
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Generalized Typed Attributed Graph
Transformation Systems based on Morphisms

Changing Type Graphs and Data Signature

Hartmut Ehrig, Karsten Ehrig,
Claudia Ermel, and Ulrike Prange

Bericht-Nr. 2009-08
ISSN 1436-9915

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Generalized Typed Attributed Graph
Transformation Systems based on Morphisms
Changing Type Graphs and Data Signatures

Hartmut Ehrig1, Karsten Ehrig2, Claudia Ermel1, and Ulrike Prange1

1 Technische Universität Berlin, Germany
ehrig|lieske|uprange@cs.tu-berlin.de
2 University of Leicester, United Kingdom

karsten@mcs.le.ac.uk

Abstract. Our aim is to extend the framework of typed attributed
graphs in [1] to generalized typed attributed graphs. They are based on
generalized attributed graph morphisms, short GAG-morphisms, which
allow to change the type graph, data signature, and domain. This al-
lows to formulate type hierarchies and views of visual languages defined
by GAG-morphisms between type graphs, short GATG-morphisms. In
order to study
– interaction and integration of views,
– restriction of views along type hierarchies,
– restriction and integration of consistent view models and
– reflection of behaviour between different typed attributed graph

transformation systems
we present suitable conditions for the construction of pushouts and pull-
backs, and special van Kampen properties in the category GAGraphs of
generalized attributed graphs. Moreover, we show that (GAGraphs,M)
and (GAGraphsATG,M) are adhesive HLR categories for the class M
of injective, persistent, and signature preserving morphisms.

1 Generalized Attributed Graph Morphisms

According to [1] attributed graphs are defined by

Definition 1 (Attributed graph). An attributed graph AG = (G,DSIG,D)
consists of

– an E-graph G = (VG, VD, EG, ENA, EEA, (sourcej , targetj)j∈{G,NA,EA}),
– a data signature DSIG = (S, SD, OP) with attribute value sorts SD ⊆ S,

and

– a DSIG-algebra D such that
�
∪

s∈SD

Ds = VD.

In addition to attributed graph morphisms as presented in [1], generalized
attributed graph morphisms are mappings of attributed graphs with possibly
different data signatures.

Definition 2 (Generalized attributed graph morphism). Given attributed
graphs AGi = (Gi, DSIGi, Di) for i = 1, 2, a generalized attributed graph
morphism (GAG-morphism) f = (fG, fS , fD) : AG1 → AG2 is given by

– an E-graph morphism fG : G1 → G2,
– a signature morphism fS : DSIG1 → DSIG2, and
– a generalized homomorphism fD : D1 → D2, which is a DSIG1-morphism
fD : D1 → VfS (D2) with fD = (fD,s1 : D1

s1 → D2
fS(s1)

)s1∈S1

with the following compatibility property: fS(S1
D) ⊆ S2

D and the following dia-
gram commutes for all s1 ∈ S1

D.

D1
s1

D2
fS(s1)

V 1
D V 2

D

fD,s1

fG,VD

=

Definition 3 (Category GAGraphs). Attributed graphs with generalized at-
tributed graph morphisms and the usual definition of composition and identity
form the category GAGraphs.

According to [1], attributed type graphs and typed attributed graphs are
defined by

Definition 4 (Attributed type graph). An attributed type graph ATG =
(TG,DSIG,ZDSIG) is an attributed graph, where ZDSIG is the final DSIG-

algebra, i.e. ZDSIG,s = {s} for all s ∈ S, and VD =
�
∪s∈SD

ZDSIG,s = SD.

Definition 5 (Typed attributed graph). Given an attributed type graph
ATG, a typed attributed graph TAG = (AG, t) (over ATG) is given by an at-
tributed graph AG and a GAG-morphism t : AG→ ATG.

Definition 6 (Typed attributed graph morphism). Given an attributed
type graph ATG and typed attributed graphs TAGi = (AGi, t : AGi → ATG)
over ATG for i = 1, 2, a typed attributed graph morphism f : TAG1 → TAG2 is
given by a GAG-morphism f : AG1 → AG2 such that t2 ◦ f = t1.

Definition 7 (Category GAGraphsATG). Given an attributed type graph
ATG, typed attributed graphs over ATG and typed attributed graph morphisms
form the category GAGraphsATG.

Remark 1. GAGraphsATG
∼
= GAGraphs\ATG (slice category).

As a special case of Def. 2 and Def. 4 we obtain

Definition 8 (Generalized attributed type graph morphism). Given at-
tributed type graphs ATGi = (TGi, DSIGi, ZDSIGi) for i = 1, 2, a generalized
attributed type graph morphism (GATG-morphism) f = (fG, fS , fD) : ATG1 →
ATG2 is given by

2

– an E-graph morphism fG : TG1 → TG2,
– a signature morphism fS : DSIG1 → DSIG2, and
– a generalized homomorphism fD : ZDSIG1 → ZDSIG2 , which is uniquely

determined by fD,s1(s1) = fS(s1) for all s1 ∈ S1.

Remark 2. A generalized attributed type graph morphism f is also a generalized
attributed graph morphism since the compatibility property is automatically
satisfied. This is shown in the following diagram, where fG,VD

(s1) = fS(s1) for
all s1 ∈ S1

D and fD, fG,VD
are uniquely determined by fS .

{s1} {fS(s1)}

S1 = V 1
D V 2

D = S2

fD,s1

fG,VD

=

Definition 9 (properties of GAG-morphisms). A GAG-morphism f =
(fG, fS , fD) : (G1, DSIG1, D1)→ (G2, DSIG2, D2) is called

1. injective, if fG, fS, fD are injective,
2. signature preserving, if fS is isomorphic,
3. persistent, if fD is isomorphic.

Remark 3. By definition we have

– f AG-morphism ⇔ f signature preserving GAG-morphism,
– f AG-morphism inM⇔ f injective, persistent, signature preserving GAG-

morphism,
– f GATG-morphism ⇒ f persistent.

Theorem 1 (Pullback construction in GAGraphs). Given GAG-
morphisms f : AG2 → AG3 and g : AG1 → AG3 then the following construction
(1) is a pullback in GAGraphs. Moreover, the pullback construction preserves
injective, signature preserving, and persistent morphisms.

Construction.

AG0 = (G0, DSIG0, D0) (G1, DSIG1, D1) = AG1

AG2 = (G2, DSIG2, D2) (G3, DSIG3, D3) = AG3

f ′=(f ′G,f
′
S ,f
′
D)

f=(fG,fS ,fD)

g′=(g′G,g
′
S ,g
′
D) g=(gG,gS ,gD)(1)

In the G- and S-components, we have pullbacks in the categories EGraphs
and Signatures which are constructed componentwise in Sets, with attribute
value sorts S0

D as the corresponding pullback of the attribute value sorts. In
the D-component, we have the pullback (2) of generalized algebras given by the
pullback (3) in DSIG0-Algs which is constructed componentwise in Sets, with
hS = gS ◦ f ′S = fS ◦ g′S .

3

D0 D1

D2 D3

D0 Vf ′S (D1)

Vg′S (D2) VhS
(D3)

f ′D

fD

g′D gD

f ′D

Vg′
S
(fD)

g′D Vf′
S
(gD)(2) (3)

Proof. For the well-definedness of this construction we have to find an injective
i : S0

D → S0 and injective is0 : D0
s0 → V 0

D for all s0 ∈ S0
D such that the

compatibility diagrams (4) and (5) commute and we have (6)
�
∪

s0∈S0
D

D0
s0 = V 0

D

with coproduct injections is0 . Finally the universal pullback properties have to
be shown.

