
Android

Security,

Pitfalls,

Lessons

Learned

 and

BYOD

Technical

report

Steffen

Liebergeld

Matthias

Lange

{steffen,mlange}@sec.t-labs.tu-berlin.de

Technische Universität Berlin
2013-07
ISSN 1436-9915

Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Android Security, Pitfalls, Lessons Learned and BYOD

Steffen Liebergeld and Matthias Lange

Security in Telecommunications, Technische Universität Berlin, {steffen,mlange}@sec.t-labs.tu-berlin.de

ABSTRACT

Over the last two years Android became the most popu-
lar mobile operating system. But Android is also targeted
by an over-proportional share of malware. In this paper
we systematize the knowledge about the Android security
mechanisms and formulate how the pitfalls can be avoided
when building a mobile operating system. As smartphones
enter the corporate domain, a new scheme called bring your
own device (BYOD) became popular. One solution is to log-
ically partition the device such that personal and business
information are isolated from one another. We systematize
the solutions for partitioning in Android.

1. INTRODUCTION
Smartphones are now very popular. Aside from calling

and texting, people use them for connecting with their dig-
ital life–email, social networking, instant messaging, photo
sharing and more. With that smartphones store valuable
personal information such as login credentials, photos, emails
and contact information. The confidentiality of that data
is of paramount importance to the user because it might
be abused for impersonation, blackmailing or else. Smart-
phones are very attractive for attackers as well: First, at-
tackers are interested in the precious private information.
Second, smartphones are constantly connected, which makes
them useful as bots in botnets. Third, smartphones can send
premium SMS or SMS that subscribe the victim to costly
services, and thus directly generate money for the attacker.

It is up to the smartphone operating system (OS) to en-
sure the security of the data on the device. In the last two
years Android became the most popular mobile OS on the
market. With over 1.5 million device activations per day
Android is expected to cross the one billion active device
barrier in 2013. Its world wide market share has reached 70
percent of all smartphones.

On the downside Android also became a major target for
mobile malware [38]. Interestingly the share of mobile mal-
ware that targets Android is around 90 percent, which is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

larger than its market share. The question is why is the
Android platform so attractive for malware authors?

In this paper we investigate the Android architecture and
the security mechanisms it implements. Android and its
weaknesses have already been well researched and we sys-
tematize the results and give advice for platform designers
to avoid those pitfalls in the future.

Recently companies started to allow the use of private
smartphones in corporate networks. This scheme is com-
monly called bring your own device (BYOD). As these smart-
phones are being administered by the employees, who are
not trained in security best practices, they often remain
vulnerable, and thus put corporate assets at risk. BYOD
mandates a new security feature, which we call partitioning.
In partitioning, the device is logically split into isolated par-
titions. Android was not designed with partitioning in mind.
We show how different solutions retrofitted partitioning into
Android, and systematize the drawbacks and merits of each
approach.

1.1 Contributions
In this work we systematize knowledge in the following

areas:
Android security mechanisms: We describe the Android
architecture from a security point of view and give details
on application and system security. We further detail the
mechanisms of Android that are targeted at fending off at-
tacks.
Android security problems: We identify the inherent
security problems of the Android platform.
Android BYOD solutions: A number of BYOD solutions
using Android have been proposed. We identify the differ-
ent approaches and systematize them. We give information
about drawbacks and merits of each approach.

Additionally, we detail lessons learned to help future mo-
bile OS designers avoid security pitfalls.

1.2 Outline
We start by describing what Android is and how its archi-

tecture looks like in Section 2. Then we continue describing
the platform and system security mechanisms in Section 3
and Section 4. Android application security is depicted in
Section 5. In Section 6 we outline recent improvements in
Android security before we describe Android’s most severe
security problems in Section 7. Given this insight, we de-
termine lessons learned in Section 8. Section 9 shows how
partitioning was retrofitted into Android. We continue with
a systematization of the Android virtualization solutions in
Section 10. We conclude in Section 11.

2. ANDROID OVERVIEW
Android is an OS and a software platform for mobile de-

vices. Its development dates back into 2003 to a company
called Android which developed software for mobile devices.
In 2005 this company was bought by Google. In Novem-
ber 2007 Google announced together with 33 other mem-
bers of the Open Handset Alliance that they will develop a
mobile OS called Android [1]. One year later the first con-
sumer device, the T-Mobile G1, became available [2]. Since
2010 Google sells their own mobile devices under the Nexus
brand [3].

The Android development is in the hands of the Open
Handset Alliance. The Android Open Source Project (AOSP)
is the open source version of Android but in fact Google is
the sole contributor. Usually Google develops Android in-
ternally and pushes its internal code base to public code
repositories whenever they issue a public release. An excep-
tion was the release of Android 3.0 Honeycomb whose source
code was never fully released1.

The Android userland is licensed under the terms of the
Apache Software License 2.0 which does not mandate source
code availability [16]. This also allows OEMs to package
Android with binary libraries which they are not forced to
make open source. The underlying Linux kernel instead is
licensed under the terms of the Gnu General Public License
(GPLv2). That license requires that each modification or
addition of code must be made available to the customers of
a device with that software.

The source code of the AOSP project in its original form
is deployed only to a selected set of devices. For each major
release of Android Google partners with one OEM to create
a device of the Nexus brand. The Nexus devices are made to
showcase how Google envisions Android to be and usually
receive updates to new versions of Android directly from
Google.

OEMs modify the code taken from the AOSP and enhance
it with their own custom code. They add new pre-installed
applications, tweak the user interface and add additional
functionality to stock applications to set each other apart.
Taken together, these modifications to stock AOSP Android
are called a Skin. Additionally, many carriers add custom
applications to the devices they sell (branding).

