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ARTICLE

Genome and single-cell RNA-sequencing of the
earthworm Eisenia andrei identifies cellular
mechanisms underlying regeneration
Yong Shao1,13, Xiao-Bo Wang2,13, Jin-Jin Zhang1,3,13, Ming-Li Li1,3,13, Shou-Song Wu4, Xi-Yao Ma1, Xue Wang5,6,

Hui-Fang Zhao5,6, Yuan Li7, Helen He Zhu5,6, David M. Irwin 1,8,9, De-Peng Wang7, Guo-Jie Zhang 1,10,11,12✉,

Jue Ruan2✉ & Dong-Dong Wu 1,12✉

The earthworm is particularly fascinating to biologists because of its strong regenerative

capacity. However, many aspects of its regeneration in nature remain elusive. Here we report

chromosome-level genome, large-scale transcriptome and single-cell RNA-sequencing data

during earthworm (Eisenia andrei) regeneration. We observe expansion of LINE2 transposable

elements and gene families functionally related to regeneration (for example, EGFR, epidermal

growth factor receptor) particularly for genes exhibiting differential expression during

earthworm regeneration. Temporal gene expression trajectories identify transcriptional reg-

ulatory factors that are potentially crucial for initiating cell proliferation and differentiation

during regeneration. Furthermore, early growth response genes related to regeneration are

transcriptionally activated in both the earthworm and planarian. Meanwhile, single-cell RNA-

sequencing provides insight into the regenerative process at a cellular level and finds that the

largest proportion of cells present during regeneration are stem cells.
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Regeneration is one of the most complex and intriguing
biological processes that can occur throughout the lifetime
of some organisms. However, the regenerative capacity of

many animals is extremely limited; in contrast to differentiated
tissues and organs, only fetal tissues can be recreated without
fibrosis1. However, some organisms still retain strong regenerative
abilities. For example, the zebrafish, salamander, axolotl, and gecko
are regenerative vertebrates that can scarlessly heal wounds and
regenerate lost organs and appendages such as fins, heart, jaws,
limbs, tails, gills and lenses2–6. In addition to vertebrates, several
invertebrates such as planarian and hydras possess even stronger
regenerative ability and can regenerate almost an entirely new
organism because of the abundance of somatic stem cells (neo-
blasts) in their bodies7,8. Therefore, these animals are often viewed
as important models in stem cell biology and regenerative medicine.

Charles Darwin performed a large amount of work empha-
sizing the importance of the earthworm on soil formation and
ecosystem development9. Earthworms influence the physical
characteristics of the soil as they dig burrows, deposit casts on the
soil surface and within it and overturn dead organic matter10.
Because of the remarkable traits of the earthworm in evolutionary
biology, such as flightless and legless locomotion, unfathomed
diversity, evolutionary conservation, and ecotoxicology, the
earthworm may be elevated from the status of a soil sentinel to
that elusive entity, an ecologically relevant genetic model organ-
ism9. In addition, the earthworm is capable of regeneration and
has significant benefits compared to planarian and hydras for
exploring regenerative mechanisms, which include the following
features11,12: (1) Complex phenotypic structures, such as an
advanced central nervous system with memory function, a closed
blood-vascular system, a coelom, and specialized body segmen-
tation. Wound repair involves multiple tissues and is a complex
regenerative process; (2) A relatively short regenerative cycle.
Eisenia andrei and Perionyx excavatus can completely regenerate
an amputated tail within 35 and 25 days post-amputation,
respectively, and P. excavatus can complete anterior regeneration
with restructuring of reproductive organs (i.e., testis, ovary,
seminal vesicle, and clitellum) within 2 weeks of amputation13;
(3) Bidirectional regeneration capacity. Apart from regenerating
an amputated tail, the earthworm can regenerate an amputated
anterior portion consisting of the brain, heart and clitellum.
Taken together, this collection of phenotypes suggests that the
earthworm could serve as an excellent animal model to deeply
explore regenerative mechanisms and provide a valuable resource
for regenerative medicine.

In Annelida, only three whole genomes, a marine polychaete
(Capitella teleta), a freshwater leech (Helobdella robusta) and
Eisenia fetida, have been sequenced14–16. To date, our knowledge
and understanding of regeneration in earthworms has been
limited by this lack of high-quality genomes, which have severely
hindered our exploration of the genetic mechanisms underlying
regeneration in earthworms. In this study, we utilize the long-
read Pacific Bioscience (PacBio) platform to sequence a high-
quality E. andrei genome and transcriptomes from different
regenerative stages to identify the genetic basis of earthworm
regeneration. In addition, we use single-cell RNA-sequencing
from regenerative earthworm cells to identify markers and dif-
ferentiated cell categories and define cell differentiation trajec-
tories. In summary, we utilize multiple omics methods with a
combined view of genetics and cytology to explore the mechan-
isms of a complex trait, regeneration, in earthworms.

Results
Earthworm genome assembly by single molecule sequencing.
We sequenced the genome of the earthworm E. andrei (Fig. 1a)

based on 14.4 million long reads (~80×) produced by the PacBio
RS platform. The genome was assembled with several assembly
algorithms, and the final assembly version was selected based on
continuity and completeness (Supplementary Table 1). The
genome size of the final assembly was approximately 1.3 Gb,
which was close to the estimated size of 1.28 Gb from k-mer
estimation and ~1.3 Gb from flow cytometry (Supplementary
Figs. 1 and 2). The assembly exhibited a much better continuity,
with a contig N50 size of approximately 740 kb, than the genomes
of several other invertebrates with strong regenerative capacity,
such as Macrostomum lignano (contig N50= 64 Kb) and Apos-
tichopus japonicus (contig N50= 192 Kb)7,17 (Supplementary
Table 2). We additionally generated ~24×(34.7 Gb) PE150
Illumina-based short reads to correct the sequence errors found at
1% of the contig bases and improved the single-base accuracy of
the genome to more than 99.97%. By mapping the short reads to
the genome, we estimated that the earthworm genome has a high
heterozygosity rate of 1.5 heterozygous sites per 100 base pairs
(Supplementary Fig. 3). We further constructed Hi-C18 libraries
to anchor and orient the contigs into superscaffolds. Based on the
379 million paired-end reads covering the genome at ~100×, we
anchored and oriented 2970 contigs (1129Mb, ~85%) into 11
long pseudomolecules (N50= 111Mb) through a hierarchical
clustering strategy (Fig. 1b–d).