D0
s0

D1
f ′S(s0)

V 0
D V 1

D

D0
s0

D2
g′S(s0)

V 0
D V 2

D

f ′D,s0

f ′G,VD

is0

g′D,s0

g′G,VD

is0(4) (5)

Consider the pullbacks (7) and (8) as the pullbacks of the sorts and the
attribute value sorts in Sets, respectively. Since (7) is a pullback and (8) com-
mutes we obtain a unique i : S0

D → S0 such that (9) and (9′) commute. For
x, y ∈ S0

D with i(x) = i(y) we have that π1(x) = f ′S(i(x)) = f ′S(i(y)) = π1(y)
and π2(x) = g′S(i(x)) = g′S(i(y)) = π2(y). Since (8) is also a pullback it follows
that x = y, hence i is injective.

S0
D S1

D

S2
D S3

D

S0
D S1

D

S2
D S3

D

S0 S1

S2 S3

f ′S

g′S gS

fS

π1

π2

π1

π2

i

(8) (7)(9)

(9′)

By construction of D0 as pullback in (2) and (3) we obtain for all s0 ∈
S0
D diagram (10), and (11) and (12) are the compatibility diagrams for GAG-

morphisms f and g, respectively. Moreover, let (13) be the VD-component of the
pullback in EGraphs, which leads to a unique is0 : D0

s0 → V 0
D such that (4)

and (5) commute, where the left diagram shows that the outer diagram on the
right commutes.

4

D0
s0

D2
g′S(s0)

V 2
D

D1
f ′S(s0)

D3
hS(s0)

V 3
D

V 1
D

V 3
D

V 3
D

D0
s0

D2
g′S(s0)

V 2
D

D1
f ′S(s0)

V 0
D

V 1
D

V 3
D

f ′D,s0

fD,g′
S

(s0)

fG,VD
id

g′D,s0
gD,f′

S
(s0)

gG,VD

id

f ′D,s0

g′D,s0

g′G,VD

f ′G,VD

fG,VD

gG,VD

is0(10)

(11)

(12)

=

(4)

(5)

(13)

To show that is0 is injective, suppose we have d1, d2 ∈ D0
s0 with is0(d1) =

is0(d2). Then we have that

– (4) commutes and D1
f ′S(s0)

→ V 1
D being injective implies that f ′D,s0(d1) =

f ′D,s0(d2) and

– (5) commutes and D2
g′S(s0)

→ V 2
D being injective implies that g′D,s0(d1) =

g′D,s0(d2).

By construction, (10) is a pullback in Sets and hence f ′D,s0 and g′D,s0 are jointly
injective. Thus we have d1 = d2 and is0 is injective.

It remains to show (6) or, more precisely, that the injective is0 : D0
s0 → V 0

D

are coproduct injections, i.e.

1. is0(D0
s0) ∩ is′0(D0

s′0
) = ∅ for all s0 6= s′0 ∈ S0

D and

2. for all s0 ∈ S0
D, is0 are jointly surjective.

1. Assume x0 ∈ D0
s0 , x′0 ∈ D0

s′0
with is0(x0) = is′0(x′0) = x ∈ V 0

D with

f ′G,VD
(x) = x1 ∈ V 1

D, g′G,VD
(x) = x2 ∈ V 2

D. Then x1 ∈ D1
f ′S(s0)

∩D1
f ′S(s′0)

by

(4) for s0 and s′0, and V 1
D =

�
∪

s1∈S1
D

D1
s1 implies f ′S(s0) = f ′S(s′0). Analogously,

x2 ∈ D2
g′S(s0)

∩D2
g′S(s′0)

by (5), and V 2
D =

�
∪

s2∈S2
D

D2
s2 implies g′S(s0) = g′S(s′0).

From the pullback (7) we obtain that f ′S and g′S are jointly injective, hence
it follows that s0 = s′0, which is a contradiction.

2. Given x ∈ V 0
D with f ′G,VD

(x) = x1 ∈ V 1
D, g′G,VD

(x) = x2 ∈ V 2
D, and x3 =

gG,VD
(x1) = fG,VD

(x2) ∈ V 3
D. We have to find s0 ∈ S0

D and x0 ∈ D0
s0 with

is0(x0) = x.

x1 ∈ V 1
D and V 1

D =
�
∪

s1∈S1
D

D1
s1 , and x2 ∈ V 2

D and V 2
D =

�
∪

s2∈S2
D

D2
s2 imply

∃!s1 ∈ S1
D with x1 ∈ D1

s1 and ∃!s2 ∈ S2
D with x2 ∈ D2

s2 , respectively. By
(13) and compatibility of f and g we have that gG,VD

(x1) = gD,s1(x1) =
x3 = fG,VD

(x2) = fD,s2(x2). x3 ∈ V 3
D implies that there exists a unique

s3 ∈ S3
D with x3 ∈ D3

s3 . Using gD,s1(x1) = x3 ∈ D3
s3 implies s3 = gS(s1)

by compatibility of g. Similar fD,s2(x2) = x3 ∈ D3
s3 implies s3 = fS(s2) by

compatibility of f .

5

From the signatur pullback and gS(s1) = s3 = fS(s2) we obtain a unique
s0 ∈ S0

D with f ′S(s0) = s1 and g′S(s0) = s2. From the data type pullback we
obtain the following pullback (14) in Sets.

D2
s2 D3

s3

D0
s0 D1

s1

f ′D,s0

g′D,s0
gD,s1

fD,s2

(14)

(14) being a pullback and gD,s1(x1) = x3 = fD,s2(x2) imply that there exists
a unique x0 ∈ D0

s0 with f ′D,s0(x0) = x1 and g′D,s0(x0) = x2. Now we have that
f ′G,VD

◦ is0(x0) = f ′D,s0(x0) = x1 by (4) and g′G,VD
◦ is0(x0) = g′D,s0(x0) = x2

by (5). By construction we have f ′G,VD
(x) = x1 and g′G,VD

(x) = x2. Since
(13) is a pullback it follows that is0(x0) = x as required.

It remains to show the universal pullback property. The induced morphism
k = (kG, kS , kD) is unique in each component by pullback construction in each
component, and it suffices to show the compatibility property for k : AG4 →
AG0. We have to show the commutativity of (15) for all s4 ∈ S4

D.

AG2 AG3

AG0 AG1

AG4

f ′

g′ g

f

k
k1

k2

(1)

(15+16), (15+17), (16) and (17) commute by compatibility of k1, k2, f ′ and
g′, respectively. Hence (15) is equalized by f ′G,VD

and g′G,VD
, which are jointly

monomorphisms from the pullback in the VD-component. This implies that (15)
commutes.

D4
s4

V 4
D

D0
kS(s4)

V 0
D

D1
f ′S(kS(s4))

V 1
D

D4
s4

V 4
D

D0
kS(s4)

V 0
D

D2
g′S(kS(s4))

V 2
D

kD,s4
f ′D,kS(s4)

kG,VD f ′G,VD

kD,s4
g′D,kS(s4)

kG,VD g′G,VD

(15) (16) (15) (17)

Moreover, the pullback constructions preserve injectivity and isomorphisms
of all the different components. This implies that injective, signature preserving,
and persistent GAG-morphisms are preserved.

6

Remark 4. Given a commutative diagram (1) in GAGraphs as in the construc-
tion with pullbacks in the G-, S-, and D-components then (1) is a pullback
in GAGraphs. This is a consequence of the fact that the universal pullback
property in GAGraphs above only requires pullbacks in each component.

Example 1. Given a GATG-morphism f : ATG1 → ATG2 and a signature pre-
serving g : AG2 → ATG2, by definition of GATG-morphisms this means that f
is persistent, which implies that also f ′ is persistent and g′ is signature preserv-
ing in the following pullback (1), where G1 is the pullback of G2 and TG1 along
TG2 in EGraphs, and persistency of f ′ implies D1

s1 = D2
f ′S(s1)

for all s1 ∈ S1,

and hence D1 ∼= Vf ′S (D2).

