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On quadratic stability of state-dependent planar

switching systems∗

R. Shorten†, C. King‡, K. Wulff§ and O. Mason¶

Abstract

In this paper we consider the stability of a class of switched systems.

Specifically, we ask the following question. Given a partition of the state

space, and a set of linear dynamics, each of which are active in parts of

the state space in a manner governed by the partition, does there exist a

quadratic Lyapunov function for the resulting system? For planar systems

with conic partitions and two dynamics, necessary and sufficient conditions

are given for such a Lyapunov function. Examples are given to illustrate

our results.

1 Introduction

Recent years have witnessed great interest in stability problems arising in the
study of switched and hybrid systems; see [1] for a review of recent results and
open problems in this area. While most authors have focused on linear switched
systems, the dynamics of which are constructed by switching between a finite
number of vector fields arbitrarily quickly, a growing number of researchers are
studying non-linear problems. Among these, the problem of state-dependent
switching between linear vector fields represents an important problem (of the
Popov type) that arises frequently in practice.

This latter problem arises if the rule for switching between the constituent linear
systems of a switched system is determined by the state vector of the system;
consequently, we say that the switching is state dependent. Loosely speaking, the
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stability problems associated with this type of switching regime can be divided
into two classes. In the first of these, the state space is partitioned by a number
of hyper-surfaces that determine the mode switches in the system dynamics, and
the problems is to analyse the stability of the time-varying system defined in
this way. In the second class of problem we are concerned with finding state-
dependent rules for switching between a family of unstable systems that result in
stability. Thus, in the former case, a partition of the state space is specified and
the problem is to determine the stability of the piecewise linear system defined
by that partition, while in the latter case the aim is to find stabilizing state-
dependent rules for switching between potentially unstable systems.

Before proceeding it is worth pointing out that problems in this latter category
have been the subject of some discussion in the hybrid system community. Well
known papers by Feron [2], DeCarlo [3] and others, and the more recent book
by Sun and Ge [4], have all dealt with this problem with some success. How-
ever, aside from some notable LMI based numerical approaches [5], the former
problem, despite its evident practical significance, has received considerably less
attention. Our objective in writing this paper is to begin the task of addressing
this problem from a more theoretical perspective. As this is our initial thrust in
this direction, our study begins with a somewhat simplified version of the afore
mentioned general problem. Specifically, we consider planar systems where the
state space partition is constructed using rays passing through the origin, and
different linear dynamics are active in the regions between these rays. Given this
basic set-up, we then ask for, and obtain, necessary and sufficient conditions for
the existence of a quadratic Lyapunov function for the resulting nonlinear system.

While this paper considers planar systems, we believe the results to be of general
significance. Firstly, a thorough understanding of the second order case is usually
very revealing and is an important preliminary step for understanding higher
dimensional cases. Secondly, the techniques that we use are not restricted to
two dimensions and can be used to study higher order systems as well (see our
work on the common quadratic Lyapunov function problem [6, 7]). Finally, as we
shall see, our results are a natural extension of our previous work on the CQLF
existence problem, and of classical results such as the Circle Criterion, and hence
open up many exciting research directions for future study.

The structure of this note is as follows. We begin by presenting some basic
facts about quadratic Lyapunov functions. We then present our main result and
discuss its relationship with known results in the area. Finally, we conclude our
discussion with examples that illustrate the pertinent features of our results.
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2 Preliminary remarks and basic results

We begin our discussion by recalling facts that shall be useful in deriving the
main result in this paper.

(i) Lyapunov functions : A real n×n matrix A is called Hurwitz if its spectrum
lies in the open left half of the complex plane. For a symmetric positive definite
matrix P , the function xT Px defines a quadratic Lyapunov function (QLF) for
the dynamic system ΣA : ẋ = Ax, if PA+AT P is negative definite. By allowing a
small abuse of notation we say that P is a QLF for A, meaning that the function
V (x) = xT Px is a QLF for the dynamic system ΣA.

(ii) The cone of Lyapunov functions L(A) : It is well known that A is Hur-
witz if and only if there exists a QLF for A. Define the set of all such QLF
matrices

L(A) = {P = P T > 0 |PA + AT P < 0}. (1)

Then L(A) ⊂ Pn(IR) ⊂ Sn(IR), where Sn(IR) is the space of n × n symmetric
matrices, and Pn(IR) is the set of symmetric positive definite matrices. The set
L(A) is an open convex cone in Sn(IR). Also Sn(IR) is isomorphic to n(n +
1)/2-dimensional Euclidean space with the inner product 〈A, B〉 = TrAB. This
identification of symmetric matrices in Sn(IR) as “vectors” in IRn(n+1)/2 will play
an important role in our analysis.