2.1 Android Architecture
The general Android architecture is depicted in Figure 1.

At the bottom sits the Linux kernel which has been mod-
ified to accommodate for Android’s special needs. In that
sense Android is not a traditional Linux OS. It does not
have a passwd file, no glibc and no X11, in fact nothing we
assume to be part of a standard Linux distribution. The
Linux kernel provides isolation, threading, scheduling and
memory management. It also provides a driver model and
a huge device driver base. As an addition Google added
an IPC framework and power management enhancements to
the kernel which are designed for the requirements of embed-
ded devices. An interesting side note is, that the Android-
specific code in the Linux kernel has twice the defect density
of the core Linux kernel [34].

Each major version of Android provides its own version

1The sources of Honeycomb are included in the version his-
tory of subsequent releases, but the actual release was not
marked with a tag, which makes it impossible to check out.

Figure 1: Android system architecture, image cour-
tesy of Google Inc [14].

of the Linux kernel. That is, older Android userland runs
on newer kernels but not vice versa. Since mainline Linux
version 3.3 some of Android’s code modifications have been
merged. This enables a mainline Linux kernel to boot An-
droid [26].

The Android userland consists of three layers: the native
layer, the application framework and the applications. The
native layer implements a hardware abstraction layer (HAL)
to abstract the device drivers. It interfaces directly with the
Linux kernel. It is implemented in C and C++. This layer
includes a number of open source libraries such as WebKit,
libpng and libsqlite. Bionic is Google’s equivalent of the
libc. Also the native layer contains a set of native daemons
which run as root.

The Dalvik VM, on top of which most of the applica-
tions are built, is also part of the native layer. Dalvik is a
register-based process virtual machine and executes Dalvik
Executable Format (DEF) code. On Android applications
are mostly written in Java which is compiled to Java byte-
code. The bytecode is compiled into DEF upon installation
of the application on the device. The Dalvik VM is no secu-
rity perimeter other than that applications written in Java
are not subject to memory corruption attacks. The task of
isolation is left up for the Linux kernel.

The application framework is where the platform services
such as location manager or package manager live. This
layer gives the developers access to the lower levels of the
platform.

At the very top there are the applications. They use ser-
vices provided by the application framework. They may po-
tentially use services from other applications as well. That
means that applications can become part of the API which
is an import consideration for Android security.

3. ANDROID PLATFORM SECURITY
Android runs on a wide range of devices and Android’s

security architecture relies on security features that are em-
bedded in the hardware. The security of the platform de-
pends on a secure boot process.

3.1 Secure Boot
In general the boot process of an Android device is a

five-step process. When the CPU is reset it will start ex-
ecuting from its reset vector. At the reset vector there is
some ROM connected which contains the initial bootloader
(IBL). The ROM is either fabricated into the system-on-
chip (SoC) during production or the IBL is programmed
into a programmable ROM. Its the IBL’s duty to initialize
the DRAM controller and the boot medium (MMC, eMMC,
NAND flash, USB) controller. The boot medium usually
is selected by the operating mode (OM) pin. Usually this
pin is permanently set during production of the SoC. The
IBL then loads the bootloader from the boot medium into
the RAM. It then performs a signature check to make sure
that only authenticated code is executed. If the check is
successful the IBL hands execution to the bootloader. The
signature check is performed using the public key of the orig-
inal equipment manufacturer (OEM). The key is also stored
in the ROM.

Figure 2: Boot architecture on mobile devices. The
OM pin determines the boot medium. The IBL ini-
tializes the DRAM and the boot medium controller
and loads the bootloader into the RAM. The secu-
rity subsystem may be used to speed up signature
checks.

The bootloader offers more flexibility. It initializes more
hardware like the display to show e.g. a boot logo. The
bootloader performs a signature check on the Linux kernel.

The Linux kernel initializes all the hardware and finally
spawns the first user space process called init. Init is stored
on a ramdisk. The ramdisk is either merged in the kernel
image (CPIO archive) or the Android boot image format is
used. This ensures that also the root filesystem is signed
and can be verified.

Android init reads a configuration file (init.rc) and boots
the user land. The configuration file contains information
about the initial services to be started and their dependen-
cies. This allows init to restart crashed services. Init does
not verify user space components prior to loading.

3.2 Rooting
In general, mobile devices are subject to strict scrutiny

of the mobile operators. That is it employs secure boot to
ensure that only code is being booted, that has received
the official blessing in the form of a certification from the

Figure 3: Signature check: The image is hashed
while the signature gets decrypted to return the
original hash value. Both values then are compared.

operators. This is being done to ensure that the mobile
OS’s security measures are implemented and the device does
not become a harm to the cellular network. The official
firmware images however place restrictions on the device’s
capabilities. For example, some cellular operators disable
tethering or only allow their own SIM cards (SIM lock).

Many users want to free their devices of such strict restric-
tions, for example to install their own Android distributions
(ROM), e.g. CyanogenMod. There are many reasons for
users to root their device such as reuse old hardware, re-
move offending system apps, get better looks and get more
speed. Also, a rooted device allows applications to run with
root permissions.

Rooting involves a modification to the system partition.
Because the system partition is mounted read only, it has to
be re-mounted with read/write permissions. Re-mounting
however requires root permissions. There are two ways of
obtaining root permissions initially: Either the customer
boots a custom system that gives him a root shell, or he
exploits a vulnerability to obtain root permissions.

Booting a custom system involves unlocking the boot-
loader, that is to allow it to boot unsigned binaries. Many
devices, such as Google’s Nexus devices allow unlocking the
bootloader out of the box. On other devices a bug in the
bootloader has to be exploited to enable booting of unsigned
binaries.

Once the bootloader is unlocked, a modified system is
booted, that allows modification of the firmware image. The
modified firmware image contains the su binary which al-
lows any application to request root at any time. su then
checks in a local database whether the requesting App’s UID
has been granted root privileges before. If not, su starts
an activity which will prompt the user to confirm the ele-
vated privileges. The user’s decision is then stored into the
database.