AG1 = (G1, DSIG1, D1) (G2, DSIG2, D2) = AG2

ATG1 = (TG1, DSIG1, ZDSIG1) (TG2, DSIG2, ZDSIG2) = ATG2

f ′

f

g′ g(1)

Definition 10 (Forward and backward typing). Given a GATG-morphism
f : ATG1 → ATG2, then we have that

– the forward typing f> : GAGraphsATG1 → GAGraphsATG2 is given by

f>(AG1 t1−→ ATG1) = (AG1 t1−→ ATG1 f−→ ATG2),
– the backward typing f< : GAGraphsATG2 → GAGraphsATG1 is given by

f<(AG2 t2−→ ATG2) = (AG1 t1−→ ATG1), where t1 is given by the following
pullback (1) in GAGraphs.

AG1 AG2

ATG1 ATG2

f ′

f

t1 t2(1)

Remark 5. Note that t1 is signature preserving if this holds for t2, which allows
to restrict f< to f< : AGraphsATG2 → AGraphsATG1 . This restriction does
not hold for f>.

Theorem 2 (Forward and backward typing are adjoint). Given a GATG-
morphism f : ATG1 → ATG2 then forward typing f> is left adjoint to backward
typing f<

f> a f< : GAGraphsATG2 → GAGraphsATG1 .

Proof. Forward typing is a functor f> : GAGraphsATG1 → GAGraphsATG2

defined on morphisms h : (AG1
1, t

1
1)→ (AG1

2, t
1
2) by f>(h) = h : (AG1

1, f ◦ t11)→
(AG1

2, f ◦ t12).

7

For each (AG2, t2) in GAGraphsATG2 , we define the cofree construction
f<(AG2, t2) = (AG1, t1) by backward typing in pullback (1) in GAGraphs,
where the universal morphism u : f> ◦ f<(AG2, t2) = (AG1, f ◦ t1)→ (AG2, t2)
in AGraphsATG2 is given by u : AG1 → AG2.

AG1 AG2

ATG1 ATG2

u

f

t1 t2(1)

In order to show the universal property of the cofree construction let g :
f>(AG3, t3) = (AG3, f ◦ t3)→ (AG2, t2) in GAGraphsATG2 given by (2).

AG3 AG2

ATG1 ATG2

f>(AG3, t3) (AG2, t2)

f> ◦ f<(AG2, t2)

g

f

t3 t2

g

u
f>(g∗)

(2) (3)

We have to construct a unique g∗ : (AG3, t3) → f<(AG2, t2) = (AG1, t1) in
GAGraphsATG1 such that (3) commutes in GAGraphsATG2 . From pull-
back (1) and commutativity of (2) we obtain a unique g∗ : AG3 → AG1 in
GAGraphs such that (4) and (5) commute.

AG3

AG1 AG2

ATG1 ATG2

u

f

t1 t2

g∗ g

t3

(1)
(4)

(5)

Now g∗ : (AG3, t3) → f<(AG2, t2) = (AG1, t1) in GAGraphsATG1 means
exactly commutativity of (4). Commutativity of (3) in GAGraphsATG2 is
given by that of (5) in GAGraphs. This shows also the uniqueness of g∗ in
GAGraphsATG1 such that (3) commutes.

Remark 6. Note that AGraphsATG1 is the subcategory of GAGraphsATG1

consisting only of graphs (AG1, t1) where t1 is signature preserving (or more
precisely, t1S is an identity). For (AG1, t1) in GAGraphsATG1 , t1 : AG1 →
ATG1 may not be signature preserving, but for t1S : DSIG1 → DSIG2 the
GAG-morphism t1D : D1 → ZDSIG2 is given by t1D : D1 → VfS (ZDSIG2), where
t1D,s : D1

s → {fS(s)} is uniquely determined.
In order to restrict forward typing to f> : AGraphsATG1 →

AGraphsATG2 we have to extend the DSIG1-data type D1 of (AG1, t1) to

8

a DSIG2-data type D2 of f>(AG1, t1), where D2 = FfS (D1) may be a suitable
choice.

In the following Thms. 3 and 4 we shall consider two different cases for
componentwise pushout constructions in GAGraphs.

Theorem 3 (Pushouts in GAGraphs over persistent morphisms).
Given persistent morphisms f ′ : AG0 → AG1 and g′ : AG0 → AG2 in
GAGraphs then the following construction (1) is a pushout in GAGraphs.
Moreover, the pushout construction preserves injective, signature preserving, and
persistent morphisms.

Construction.

AG0 = (G0, DSIG0, D0) (G1, DSIG1, D1) = AG1

AG2 = (G2, DSIG2, D2) (G3, DSIG3, D3) = AG3

f ′=(f ′G,f
′
S ,f
′
D)

f=(fG,fS ,fD)

g′=(g′G,g
′
S ,g
′
D) g=(gG,gS ,gD)(1)

For the G- and S-components, we have pushouts in the categories EGraphs and
Signatures which are constructed componentwise in Sets, with attribute value
sorts S3

D = gs(S
1
D) ∪ fS(S2

D). In the D-component we assume w.l.o.g. f ′D = id
and g′D = id, i.e. Vf ′S (D1) = D0 = Vg′S (D2), and define D3 by amalgamation as

D3 = D1 +D0 D2 with gD = id and fD = id.

Proof. By construction, we have pushouts in all three components in the cat-
egories EGraphs, Signatures and GenAlgs of generalized algebras, and
S3
D ⊆ S3. For the well-definedness of the pushout construction it remains to

construct injective is3 : D3
s3 → V 3

D for all s3 ∈ S3
D such that the compatibility

diagrams (2) and (3) commute with s3 = gS(s1) and s3 = fS(s2), respectively,

and we have (4)
�
∪

s3∈S3
D

D3
s3 = V 3

D. Finally, the universal pushout properties have

to be shown.

D1
s1

D3
gS(s1)

V 1
D V 3

D

D2
s2

D3
fS(s2)

V 2
D V 3

D

id

gG,VD

is1 is3

id

f ′G,VD

is2 is3(2) (3)

In the following diagram, let (5) be the pushout in the VD-component of
EGraphs, and (6) and (7) the compatibility diagrams for f ′ and g′, respectively.
We shall construct is3 such that (2) and (3) commute.

9

D0
s0 D1

s1

D2
s2 D3

s3

V 0
D V 1

D

V 2
D V 3

D

f ′D,s0
=id01

f ′G,VD

fD,s2
=id2

fG,VD

g′D,s0
=id02 g′G,VD

gD,s1
=id1gG,VD

is0
is1

is2
is3

(7) (2)

(3)

(5)

(6)

For s3 ∈ S3
D we have by pushout construction in the S-component one of the

following three cases:

1. There exists a unique s1 ∈ S1
D\f ′S(S0

D) such that gS(s1) = s3. Then we
define is3 = gG,VD

◦ is1 such that (2) commutes.
2. There exists a unique s2 ∈ S2

D\g′S(S0
D) such that fS(s2) = s3. Then we

define is3 = fG,VD
◦ is2 such that (3) commutes.

3. There exist s0 ∈ S0
D such that (∗) f ′S(gS(s0)) = g′S(fS(s0)) = s3. By amal-

gamation we have D0
s0 = D3

s3 for all s0 ∈ S0 that fulfil (∗). In this case we
define is3 = fG,VD

◦g′G,VD
◦ is0 , and the commutativity of (6) and (7) implies

that of (2) and (3), respectively.

In order to show that is3 : D3
s3 → V 3

D for s3 ∈ S3
D defines a coproduct in

Sets as required in (4) we assume to have hs3 : D3
s3 → X for all s3 ∈ S3

D and
shall construct a unique h : V 3

D → X with h ◦ is3 = hs3 .