(iii) Common quadratic Lyapunov functions (CQLF’s) : The CQLF prob-
lem is to find conditions which guarantee the existence of a common QLF for a
set of Hurwitz matrices {A1, . . . , AN}. The existence of a CQLF implies stability
of the dynamic system ẋ = Aτ(t)x where τ : IR+ 7→ {1, . . . , N} is any switching
function. Referring to the QLF cones defined above, an equivalent formulation of
the CQLF problem is to find conditions for a nonempty intersection of the cones
L(A1), . . . ,L(AN). This problem has a long and interesting history [1] and is of
consequence for the problem considered in this paper.

(iv) The cones L(A) and L(A−1): As Loewy ([8]) originally observed, L(A) =

L(A−1), that is any quadratic Lyapunov function for ΣA is also a quadratic
Lyapunov function for ΣA−1 . This congruence between ΣA and ΣA−1 means that
asking the question whether ẋ = Ax is quadratically stable, is identical to asking
the question whether ẋ = A−1x is quadratically stable.

Suppose now that xT (AT P +PA)x < 0 in some region of the state space Ω. Then

it follows from congruence that xT (AT −1
P + PA−1)x < 0 in a region of the state

space A(Ω), obtained by applying A to all vectors in Ω. The significance of this
observation is that asking the question whether there exists a matrix P = P T > 0
such that xT PAx < 0 for all x in some Ω, is equivalent to asking whether there
is a P = P T > 0 such that yT PA−1y < 0 for all y in A(Ω).
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(v) The boundary of L(A) : The boundary of L(A), denoted ∂L(A), consists

of positive semidefinite matrices P for which PA + ATP is negative semidefinite.
If x0 is in the kernel of P0A + AT P0 for some P0 ∈ ∂L(A) then

0 = xT
0 (P0A + AT P0)x0 = TrP0(Ax0x

T
0 + x0x

T
0 AT ) (2)

The set of all symmetric matrices M for which TrM(Ax0x
T
0 +x0x

T
0 AT ) = 0 defines

a hyperplane in Sn(IR), and it is easy to see that this hyperplane is tangent to
the QLF set L(A). In terms of the geometry of Sn(IR) regarded as a n(n + 1)/2-
dimensional vector space, this hyperplane is defined by its normal vector, which
is the matrix Ax0x

T
0 + x0x

T
0 AT . This normal vector is directed outward from

the set L(A). Furthermore every hyperplane of this form is tangent to L(A), for
every x ∈ IRn.

(vi) Separating hyperplanes and Lyapunov sets L(A): We will make use
of the following important fact, first proven in [6]. Let x, y, u, v be four non-zero
vectors in IRn such that for all M ∈ Sn(IR), xT My = −k2uTMv for some real k.
Then either

x = αu and y = −

(

k2

α

)

v (3)

for some real scalar α or

x = βv and y = −

(

k2

β

)

u, (4)

for some real scalar β. To see how this result is of consequence in this paper
suppose we have that xT MA1x = −k2yT MA2y for all M ∈ Sn(IR), and for some
invertible A1 and A2. Then the above result implies that either some convex
combination of A1 and A2 is singular or some convex combination of A1 and A−1

2

is singular. This situation will arise if the QLF sets L(A1) and L(A2) have a
common tangent hyperplane, and the hyperplane is determined in the form given
above in (v). In this case the normal vectors which define the hyperplanes in
Sn(IR) must be anti-parallel, implying that there is some real scalar k and vectors
x, y ∈ IRn for which

A1xxT + xxT AT
1 = −k2

(

A2yyT + yyTAT
2

)

. (5)

This equation is equivalent to xT MA1x = −k2yTMA2y for all M ∈ Sn(IR), and
hence leads to the singularity conditions described above.