To assess the completeness of our genome assembly, we
aligned the short reads and the transcriptome unigenes to the
genome and found that over 98.2% of the short reads and ~94.5%
of the de novo transcriptome unigenes could be mapped to the
assembly, demonstrating the high completeness of the assembly
(Supplementary Table 3). We also tested for the presence of 978
conserved BUSCO genes and found that 92.1% of the BUSCO
orthologs were completely captured in the assembly (Supple-
mentary Table 4). These results indicate the high integrity and
accuracy of our assembled genome. Genome annotation was
performed by a series of methods, including de novo, homology-
based and transcriptome-based prediction. The nonredundant
reference gene set identified 31,817 protein-coding genes
(Supplementary Tables 5–7).

Phenotypic and transcriptomic changes during regeneration.
Some studies have documented transcriptomic and some phe-
notypic changes of posterior regeneration in the earthworms15,19,
but very few researches are focused on the anterior regenera-
tion13, particularly for E. andrei. Therefore, in the present study,
we focused on the anterior regeneration in the earthworm E.
andrei. Phenotypic observations on multiple time points after the
anterior amputation (Fig. 2a–c and Supplementary Figs. 4 and 5),
could help us to evaluate whole regenerative processes after
anterior amputation (the first four body segments), especially for
early regenerative events. Using Ki-67 immunofluorescent label-
ing, we found that cell proliferation initiated at 24 h post-
amputation, and at 48 and 72 h post-amputation the proliferating
cells increased rapidly and gradually migrated to the center of
cross sections (Fig. 2d and Supplementary Fig. 6). At 5 days post-
amputation, the wound healing was fully accomplished and a
small blastema appeared in center of the amputation plane
(Supplementary Fig. 4). At 6 and 7 days post-amputation, the
blastema persistently experienced growth and elongation (Sup-
plementary Fig. 4). Although the newly produced body segments
were not observed at 14 days post-amputation, the base of out-
growth has accumulated pigments (Supplementary Fig. 4). At
18 days post-amputation, new body segments arise, and at
28 days post-amputation the obvious body segments take shape
in regenerative appendages (Supplementary Fig. 4).
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To understand the genetic regulatory mechanisms underlying
the early regenerative process in earthworms, we further
sequenced the transcriptome of head, the first four body segments
containing the central nervous system, during the regeneration
process at 6 time points (0, 6, 12, 24, 48 and 72 h after cutting,
with 5 biological replicates for each time point) (Fig. 2a). Principal
component analysis of the gene expression profiles clearly split the
0 hour time point from the remaining regeneration stage
transcriptomes, indicating a high level of gene activity remodeling
initiated by the regeneration process (Supplementary Fig. 7).
Differentially expressed genes (DEGs) were identified for each
regeneration stage compared to the control stage (Fig. 2e; fold
change>2 and false discovery rate (FDR) < 0.05). In total, 6,048
DEGs that changed their expression at one or more regeneration
time points were identified, and these genes demonstrated a
temporal order in their expression profiles (Supplementary Fig. 8).
Gene enrichment analysis found that many biological processes
important for development were commonly upregulated across all
regeneration stages, including gene transcription (GO:0006351),
Wnt signaling pathway (GO:0016055), cell surface receptor
signaling pathway (GO:0007166), multicellular organism devel-
opment (GO:0007275), and anatomical structure development
(GO:0048856) (Supplementary Data 1). These results indicate that
regeneration, as a very complex process, involves multiple genes
and pathways. Next, we integrated genomic and transcriptomic
analyses to reveal the molecular mechanisms underlying
regeneration.

Expansion of LINE2 transposable elements. Transposable ele-
ments (TEs) make up a large fraction of the genome and play
important roles in genome function and evolution20,21. In the

earthworm, TEs comprise ~56.72% of the genome, posing a
challenge for genome assembly (Supplementary Table 8). Among
them, DNA transposons and long interspersed nuclear elements
(LINEs) comprise the majority of the repeats, spanning 349.6 Mb
of the genome (Fig. 3a and Supplementary Table 8). Of particular
note, LINE2 has undergone significant expansion (7.49%) in the
earthworm compared to other representative metazoan species
(2.52% in C. teleta, 3.90% in H. robusta, 0.00% in M. lignano, and
0.84% in A. japonicus), and the closely related species E. fetida
also harbors a high LINE2 proportion (~4.10%) compared to
other un-earthworm species, although a low genome assembly
quality may underestimate this possibility (Fig. 3b, Supplemen-
tary Figs. 9 and 10, and Supplementary Data 2). The number of
substitutions to repeat consensus4, which is an estimate of the
relative age of the LINE2, implied that the earthworm LINE2 has
undergone a recent and apparent burst of expansion with a peak
at 25~30 Mya (Fig. 3c), which is much more recent than its
divergence time (309 Mya) from H. robusta (Supplementary
Fig. 11).

Approximately 43.54% of the LINE2 elements in the earth-
worm genome are located in intron regions, and 6.66% are
located within the 5-kb flanking regions of genes (Fig. 3d). This
suggests that the function of LINE2 is potentially involved in
regulatory roles. To test it, we performed further analyses by
integrating transcriptomes described above. We discovered that
the proportion of DEGs (described above) harboring LINE2
elements, was significantly higher than that of non-DEGs
(background genes) harboring LINE2 elements (Fig. 3e, P=
7.641E-07, χ2 test). Further, 44 and 119 significantly differentially
expressed LINE2 elements (DEL2s, FDR < 0.05), located in 5k
5’-flanking and 5k 3’-flanking of coding genes, respectively, were
identified, which potentially were activated during regeneration
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process because of their increasing expression trends (Fig. 3f and
Supplementary Fig. 12), especially for DEL2s in 5k 5’-flanking
(P < 0.05, Mann-Whitney U test). Among these DEL2s within the
5-kb flanking regions of coding genes, we found 19 DEL2s were
transcriptionally activated with significantly increased expression
during the regenerative process and their neighboring genes

also demonstrated similar increasing expression trends (Fig. 3g,
FDR < 0.05, Benjamini-Hochberg FDR). The neighboring genes
of 19 DEL2s, such as EGR1, FOSL, BMP10, HUNB and MMP17,
are frequently reported to participate in regeneration22–24. For
example, EGR1 functions as a pioneer factor to directly regulate
early wound-induced genes in acoels22. Our analyses suggest
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that partial LINE2 elements in earthworms might regulate
the expression of neighboring genes by coopting them into
regeneration-regulatory networks. However, we acknowledge that
further experiments are needed to elucidate how LINE2 elements
regulate gene expression during earthworm regeneration. Overall,
our study suggests that LINE2 elements in earthworms may play
important roles in early regenerative processes.