D0
s0 D1

s1

D2
s2 D3

s3

V 0
D V 1

D

V 2
D V 3

D

X

id01

f ′G,VD

id2

fG,VD

id02 g′G,VD
id1gG,VD

is0
is1

is2
is3

hs3h2
s2

h2

h

h1

h1
s1

(7)

(5)

(6)

For all s1 ∈ S1
D define h1s1 = hs3 for s3 = gS(s1) leading to a unique h1 : V 1

D →
X with h1 ◦ is1 = h1s1 . Similarly, for s2 ∈ S2

D define h2s2 = hs3 for s3 = fS(s2)

10

leading to a unique h2 : V 2
D → X with h2 ◦ is2 = h2s2 . Now h1 ◦ f ′G,VD

◦ is0 =

h2 ◦ g′G,VD
◦ is0 for all s0 ∈ S0

D follows from commutativity of the diagram and

implies h1 ◦ f ′G,VD
= h2 ◦ g′G,VD

because V 0
D is coproduct. This implies a unique

h : V 3
D → X with h ◦ gG,VD

= h1 and h ◦ fG,VD
= h2 by pushout (5).

Now we have for s3 = gS(s1) (and similarly for s3 = fS(s2)) that h ◦ is3 =
h ◦ is3 ◦ id1 = h ◦ gG,VD

◦ is1 = h1 ◦ is1 = h1s1 = hs3 .
In order to show the uniqueness of h let h′ ◦ is3 = hs3 for all s3 ∈ S3

D. For all
s1 ∈ S1

D we have that h′ ◦ gG,VD
◦ is1 = h′ ◦ is3 ◦ id1 = hs3 = h1s1 = h1 ◦ is1 . This

implies h′ ◦ gG,VD
= h1, and similarly h′ ◦ gG,VD

= h2. Uniqueness in pushout
(5) implies h′ = h. This completes the proof of (4).

The universal property of pushout (1) in GAGraphs follows from that in the
components, where it remains to show the commutativity of the compatibility
diagram (8) for the induced morphism k.

AG2 AG3

AG0 AG1

AG4

f ′

g′ g

f
k1

k2
k

(1)

In the case s3 = gS(s1) we have commutativity of (2) and of (2 + 8) by com-
patibility of g and k1, respectively. This implies commutativity of (8) because
gD,s1 = id1 is an identity. In the case s3 = fS(s2) a similar argument holds with
(3) instead of (2).

D1
s1

V 1
D

D3
s3

V 3
D

D4
s4

V 4
D

D2
s2

V 2
D

D3
s3

V 3
D

D4
s4

V 4
D

is1 is3 is4

gD,s1
kD,s3

gG,VD kG,VD

is2 is3 is4

gD,s2
kD,s3

gG,VD kG,VD

(2) (8) (3) (8)

Finally, the pushout construction preserves persistent, injective, and signa-
ture preserving morphisms because in each component injective and isomorphic
morphisms are preserved.

Remark 7. Given a commutative diagram (1) in GAGraphs as in the construc-
tion where we have pushouts in each component and f ′, g′ persistent then the
diagram (1) is a pushout in GAGraphs.

Theorem 4 (Pushouts in GAGraphs along persistent, signature pre-
serving morphisms).

11

Given a persistent and signature preserving morphism f ′ : AG0 → AG1 and
general g′ : AG0 → AG2 in GAGraphs then the following construction (1) is a
pushout in GAGraphs. Moreover, the pushout construction preserves injective,
signature preserving, and persistent morphisms.

Construction. Since f ′ is persistent and signature perserving we assume w.l.o.g.
f ′S = id and f ′D = id which implies that DSIG1 = DSIG0 and D1 = D0. Now
let DSIG3 = DSIG2, S3

D = S2
D, D3 = D2, fS = id, fD = id, gS = g′S , and

gD = g′D.

AG0 = (G0, DSIG0, D0) (G1, DSIG0, D0) = AG1

AG2 = (G2, DSIG2, D2) (G3, DSIG2, D2) = AG3

f ′=(f ′G,id,id)

f=(fG,id,id)

g′=(g′G,g
′
S ,g
′
D) g=(gG,g

′
S ,g
′
D)(1)

In the G-component we have a pushout in the category EGraphs, and in the
S- and D-components we have special pushouts with identities. Compatibility
of f ′ and g′ allows to consider the following special pushout (1′) with identities
in the VD-component of E-Graphs.

V 0
D V 1

D

V 2
D V 3

D

id

id

g′G,VD
gG,VD(1′)

Proof. By construction we have pushouts in all three components and V 3
D =

�
∪

s3∈S3
D

D3
s3 because V 3

D = V 2
D =

�
∪

s2∈S2
D

D2
s2 =

�
∪

s3∈S3
D

D3
s3 using (1′), S3

D = S2
D and

D3 = D2. Moreover, compatibility of f is trivial, and that of g follows from that
of g′ using gG,VD

= g′G,VD
, gS = g′S , and gD = g′D as shown in the following

diagram.

D0
s0 D1

s0

D2
s2 D3

s2 = D2
s2

V 0
D V 1

D

V 2
D V 3

D

f ′D,s0
=id

f ′G,VD
=id

fD,s2
=id

fG,VD
=id

g′D,s0
g′G,VD

gD,s0
gG,VD

is0
is1

is2
is3

= =

=

(1′)

=

12

The universal property of pushout (1) in GAGraphs follows from that of the
components where the compatibility for the induced morphism h : AG3 → AG4

follows from that of h2 using fG,VD
= id and fD,s2 = id.

AG2 AG3

AG0 AG1

AG4

f ′

g′ g

f
h1

h2

h

(1)

Remark 8. 1. Pushouts in AGraphs along M-morphisms are special cases of
the pushouts above, where in addition f ′ is injective and g′ is signature pre-
serving. Hence pushouts in AGraphs alongM-morphisms are also pushouts
in GAGraphs.

2. Given a commutative diagram (1) in GAGraphs, let the G-component be a
pushout in EGraphs, and f ′ and f are persistent and signature preserving,
then (1) is a pushout in GAGraphs, because then it is isomorphic to the
construction in (1) where we have used identities instead of isomorphisms.

3. The pushout construction in (1) with f ′ persistent and signature preserving
is also a pullback in the S- and D-components, because f ′S , f ′D, fS and fD
are identities or isomorphisms.

Using the different pushout constructions in Thms. 3 and 4 we obtain two
different special van Kampen properties in GAGraphs in Thm. 5 and can show
that (GAGraphs,M) is an adhesive HLR category in Thm. 6.

Theorem 5 (Special van Kampen properties in GAGraphs).

1. Given the following commutative cube (1) in GAGraphs, where m is per-
sistent and injective, f is persistent, the bottom face is a pushout and the
back faces are pullbacks in GAGraphs, then we have:

the top face is a pushout ⇔ the front faces are pullbacks.

AG′0

AG′1

AG0

AG1

AG′2

AG′3

AG2

AG3

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

(1)

13

2. Given the above commutative cube (1) in GAGraphs where m is persistent,
injective and signature preserving, the bottom face is a pushout and the back
faces are pullbacks in GAGraphs, then we have:

the top face is a pushout ⇔ the front faces are pullbacks.

Proof. Since (EGraphs,M) and (Signatures,Minj) are adhesive HLR cat-
egories we know that the van Kampen property is valid in the G- and S-
components in GAGraphs. It remains to show the corresponding property for
the D-component.

1. By Thms. 1 and 3, persistency is preserved and we know that m, n, f , g, m′

and f ′ are persistent.
If the top face is a pushout then also n′ and g′ are persistent. Hence the
front faces have opposite pairs of persistent morphisms leading to pullbacks
in the D-component of these faces.
Vice versa, given that the front faces are pullbacks we can conclude that
n′ and g′ are persistent. Hence the amalgamation lemma for data types
implies that D′3 = D′1 +D′0

D′2 which implies that we have a pushout in the
D-component.