(vii) The general joint QLF problem:

Turning to the subject of this paper, suppose now that Ω is a closed double cone
in IRn, so that if x ∈ Ω then also λx ∈ Ω for all λ ∈ IR. Given a real n×n matrix
A, define the QLF set for the pair (A, Ω) as follows:

L(A, Ω) = {P = P T > 0 | xT (PA + AT P )x < 0 all x ∈ Ω, x 6= 0} (6)

4
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ξ1

ξ2

Ω1

Ω2

x1

x2

Figure 1: Partition of the state space

Note that if the matrix A is Hurwitz then L(A, Ω) is non-empty. The joint QLF
problem for a collection of matrices Ai and regions Ωi is to find conditions for a
non-empty intersection of the sets {L(Ai, Ωi)}. If ∪iΩi = IRn, then the existence
of a joint QLF implies exponential stability of the state-dependent switching
system ẋ = A(x)x, where A(x) ∈ {A1, . . . , AN}, with A(x) = Ai implying x ∈ Ωi.

3 Main result

We now present our main results. As mentioned in the Introduction, our focus in
this paper is to consider perhaps the most basic version of the joint QLF problem
described in Item (vii) in the previous section. In our specific problem we shall
consider A1, A2 ∈ IR2×2 and let (Ω1, Ω2) be subsets of IR2 with Ω1 ∪ Ω2 = IR2

(although the solution can be readily extended to situations when this is not
the case). For definiteness we shall assume that Ω1 is characterised as follows.
Let x1, x2 be two vectors in IR2. Then x ∈ IR2 belongs to Ω1 if and only if
x = αx1 + βx2 with αβ ≥ 0. We shall describe such a region as a closed double
wedge in the plane. Thus, the boundary of Ω1 is the pair of lines parallel to x1

and x2, each passing through the origin. This setup is depicted in Figure 1. We
shall consider several different possibilities for the region Ω2.

Comment 1: Before proceeding it is worth noting that this is not an artificial
construction and that such problems arise frequently in practice. For example,
in the design of rollover prevention systems, one often designs switched control
systems where the vehicle roll angle and the load transfer ratio are used to control

5
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the currently active controller [9].

Comment 2: Given this basic formulation two problems of practical importance
are immediately evident.

• Problem 1 : Ω1 is a closed double wedge in the plane, and Ω2 = IR2. Here,
A(x) may be either A1 or A2 in Ω1 and is equal to A2 everywhere else.

• Problem 2 : Ω1 and Ω2 are both closed double wedges in the plane and
their union is IR2. Hence Ω2 is the closure of IR2 \ Ω1, and vice versa.

Note that while this problem statement does not preclude some of the matrices
having eigenvalues in the closed right half of the complex plane, we shall assume
in what follows that both A1 and A2 are indeed Hurwitz, noting that this corre-
sponds to most practical cases of interest, and furthermore that our results are
easily generalised to the case where some of the Ai are non-Hurwitz.

Given this basic setup we are interested in determining necessary and sufficient
conditions for the existence of a P ∈ P2(IR) such that the following inequalities

xT
(

AT
1 P + PA1

)

x < 0, x ∈ Ω1 (7)

yT
(

AT
2 P + PA2

)

y < 0, y ∈ Ω2 (8)

are simultaneously satisfied. The following two Theorems provide a complete
solution to this question.

3.1 Solution to Problem 1

Theorem 3.1 Let A1 and A2 be 2 × 2 Hurwitz matrices. Let Ω1 ⊂ IR2 be the
closed double wedge region defined by the vectors x1, x2. Denote by A1(Ω1) the
image of Ω1 under the map A1. Then there is a joint QLF for the pairs (A1, Ω1)
and (A2, IR

2) if and only if the following conditions are satisfied:

(a) there is no convex combination of A1 and A2, or of A1 and A−1
2 , which has

an eigenvector in Ω1 with non-negative eigenvalue

(b) there is no convex combination of A−1
1 and A2, or of A−1

1 and A−1
2 , which

has an eigenvector in A1(Ω1) with non-negative eigenvalue

(c) there is no nonzero vector y satisfying both equations

(aA1 + bA−1
1 + cA2)y = 0, (9)

ayyT + bA−1
1 yyT (A−1

1 )T = d1x1x
T
1 + d2x2x

T
2 (10)

for some nonnegative coefficients a, b, c, d1, d2 ≥ 0

6
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Comment 3: Although the conditions (a), (b), (c) of Theorem 3.1 are necessary
and sufficient for the existence of a QLF, some of these conditions are redundant.
For example Condition (a) with a positive eigenvalue is activated only when
x = x1 or x = x2. However we have written the conditions in this more general
form because it allows a clear and unified statement of the results.