Evolution of gene families in the earthworm genome. Expan-
sion or contraction of gene families is associated with the evolu-
tion of specific phenotypes and physiological functions. In the
present study, we identified 26,926 gene families from 12 inver-
tebrates (Supplementary Fig. 13). 4,877 gene families were shared
by five species (E. andrei, H. robusta, C. teleta, Crassostrea gigas,
and Lottia gigantea) (Supplementary Fig. 14), while 1165 gene
families were unique to earthworms (Supplementary Fig. 15 and
Supplementary Table 9). In line with a previous study16, which
identified extensive gene duplications functioning as regulating
early development in the E. fetida genome, we also found abun-
dant expanded gene families in the earthworms (i.e., +2776 in E.
andrei and +3537 in E. fetida) (Fig. 4a and Supplementary
Fig. 16). We further estimated the time of these duplication events
by using KS distributions, where KS is the synonymous distance or
defined number of synonymous substitutions per synonymous
site25. KS distributions of duplication events in the E. andrei
genome were obviously larger than the KS distribution of one-to-
one orthologs between E. andrei and E. fetida, which implied
that these gene duplications occurred before the divergence of
E. andrei and E. fetida (Fig. 4b). Furthermore, these expanded
gene families were mainly enriched in GO terms including cell-cell
signaling (GO:0007267, P= 2.38E-02), Wnt signaling pathway
(GO:0016055, P= 2.32E-02), cell surface receptor signaling
pathway (GO:0007166, P= 6.05E-03), regulation of cell commu-
nication (GO:0010646, P= 3.91E-06), development process
(GO:0032502, P= 4.19E-05), ion transport (GO:0006811, P=
5.47E-03), organelle organization (GO:0006996, P= 3.56E-02),
and regulation of cellular biosynthetic process (GO:0031326, P=
7.98E-05) (Supplementary Data 3). We speculated members of
these expanded gene families in E. andrei may potentially parti-
cipate in special phenotypic evolution of the earthworm, such as
regeneration. Similarly, a previous study using expressed sequence
tags also found that biological processes such as cell-cell com-
munication and biosynthesis could occur during the regenerative
stages in P. excavates, another earthworm13. Of particular interest,
the Wnt signaling pathway, a canonical regeneration pathway
controlling anteroposterior polarity during planarian regenera-
tion26–29 and regulating progenitor cell fate and proliferation
during regeneration of zebrafish fins and deer antlers30,31, have
displayed a substantial expansion in the earthworm. For example,
the genes APC and DVL3 showed expansions in the Wnt signaling
pathway and exhibited increasing trends in expression during
regeneration (Supplementary Fig. 17).

Among 186 significantly expanded gene families in the
earthworm branch (Viterbi P-value ≤0.05), 35 gene families
harbor over 10% of their family members displaying significant
expression changes during regeneration (Fig. 4c and Supplemen-
tary Fig. 18). Furthermore, we performed a randomization test and
found five gene families standing out as showing significantly
higher proportion of differentially expressed genes (P < 0.05, χ2

test), including ZNFX1, EGFR, NNP, HELZ2 and SACS. For
example, ZNFX1 is activated in both newt and axolotl incompe-
tent iris regeneration32, and 9 of 11 copies of ZNFX1 exhibit
significant expression changes in earthworm during regeneration
processes (P= 0.0105, χ2 test, and Supplementary Fig. 19). Gene,
EGFR, encodes an epidermal growth factor receptor, which is a
transmembrane receptor with tyrosine kinase activity that can
regulate cell proliferation and differentiation33. In planarians,
silencing of EGFR-1 and EGFR-3 can result in abnormal
morphogenesis and disorganized developmental structures during
regeneration33. EGFR experienced a significant expansion with a
significantly increased copy number in the earthworm (12 copies)
relative to other species, which have 0~2 copies (Fig. 4d, and P=
0.0114, χ2 test). Eight of the 12 members showed differential
expression levels during regeneration and real-time Quantitative
PCR further validated expression trends of these duplications in
regenerative process of the earthworm (Fig. 4e, Supplementary
Fig. 20, and Supplementary Table 10). Although these gene
families have diverse roles during development across life cycle,
the members of them were significantly differentially expressed
during the earthworm regeneration processes and their duplica-
tions might potentially play a role in the evolution of regeneration
in E. andrei.

Temporal gene regulation patterns in regeneration. To
understand the large-scale gene interactions involved in
regeneration, we conducted a weighted gene coexpression
network analysis (WGCNA)34. This quantitative network-
based approach has proven to be a powerful tool for eluci-
dating cell type, anatomic and convergent gene networks across
species35. Here, we identified 19 gene coexpression modules in
response to temporal changes during the regeneration process
(Fig. 5a and Supplementary Figs. 21–24). These modules
represent genes that share highly similar expression patterns
during regeneration (Fig. 5a).

Of these 19 modules, five modules (tan, brown, lightcyan,
grey60, and cyan) were dominated by genes showing upregulation
at the early stage of the regeneration process (6 h) (Supplemen-
tary Figs. 23, 24). Among them, the expression of the brown
module was most significantly correlated with the regeneration
stage (6 h) (r= 0.53, P= 0.003) (Fig. 5b and Supplementary
Fig. 23). Genes enriched in this module participate in signal
transduction, transcription and translation, implying an increas-
ing level of cell communication and biochemical processes via the
synthesis of mRNAs and proteins in response to regeneration
(Supplementary Data 4). The list of driver genes in the brown

Fig. 2 Phenotypic and transcriptomic analyses during regeneration. a A cartoon of time-dependent amputation and regeneration transcriptome
sequencing in earthworm. b Snapshots of cross sections at six time points after post-amputation. c HE staining of cross sections at six time points post-
amputation. The different structure layers were labeled. ED: epidermis, CM: circular muscle, LM: longitudinal muscle, IN: intestine. A representative scale
bar (100 μm) was showed. The HE staining experiments were independently repeated (three times) and obtained similar results. d Detection of cell
proliferation at different time points post-amputation using a marker Ki-67 by Immunofluorescent double staining. The red fluorescence represented
signals and the blue fluorescence represented cell nucleus. Similar results were reproduced in two independentbiological experiments. e, Number
comparisons of DEGs at different regeneration time points, compared to regeneration 0 h (controls). Time points included 0, 6, 12, 24, 48 and 72 h.
f Co-activition of gene expression in early regeneration processes between earthworm and planarian. The early growth response genes and transcriptional
factor genes respectively were compared for two species (earthworm and planarian). The planarian gene 1080 expression changes were obtained from a
previous study37. The dark red represented genes with higher expression levels, and the dark blue showed genes with lower expression levels.
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module triggered by the regeneration process includes several
genes involved in cellular proliferation, differentiation and
programmed cell death, such as FOS (intramodule member-
ship = 0.9587) and HUNB (intramodule membership=0.934)
(Fig. 5c, and Supplementary Table 11). Previous studies reveal
that FOS participates in neoblast maintenance and the wound
response program in planarians36,37 and is a key factor in the
cell signaling system activated immediately after cell damage38.