2. By Thms. 1 and 4, pushouts and pullbacks preserve persistent and signature
preserving morphisms, and thus we know that m, n, and m′ are persistent
and signature preserving. Since either the top face is a pushout or the front
left face is a pullback by precondition, also n′ is persistent and signature
preserving. It follows that D0

∼
= D1, D′0

∼
= D′1, D2

∼
= D3 and D′2

∼
= D′3.

If the top face is a pushout, the front left face as a commutative diagram
with an opposite pair of isomorphisms becomes a pullback. The front right
face is isomorphic to the back left face and thus also a pullback.
Vice versa, if the front faces are pullbacks, the top face is a commutative
diagram with an opposite pair of isomorphisms and thus a pushout.

Theorem 6 ((GAGraphs,M) is an adhesive HLR category). Let M
be the class of all injective, persistent, and signature preserving morphisms in
GAGraphs, then (GAGraphs,M) is an adhesive HLR category.

Remark 9. M coincides with the corresponding class in (AGraphs,M).

Proof. The van Kampen property follows directly from Part 2 of Thm. 5.
Moreover, the class M is closed under composition and decomposition. Ac-

cording to Thm. 4 we have pushouts in GAGraphs along M-morphisms and
M-morphisms are closed under pushouts. According to Thm. 1 we have pull-
backs in GAGraphs along M-morphisms and M-morphisms are closed under
pullbacks.

Corollary 1. (GAGraphsATG,M) is an adhesive HLR category.

Theorem 7 (Coproduct in GAGraphs). In GAGraphs we have general
coproducts compatible with M.

14

Construction. Given attributed graphs AGi = (Gi, DSIGi, Di) for i = 1, 2,
then the coproduct is given by AG1 + AG2 = AG12 = (G1 + G2, DSIG1 +
DSIG2, D12), where G1 + G2 and DSIG1 + DSIG2 are the coproducts in
EGraphs and Signatures, respectively, which are constructed as componen-

twise disjoint unions in Sets. For D12 we define D12
s =

{
D1
s ; s ∈ S1

D2
s ; s ∈ S2 and

opD12 =

{
opD1 ; op ∈ OP 1

opD2 ; op ∈ OP 2 .

The coproduct injections ji = (jiG, j
i
S , j

i
D) : AGi → AG12 are given by the

corresponding coproduct injections jiG : Gi → G12 and jiS : DSIGi → DSIG12,
and by jiD : Di → D12 with jiD,s = idDi

s
, i.e. ji = id : Di → VjiS (D12) = Di.

Proof. We have to show that AG12 is a well-defined attributed graph, that the
coproduct injections are well-defined GAG-morphisms, and that the universal
coproduct property is fulfilled.

1. We have to show that
�
∪

s∈S1
D+S2

D

D12
s = V 12

D .

By definition, we have
�
∪

s∈S1
D+S2

D

D12
s =

�
∪

s∈S1
D

D12
s

�
∪

�
∪

s∈S2
D

D12
s =

�
∪

s∈S1
D

D1
s

�
∪

�
∪

s∈S2
D

D2
s = V 1

D

�
∪V 2

D = V 12
D .

2. We have to show the compatibility property for the injection j1 (and analo-
gously for j2). The commutativity of the following diagram is obvious since
all morphisms are inclusions or identities.

D1
s1

V 1
D

D12
s1 = D1

s1

V 12
D

j1D,s1
=id

j1G,VD

=

3. For the universal coproduct property, consider morphisms f1 : AG1 → AG3

and f2 : AG2 → AG3. We have to find a unique f : AG12 → AG3 such that
(1) and (2) commute.

AG1 AG12 AG2

AG3

j1 j2

f1 f2
f

(1) (2)

Define f = (fG, fS , fD) with fG induced by f1G and f2G, fS induced by f1S

and f2S , and fD : D12 → D3 with fD,s =

{
f1D,s ; s ∈ S1

f2D,s ; s ∈ S2 such that (1) and

(2) commute.

15

For s1 ∈ S1, (3) and (3 + 4) commute by compatibility of j1 and f1, respec-
tively. Since jiD,s is surjective, also (4) commutes. Analogously, for s2 ∈ S2,
(5) commutes. This shows that f fulfils the compatibility property for all

s ∈ S12 = S1
�
∪S2.

D1
s1

V 1
D

D12
s1

V 12
D

D3
fS(s1)

V 3
D

D12
s2

V 12
D

D3
fS(s2)

V 3
D

j1D,s1

j1G,VD

fD,s1

fG,VD

fD,s2

fG,VD

(3) (4) (5)

The uniqueness of f follows from the uniqueness of fG and fS and, for the
D-component, from the surjectivity of j1s1 for s1 ∈ S1 and j2s2 for s2 ∈ S2.

4. If f1 and f2 are injective, also f is injective, since binary coproducts in Sets
are compatible with injective morphisms and fD,s is defined by an injective
f1s or f2s .

2 Type Hierarchies and Views of Visual Languages

In the metamodel approach of visual languages, a metamodel is given by an
attributed type graph ATG together with structural constraints, and the corre-
sponding visual language V L is given by all attributed graphs typed over ATG
which satisfy these constraints. In the following, we study type hierarchies and
views of visual languages based on morphisms in GAGraphs, which allows to
change not only the graph structure but also the data signature and data type.

Definition 11 (Visual language). Given an attributed type graph ATG, the
visual language V L of ATG consists of all typed attributed graphs (AG, t : AG→
ATG) tpyed over ATG, i.e. V L = ObGAGraphsATG

.

Remark 10. In contrast to AGraphsATG, the typing t : AG → ATG in
GAGraphsATG allows a change of the data signature from AG to ATG.

This more general concept of typing allows forward typing f> :
GAGraphsATG1 → GAGraphsATG2 in a straight forward way by
f>(AG1, t1) = (AG1, f ◦ t1) (see Def. 10). Otherwise we would have to define
f>(AG1, t1) = (AG2, f ◦ t2) where AG2 is obtained by extending the DSIG1-
data type D1 to a DSIG2-data type D2.

Definition 12 (Type hierarchies of visual languages). A type hierarchy
of visual languages V L1 and V L2 of attributed type graphs ATG1 and ATG2,
respectively, is given by a GATG-morphism f : ATG1 → ATG2.

Definition 13 (View). A view of a visual language V L over an attributed type
graph ATG is given by an injective GATG-morphism v1 : ATG1 → ATG.

16

Definition 14 (Interaction and integration of views). Given views
(ATG1, v1) and (ATG2, v2) over ATG the interaction (ATG0, i1, i2) is given by
the following pullback (1) in GAGraphs, where (ATG0, v0) with v0 = v1 ◦ i1 =
v2◦i2 is a view over ATG and also called subview of (ATG1, v1) and (ATG2, v2).

ATG2

ATG0 ATG

ATG1
i1

i2

v1

v2

(1)

The integration of views (ATG1, v1) and (ATG2, v2) with interaction
(ATG0, i1, i2) is given by the following pushout (2) in GAGraphs.

ATG2

ATG0 ATG3

ATG1
i1

i2

w1

w2

(2)

Due to the universal pushout property there is a unique injective GATG-
morphism v3 : ATG3 → ATG such that (ATG3, v3) is a view over ATG.

ATG is covered by views (ATGi, vi) with i ∈ I if the family (vi : ATGi →
ATG) is jointly surjective.

Fact 1. If ATG is covered by views (ATG1, vi) for i = 1, 2 then the integration
ATG3 is equal to ATG up to isomorphism.

Proof. The unique morphism v3 with commutativity of (3) and (4) is injective in
the G- and S-components due to general properties of adhesive HLR categories
and injective in the D-component as a general property of GATG-morphisms.
Surjectivity of v3 follows from joint surjectivity of v1 and v2 in (3) and (4).