Rooting, voluntarily or involuntarily has repercussions on
device security. Unsigned kernels can contain malware that
runs with full permissions and is undetectable by anti-virus
software (rootkits). Further, rooted devices do not receive
over the air updates. If an application has received root per-
missions, it can essentially do as it pleases with the device
and its data, including copying, modifying and deleting pri-
vate information and even bricking the device by overwriting
the bootloader.

4. ANDROID SYSTEM SECURITY
The flash storage of an Android device is usually divided

into multiple partitions. The system partition contains the
Android base system such as libraries, the application run-
time and the application framework. This partition is mounted
read-only to prevent modification of it. This also allows a
user to boot their device into a safe mode which is free of
third party software.

4.1 Data Security
By default an application’s files are private. They are

owned by that application’s distinct UID. Of course an ap-
plication can create world readable/writable files which gives
access to everybody. Applications from the same author
(signed with the same key, see Section 5.3 for more details)
can run with the same UID and thereby get access to shared
files. Files created on the SD card are world readable and
writable.

Since Android 4.0 the framework provides a Keychain
API which offers applications the possibility to safely store
certificates and user credentials. The keystore is saved at
/data/misc/keystore and each key is stored in its own file.
A key is encrypted using 128-bit AES in CBC mode. Each
key file contains an info header, the initial vector (IV) used
for the encryption, an MD5 hash of the encrypted key and
the encrypted data itself. Keys are encrypted using a mas-
ter key which itself is encrypted using AES. The encryption
key is derived from the user password using PBKDF2 with
8192 iterations.

4.2 Filesystem Encryption
Since Android 3.0 it is possible to encrypt the data parti-

tion. On the kernel-side this task is performed by dm-crypt.
Because Google wanted to keep Android free of GPL code
they decided to implement the necessary ioctls in vold in-
stead of using the established dm-crypt userland component
cryptsetup.

To enable filesystem encryption the user has to set a device
password. This password is used to encrypt a 128 Bit master
key. The master key is derived from /dev/urandom. To
encrypt the master key the user password is hashed with a
salt also taken from /dev/urandom. Finally the master key
is encrypted using AES calls into the openssl library.

Vold is responsible for setting up the crypto mappings
between a virtual crypto block device and the real block
device. It then encrypts each sector as it is written and
decrypts each sector as it is read. Details of the encryption
of a block device are kept in the crypto footer which is kept
in the last 16 Kbytes of each partition. The crypto footer
for example contains the encrypted master key.

When the user changes his password not the whole par-
tition needs to be re-encrypted but just the master key.
The encryption and decryption can be speed up by using
a crypto engine which is integrated into the SoC. This re-
quires a proper driver in the Linux kernel which is integrated
with dm-crypt.

4.3 Device Admin
In many companies, employees are allowed to access their

corporate assets with their private smartphones. This scheme
is known as Bring Your Own Device (BYOD). The problem
with BYOD is that it introduces devices into the corporate
domain which are not under strict control by corporate IT

in the first place. As smartphones are notoriously insecure,
they may set corporate assets at risk. In exchange for an em-
ployee to use his own device enterprises usually want more
control over the phone.

In Android 2.2 Google added an API called Device Ad-
min. That API is for an application to request privileges to
make that application the administrator of the device. De-
vice admin allows an application to enforce certain policies
such as require a lock password, password policies, monitor
unlock attempts, require encryption and disable the camera.
Through device admin a device can also be remotely wiped.

5. ANDROID APPLICATION SECURITY
In Android application security is based on isolation and

permission control. This controls what applications are able
to do.

When you list all the processes on an Android device you
will see a picture similar to Figure 4. In the picture you can

Figure 4: Schematic figure of the processes running
in an Android system. Some services run with root
privileges which makes them a valuable target for
root exploits.

see, that there are processes that run with root privileges.
Zygote is the prototype process that gets forked into a new
process whenever a (Java) application is launched. Each
application runs in its own process with its own user and
group ID which makes it a sandbox. So, by default appli-
cations cannot talk to each other because they don’t share
any resources. This isolation is provided by the Linux ker-
nel which in turn is based on the decades-old UNIX security
model of processes and file-system permissions. It is worth
noting that the Dalvik VM itself is not a security boundary
as it does not implement any security checks.

In addition to traditional Linux mechanisms for inter-
process communication Android provides the Binder [15]
framework. Binder is an Android-specific IPC mechanism
and remote method invocation system. Binder consists of
a kernel-level driver and a userspace server. With Binder a
process can call a routine in another process and pass the
arguments between them. Binder has a very basic security
model. It enables the identification of communication part-
ners by delivering the PID and UID.

5.1 Android Permissions
On Android services and APIs that have the potential to

adversely impact the user experience or data on the device
are protected with a mandatory access control framework

called Permissions. An application declares the permissions
it needs in its AndroidManifest.xml2 such as to access the
contacts or send and receive SMS. At application install time
those permissions are presented to the user who decides to
grant all of them or deny the installation altogether. Permis-
sions that are marked as normal such as wake-up on boot
are hidden because they are not considered dangerous. The
user however can expand the whole list of permissions if he
wants to.

5.2 Permission Enforcement
Depending on the type of permission it is enforced locally

in user space or by the Linux kernel. Local permission en-
forcement is performed by a so called manager which runs
in the application’s address space. Please refer to Figure 5
for a detailed illustration. An application can try to access

Figure 5: Local permission enforcement on Android
is performed by its respective manager.

a device directly but this will fail in the most cases where
the device access rights are set properly, because the applica-
tion runs with its own UID and GID. Instead the application
has to talk to the respective device manager which sets up
a communication with the device’s service through binder.
The device service runs in the system server process which
runs with the system user. Through binder the device ser-
vice receives the PID and UID of the application. With the
help of the package manager the device service checks if the
respective UID has been granted the requested permission.
If the check is successful the device service will allow access
to the device.