Two other modules, red and blue, containing genes with
increased expression until 12 h of regeneration (Fig. 5d, e, and
Supplementary Fig. 24), were also enriched in genes involved
in biosynthetic processes and the regulation of cell growth
(Supplementary Data 5 and 6). Additionally, the blue module
was enriched in genes involved in energy metabolism that
are necessary for cell proliferation and growth. However,
intriguingly, both of these networks lacked core driver genes
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functioning as regeneration regulators (Fig. 5f, g). Therefore,
we proposed that the two modules might be vital for regulating
the preparation process of the cell proliferation in the early
phase of earthworm regeneration.

The black module contains genes that exhibit upregulation
within 6 hours after amputation and then gradually increase in
expression until 72 h (Fig. 5h, r= 0.49, P= 0006, and Supple-
mentary Figs. 23, 24). This module presumably has an important
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functional role, especially at 48 and 72 h of the early phase of
regeneration, because of its sustained and increasing activity.
Gene enrichment analysis found that this module was signifi-
cantly enriched in genes with functions in phosphorylation, cell
surface receptor, enzyme activity and ATP binding, all of which
are vital for signal transduction (Supplementary Table 12). We
uncovered driver genes in the black module, such as AGRIN,
which had a higher network connectivity (intramodule member-
ship = 0.9276) and is a component of the extracellular matrix,
affecting regenerative capacity and development processes in
mammals39,40 (Fig. 5i and Supplementary Table 13). Thus, we
propose that the black module genes, with their increasing
consistent temporal regulation patterns, may play an important
functional role in earthworm regeneration.

Transcriptional activation of immediate early response genes.
We next sought to discover genetic toolkits that participate in the
wound-induced regeneration processes of earthworms and pla-
narians by comparing the temporal transcriptome data from
these two species37. We found the early growth response genes
were transcriptionally induced as a rapid response to injury
healing in both species. In earthworms, the expression of the early
growth response protein 1 gene (EGR1) and the immediate early
response gene (IER5L) was significantly up-regulated at all
regeneration stages, meanwhile the expression level of the early
growth response protein 1-B gene (EGR1B) was significantly
elevated at 6, 12 and 24 hours (Fig. 2f). Similarly, in planarians,
we noticed that genes involved in early growth responses, i.e.,
EGR1, EGR2, EGRL1 and EGR3, were also transcriptionally
activated (Fig. 2f). Importantly, EGR1 was a shared gene in both
of two species during regeneration. EGR1, as a member of the
immediate early response gene transcription factor family, is
implicated in the regulation of multiple cellular processes, such as
cell growth, development and stress responses in many tissues,
and can control the proliferation and localization of stem cells41.

Additionally, several important transcription factors, RUNT, JUN
and FOS, regulating regeneration processes, were involved in early
regeneration in both species (Fig. 2f). For example, the RUNT gene,
encoding the Runx transcription factor, whose function specifies
different cell types during regeneration and promotes heterogeneity
in neoblasts near wounds in planarians37, was significantly
upregulated in earthworms throughout the regeneration process
and was also upregulated in planarians at 3, 6, and 12 h. Thus, our
results suggest the earthworm and planarian potentially utilize a set
of similar transcriptional activated immediate early response genes
to regulate early regeneration process.

Single-cell RNA-sequencing reveals cytological mechanisms. To
provide an in-depth understanding of the complex interplay
among the molecular and cellular processes underlying earth-
worm regeneration, we performed single-cell RNA-sequencing
using 10X Genomics Chromium platform to examine regener-
ating heads (the first four segments) at 72 h after cutting. In brief,
once the head was amputated, we obtained regenerating segments
for cell dissociation and cell sorting. We captured a total of 2080
cells with an average of 493 genes and 1904 transcripts per cell
(Supplementary Fig. 25 and Supplementary Table 14). After
quality control (QC) filtering, the expression profiles of
2060 single cells were clustered by using Seurat (https://satijalab.
org/seurat/). In total, we identified 12 cell clusters using t-SNEs
(Fig. 6a).

Next, we elucidated the cell type identity for each cluster by
screening marker genes and constructing single-cell trajectories
corresponding to a developmental process. Many studies have
used OCT4, SOX2 and NANOG, called the master regulators of

pluripotency, as markers of pluripotent stem cells (PSCs)42,43.
The homologs of SOX2 and ACTB (a highly expressed marker in
gamma neoblasts in planarian)44 could be identified in the
earthworm genome, and accordingly harbored higher expression
levels in cell clusters0/1/3 (Fig. 6a–c, and Supplementary
Figs. 26–28). Gene enrichment analyses showed that marker of
cluster0/1/3 were significantly over-represented in terms involved
in stem cell biology (Fig. 6d, Supplementary Fig. 29). Consis-
tently, a mass of cells (cluster0/1/3) were properly located at the
root of the developmental trajectories representing the process of
cell differentiation (Fig. 6e). These analyses hint that the cluster0/
1/3 may represent putative PSCs at 72 h post-amputation in the
earthworm. These three cell clusters shared similar gene
expression profiles (Fig. 6b) and made up the largest proportion
of captured cells (~45%, Fig. 6f). In situ hybridization of markers
SOX242,43 and H2B44 in early phases of regeneration from 0 to 72
h post-amputation showed that at 6 and 12 h post-amputation,
the PSCs arise in the circular muscle layer of the body wall
(Fig. 7a–c and Supplementary Fig. 30). And then the PSCs rapidly
proliferated and migrated to the longitudinal muscle layer near to
the epithelium of intestine (EP) at 24, 48 and 72 h post-
amputation, while these PSCs didn’t turn up in the epidermis
layer (Fig. 7d–f and Supplementary Fig. 30).