ATG2

ATG0 ATG3

ATG1

ATG

i1

i2

w1

w2

v1

v2

v3(2)

(3)

(4)

Definition 15 (Restriction of views). Given a type hierarchy morphism h :
ATG′ → ATG and a view (ATG1, v1) over ATG then the restriction (ATG′1, v

′
1)

of this view along h is defined by the following pullback (1) in GAGraphs.

17

ATG′1 ATG1

ATG′ ATG

h′

h

v′1 v1(1)

Remark 11. Note that the restriction (ATG′1, v
′
1) is a view over ATG′ because

pullbacks preserve injectivity.

Fact 2. Given a hierarchy morphism h : ATG′ → ATG and views (ATGi, vi)
for i = 1, 2 covering ATG, then the restrictions (ATG′i, v

′
i) along h are covering

ATG′.

Proof. In the following diagram, v1 and v2 being jointly surjective implies that
also v′1 and v′2 are jointly surjective because (1) and (2) are componentwise
pullbacks.

ATG′1 ATG1

ATG′ ATG

ATG′2 ATG2

h1

h
v′1

v1

h2

v′2
v2

(1)

(2)

Fact 3. Given a hierarchy morphism h : ATG′ → ATG and views (ATGi, vi)
for i = 0, 1, 2 over ATG with restrictions (ATG′i, v

′
i) along h and induced hier-

archy morphisms hi : ATG′i → ATGi then we have the following properties:

1. If (ATG0, v0) is a subview of (ATG1, v1) with i1 : ATG0 → ATG1 then
also (ATG′0, v

′
0) is a subview of (ATG′1, v

′
1) with i′ : ATG′0 → ATG′1, and

(ATG′0, i
′
1) is the restriction of (ATG0, i1) along h1.

2. If (ATG3, v3) is the integration of (ATGi, vi) for i = 1, 2 with interaction
(ATG0, i1, i2) then also the restriction (ATG′3, v

′
3) is the integration of the

restrictions (ATGi, vi) for i = 1, 2 with an interaction (ATG′0, i
′
1, i
′
2).

Proof. 1. In the following diagram, the right triangle commutes because
(ATG0, v0) is a subview of (ATG1, v1) with injective i1 : ATG0 → ATG1.
The bottom and diagonal squares are pullbacks by the definition of the re-
strictions (ATG′1, v

′
1) and (ATG′0, v

′
0). The pullback property implies that

there exists a unique injective i′1 : ATG′0 → ATG′1 such that the left trian-
gle and the back square commute. Moreover, the back square is a pullback
by pullback decomposition which shows that (ATG′0, i

′
1) is the restriction of

(ATG0, i1) along h1 : ATG′1 → ATG1.

18

ATG′1

ATG′0

ATG′

ATG1

ATG0

ATG

h0

h1

h

i′1 i1

v′1
v1

v′0 v0

2. In the following cube, the right face is a pushout because (ATG3, v3) is the
integration of (ATGi, vi) for i = 1, 2 with the interaction (ATG0, i1, i2). The
front and back faces are pullbacks due to Part 1. Since all morphisms in the
right and left faces are injective and also persistent as GATG-morphisms we
can apply Part 1 of Thm. 5 to conclude that also the left face is a pushout
and hence (ATG′3, v

′
3) is the integration of (ATG′i, v

′
i) with i = 1, 2 with the

interaction (ATG′0, v
′
0).

ATG′0

ATG′1

ATG′2

ATG′3

ATG0

ATG1

ATG2

ATG3

i1

i2

w1

w2

i′1

i′2

w′1

w′2

h0

h1

h2

h3

2.1 Type Hierarchies and Views with Constraints

In this subsection we consider visual languages V L given by an attributed type
graph ATG with a set of constraints PC, where the visual language is defined by
V L = {G ∈ GAGraphsATG | G |= c ∀c ∈ PC}. A constraint c = ((P, tP)

a−→
(C, tC)) is given by typed attributed graphs (P, tP) and (C, tC) typed over ATG,
where we omit the typing morphisms if they are not necessary, i.e. write c =
(P

a−→ C), and a typed attributed graph morphism a : P → C. A typed

attributed graph G typed over ATG fulfills a constraint c = (P
a−→ C) ∈ PC

iff for all typed attributed graph morphisms p : P → G there exists an injective
q : C → G such that q ◦ a = p.

P C

G

a

p q

Definition 16 (Forward translation of constraints). Given a GATG-

morphism f : ATG1 → ATG2 and a constraint c1 = ((P, tP)
a−→ (C, tC))

19

over ATG1, the forward translated constraint f>(c1) = c2 over ATG2 is given

by c2 = ((P, f ◦ tP)
a−→ (C, f ◦ tC)).

For a set PC1 of constraints over ATG1 define f>(PC1) = {f>(c1) | c1 ∈
PC1}.

Fact 4. Given a view (ATG1, v1) over ATG2, a constraint c1 ∈ PC1 typed over
ATG1, and a typed attributed graph G1 typed over ATG1, then we have:

G1 |= c1 ⇔ v>1 (G1) |= v>1 (c1),

where v>1 (G1) and v>1 (c1) are the corresponding forward translations over ATG2.

Proof. For c1 = ((P, tP)
a−→ (C, tC)) we have v>1 (c1) = ((P, v1 ◦ tP)

a−→ (C, v1 ◦
tC)), and v>1 (G1, tG1) = (G1, v1 ◦ tG1).

⇒ We have to show that for each injective p : P → G1 in GAGraphsATG2

there is an injective q : C → G1 in GAGraphsATG2 with q ◦ a = p.
Given an injective p : P → G1 in GAGraphsATG2 we have p : P → G1 in
GAGraphs with v1◦tP = v1◦tG1◦p. Since v1 is injective it follows that tP =
tG1
◦ p, i.e. p is also an GAGraphsATG1-morphism. Since G1 |= c1 there

exists an injective q : C → G1 with q◦a = p in GAGraphsATG1 , i.e. tG1
◦q =

tC . Hence v1 ◦ tG1
◦ q = v1 ◦ tC and q is the required GAGraphsATG2 -

morphism.

P C

G1

ATG1 ATG2

a

p q

tP tC

tG1

v1

⇐ We have to show that for each injective p : P → G1 in GAGraphsATG1

there is an injective q : C → G1 in GAGraphsATG1 with q ◦ a = p.
Given an injective p : P → G1 in GAGraphsATG1 we have p : P →
G1 in GAGraphs with tP = tG1 ◦ p. With v1 ◦ tP = v1 ◦ tG1 ◦ p, p is
also a GAGraphsATG2 -morphism. Since v>1 (G1) |= v>1 (c1) there exists an
injective q : C → G1 with q ◦ a = p in GAGraphsATG2 , i.e. v1 ◦ tG1

◦ q =
v1◦tC . Since v1 is injective it follows that tG1

◦q = tC , hence q is the required
GAGraphsATG1 -morphism.

Fact 5. Given a view (ATG1, v1) over ATG2, a constraint c1 ∈ PC1 typed over
ATG1, and a typed attributed graph G2 typed over ATG2, then we have:

G2 |= v>1 (c1)⇔ v<1 (G2) |= c1,

where v>1 (c1) is the forward translation of c1 and v<1 (G2) is the backward trans-
lation of G2.

20

Proof. For c1 = ((P, tP)
a−→ (C, tC)) we have v>1 (c1) = ((P, v1 ◦ tP)

a−→ (C, v1 ◦
tC)), and v<1 (G2, tG2

) = (G1, tG1
) with pullback (1).

⇒ We have to show that for each injective p1 : P → G1 in GAGraphsATG1

there is an injective q1 : C → G1 in GAGraphsATG1 with q1◦a = p1. Given
an injective p1 : P → G1 in GAGraphsATG1 , with v1 being injective and
(1) being a pullback also g and hence g ◦ p1 are injective. Thus we have that
tG2
◦ g ◦ p1 = v1 ◦ tG1

◦ p1 = v1 ◦ tP and since G2 |= v>1 (c1) there exists an
injective q2 : C → G2 with q2 ◦a = g ◦p1 in GAGraphsATG2 , i.e. tG2

◦q2 =
v1 ◦ tC . Now pullback (1) implies a unique q1 : C → G1 with tG1 ◦ q1 = tC
and g ◦ q1 = q2. The latter implies that q1 is injective by decomposition of
monomorphisms. Hence q1 is the required GAGraphsATG1-morphism.