There are some special permissions which are not enforced
by a user space manager but by the Linux kernel. One ex-
ample is the Internet permission. In order for an applica-
tion to have access to the Internet it needs to be in the inet
group. The PARANOID NETWORK patch to the Linux
kernel checks if a process is a member of the inet group and
only allows such processes access to the network. Other ex-
amples where permissions are enforced by the kernel are the
camera, logging and access to the SD card.

5.3 Application Provenance
In order to distribute applications through the Google

Play Store a developer needs to sign up for a developer ac-
count and pay $25. So the question remains whether a user
can trust the developer of an application.

2There are more than 110 permissions in Android. A full
list is available at http://developer.android.com/referen
ce/android/Manifest.permission.html

Prior to uploading an application to the Play store it must
be digitally signed. The certificate can be self signed by the
developer. This shows that this process is essentially useless
for the user to put trust in the developer. In fact signing
is used to ensure the authenticity of the author on updates.
Also the certificate is used to establish trust relationships
between applications signed with the same key. Those apps
are allowed to share permissions and the UID. The user has
to trust that the developer keeps his certificate private. If
the certificate is lost, the attacker can use it to sign malware
and upload it as an update to the original App.

If the private key is lost or expired there is no way to up-
date an existing application. Also Google does not provide
a standard way to revoke keys to avoid abuse.

5.4 Memory Corruption Mitigation
Memory corruption bugs such as buffer overflows are still

a huge class of exploitable vulnerabilities.
Since Android 2.3 the underlying Linux kernel implements

mmap_min_addr to mitigate null pointer dereference privilege
escalation attacks. mmap_min_addr specifies the minimum
virtual address a process is allowed to mmap. Before, an
attacker was able to map the first memory page, starting
at address 0x0 into its process. A null pointer dereference
in the kernel then would make the kernel access page zero
which is filled with bytes under the control of the attacker.

Also implemented since Android 2.3 is the eXecute Never
(XN) bit to mark memory pages as non-executable. This
prevents code execution on the stack and the heap. This
makes it harder for an attacker to inject his own code. How-
ever an attacker can still use return oriented programming
(ROP) to execute code from e.g. shared libraries.

In Android 4.0 the first implementation of address space
layout randomization (ASLR) was built into Android. ASLR
is supposed to randomize the location of key memory areas
within an address space to make it probabilistically hard
for an attacker to gain control over a process. The Linux
kernel for ARM supports ASLR since version 2.6.35. The
Linux kernel is able to randomize the stack address and the
brk memory area. The brk() system call is used to allocate
the heap for a process. ASLR can be enabled in two lev-
els by writing either a 1 (randomize stack start address) or
a 2 (randomize stack and heap address) to /proc/sys/ke

rnel/randomize_va_space. In Android 4.0 only the stack
address and the location of shared libraries are randomized.
This leaves an attacker plenty of possibilities to easily find
gadgets for his ROP attack.

In Android 4.1 Google finally added support for position
independent executables (PIE) and a randomized linker to
fully support ASLR. With PIE the location of the binary
itself is randomized.

Also introduced in Android 4.1 is a technique called read-
only relocation (RELro) and immediate binding. To lo-
cate functions in a dynamically linked library, ELF uses the
global offset table (GOT) to resolve the function. On the
first call a function that is located in a shared library points
to the procedure linkage table (PLT). Each entry in the PLT
points to an entry in the GOT. On the first call the entry in
the GOT points back to the PLT, where the linker is called
to actually find the location of the desired function. The
second time the GOT contains the resolved location. This
is called lazy-binding and requires the GOT to be writable.
An attacker can use this to let entries in the GOT point to

his own code to gain control of the program flow.
RELro tells the linker to resolve dynamically linked func-

tions at the beginning of the execution. The GOT is then
made read-only. This way an attacker cannot overwrite it
and cannot take control of the execution.

6. ANDROID SECURITYENHANCEMENTS
With Android 4.2 and the following minor releases Google

introduced new security features in Android. We will present
a small selection of these enhancements in the following
paragraphs.

The user now can choose to verify side-loaded applica-
tions prior to installation. This is also know as the on-device
Bouncer. It scans for common malware and alerts the user
if the application is considered harmful. So far the detec-
tion rates don’t measure up with other commercial malware
scanners [9].

With Android 4.2.2 Google introduced secure USB de-
bugging. That means only authenticated host devices are
allowed to connect via USB to the mobile device. To iden-
tify a host, adb generates an RSA key pair. The RSA key’s
fingerprint is displayed on the mobile device and the user can
select to allow debugging for a single session or grant auto-
matic access for all future sessions. This measure is only
effective if the user has a screen lock protection enabled.

Prior to Android 4.2 the optional exported attribute of a
Content Provider defaulted to true which hurts the princi-
ple of least privilege. This lead to developers involuntarily
making data accessible to other apps. With Android 4.2 the
default behaviour is now “not exported”.

6.1 SELinux on Android
The SEAndroid project [28] is enabling the use of SELinux

in Android. The separation guarantees limit the damage
that can be done by flawed or malicious applications. SELinux
allows OS services to run without root privileges. Albeit
SELinux on Android is possible it is hard to configure and it
slows down the device. Samsung Knox has been announced
to actually roll-out SEAndroid on commercial devices.

7. ANDROID SECURITY PROBLEMS
According to F-Secure Response Labs 96% of mobile mal-

ware that was detected in 2012 targets the Android OS [21].
In this chapter we want to shed light on the security weak-
nesses of Android that enabled such a vibrant market of
malware.