Meanwhile, marker genes such as TPM44 and UNC-8945 could
define cluster2/4 as muscle cells (Supplementary Fig. 31), and
furthermore cluster2/4/5/6/8 were promiscuously located in a leaf
of the single-cell trajectories, which suggests that cluster5/6/8
might also be referred to as muscle involved cells (Fig. 6e),
representing the second most prevalent cell type we captured.
Additionally, the identities of a few neuronal cells consisting of
cluster7 were detected by neuronal markers, such as NF70, NBAS
and AHNAK (Supplementary Fig. 32) and a clear mapping of
clusters including cluster7/9/10/11 was identified in a neuron leaf
of the single-cell trajectories (Fig. 6e and Supplementary Fig. 32).
Future abundant early single-cell regenerative transcriptomes
before and after the blastema formation and functional experi-
ments in the earthworm would validate this possibility.

Discussion
A mounting number of studies suggest the importance of
earthworms in terms of understanding many aspects of biology9.
In particular, earthworms are of great interest from the per-
spective of regenerative biology19,46. To date, apart from C. teleta
and H. robusta14, which are annelida, the genome of only one
other species, E. fetida, from oligochaeta (also known as earth-
worms) has been sequenced using the next generation genome
sequencing strategy, but provided poor assembly quality (contig
N50= 1,852 bp and contig N50= 967 bp, respectively)15,16.
Having no high quality genome severely hinders the development
of earthworm regeneration biology. In this study, we present a
chromosome level genome assembly of the earthworm E. andrei
with a scaffold N50= 111 Mbp using a single molecule sequen-
cing (PacBio) integrating Hi-C assembly technology, up to now
representing an optimal genome assembly in the phylum anne-
lida. The earthworm E. andrei exhibits a high level of regenerative
ability at both its anterior and posterior and is easy to culture and
handle in laboratory12,19. Therefore, it can be potentially regarded
as a valuable model to investigate the mechanisms underlying
regeneration. We believe that this high-quality genome will
supply a useful genetic resource for future research especially in
regeneration biology.

Increasing genomes from diverse species indicate that nearly
half of genome sequences are derived from TEs, which have
played important functional roles in many biological processes47.
In this study, we propose a potential regulatory role of LINE2 in
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the evolution of the earthworm, possibly in earthworm regen-
eration. We discover that several LINE2 elements are inserted in
the loci of DEGs during early stages of earthworm regeneration.
Some specific differentially expressed LINE2 elements in the 5k-
flanking sequences of coding genes and their neighboring genes
harbored similar increased expression trends during earthworm

regeneration. For example, EGR1, a core regulator of wound
inducing process in diverse regenerative organisms48–51, such as
in acoel and planarian22,37, displayed significant differential
expression, and harbored differentially expressed LINE2 elements
in the earthworm. However, future experiments are required to
relate expanded LINE2 with regeneration of the earthworm.
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Consistent with a previous study16, a mount of gene duplication
events (i.e., many potential expanded gene families) have occurred
in the genome of earthworm. These expanded gene families in
earthworms were significantly enriched in terms/pathways repre-
senting development biology, which potentially reflect partly their
roles in regeneration52,53. Particularly, some expanded gene
families, e.g. ZNFX1 and EGFR, show a higher proportion of their
members undergoing significant differential expression during
early phases of regeneration in the earthworm. Previous studies
indicated that ZNFX1 (which encodes a NFX1-type zinc finger-
containing protein 1) is up-regulated in both newt and axolotl lens
regeneration32. EGFR (coding epidermal growth factor receptor)
controls a variety of signals ranging from cell proliferation, dif-
ferentiation, to morphogenesis during planarian regeneration, and
has been proposed to be involved in stem cell maintenance33,54–56.
Thus, our findings suggest that these gene duplications may
potentially utilize increased dosages to regulate gene expression in
regenerative process of earthworms.

The evolution of genome sequence only tells a part of the story
of regeneration15,16; integrating the transcriptional regulation of
genes will help to investigate the mechanisms underlying regen-
eration of earthworms11,15,57. For example, the changes of gene
expression in a series of long time scale post-amputation (i.e.,
15d, 20d and 30d) have been investigated in E. fetida regenera-
tion15. However, the molecular regulation during early phases of
anterior regeneration still remains largely unclear in the earth-
worm. Considering that the wound healing process is accom-
plished at 3–5 days post-amputation in E. anderi19, we performed
transcriptomic analyses at early phases of wound healing in this
earthworm. Immediate early response genes (e.g., EGR1) were
transcriptionally co-activated in the earthworms and planarians,
implying a set of parallel activated mechanisms in early phases of
regeneration. Four vital gene co-expression network modules (i.e.,
brown, blue, red and black) were identified and these show
substantial transcriptionally activation during early phases in
earthworm regeneration. Functional enrichment of some of the
genes expressed in these networks identified signal transduction,
biosynthetic processes and the regulation of cell growth, sug-
gesting that these genes may regulate wound healing process in
the early phase of the earthworm regeneration.

The epimorphic process of earthworms is thought to occur
mainly via dedifferentiation and subsequent redifferentiation of
cells, without any contribution from totipotent stem cells (or
neoblasts)19,58,59, and this process commonly involves blastema
formation (dedifferentiated cells), which contributes to rediffer-
entiation in regeneration of Enchytraeus japonensis and E.
anderi19,59. The histological observations of blastema formation
at 1–3 days post-amputation during E. anderi tail regeneration
showed that at 3 days post-amputation, the blastema cells, which
are likely to be pluripotent cells, rapidly proliferated and migrated
to coelom19. Here, we performed single-cell RNA-sequencing
data at 3 days (72 h) anterior post-amputation in the earthworm,
and found that the pluripotent stem cells, potentially representing

blastema cells, were the largest proportion of cells at this time.
Further ISH experiments supported large proportion of PSCs and
found that highly enriched PSCs surrounding the EP (central
area) of the cross section, which was consistent with formation of
blastema at this time19,59 (Fig. 7 and Supplementary Fig. 30).
However, single cell RNA-sequencing data from more different
times will undoubtedly help to understand cellular process of
regeneration.

Our study identifies some candidate genetic mechanisms
underlying regeneration and highlights the earthworm as a pro-
mising model for future studies of regenerative biology. In the
future, multiple OMICS strategies, interdisciplinary and func-
tional experiments will provide further insight into the regen-
erative biology of the earthworm.