Comment 4: In the case where x1 and x2 are anti-parallel, so that Ω1 is itself
IR2, Problem 1 reduces to the standard CQLF problem for a pair of 2×2 matrices,
the solution to which is given in [10, 11]. For this case, the minimal necessary

conditions of Theorem 3.1 can be combined into the single condition that
(

λ1A1+

λ2A2 + λ3A
−1
1 + λ4A

−1
2

)

is nowhere singular for all non-negative λ1, λ2, λ3, λ4,

which is equivalent to the solution given in [10, 11].

Comment 5: It is evident that the conditions given in Theorem 3.1 are necessary
for the existence of a joint QLF. For example if (A1 + λA2)x = k2x for some
x ∈ Ω1, and some λ > 0, then xT PA1x and xT PA2x cannot both be negative
for any positive definite P , meaning that L(A1, Ω1) and L(A2) must be disjoint.
Similar reasoning applies to the other conditions in Theorem 3.1.

Comment 6: Other necessary conditions for the existence of P can be derived
in a similar fashion. For example, it follows from the congruence argument in
Item (iv), and from the previous comment, that if a positive matrix P = P T

of the required form exists, then xT P
(

A1 + k2A2

)

−1

x < 0 for all x in some re-

gion Θ. In the case where Θ and Ω1 overlap, then this immediately implies that
A1 + k2A2 + m2A−1

1 may not be singular in some region. Conditions similar to
(c) arise in this way.

3.2 Solution to Problem 2

Our second result concerns Problem 2; namely, the two pairs (A1, Ω1) and (A2, Ω2),
where A1, A2 are 2×2 Hurwitz matrices, and Ω1, Ω2 are the complementary closed
double wedge regions defined by two vectors x1, x2 ∈ IR2. Note that Ω1 and Ω2

are closed by definition, so their intersection is the two rays parallel to the vectors
x1 and x2. Define C12 to be the set of all positive combinations of the projection
matrices x1x

T
1 and x2x

T
2 , that is

C12 = {ax1x
T
1 + bx2x

T
2 : a, b ≥ 0} (11)

As before we denote by A(Ω), the image of the region Ω under the action of the
matrix A.

7
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Theorem 3.2 Let A1 and A2 be 2 × 2 Hurwitz matrices. Let Ω1 ⊂ IR2 be the
closed double wedge region between two vectors x1, x2, and let Ω2 ⊂ IR2 be the
closure of IR2 \Ω1. Then there is a joint QLF for the pairs (A1, Ω1) and (A2, Ω2)
if and only if the following conditions are satisfied:

(a) there is no convex combination of A1 and A2 which has an eigenvector in
Ω1 ∩ Ω2 with non-negative eigenvalue

(b) there is no convex combination of A1 and A−1
2 which has an eigenvector in

Ω1 ∩ A2(Ω2) with non-negative eigenvalue

(c) there is no convex combination of A−1
1 and A2 which has an eigenvector in

A1(Ω1) ∩ Ω2 with non-negative eigenvalue

(d) there is no convex combination of A−1
1 and A−1

2 which has an eigenvector
in A1(Ω1) ∩ A2(Ω2) with non-negative eigenvalue

(e) there is no nonzero vector y ∈ Ω2 satisfying both equations

(aA1 + bA2 + cA−1
1 − dIn)y = 0, (12)

ayyT + cA−1
1 yyT (A−1

1 )T ∈ C12 (13)

for some nonnegative coefficients a, b, c, d ≥ 0

(f) there is no nonzero vector x ∈ Ω1 satisfying both equations

(aA1 + bA2 + cA−1
2 − dIn)x = 0, (14)

bxxT + cA−1
2 xxT (A−1

2 )T ∈ C12 (15)

for some nonnegative coefficients a, b, c, d ≥ 0

(g) there is no nonzero vector z ∈ A2(Ω2) satisfying both equations

(aA1 + bA−1
1 + cA−1

2 − dIn)z = 0, (16)

azzT + bA−1
1 zzT (A−1

1 )T ∈ C12 (17)

for some nonnegative coefficients a, b, c, d ≥ 0

(h) there is no nonzero vector w ∈ A1(Ω1) satisfying both equations

(aA−1
1 + bA2 + cA−1

2 − In)w = 0, (18)

bwwT + cA−1
2 wwT (A−1

2 )T ∈ C12 (19)

for some nonnegative coefficients a, b, c, d ≥ 0

8
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(i) denote by S a 2 × 2 matrix of the form