P C

G1 G2

ATG1 ATG2

a

p1

q1p2 q2

tP

tC

tG1 tG2

g

v1

(1)

⇐ We have to show that for each injective p2 : P → G2 in GAGraphsATG2

there is an injective q2 : C → G2 in GAGraphsATG2 with q2◦a = p2. Given
an injective p2 : P → G2 in GAGraphsATG2 we have tG2 ◦ p2 = v1 ◦ tP .
Pullback (1) implies a unique p1 : P → G1 with tG1

◦p1 = tP and g◦p1 = p2.
The latter implies that p1 is injective by decomposition of monomorphisms.
Since G1 |= c1 there exists an injective q1 : C → G1 with q1 ◦ a = p1 in
GAGraphsATG1 , i.e. tG1 ◦ q1 = tC . It follows that g ◦ q1 is injective. Thus
we have that tG2 ◦ g ◦ q1 = v1 ◦ tG1 ◦ q1 = v1 ◦ tC . Hence q2 = g ◦ q1 is the
required GAGraphsATG2-morphism with q2 ◦ a = g ◦ q1 ◦ a = g ◦ p1 = p2.

Fact 6. Given attributed type graphs ATG1 and ATG2, constraints PC1 and
PC2 over ATG1 and ATG2 leading to visual languages V L1 and V L2, respec-
tively, and a view (ATG1, v1) over ATG2, then we have the following results:

1. If v>1 (PC1)⇒ PC2 then v>1 (G1) ∈ V L2 for all G1 ∈ V L1, i.e. v>1 : V L1 →
V L2.

2. If PC2 ⇒ v>1 (PC1) then v<1 (G2) ∈ V L1 for all G2 ∈ V L2, i,e, v<1 : V L2 →
V L1.

Proof. 1. Given G1 ∈ V L1 this means that G1 |= PC1. Now Fact 4 implies
that v>1 (G1) |= v>1 (PC1) and if v>1 (PC1) ⇒ PC2 also v>1 (G1) |= PC2, i.e.
v>1 (G1) ∈ V L2.

2. Given G2 ∈ V L2 this means that G2 |= PC2, and if PC2 ⇒ v>1 (PC1) also
G2 |= v>1 (PC1). Now Fact 5 implies that v<1 (G2) |= PC1, i.e. v<1 (G2) ∈ V L1.

21

Definition 17 (View with constraints). Given attributed type graphs ATG1

and ATG2, constraints PC1 and PC2 over ATG1 and ATG2, respectively, and
a view (ATG1, v1) over ATG2, then (ATG1, v1) is a view with constraints if
PC2 ⇒ v>1 (PC1).

(ATG,PC) is covered by views with constraints (ATG1, PC1, v1) and
(ATG2, PC2, v2) if ATG is covered by (ATG1, v1) and (ATG2, v2), and PC =
v>1 (PC1) ∪ v>2 (PC2).

3 Models and View-Models of Visual Languages

In this section we study models of visual languages and of views of visual lan-
guages, called view-models.

Definition 18 (Model). Given a metamodel of a visual language V L by an
attributed type graph ATG then a model of V L is a typed attributed graph AG
typed over ATG, where the typing t : AG→ ATG is a GAG-morphism.

The model (AG, t) is called signature-conform if t is signature-preserving.

All models of ATG define the category GAGraphsATG, while all signature
conform models define the category AGraphsATGwhich is the subcategory of
GAGraphsATG where all morphisms are signature preserving. In the following
we consider both kinds of models.

Definition 19 (Restriction). Given a view f : ATG1 → ATG, i.e. an injec-
tive GATG-morphism, and an ATG-model (AG, t) then the restriction (AG1, t1)
of (AG, t) to the view (ATG1, f) is defined by the following pullback (1), written
f<(AG, t) = (AG1, t1).

AG1 AG

ATG1 ATGf

t1 t(1)

The construction f< : GAGraphsATG → GAGraphsATG1 is called back-
ward typing (see Def. 10). Backward typing can be restricted to signature con-
form models f< : AGraphsATG → AGraphsATG1 , because signature preser-
vation of t implies that of t1.

Definition 20 (Extension). Given a view f : ATG1 → ATG2 the extension of
a view-model (AG1, t1) along f is given by (AG1, f ◦ t1), written f>(AG1, t1) =
(AG1, f ◦ t1).

The construction f> : GAGraphsATG1 → GAGraphsATG is called for-
ward typing (see Def. 10). According to Thm. 2, we have adjoint functors

f> a f< : GAGraphsATG2 → GAGraphsATG1

22

which implies that f> preserves pushouts and f< preserves pullbacks. Note that
forward typing cannot be restricted to signature conform models unless f is
signature conform.

Fact 7. Backward typing f< is left inverse to forward typing f>, i.e. f< ◦f> =
id.

Altogether, forward typing is a persistent free construction w.r.t. backward
typing.

Proof. For (AG1, t1) we have f>(AG1, t1) = (AG1, f ◦ t1) and f<(AG1, f ◦ t1) =
(AG1, t1) according to the combined pullback (1 + 2). Actually, (1) is a trivial
pullback and (2) is a pullback because f is injective.

AG1 AG1

ATG1 ATG1

ATG1 ATG

id

id

f

t1 t1

id f

(1)

(2)

Definition 21 (Consistency and integration). Given views (ATGi, vi) for
i = 1, 2 of ATG with interaction (ATG0, i1, i2) defined by the pullback in the
bottom face of the following cube, then models (AGi, ti) with i = 1, 2 of the views
(ATGi, vi) are called consistent if there is a model (AG0, t0) of ATG0 such that
the back faces are pullbacks, i.e. i<1 (AG1, t1) = (AG0, t0) = i<2 (AG2, t2).

AG0

AG2

ATG0

ATG2

AG1

AG

ATG1

ATG

j2

t0

j1

t2
i2

i1

t1

t

v1 v2

A model (AG, t) of ATG is called integration (or amalgamation) of consistent
(AG1, t1) and (AG2, t2) via (AG0, t0) if the front faces of the above cube are
pullbacks, i.e. v<1 (AG, t) = (AG1, t1) and v<2 (AG, t) = (AG2, t2), and the top
face commutes.

Theorem 8 (Integration and decomposition of models).
Integration. Let ATG be covered by the views (ATGi, vi) for i = 1, 2. If (AGi, ti)
are consistent models of (ATGi, vi) via (AG0, t0) then there is up to isomorphism
a unique integration (AG, t) of (AGi, ti) via (AG0, t0).

23

Decomposition. Vice versa, each model (AG, t) of ATG can be decomposed
uniquely into view-models (AGi, ti) with i = 1, 2 such that (AG, t) is the inte-
gration of (AG1, t1) and (AG2, t2) via (AG0, t0).

Bijective Correspondence. Integration and decomposition are inverse to each
other up to isomorphism.

Proof. Integration. Since ATG is covered by (ATGi, vi) for i = 1, 2 it is also
the integration of these views by Fact 1. This means that the bottom pullback
is already a pushout in GAGraphs with injective and persistent morphisms.
Now assume that (AGi, ti) with i = 1, 2 are consistent models. This means that
the back faces of the cube are pullbacks with injective and persistent j1 and j2.
This allows to construct AG in the top face as pushout in GAGraphs leading
to a unique t such that the front faces commute. According to the van Kampen
property in Part 1 of Thm. 5 the front faces are pullbacks such that (AG, t)
is the integration of (AGi, ti) for i = 1, 2 via (AG0, t0). In order to show the
uniqueness let also (AG′, t′ : AG′ → ATG) be an integration of (AGi, ti) for
i = 1, 2 via (AG0, t0). Then the front faces are pullbacks with (AG′, t′) and the
top face commutes. Now the van Kampen property in the opposite direction
implies that the top face is a pushout in GAGraphs. This implies that (AG, t)
and (AG′, t′) are equal up to isomorphism.