Methods
DNA isolation, PacBio library preparation and sequencing. One live earthworm
(E. andrei, originating from Guangxi province in China) was prepared, and its
intestinal tract was removed. After washing with saline solution, the earthworm
genomic DNA was collected using a Qiagen kit. After assessing the quality of the
DNA, we constructed a PacBio library with an insert size of 20 kb and utilized a
single molecular RS sequencer to perform long-read sequencing. Hi-C was per-
formed using the following protocol: the adult earthworm tissues were fixed in 1%
formaldehyde solution. The nuclear chromatin was obtained from the fixed tissue
and digested using HindIII (New England Biolabs). The overhangs resulting from
HindIII digestion were blunted by bio-14-dCTP (Invitrogen) and the Klenow
enzyme (NEB). After dilution and religation using T4 DNA ligase (NEB), the
earthworm genomic DNA was extracted and sheared to a size of 350–500 bp with a
Bioruptor (Diagenode). The biotin-labeled DNA fragments were enriched by uti-
lizing streptavidin beads (Invitrogen) to further finish library preparation.

Estimation of earthworm genome size. The k-mer algorithm was applied to
evaluate the earthworm genome size. The 17 k-mer and 34.7 Gb next-generation
sequencing reads were utilized in this analyses. Flow cytometry analysis further was
used to evaluate the genome size of the earthworm. In brief, after cell suspensions
were prepared, we added 500ul PI (C0080, Solarbio) dye working solution [0.85×
PBS 9.4 ml, PI (1 mg/ml) 500 μl, DNA free Rnase (10 mg/ml) 50 μl, Triton X-100
10 μl, Sodium Citrate 10 mg, keep away from light] into the prepared earthworm
cell suspension, chicken blood cell solution and mixture of earthworm cell and
chicken blood cell, and then they were mixed and moved 400ul to flow tubes
covered with fresh-keeping films to be tested. The estimation of genome size was
performed using BD LSR Fortessa flow cytometer (BD Biosciences, USA). The
genome size of chicken (Gallus gallus GRCg6a) (1.04 pg) was utilized as a reference
control. Flow cytometry analysis was carried out using the laser excitation at 488
nm with minimum 10,000 events (cells) per sample. The mean fluorescence
intensity was obtained using FlowJo (v7.1). The DNA content was estimated using
the standard formula for genome size (pg) = (Sample fluorescence channel number
FL/ Chicken fluorescence channel number FL) × 1.04 pg.

Long-read de novo assembly of the genome. We used ~80X PacBio subreads to
perform de novo genome assembly by using Wtdbg (v1.2.7) (https://github.com/
ruanjue/wtdbg), FALCON60 (v052016) and Canu61 (v1.7). Then, the assembled
genome was corrected by aligning subreads using the Arrow program (v2.3.2) with
the default parameters. Finally, Pilon (v1.22) was used to polish the resulting
assembly with ~24X PE150 reads from the Illumina platform. The base accuracy of
the assembly was estimated by Illumina reads alignment. The completeness of the
assembly was evaluated by BUSCO genes (http://busco.ezlab.org/). Furthermore,
the completeness of the assembly was validated by six de novo transcriptomes
using Trinity62 (v2.1.1).

Fig. 6 Analysis of single-cell RNA-Sequencing during earthworm regeneration. a Cell clustering plots with single-cell transcriptomic data. And the cell
types were coded by Arabic numerals (from cluster 0 to cluster 11). b Expression heatmap for different cell clusters. We plotted the top5 highly expressed
marker genes for each cluster. Each line represented highly expressed marker genes in specific clusters with the highest expression fold changes, which
were compared to all of other clusters. Highly expressed markers were indicated in dark yellow, and the low expressed markers were indicated in dark pink.
c Characterization of the clusters0/1/3 using two published pluripotent stem cell marker genes in a tSNE plot. Cell types expressing SOX2 and ACTB were
colored in red. This analysis illustrated that the single-cell cluster0, 1 and 3 were probably pluripotent stem cells. d GO biological process enrichment
analyses of highly expressed marker genes in cluster0. GO enrichment analyses were performed by using g:Profiler software (https://biit.cs.ut.ee/). All
known genes of statistical domain size using Homo sapiens were regarded as background and p values (Significance threshold) were adjusted by using
Benjamini-Hochberg FDR. e Lineage tree reconstruction of cell atlas. A tree-like trajectory in the reduced dimensional space for different cell atlas, and the
cell colors were line with a. f Distribution of cell number in each cluster. PSCs: pluripotent stem cells, MCs: muscle cells, NCs: neuron cells.
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Fig. 7 In situ hybridization of gene SOX2 in cross sections at 6 different time points post-amputation in the earthworm. The slice size was 10μm. The 6
time points post-amputation included 0 (a), 6 (b), 12 (c), 24 (d), 48 (e) and 72 (f) hours. The red fluorescence represented positive signals and DAPI (blue
fluorescence) was used to stain cell nucleus. Similar results in a–f could be ensured by three independently biological experiments.
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Genome annotation. De novo and homology approaches were combined to
identify repetitive sequences in the earthworm genome. For the de novo approach,
we constructed a de novo repeat library using RepeatModeler (v1.0.8) (http://www.
repeatmasker.org/RepeatModeler/) with the default settings. Then, RepeatMasker
(v4.0.7) (http://www.repeatmasker.org/) was run on the earthworm genome using
the de novo library. RepeatMasker was also run against the RepBase (v20150807)
(https://www.girinst.org/repbase/) for homologous repeat identification. The
results of repeat annotation using these two approaches were integrated. To
annotate the protein-coding genes of the earthworm genome, de novo, homology-
based and transcriptome-based prediction methods were combined. Two de novo
programs, Augustus63 (v3.0.3) and SNAP64 (v2006-07-28), were performed to
predict genes in the repeat-masked genome sequences. Long predicted genes
processed by PASA65 (r20140417) were used to train the gene model parameters
for the two de novo programs. For the homology-based predictions, protein
sequences from C. teleta and H. robusta (downloaded from the Ensembl database)
were aligned to the earthworm genome using tblastn (e-value < 10-5). We used
genBlastA66 (v1.0.138) to cluster the adjacent HSPs (high-scoring pairs) from the
same protein alignments, and GeneWise67 (v2.2.3) was used to identify accurate
gene structures. After QC and filtering, reads from all RNA libraries were mapped
to the earthworm genome using TopHat2 (v2.0.13) (http://ccb.jhu.edu/software/
tophat/), and Cufflinks (v2.1.1) (http://cole-trapnell-lab.github.io/cufflinks/)
was subsequently used to predict gene models. All predicted genes from the
three approaches were integrated with EVidenceModeler (EVM)68 (r2012-06-
25) to generate high-confidence gene sets. To obtain gene function annotations,
KEGG (https://www.genome.jp/kegg/), SwissProt and TrEMBL protein databases
(https://www.uniprot.org/) were searched with BLASTP (ncbi-blast-2.2.28+)
(e-value<10−5). The best hits were used to assign homology-based gene functions.
Functional classification based on GO categories and InterPro entries was achieved
using the InterProScan program (v5.21-60.0) (http://www.ebi.ac.uk/interpro/
download/).