S =

[

s11 s12

−s12 s22

]

,

where s11, s22 are nonnegative. Define wi = A1xi, zi = A2xi for i = 1, 2.
Then there are no relations of the following forms

[

axi

bzj

]

= S

[

xi

xj

]

, (20)

[

awi

bzj

]

= S

[

wi

xj

]

, (21)

[

axi

bwj

]

= S

[

zi

xj

]

, (22)

[

axi

bxj

]

= S

[

wi

zj

]

, (23)

where a, b, c, d ≥ 0.

4 Proof of main results

In this Section we present the proof of the main results given in the previous
section. To aid exposition we first present a mathematical preamble, in order to
give the geometric ideas behind the proofs and to explain the intuition behind
their logic.

4.1 Preamble

The set of positive definite symmetric matrices: The basic idea in our proof
is to exploit the geometry of the convex cones that are generated by the Lyapunov
equation. To this end it is convenient to represent matrices M ∈ S2(IR) as points
in the plane. If we label the coordinates in the plane (m12, m22), then each point
defines a symmetric matrix of the form

M =

[

1 m12

m12 m22

]

. (24)

9
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m12

m22
m22 = m2

12

M1

M1

M3

L(A)

Figure 2: The closed set L(A)

Figure 2 depicts three such points, and the parabola m22 = m2
12. All points on

this parabola correspond to positive semi-definite matrices. Points on the positive
side of this locus (for example M1) correspond to positive definite matrices, while
points on the negative side of the locus correspond to indefinite matrices (for
example M2). It is evident that the set of all positive semi-definite symmetric
matrices is convex.

The set L(A) : Figure 2 depicts the set L(A). This is the set of all quadratic

Lyapunov functions for the dynamic system ΣA, namely all P = P T > 0 such that
AT P + PA is negative definite. Under the assumption that A is not a triangular
matrix, this set is the interior of an ellipse [10]. It is also evident that this set is
convex.

The set L(A, Ω) : Now we consider the set L(A, Ω). Recall that this is the set of

matrices P = P T > 0 for which xT PAx is negative for all x ∈ Ω. It immediately
follows that this set is convex and that L(A) is a subset of L(A, Ω). It also
follows that L(A, Ω) lies between the hyperplanes H1 : {P : xT

1 PAx1 = 0} and
H2 : {P : xT

2 PAx2 = 0}, and that these hyperplanes are tangent to the set.
These hyperplanes define lines in the plane, and the possible configurations for
L(A, Ω) are shown in Figure 3, Figure 4, and Figure 5.

Tangent planes to L(A, Ω): The basic problem considered in this paper is to
find verifiable conditions which determine if two cones L(A1, Ω1) and L(A2, Ω2)
intersect. We address this problem by considering tangent planes to these sets.
Clearly, the boundary of L(A, Ω) may have three parts. These are represented in
Figure 7 by the points (a), (b), and (c) respectively. Point (a) denotes a point on
the boundary where H1 and H2 intersect, that is where both xT

1 PAx1 = 0 and

10
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m12

m22
m22 = m2

12

L(A, Ω) xT
1 PAx1 = 0

xT
2 PAx2 = 0

Figure 3: The closed set L(A, Ω)

xT
2 PAx2 = 0. Point (b) corresponds to a point on the boundary where either

H1 or H2 intersects the parabola of semi-definite matrices. Finally, point (c)
corresponds to a point that also lies on the boundary of L(A).

The representation (24) defines a one-to-one correspondence between lines in the
plane and hyperplanes in S2(IR), and every hyperplane in S2(IR) is uniquely de-
termined by its normal “vector”, which is itself a symmetric matrix. For example
the tangent line H1 : {P : xT

1 PAx1 = 0} is described by its normal vector
Ax1x

T
1 + x1x

T
1 AT . Using this representation we get the following descriptions of

tangent lines to the boundary of L(A, Ω) at the points (a), (b), (c):

(a) the tangent is a convex combination of H1 and H2, so its normal is

k2(Ax1x
T
1 + x1x

T
1 AT ) + m2(Ax2x

T
2 + x2x

T
2 AT ) (25)

for some real k, m.