Decomposition. Vice versa, given a model (AG, t) of ATG we construct the
front and one of the back faces as pullbacks such that the remaining back face
also becomes a pullback and the top face commutes. This shows that (AG1, t1)
and (AG2, t2) are consistent w.r.t (AG0, t0), and (AG, t) is the integration of
both via (AG0, t0). The decomposition is unique up to isomorphism because the
pullbacks in the front faces are unique up to isomorphism.

Bijective Correspondence. Uniqueness of integration and decomposition as
shown above implies that both constructions are inverse to each other up to
isomorphism.

Theorem 9 (Integration and decomposition with constraints). Let
(ATG,PC) be covered by the views (ATGi, PCi, vi) for i = 1, 2. If (AGi, ti) |=
PCi are consistent models of (ATGi, vi) via (AG0, t0) then we have for the in-
tegration (AG, t) that AG |= PC.

Vice versa, for the decomposition of (AG, t) into view-models (AGi, ti) with
i = 1, 2 it holds that AGi |= PCi.

Proof. Given the integration (AG, t) we have that v<1 (AG, t) = (AG1, t1) |=
PC1. Now Fact 5 shows that this is equivalent to the fact that AG |= v>1 (PC1).
Analogously we have that AG |= v>2 (PC1), and altogether AG |= PC because
PC = v>1 (PC1) ∪ v>2 (PC2) by Def. 17.

Vice versa, AG |= PC implies AG |= v>i (PCi) for i = 1, 2 and hence AGi =
v<i (AG) |= PCi by Fact 5.

24

4 Generalized Typed Graph Transformation Systems

According to Thm. 6, the category (GAGraphs,M) with the class M of all
injective, persistent, and signature preserving morphisms and also the corre-
sponding typed variant (GAGraphsATG,M) are adhesive HLR categories.
This allows us to apply main parts of the theory for typed attributed graph
transformations developed on the basis of the categories (AGraphs,M) and
(AGraphsATG,M), respectively, also to the generalized case. The main differ-
ence is that graphs in GAGraphsATG allow for the typing t : AG → ATG

a change of the data type signature. The productions p = (L
l←− K

r−→ R)
with l, r ∈ M are the same, but the double pushout transformations in
(GAGraphs,M) and (GAGraphsATG,M) allow matches m1 and comatches
m2 with change of the signature. But l, r ∈M implies l′, r′ ∈M such that AG1,
AG0 and AG2 have, up to isomorphism, the same data signature and data type.

L K R

AG1 AG0 AG2

l r

l′ r′

m1 m2POPO

Definition 22 (Generalized typed graph transformation system). A
generalized typed graph transformation system GTGTS = (ATG,P, π) consists
of an attributed type graph ATG, a set of production names P and a mapping

π that assigns to each p ∈ P a production π(p) = (Lp
lp←− Kp

rp−→ Rp) with
lp, rp ∈M.

Definition 23 (GTGTS-embedding). Given generalized typed graph trans-
formation systems GTGTS = (ATG,P, π) and GTGTS′ = (ATG′, P ′, π′), a
GTGTS-embedding f = (fATG, fP) : GTGTS → GTGTS′ consists of an injec-
tive GATG-morphism fATG : ATG → ATG′ and a mapping fP : P → P ′ such
that for each p ∈ P we have π(p) = f<ATG(π′(fP (p))).

Note that we do not require that π(P) consists of all restrictions of produc-
tions π′(P ′). In this case, f is called full GTGTS-embedding.

Remark 12. Given a forward embedding f , i.e. f>(π(P)) ⊆ π′(P ′), then f is also
a GTGTS-embedding, because π(P) = f<◦f>(π(P)) ⊆ f<(π′(P ′)). By forward

typing each direct transformationG
p

=⇒ H inGTGTS becomes a transformation

f>(G)
f>(p)
=⇒ f>(H) in GTGTS′ because forward typing as a left adjoint functor

preserves pushouts.

Fact 8. Backward typing f<ATG and hence GTGTS-embeddings preserve injec-
tive, persistent, and signature preserving morphisms, respectively, and hence also
the class M.

25

Proof. Given g′ : (AG′1, t
′
1)→ (AG′2, t

′
2) in GAGraphsATG then f<ATG(g′) = g

defined by the following pullbacks in GAGraphs.

AG1 AG′1

AG2 AG′2

ATG ATG′

g
g′

fATG

t2
t′2

t1

t′1

Pullbacks in GAGraphs preserve injective, persistent, and signature preserving
morphisms, respectively.

Theorem 10 (Reflection of behaviour by GTGTS-embeddings). Given
a GTGTS-embedding f = (fATG, fP) : GTGTS → GTGTS′ and a direct trans-

formation G′
π′(fP (p))

=⇒ H ′ in GTGTS′ by pushouts (1) and (2) via π′(fP (p)) =

(L′
l′←− K ′

r′−→ R′) then backwards typing leads to a direct transformation in
GTGTS by pushouts (3) and (4) via π(p) = f<ATG(π′(fP (p))).

L′ K ′ R′

G′ C ′ H ′

f<ATG(L′) f<ATG(K ′) f<ATG(R′)

f<ATG(G′) f<ATG(C ′) f<ATG(H ′)

l′ r′ f<
ATG(l′) f<

ATG(r′)

(1) (2) (3) (4)

Proof. We have to show that (3) and (4) are pushouts in GAGraphsATG. Given
pushouts (1) and (2), and fATG : ATG → ATG′ injective we construct G, L,
K, C, H and R as restrictions of G′, L′, K ′, C ′, H ′ and R′, respectively, leading
to the following diagram where we have pushouts in the front faces and all the
other faces except the back faces are pullbacks in GAGraphs.

L′ K ′ R′

G′ C ′ H ′

L K R

G C H

ATG′

ATG

ATG′

ATG
fATG

fATG

In the left cube, the front face is the pushout (1) with l′ : K ′ → L′ ∈ M. This
allows us to apply the van Kampen property in Part 2 of Thm. 5 to conclude
that also the back face is a pushout in GAGraphs.

Similarly, in the right cube the front face is the pushout (2) with r′ : K ′ →
R′ ∈M which implies that the back face is a pushout in GAGraphs.

26

These back faces correspond exactly to the diagrams (3) and (4). Hence (3)
and (4) are pushouts defining a direct transformation in GTGTS.

If f is a full GTGTS-embedding, by backward typing each direct transfor-
mation in GTGTS′ leads to a direct transformation in GTGTS.

References

[1] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer (2006)

Definition 24 (Generalized typed attributed graph morphism). Given
typed attributed graphs TAGi = (AGi, ti : AGi → ATGi) for i = 1, 2, a gener-
alized typed attributed graph morphisms f = (fAG, fATG) : TAG1 → TAG2

is given by a GAG-morphism fAG : AG1 → AG2 and a GATG-morphism
fATG : ATG1 → ATG2 such that fATG ◦ t1 = t2 ◦ fAG.

AG1 AG2

ATG1 ATG2

fAG

fATG

t1 t2=

Definition 25 (Category GTAGraphs). Typed attributed graphs and gener-
alized typed attributed graph morphisms form the category GTAGraphs.

Remark 13. GTAGraphs
∼
= ComCat(F,G; {1}) with F = ID :

GAGraphs → GAGraphs, G = Inc : GAGraphs|T → GAGraphs, where
GAGraphs|T is the subcategory of GAGraphs containing all attributed type
graphs.

27