Gene family clusters. Comparisons among 12 species, including Caenorhabditis
elegans, C. gigas, C. teleta, Drosophila melanogaster, H. robusta, L. gigantea,
Schistosoma mansoni, Strongylocentrotus purpuratus, Saccoglossus kowalevskii, A.
japonicus, Acanthaster planci and earthworm were conducted to classify gene
families. We selected the longest transcript for each gene and eliminated those with
premature stop codons, nontriplet length or fewer than 30 amino acids encoded.
Subsequently, OrthoMCL69 (v2.0.9) was used to construct gene families via all-
versus-all BLASTP alignments. Changes in gene family size (expansion/contrac-
tion) were calculated by the CAFE program (v2.2) (https://hahnlab.sitehost.iu.edu/
software.html). To perform phylogenetic analyses, single-copy families were
identified, and peptide alignments for each family using MUSCLE (v3.8.31) (http://
drive5.com/muscle/downloads.htm) and concatenated to form a supergene for
each species. RAxML (v8.2.9) (https://cme.h-its.org/exelixis/web/software/raxml/
index.html) with the PROTGAMMAAUTO model and 100 bootstrap replicates
was used to build a phylogenetic tree. The peptide alignments were converted to
coding sequences, which were subjected to analysis with MCMCtree in the PAML
package (v4.8a) (http://abacus.gene.ucl.ac.uk/software/paml.html) to estimate
divergence times. Fossil calibration points were obtained from a web-based data-
base—TimeTree (http://www.timetree.org/). If the copy number (gene family) of
the detected branch lineage was higher than that of its closely ancestral branch
lineage, we regarded this gene family as substantially expanded gene family in this
detected branch lineage. The significantly expanded gene families were identified
by Viterbi p-value ≤ 0.05.

HE staining. The fresh tissue was fixed using paraformaldehyde (4%) for 24 h.
Afterwards, the tissue was orderly dehydrated using gradient alcohol, and the wax-
impregnated tissue was embedded by OCT. And further the tissue was cut into
slices with its thickness 4 μm, and the paraffin sections were dewaxed and further
washed by distilled water. Lastly, the nucleus and cytoplasm were stained by
hematoxylin and eosin, respectively.

Cell proliferation experiments. The first four body segments of earthworms were
amputated. And at 0, 6, 12, 24, 48 and 72 h post-amputation the injury segments
again were amputated for embedding and slicing with a thickness 10 μm,
respectively. The Ki-67 was utilized to detect cell proliferation with an anti-ki67
(ab15580) (dilution ratio: 1:200) and a secondary antibody Alexa Fluor 555 donkey
anti-rabbit IgG (A31572) (dilution ratio: 1:500). Meanwhile, DAPI was used for
staining cell nucleus. The sections were observed using an OLYMPUS TH4-200
inverted fluorescence microscope.

Transcriptome analysis. Total RNA was extracted from earthworms at different
regeneration time points, including 0, 6, 12, 24, 48 and 72 hours post-amputation
(Note that each time point included 5 biological replicates per time point and the
wound segment of each individual served as a biological replicate) using TRIzol
reagent (Invitrogen Corp., Carlsbad, CA). RNA purifications were performed using
the RNeasy Mini Kit (Qiagen, Chatsworth, CA). Sequencing libraries were gen-
erated using the NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA)
following the manufacturer’s recommendations. The libraries were sequenced on

an Illumina HiSeq 4000 platform, and 150 bp paired-end reads were generated.
After QC, we used TopHat2 to map the clean reads to the assembly reference
genome using default parameters. Cufflinks was then applied to assemble the
transcripts, with cuffquant and cuffnorm programs in cufflinks used to quantify
and normalize transcript/gene expression abundances. DESeq270 (v1.26.0) was
utilized to construct an expression profile principal component analysis (PCA) to
evaluate data quality using the quantified gene expression profile. Cuffdiff in
Cufflinks (v2.1.1) was used to detect DEGs between the control (regeneration 0 h)
and the case (regeneration 6, 12, 24, 48 and 72 h) samples using a Poisson dis-
persion model with a FDR ≤ 0.05. The DEGs with expressed changes at one or
more regeneration time points were utilized to cluster expression profiles and
produce a regeneration spatial-temporal order using the gplots library in R (v3.5.1)
(https://www.r-project.org/). If the locus of one gene in DEGs and non-DEGs could
overlap at least one LINE/L2 elements, such gene could be regarded as the gene
including LINE2 elements.

Differentially expressed LINE2 elements in coding genes flanking during
regeneration process. We divided the gtf annotation of LINE2 located in 5k
flanking of the gene locus into two gtf files including 5k 5′-flanking and 5k 3′-
flanking. Then, we respectively mapped our RNA-Seq at different time points (0, 6,
12, 24, 48, and 72 h) after post-amputation to the reference genome according
to the two annotations based on the bowtie2 program in Tophat2 (v2.0.13). The
expression abundance of each LINE2 was quantified by the cuffquant program in
Cufflinks (v2.1.1), and the cuffdiff program in Cufflinks (v2.1.1) was utilized to
detect differentially expressed LINE2 (FDR < 0.05) between 0 h and other time
points (6, 12, 24, 48 and 72 h) post-amputation. Thus, we screened significantly
differentially expressed LINE2 elements in 5′-flanking and 3′-flanking of coding
genes, respectively.

Quantitative real-time PCR. Earthworms were cleaned using PBS or ddH2O. And
we used tweezers to drag earthworms to achieve natural extension and then quickly
amputated the first four body segments. The amputated earthworms were placed
into soil with fertilizers and cultivated for 0, 6, 12, 24, 48 and 72 h, and then again
amputated the injury segments to isolate total RNA by using TRIzol reagent
(Invitrogen, 15596-026) and RNeasy® Mini kit (50) (QIAGEN, 74104). The first-
strand cDNA was synthesized with 1 μg total RNA using a HiScript® III RT
SuperMix for qPCR (+gDNA wiper) kit (Vazyme, R323-01). Quantitative real-
time PCR was performed using ChamQTM Universal SYBR qPCR Master Mix
(Vazyme, Q711-03). 5 biological replicates for each time point were guided. The
comparative cycle threshold (Ct) method was applied to quantify the expression
levels by 2(-ΔΔCt) method. The β-actin was served as a reference gene to normalize
the relative mRNA expression levels.