(b) the tangent is a convex combination of Hi and the tangent to the parabola at
this point, for i ∈ {1, 2}. The tangent to the parabola is either xT

1 Px1 = 0
or (Ax1)

T PAx1 = 0, which corresponds to the normal vectors x1x
T
1 or

Ax1x
T
1 AT directed toward the positive definite matrix side of the parabola.

Hence the tangent is one of the following:

k2(Ax1x
T
1 + x1x

T
1 AT ) − m2x1x

T
1 ,

k2(Ax1x
T
1 + x1x

T
1 AT ) − m2Ax1x

T
1 AT ,

k2(Ax2x
T
2 + x2x

T
2 AT ) − m2x2x

T
2 ,

k2(Ax2x
T
2 + x2x

T
2 AT ) − m2Ax2x

T
2 AT (26)

11
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m12

m22
m22 = m2

12

L(A, Ω) xT
1 PAx1 = 0

xT
2 PAx2 = 0

Figure 4: The closed set L(A, Ω)

(c) at this point AT P + PA is negative semi-definite, hence the tangent is

AxxT + xxT AT , x ∈ Ω (27)

Simultaneous tangents : The basic idea that we exploit is that given two non-
intersecting sets L(A1, Ω1), L(A2, Ω2), we can find a separating hyperplane be-
tween them which is simultaneously tangent to both convex sets. By exploiting
our knowledge of the nature of the form of the tangents, we reveal verifiable
conditions on the matrices A1 and A2. One such case is depicted in Figure 7.

4.2 Proof of Theorem 3.1

As discussed in Comment 5, any nonzero solution of the conditions (a), (b), (c)
would imply that a QLF cannot exist. So it is sufficient to show that non-existence
of a QLF implies that at least one of these conditions must hold. Accordingly
we will assume that the sets L(A1, Ω1) and L(A2) are disjoint. These are open
convex sets, and we will assume initially that their closures are also disjoint. At
the end of the proof we will consider the case where their closures may intersect.
We denote their closures by L(A1, Ω1) and L(A2).

Using the two-dimensional representation (24), and the fact that L(A1, Ω1) and
L(A2) are disjoint, closed convex sets and one of them (L(A2)) is bounded, it
follows that there are infinitely many lines in the plane which separate these sets.
Among these separating lines there are two extreme cases which are simultane-
ously tangential to both sets. A line which is simultaneously tangential to the
two sets L(A1, Ω1) and L(A2) has two descriptions in terms of normal vectors

12



TU Berlin - Forschungsberichte der Fakultät IV - 2007/16

m12

m22
m22 = m2

12

L(A, Ω)

xT
1 PAx1 = 0

xT
2 PAx2 = 0

Figure 5: The closed set L(A, Ω)

in the space of symmetric matrices. These normal vectors must be oppositely
directed, since by assumption there is no joint QLF for the sets. The six possible
tangents for L(A1, Ω1) are listed in (25), (26) and (27). Every tangent for L(A2)
has the form A2yyT + yyTAT

2 for some y ∈ IR2. Setting a convex combination of
these vectors to zero leads to the six possible cases listed below:

(i)

A2yyT + yyTAT
2 + k2(A1x1x

T
1 + x1x

T
1 AT

1 ) + m2(A1x2x
T
2 + x2x

T
2 AT

1 ) = 0(28)

(ii)

A2yyT + yyTAT
2 + k2(A1x1x

T
1 + x1x

T
1 AT

1 ) − m2x1x
T
1 = 0 (29)

(iii)

A2yyT + yyTAT
2 + k2(A1x1x

T
1 + x1x

T
1 AT

1 ) − m2A1x1x
T
1 AT

1 = 0 (30)

(iv)

A2yyT + yyTAT
2 + k2(A1x2x

T
2 + x2x

T
2 AT

1 ) − m2x2x
T
2 = 0 (31)

(v)

A2yyT + yyTAT
2 + k2(A1x2x

T
2 + x2x

T
2 AT

1 ) − m2A1x2x
T
2 AT

1 = 0 (32)

(vi)

A2yyT + yyTAT
2 + A1xxT + xxT AT

1 = 0 (33)

13



TU Berlin - Forschungsberichte der Fakultät IV - 2007/16

m12

m22
m22 = m2

12

L(A, Ω)

xT
1 PAx1 = 0

xT
2 PAx2 = 0

a

b

c

Figure 6: The closed set L(A, Ω) with possible tangent points a, b, c

These six equations lead to the singularity conditions of Theorem (3.1), as we
now explain.