In short, Android has four major security problems: First,
security updates are delayed or never deployed to the user’s
device. Second, OEMs weaken the security architecture of
standard Android with their custom modifications. And
third, the Android permission model is defective. Finally,
the Google Play market poses a very low barrier to mal-
ware. We will now detail each of these problems.

7.1 Android Update Problem
There are four parts of the system that can contain vul-

nerabilities: the base system containing the kernel and open
source libraries, the stock Android runtime including basic
services and the Dalvik runtime, the Skin supplied by the
OEM and the branding.

The Android base system and runtime are published with
full source by the AOSP. This code is the basis of all Android

based smart phones. Any vulnerability found therein can
potentially be used to subvert countless Android devices. In
other terms, a vulnerability has a high impact.

With source code available bugs can easily be found by
malicious adversaries. In the case of open source libraries
like WebKit, the adversary can learn about vulnerabilities
directly from public bug trackers and mailing-lists and repos-
itory changelogs. Therefore these bugs have a very high vis-
ibility, and it is vital that the underlying vulnerabilities are
fixed quickly to limit the system’s exposure.

According to Google Inc, the response to a vulnerability
works as follows [11]:

1. The Android team will notify companies who have signed
NDA regarding the problem and begin discussing the
solution.

2. The owners of code will begin the fix.

3. The Android team will fix Android-related security is-
sues.

4. When a patch is available, the fix is provided to the
NDA companies.

5. The Android team will publish the patch in the Android
Open Source Project

6. OEM/carrier will push an update to customers.

In practice, updates are very slow to reach the devices,
with major updates taking more than 10 months [7]. Many
vendors do not patch their devices at all, as the implemen-
tation of a patch seems too costly [8]. According to Google
Inc.’s own numbers, the most recent version of Android is
deployed to only 1.2% of devices [6]. To remedy this prob-
lem, Google announced an industry partnership with many
OEM pledging to update their devices for 18 months. This
partnership is called the Android Update Alliance. However,
there has been no mentioning of the alliance since 2012, and
updates are still missing [7].

Bringing the updates to the devices is more involved how-
ever. Once the update reaches the OEMs, they incorporate
it into their internal code repositories. For major updates,
this includes porting their Skin forward. A faulty firmware
update has very bad consequences for the OEM’s reputation.
Therefore the updated firmware is subject to the OEM’s
quality control. In summary, incorporating an update into
a device firmware is therefore very costly to the OEM both
temporal and financial.

Cellular operators require that any device needs to be cer-
tified for correct behaviour before being allowed to use the
cellular network. This is done to ensure that the device does
not misbehave and therefore does not put the network and
its users at risk.

Before an updated firmware can be deployed to the actual
smartphones, it needs to be re-certified by the cellular opera-
tors. Depending on the operator, this can take a substantial
amount of time. For example re-certification at T-Mobile
takes three to six months [23], other carriers opt out of the
process and do not ship any updates at all. Notice, that the
branding also needs to be ported.

7.2 Custom Android Modifications
Skins and brandings are usually not available in source

form, because the intrinsics of their implementation are be-
ing kept as a trade secret. This has the disadvantage that
the code of the Skin is not subject to extensive public re-
view, leaving its security properties solely at the hands of
the OEM.

Recently the federal trade commission (FTC) of the USA
issued a complaint against the OEM HTC for deliberately
weakening the Android security model by not implementing
its security measures in its Skin [29]. In the complaint, the
FTC mentions a number of problems. For brevity we will
concentrate on the following two: “permission re-delegation”
and “insecure application installation”. Permission re-dele-
gation happens, when applications provide other applica-
tions with access to resources without checking whether these
applications have the permission to access these resources.
An example is the HTC voice recorder, which allows any
application to access the microphone. In addition, HTC
implemented a way to install applications aside from the of-
ficial Google play market. However, HTC failed to present
the requested permissions to the user, but automatically ac-
cepted any permission request, which essentially undermines
the Android permission model.

A range of phones based on the Samsung Exynos 4 SoC
had the following vulnerability. The Linux kernel’s licence
mandates that all code running inside the kernel needs to be
made available in source code. Device manufacturers how-
ever like to keep the workings of their devices a trade secret.
In Android this conundrum is solved with split drivers: A
small portion of the code is run inside the kernel, and a
larger portion runs in userland. The userland part is usually
not distributed in source form. The userland part communi-
cated with the kernel part via a custom kernel interface. One
driver of the Samsung Exynos 4 SoC simply provided a de-
vice file that allowed the userland part direct memory access
to the device. Unfortunately the kernel driver did not imple-
ment any range checks, and the device file was readable and
writable for all applications. That means that essentially
any application can readily modify kernel memory and thus
root the device [12].

Another problem comes from handling the screen lock.
The screen lock can be configured to keep the device locked
until the user passed the correct PIN or gesture. Thus, its
the purpose of the screen lock to lock the screen both to
ensure that only the user himself can tamper with his data
and that his private information remains confidential. How-
ever, Android allows Apps to present the user with custom
user interfaces even when the screen is locked. This is for
example for VoIP Apps that allow the user to take a call
without having to unlock the screen. However, it is up to
the App to ensure that the screen lock is engaged after the
action (e.g. the VoIP call) is finished. With this mecha-
nism, the security of the device is up to the App developer,
and some fail at implementing it correctly [18]. In a similar
case certain Android devices allow an adversary to bypass
the screen lock by exploiting an animation that introduces
a delay before the screen lock is shown [20].

These cases reveal how third parties like OEMs and car-
riers that add or modify the code of the AOSP can have a
negative impact the security of Android-based devices.

7.3 Android Permission Model
The Android permission model has been under criticism

since Android was introduced. It has been extensively stud-
ied by researchers. Here we present the problems that stand
out.