Identification of coexpression networks in early regenerative processes.
Analysis was carried out in R on a 64-bit LINUX platform with 65.7 GB memory.
Modules/or networks were constructed using WGCNA34 (v1.67). Modules were
defined as branches of the hierarchical cluster tree using the dynamic tree cut
method. For each module, the expression patterns were summarized by the module
eigengene (ME), defined as the right singular vector of the standardized expression
patterns. MEs were also defined as the first principal component calculated using
PCA, which can summarize module behavior. Pairs of modules with high ME
correlations (R > 0.8) were merged. MEs for modules were plotted by using the
ggplot2 library in R. These MEs were tested for correlation with phenotypes
(regeneration time points) adjusted by a linear regression model. In more detail, a
weighted signed network was computed based on a fit to scale-free topology, with a
threshold softPower of 10 chosen (as it was the smallest that resulted in a scale-free
R2 fit). A topological overlap dendrogram was used to define modules with a
minimum module size of 80 genes and the deepSplit parameter set to 2. The
connectivity of every gene in every module was assessed by correlation to the MEs,
or kMEs. Module membership (MM) was regarded as intramodular connectivity.
MM can be combined as a systematic biological method to obtain driver genes in
networks, which are highly interconnected nodes within coexpression gene mod-
ules. The driver genes were defined by the WGCNA connectivity algorithm. Each
module network was viewed by VisANT (v5.0) (http://www.visantnet.org/
visantnet.html), which allows users to input an edge file and a node file from a
WGCNA module.

Single-cell RNA-sequencing analysis. The preparation of the earthworm single-
cell samples was performed using the following protocol: (1) 15 earthworms were
cleaned and soil was removed using PBS or ddH2O. (2) We used tweezers to drag
the earthworms to make its head natural extended and then quickly amputated the
first four body segments (the brain is located in body segment 3–4 of the anterior).
(3) Amputated earthworms were placed into soil with fertilizer and cultivated at
25 °C until to 72 h, and then we obtained the wound healing plane segments from
15 earthworms. (4) The mixed wound healing segments were dissociated by adding
Collagenase I (500 μl 1 mg/ml) and then maintained 1.5–2 h under 37 °C. (5) Cells
were pelleted by centrifugation at 3000 rpm in 5 min; the supernatant was removed
and cell pellets were washed one time using 1× PBS. We then added 200 μl 0.25%
TE and allowed the cells to incubate for 5–10 min and then neutralized using 1 ml
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1640/DMEM including serum. (6) Cells were again pelleted at 3000 rpm for 5 min,
the supernatant was removed and samples were resuspended in 500 μl PBS. Lastly,
cell samples were passed through a cell strainer with an aperture 40 μl. (7) Cells
were again pelleted at 3000 rpm for 5 min, supernatant was removed and samples
were resuspended in 200 μl PBS. (8) Thus, a mixed pool of the earthworm cells
(from 15 earthworms) were counted and analyzed by a Flow Cytometer. The
Earthworm Single-cell RNA-Sequencing steps as follows: ChromiumTM Single Cell
Solution (the experimental protocol) included the following four steps: Cell quality
control. We used Countess® II Automated Cell Counter to count cells and adjusted
cell concentration to 1 × 106/ml. (2) 10× marking cDNA fragments. The gel beads
including 10X barcode information was first combined with the mixtures of cells
and enzymes, and then they were encased by a droplet of oil with surfactant located
in a “double cross” connected microfluidic. When the oil droplets flow into the
storage chamber and are collected, the gel beads are dissolved and release primer
sequences allowing reverse transcription into cDNA fragments. The cDNA was
amplificated by PCR. (3) Constructing sequencing library. We utilized Biorupter to
fragment the cDNAs into 200~300 bp fragments and add sequencing adaptor P5
and primer R1 to perform PCR to obtain a DNA library. (4) Cluster and
sequencing. We used Qubit to qualify the sequencing library, and a high-quality
sequencing library was placed onto cBot to perform Bridging PCR amplification to
regenerate clusters. We then utilized illumina sequencer to complete the sequen-
cing. We used 10X Genomics Cell Ranger (v2.1.1) to perform QC statistics and
mapped the data to the earthworm reference genome. Cell Ranger can quantify
single-cell transcriptome by differentiating barcode and UMI markers. We used the
Seurat (v2) toolkit (https://satijalab.org/seurat/) to analyze the single-cell RNA-
sequencing data and cluster the expression profiles of single cells by using the
t-SNE method. Furthermore, Monocle (v1) (http://cole-trapnell-lab.github.io/
monocle-release/) was utilized to recover single-cell gene expression kinetics and
construct single-cell trajectories.

In situ hybridization. The second amputated injury segments at 0, 6, 12, 24, 48 and
72 h post-amputation were obtained from E. anderi. The tissue sections (10 μm)
were stained with DAPI for double staining and they were observed by FITC using
an OLYMPUS TH4-200 inverted fluorescence microscope.

Gene ontology enrichment analysis. Gene functional enrichments at three levels
(biological process, molecular function and cellular component) were performed
using a web-based gene analysis tool, g:Profiler (rev1705) (http://biit.cs.ut.ee/
gprofiler/). The p-value was adjusted by Benjamini-Hochberg FDR.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the Article and its Supplementary Information files or from the corresponding authors
upon reasonable request.
The genome assembly and annotation data have been deposited at the Genome

Warehouse in the National Genomics Data Center (http://bigd.big.ac.cn/gwh/) under
accession code: GWHACBE00000000. The genome sequencing data have been deposited
at the Sequence Read Archive (SRA) database at the National Center for Biotechnology
Information (NCBI) under accession code: PRJNA541361. The transcriptome
sequencing data have been deposited at the NCBI SRA database under accession code:
PRJNA541362. The single-cell transcriptome sequencing data have been demonstrated in
the NCBI SRA database under accession code: PRJNA541363.
The source data underlying Figs. 1a, 2a–d, 3f, g, 4e, 5b, d, e, h, 6d and 7c and

Supplementary Figs. 17, 19, 20, 24 and 29 are provided as a Source Data file.
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