Equation (i) can be solved by first writing X = k2x1x
T
1 + m2x2x

T
2 so that it

becomes

A2yyT + yyTAT
2 + A1X + XAT

1 = 0 (34)

If X is semidefinite then this is a special case of Equation (vi), which we discuss
shortly. If X is positive definite then there is a unique λ > 0 and vector w such
that

X = λyyT + wwT (35)

Inserting this into (34) gives

(A2 + λA1)yyT + yyT (A2 + λA1)
T + A1wwT + wwTAT

1 = 0 (36)

Applying (3) and (4) (and noting that y 6= w) yields

(A2 + λA1 + αA−1
1 )y = 0 (37)

for some λ, α > 0. Together with (35) this leads to Condition (c) of Theorem 3.1.

Equations (ii) and (iv) are alike, and lead to similar conditions. Equation (ii)
can be written as

A2yyT + yyTAT
2 +

(

(k2A1 −
m2

2
In)x1x

T
1 + x1x

T
1 (k2A1 −

m2

2
In)T

)

= 0 (38)

14
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L(A2, Ω2)

a

b

c

Figure 7: Two sets L(A1, Ω1) and L(A2, Ω2)

where In is the n × n identity matrix. If y is parallel to x1 this leads to (k2A1 −
m2

2
In + αA2)x1 = 0 which is a special case of Condition (a). If y and x1 are not

parallel this leads to

(k2A1 −
m2

2
In + αA−1

2 )x1 = 0 (39)

which is again a special case of Condition (a). Equation (iv) leads to identical
conclusions with x1 replaced by x2, and so also leads to Condition (a).

Equations (iii) and (v) are also alike. Equation (iii) can be written as

A2yyT + yyTAT
2 + (k2A−1

1 −
1

2
m2In)A1x1x

T
1 A1T

+A1x1x
T
1 AT

1 (k2A−1
1 −

1

2
m2In)T = 0 (40)

If y and x1 are parallel this leads to (k2A−1
1 − m2

2
In + αA2)A1x1 = 0 which is a

special case of Condition (b). If y and x1 are not parallel it leads to

(k2A−1
1 −

m2

2
In + αA−1

2 )A1x1 = 0 (41)

and this again is a special case of Condition (b). Similar reasoning applies to
Equation (v).

Equation (vi) can be solved using (3) and (4) leading to the two possibilities
(A1 + λA2)x = 0, or (A1 + λA−1

2 )x = 0 with λ > 0. These are covered by
Condition (a) of the Theorem. This concludes the argument by showing that

15
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all possible cases of simultaneous tangent lines are covered by the Conditions
(a), (b), (c). Since the existence of these lines is equivalent to the disjointness
of the sets L(A1, Ω1) and (A2), this shows that the conditions are sufficient to
distinguish the two sets.

In the case where L(A1, Ω1) and L(A2) are disjoint but with intersecting bound-
aries again there must be at least one simultaneous tangent hyperplane. So the
above reasoning applies again and leads to the same conclusions.

4.3 Proof of Theorem 3.2

The strategy is the same as for Theorem 3.1, that is we identify lines in the plane
which can be simultaneous tangent vectors for both sets L(A1, Ω1) and L(A2, Ω2).
For these lines we equate the normal vectors arising from the tangential conditions
at both sets, and these lead to the spectral conditions in the Theorem. There are
now many possibilities, corresponding to the cases (25), (26) and (27) for both
sets. We can exclude the case where (25) occurs for both sets: there are always
two simultaneous tangent vectors, and at most one of these can pass through
both vertices where the hyperplanes Hi intersect, so in such a case we choose
the alternative. All other cases must be considered, and this leads to the many
conditions of the Theorem.

We omit the reasoning that leads from a simultaneous tangent line to a singularity
condition, as this is the same as in the proof of Theorem 3.1. Instead we indicate
which conditions correspond to which tangent vectors.

(25) and (26): this leads to conditions (e), (f), (g), (h).

(25) and (27): this leads to conditions (a), (e), (f).

(26) and (26): this leads to condition (i).

(26) and (27): this leads to conditions (a) (b) (c), (d).

(27) and (27): this leads to conditions (a), (b), (c).