Kelley et al. conducted a study and found that users are
generally unable to understand and reason about the permis-
sion dialogues presented to them at application installation
time [36].

In [32] Barrera et al. conducted an analysis of the An-
droid permission model on a real-world data set of appli-
cations from the Android market. It showed that a small
number of permissions are used very frequently and the rest
is only used occasionally. It also shows the difficulty between
having finer or coarser grained permissions. A finer grained
model increases complexity and thus has usability impacts.
The study also showed that not only users may have diffi-
culties understanding a large set of permissions but also the
developers as many over-requesting applications show.

Felt et al. performed a study on how Android permissions
are used by Apps. They found that in a set of 940 Apps
about one-third are over-privileged, mostly due to the de-
velopers being confused about the Android permission sys-
tem [35].

Another problem are combo permissions. Different appli-
cations from the same author can share permissions. That
can be used to leak information. For example an applica-
tion has access to the SMS database because it provides full
text search for your SMS. Another app, say a game, from
the same author has access to the Internet because it needs
to load ads from an ad server. Now through Android’s IPC
mechanism those two apps can talk to each other and essen-
tially leak the user’s SMS database into the Internet.

7.4 Insufficient Market Control
As described in Section 5.3, anybody can publish her ap-

plications to the official Android App market Google Play af-
ter paying a small fee. There are alternative App markets,
e.g. the Amazon Appstore [13] and AndroidPit [17], but
Google Play is the most important one because it is prein-
stalled on almost any Android device. Any App that is pub-
lished via Google Play must adhere to the Google Play De-
veloper Distribution Agreement (DDA) [24] and Google Play
Developer Program Policies (DPP) [25]. However, Google
Play does not check upfront if an uploaded App does adhere
to DDA and DPP. Only when an App is suspected to violate
DDA or DPP, it is being reviewed. If it is found to breach
the agreements, it is suspended and the developer notified.
If the App is found to contain malware, Google might even
uninstall the App remotely.

In 2012 Google introduced Bouncer [10]. Bouncer is a
service that scans Apps on Google Play for known malware.
It runs the Apps in an emulator and looks for suspicious
behaviour. Unfortunately it didn’t take long for researchers
to show ways on how to circumvent Bouncer [5].

Malicious Apps have been found on Google Play repeat-
edly [19].

7.4.1 Application Repackaging

A popular way to get malware onto an Android device is
called application repackaging [4]. A legitimate application,
say Angry Birds, is downloaded to a rooted phone. This
application is then copied from the device, decompiled and

then repackaged with malware and re-signed. Then it is
uploaded under a slightly different name, say Angry Birds
Paris, to pretend it is still a legitimate application.

8. LESSONS LEARNED
All the knowledge about Android security enables us to

provide a number of lessons learned, that we present here
to aid developers of future mobile OSes to avoid security
pitfalls.
Timely updates are an absolute must for any system that
has public interfaces. Source code access, public bugtrackers
and mailinglists greatly ease the detection of vulnerabilities.
Therefore the importance of timely deployment of security
patches is even more pronounced when the system is based
on open source software. When designing a mechanism for
timely update deployment, one has to take care of all parties
involved, including the OEM and the carriers. We think that
the key to timely updates lies in clear abstractions. If there
was a layer that cannot be customized by OEM and carrier,
that layer could be updated independently of the rest of the
system. This could be very helpful for the base system as
it removes the delay incurred by porting Skin and brand-
ing. Moreover, the time incurred for re-certification on the
carrier’s side should be avoided. We think the way to go is
to isolate all software directly interfacing with the baseband
from the (general purpose) mobile OS, and to establish a
well defined interface between the two. Doing so would en-
able updates of the mobile OS without re-certification as
long as the baseband software is unchanged.
Control platform diversity: The OS designer should en-
force that third party modifications to the OS do not intro-
duce security breaches by design. That is define contracts
on security critical points in the system that third party
implementations have to adhere to. Ensure that these con-
tracts are held. An example is the permission system in
Android. Google should enforce that any device running
Android must only contain code that enforces the Android
permission system.
Ensure lock screen locks screen under all circum-
stances: Ensure that no third party can mess with the
lockscreen.
Design permission system with user and developer
in mind: A permission system should be designed such that
it the permissions it implements are understood by both
the developer to avoid over-privileged Apps and the user,
so that she can make an educated decision when granting
permissions. Granting all permissions at installation time is
problematic. Users ofter grant permissions just to be able
to install an App. Also, it does not allow for fine-grained
permissions. Maybe a better solution would be to ask for
permissions on demand.
Ensure that the App market does not distribute
malware: The App market is the most important distri-
bution place for Apps. People trust in the App markets,
and have no chance to determine the quality of an App by
themselves. Aside from having a mandatory admission pro-
cess, an App market should also scan for repackaged Apps.

9. BRING YOUR OWN DEVICE
As described in Section 4.3 the device admin API allows

an application to enforce certain policies to ease BYOD.
However the devices are still in the hands of the employee

who are often not trained for security best practices. So if if
a device is equipped with device admin, it may set corporate
assets at risk. To remedy the problem, a number of solutions
have been proposed. All of them have in common that they
isolate personal and corporate information from one another.

The actual isolation can be implemented in two ways. Ei-
ther the isolation is implemented in the middleware, or the
entire system is duplicated to run in isolated virtual ma-
chines.

Both solutions have their merits and drawbacks. Imple-
mentations in the middleware like BizzTrust [33] can lever-
age existing device drivers, and are therefore easily portable.
However, the middleware is already very complex and any
implementation enforcing isolation increases the complexity.
In fact, in a middleware-based solution the whole software
stack must be counted to the trusted computing base (TCB).
With this complexity it becomes hard to reason about the
system, and any mistake in the implementation is poten-
tially fatal to the isolation capabilities.

