Theorem 6.19 (Timed P/T-state morphisms preserve firing steps)
	Proof of Fact 7.2 (Gluing of Timed P/T Nets is Pushout)
	Proof of Fact 7.15 (Monomorphisms and Isomorphisms of Timed P/T Nets)
	Proof of Fact 7.16 (Closure-Properties of Time-Strict Injective Morphisms)
	Proof of Theorem 7.17 (Timed P/T Nets Are M-Adhesive)

	RoteReihe.pdf
	Folie 1