5 Examples and some implications of results

In this section we present two examples to illustrate our results. The first example
is to determine whether or not a given system is quadratically stable. The second
example is more abstract and is given to illustrate the power of our methodology.

16
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Figure 8: Joint QLF for the systems A1 and A2 for the partition Ω1, Ω2.

Example 1 Consider the System with

A1 =

(

−0.4 −1.2
−0.1 −0.4

)

A2 =

(

−1.3 −0.2
−1.3 −0.4

)

(42)

where A1 is active in the whole state-space, i.e. Ω1 = R
2×2 and A2 is active in the

Region Ω2 = {x | x = αx1 + βx2, α, β ≥ 0} with x1 = [0.1 1]T and x2 = [1 0.1]T .

We can verify that the conditions of Theorem 3.1 are satisfied and that

P =

(

1.0 0.0027
0.0027 0.4817

)

(43)

satisfies conditions given in the theorem. Figure 8 shows a levelset of the Lya-
punov function V (x) = xT Px. The dashed arrows indicate the flow of system A1

on this level set and the solid arrows are the flow of system A2. Note, that the
flow of A2 only is negative with respect to V in the region Ω2.

The approach advocated here extends to other stability problems. For example,
consider the following common piecewise quadratic stability problem defined in
the following example.

17
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Example 2 The techniques developed in this paper can be applied to various
stability problems for switched linear systems. Consider a partition of IR2 defined
by x1 and x2 as in Figure 1. This partition defines two closed double wedged
regions Ω1 and Ω2. Consider the case where A1 and A2 are be active in the

whole state-space and switching occurs in an arbitrary fashion. We
shall determine necessary and sufficient conditions for the existence of a common
piecewise quadratic Lyapunov function, i.e. for the existence of P1 = P T

1 > 0 and
P2 = P T

2 > 0, such that

xT
(

AT
i P1 + P1Ai

)

x < 0, x ∈ Ω1, (44)

xT
(

AT
i P2 + P2Ai

)

x < 0, x ∈ Ω2. (45)

are simultaneously satisfied for i = 1, 2 where A1 and A2 are both assumed to
be Hurwitz matrices. Variations on this problem arise in different forms in the
study of piecewise quadratic Lyapunov functions.

The geometry of this problem is depicted in Figure 9. Certainly there exists a
common piecewise quadratic Lyapunov function of A1 and A2 if L(A1, Ω1) ∩
L(A2, Ω2) 6= ∅ and L(A1, Ω2) ∩ L(A2, Ω1) 6= ∅; or if L(Ai) ∩ L(Aj , Ω1) ∩
L(Aj, Ω2) 6= ∅, i 6= j. By appealing to simple geometric arguments it follows
that former condition implies by the latter relation. But the latter relation is
the condition that we obtained for the existence of a simple quadratic Lyapunov
function for Problem 1, i.e. where Ai active in the whole state-space and Aj

is active in either Ω1 or Ω2. The implication of this interesting observation is
that the existence of a common piecewise quadratic Lyapunov function implies the
existence of a simpel QLF of the aforementioned form. In other words, certain
stability problems may be replaced by related ones for the purpose of determining
whether certain types of Lyapunov functions exist. This observation is consistent
with celebrated stability criteria such as the Popov criterion and off-axis circle
criterion.

6 Conclusions

In this paper we presented stability results for a class of two dimensional state de-
pendent switched systems. These results are important for a number of reasons.
Firstly, as we have argued, a thorough understanding of the second order case
is usually very revealing and is an important preliminary step for understanding
higher dimensional cases. Given the nature of the discussion here, and complexity
of the second order problem, it is clear that studying this case has been a worth-
while exercise, and is likely to provide important insights into studying higher
dimensional systems. Secondly, the techniques that we use are not restricted to
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L(A1)

L(A2, Ω1)

L(A2, Ω2)

Figure 9: Marginal case for Example 2, where L(A1) is just touching L(A2, Ω1).

two dimensions and can be used to study higher order systems as well. Our ap-
proach is based on a detailed knowledge of the sets generated by the Lyapunov
equation, and the implications of separating hyper-planes that are parameterised
in a certain manner. Finally, our results, which are a natural extension of our
previous work on the CQLF existence problem, and of classical results such as the
Circle Criterion, reveal connections between many different stability problems,
and hence open up many exciting research directions for future study.
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