With virtualization instead, the whole userland software
stack is duplicated. Depending on the implementation of
the virtualization layer, the isolation properties can be very
well reasoned about. However, virtualization allows only
for very coarse grained isolation. It enables setups with a
small number of isolated partitions. For example, it enables
systems with a private and a corporate partition, which is a
excellent solution for BYOD. The corporate partition can be
administered by corporate IT, whereas the private partition
is under full control of the user. Virtualization does not
scale very well because every partition duplicates the whole
smartphone OS, which takes a lot of memory. Therefore the
number of partitions is limited.

A number of virtualization solutions have been proposed.
In the next Section we will briefly introduce the theory and
nomenclature of virtualization. We will follow up with a
categorization of existing solutions.

10. ANDROID VIRTUALIZATION
For the scope of this paper virtualization denotes the act

of running an OS in a controlled environment. There are
three ways virtualization can be implemented: Containers,
type 1 and type 2 hypervisors.

Containers establish isolated environments on top of a
shared OS kernel. The kernel ensures that each environ-
ment has its own local naming and can only communicate
with other environments in a controlled manner. Examples
are Linux containers and Linux chroot. These are employed
in Cells [30]. All containers share the same kernel. Con-
sequently a kernel compromise is fatal to the security of all
containers. Container solutions do not need to virtualize the
Android kernel.

Another option is to virtualize the whole Android system
including the kernel. Two architectures have been proposed:

Type 1 In type 1 virtualization virtual machines are the
main level of abstraction. That is, the hypervisor is
a specialized OS that is optimized for virtualization.
Consequently, the hypervisor’s complexity is orders of
magnitude less than that of a general purpose OS like
Android. The trusted computing base of a VM com-
prises the hypervisor and its runtime. Examples for
this virtualization architecture are L4Linux [27, 37]
and OK:Android [22].

Type 2 In type 2 virtualization the host Android system
is enhanced with a kernel module that establishes a
VM. The VM runs alongside the applications of the
host Android system. The trusted computing base of
a VM includes the host kernel, middleware and any
application with root permission. An example for this
virtualization architecture is VMWare SVP [31].

For a better understanding, all forms of virtualization are
illustrated in Figure 6.

Type 1 and type 2 virtualization run the entire Android
kernel inside a virtual machine. Current smartphones are
based on system on a chip solutions that sport one or more
ARM CPU cores. Some instructions of the ARM instruc-
tion set behave differently when executed in a non-privileged
mode than they do in most privileged mode. However, the
CPU does not trap when executing these instructions in non-
privileged mode (sensitive instructions), which means that
virtualizing these instructions with trap and emulate is not
possible. Instead, virtualization can be implemented with
either of three options:

Emulation In emulation, the complete guest kernel is run
in a program that interprets the instructions of the
guest at runtime, and runs them using host instruc-
tions to create functionally identical effects. Emula-
tion comes at large costs in terms of performance and
battery duration.

Binary rewriting In binary rewriting, the guest kernel is
patched at runtime such that all sensitive instructions
are replaced with instructions that trap. The kernel
is then run in a trap- and emulate fashion. Binary
rewriting is less costly in terms of performance and
battery drain than emulation, but still incurs a large
overhead.

Rehosting In rehosting the guest kernel is ported to the
host interface. This technique comes with intensive
modification of the guest kernel, and requires source
code access. Given useful abstractions in the hypervi-
sor, rehosting can offer good performance.

With the ARM Cortex-A15, ARM added hardware vir-
tualization capabilities to the platform that promise much
better virtualization performance.

Kernel

Middleware

Apps

Container

Apps

Container

Middleware

Containers

Kernel

Middleware

Apps Apps

VM

Kernel

Middleware

Type 2 Virtualization

Apps

VM

Kernel

Middleware

Apps

VM

Kernel

Middleware

Hypervisor

Type 1 Virtualization

Figure 6: Android virtualization architectures.
From left to right: Containers, Type 2 and Type
1 virtualization.

11. CONCLUSION
In this work we investigated the security of the Android

mobile OS. We described secure boot and rooting. We pro-
ceeded with a detailed description of the Android architec-
ture. We introduce Android application security and the
measures against memory corruption attacks as well as an
analysis of Android system security. We also analysed all
the defence measures of the platform and identified its short-
comings. Given all this insight, we formulate lessons learned
that are meant to help the designers of future mobile OSes
avoid these pitfalls.

We identified the upcoming trend of BYOD and system-
atized the different solutions on how industry and research
community tries to retrofit support for BYOD in Android
with partitioning.

12. ACKNOWLEDGEMENTS
This work was supported by the EU FP7/2007-2013 (FP7-

ICT-2011.1.4 Trustworthy ICT), under grant agreement no.
317888 (project NEMESYS).

13. REFERENCES

[1] Industry Leaders Announce Open Platform for Mobile
Devices . http:
//www.openhandsetalliance.com/press_110507.html
(November 2007)

[2] T-Mobile Unveils the T-Mobile G1 — the First Phone
Powered by Android.
http://www.t-mobile.com/company/PressReleases_A
rticle.aspx?assetName=Prs_Prs_20080923&title=
T-Mobile20Unveils20the20T-Mobile20G120E

2809320the20First20Phone20Powered20by20Android

(September 2008)

[3] Google Offers New Model for Consumers to Buy a
Mobile Phone. https://sites.google.com/a/pressat
google.com/nexusone/press-release (January 2010)

[4] New android threat gives phone a root canal.
http://www.symantec.com/connect/blogs/new-andro
id-threat-gives-phone-root-canal (March 2011)

[5] Adventures in BouncerLand: Failures of Automated
Malware Detection within Mobile Application
Markets. http://media.blackhat.com/bh-us-12/Brie
fings/Percoco/BH_US_12_Percoco_Adventures_in_B

ouncerland_WP.pdf (July 2012)

[6] Android Dashboard. https://developer.android.com
/about/dashboards/index.html (December 2012)

[7] Arstechnica: The checkered, slow history of Android
handset updates. http:
//arstechnica.com/gadgets/2012/12/the-checkered
-slow-history-of-android-handset-updates/

(December 2012)

[8] Arstechnica: What happened to the Android Update
Alliance?
http://arstechnica.com/gadgets/2012/06/what-hap
pened-to-the-android-update-alliance/ (June
2012)

[9] An evaluation of the application verification service in
android 4.2.
http://www.cs.ncsu.edu/faculty/jiang/appverify/
(December 2012)

[10] Google Mobile Blog: Android and Security.
http://googlemobile.blogspot.de/2012/02/androi
d-and-security.html (February 2012)

[11] Memory Management Security Enhancements.
http://source.android.com/tech/security/\#memor
y-management-security-enhancements (December
2012)

[12] Root exploit on Exynos. http://forum.xda-develop
ers.com/showthread.php?t=2048511 (December 2012)

[13] Amazon Appstore.
http://www.amazon.com/mobile-apps/b/ref=
sa_menu_adr_app?ie=UTF8&node=2350149011 (April
2013)

[14] Android architecture. http://developer.android.com
/images/system-architecture.jpg (April 2013)

[15] Android Developer Documentation: Binder.
http://developer.android.com/reference/android
/os/Binder.html (January 2013)

[16] Android Open Source Project: Licenses.
http://source.android.com/source/licenses.html
(April 2013)

[17] AndroidPit. http://www.androidpit.com/ (April 2013)

[18] Arstechnica: Critical app flaw bypasses screen lock on
up to 100 million Android phones.
http://arstechnica.com/security/2013/04/crital
-app-flaw-bypasses-screen-lock-on-up-to-100-m

illion-android-phones/ (April 2013)

[19] Arstechnica: More “BadNews” for Android: New
malicious apps found in Google Play. http://arstec
hnica.com/security/2013/04/more-badnews-for-and
roid-new-malicious-apps-found-in-google-play/

(April 2013)

[20] Engadget: Samsung’s Android phones affected by
another lockscreen bypass, fix is in the works. http:
//www.engadget.com/2013/03/20/samsungs-android
-phones-affected-by-another-lockscreen-bypass/

(March 2013)

[21] F-Secure Mobile Threat Report Q4 2012.
http://www.f-secure.com/static/doc/labs_global/
Research/Mobile20Threat20Report20Q4202012.pdf
(March 2013)

[22] General Dynamics: OK:Android.
http://www.ok-labs.com/products/ok-android
(April 2013)

[23] Gizmodo: Why Android Updates Are So Slow.
http://gizmodo.com/5987508/why-android-updates
-are-so-slow (March 2013)

[24] Google Play Developer Distribution Agreement.
http://www.android.com/us/developer-distributio
n-agreement.html (April 2013)

[25] Google Play Developer Program Policies. http://ww
w.android.com/us/developer-content-policy.html
(April 2013)

[26] KS2012: Status of Android upstreaming.
https://lwn.net/Articles/514901/ (January 2013)

[27] L4Android: Android on top of L4.
http://www.l4android.org (April 2013)

[28] Seandroid wiki.
http://selinuxproject.org/page/SEAndroid (April
2013)

[29] UNITED STATES OF AMERICA federal trade

commission, Complaint against HTC. http:
//ftc.gov/os/caselist/1223049/130222htccmpt.pdf
(February 2013)

[30] Andrus, J., Dall, C., Hof, A.V., Laadan, O., Nieh, J.:
Cells: a virtual mobile smartphone architecture. In:
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. pp. 173–187. ACM
(2011)

[31] Barr, K., Bungale, P., Deasy, S., Gyuris, V., Hung, P.,
Newell, C., Tuch, H., Zoppis, B.: The vmware mobile
virtualization platform: is that a hypervisor in your
pocket? ACM SIGOPS Operating Systems Review
44(4), 124–135 (2010)

[32] Barrera, D., Kayacik, H.G., van Oorschot, P.C.,
Somayaji, A.: A methodology for empirical analysis of
permission-based security models and its application
to android. In: Proceedings of the 17th ACM
conference on Computer and communications security.
pp. 73–84. CCS ’10, ACM, New York, NY, USA
(2010), http://doi.acm.org/10.1145/1866307.1866317

[33] Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S.,
Sadeghi, A.R., Shastry, B.: Practical and Lightweight
Domain Isolation on Android. In: Proceedings of the
1st ACM workshop on Security and privacy in
smartphones and mobile devices. pp. 51–62. SPSM
’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2046614.2046624

[34] Coverity Inc.: Coverity Scan 2010 Open Source
Integrity Report. http://www.coverity.com/html/pr
ess/coverity-scan-2010-report-reveals-high-ris

k-software-flaws-in-android.html (2010)

[35] Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.:
Android permissions demystified. In: Proceedings of
the 18th ACM conference on Computer and
communications security. pp. 627–638. CCS ’11, ACM,
New York, NY, USA (2011),
http://doi.acm.org/10.1145/2046707.2046779

[36] Kelley, P., Consolvo, S., Lorrie, C., Jung, J., Sadeh,
N., Wetherall, D.: An conundrum of permissions:
Installing applications on an android smartphone.
Workshop on Usable Security (2012)

[37] Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A.,
Peter, M.: L4Android: A Generic Operating System
Framework for Secure Smartphones. In: Proceedings
of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices. SPSM ’11 (2011)

[38] Symantec: Internet security threat report. Tech. rep.
(April 2013), http://www.symantec.com/content/en/
us/enterprise/other_resources/b-istr_main_r
eport_v18_2012_21291018.en-us.pdf

