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Network flows often exhibit a hierarchical treelike structure that can be attributed to the minimization
of dissipation. The common feature of such systems is a single source and multiple sinks (or vice versa).
In contrast, here we study networks with only a single source and sink. These systems can arise from
secondary purposes of the networks, such as blood sugar regulation through insulin production.
Minimization of dissipation in these systems leads to vascular shunting, a single vessel connecting the
inlet and outlet. We show instead how optimizing the transport time yields network topologies that match
those observed in the insulin-producing pancreatic islets. These are patterns of periphery-to-center and
center-to-periphery flows. The obtained flow networks are broadly independent of how the flow velocity
depends on the flow flux, but continuous and discontinuous phase transitions appear at extreme flux
dependencies. Lastly, we show how constraints on flows can lead to buckling of the branches of the
network, a feature that is also observed in pancreatic islets.
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Transport networks are essential for life to function on
large multicellular scales. In vertebrates, blood flow deliv-
ers energy and nutrients and removes waste through the
branched network of the vascular system. The separation of
vessels into arteries and veins ensures that oxygen-rich and
oxygen-depleted parts of the network are kept separate.
In plants, the separation into xylem and phloem provides a
similar function. In nature, these systems typically exhibit
treelike hierarchical structures, as, e.g., in the aorta, which
splits into increasingly smaller arteries all the way to
capillaries, the smallest vessels of the circulatory system.
By considering the arterial system and venial system
independently, this tree structure can be understood as
the minimization of dissipation of the blood flow through
the system [1–3]. Furthermore, loop-redundant treelike
structures, as is evident from, e.g., the veins of a tree leaf,
can be understood as robustness against damage or fluc-
tuating needs [4,5]. Treelike structures are observed not just
in vascular networks, but also, for instance, in both natural
and artificial river networks [4,6].
In modeling the arterial system separate from the

venial system, the heart is considered the source of the
blood flow and the body cells sinks, whereas the roles are
reversed in venous systems. Of course, the vascular system
is in reality a single connected flow system, but it is
this division into oxygen-rich and oxygen-depleted blood

which allows the dissipation minimization to yield tree
structures [Fig. 2(a)]. Minimizing dissipation in systems
with a single source and sink (or a few of each) leads to
vascular shunting [7]: a singular vessel leading from the
source to sink [Fig. 2(b)].
In this Letter, we propose an alternative minimization

problem on flow networks with a single source and sink
that avoids shunting and leads flow to all cells. In particular,
we consider the minimization of flow time between the inlet
or outlet and all cells of the systems. Such time minimi-
zation will be relevant when fast synchronization or transfer
of information between the nodes is important. Likewise,
time from the inlet to cells can be seen as a local proxy for
the concentration of products that enter the system (e.g.,
oxygen in blood) and decay as a function of time. In a
similar fashion, time from cells to the outlet could be seen
as a proxy for efficient removal of metabolites produced by
cells in the system.
As a specific biological exemplar, we consider the islets

of Langerhans in the pancreas. In these islets, beta cells
release insulin and alpha cells glucagon into the blood
stream based on blood glucose levels [8,9]. Here there is no
need for an arterial-venous separation, as oxygen plays
only a secondary role, the production and delivery of
hormones being of primary concern. The average blood
flow velocity in Langerhans islets is ∼1.4 mm=s [10],
implying that transport across an islet takes about ∼0.5 s.
Activity of both alpha and beta cells is pulsatile, and in vitro
experiments show coherent oscillations of whole islets
with periods down to 3 s [11]. In order for the organism to
utilize coherent release of insulin downstream of islets, it is
therefore plausible that time optimization on the subsecond
scale is functional.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 124, 208101 (2020)

0031-9007=20=124(20)=208101(5) 208101-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.208101&domain=pdf&date_stamp=2020-05-22
https://doi.org/10.1103/PhysRevLett.124.208101
https://doi.org/10.1103/PhysRevLett.124.208101
https://doi.org/10.1103/PhysRevLett.124.208101
https://doi.org/10.1103/PhysRevLett.124.208101
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The vasculature of pancreatic islets differs from species
to species. In particular, various topologies have been
observed: periphery-to-center flow, straight through, and
center-to-periphery flow, as idealized in Figs. 1(a)–1(c)
[12–14]. For instance, in rodents, the center-to-periphery
topology is the most common [13]. Furthermore, the
vasculature of these islets is often very tortuous compared
to the vasculature of other organs [10,15] as shown in
Fig. 1(d).
Model.—To study systems of blood flow optimization,

we consider, as in previous studies [1–5], flows on net-
works. While pancreatic islets indeed can have more than
one inlet and outlet, we simplify the system and consider
the network shown in Fig. 1(e). Regardless, our approach
works for any number of sources and sinks. In Fig. 1(e),
cells are represented by hexagons, and edges between these
indicate where fluid may flow. The inlet and outlet are
indicated by arrows.
This specific graph has nN ¼ 130 nodes and nE ¼ 357

edges, each edge e of the graph having a length Le and a
conductivity Ce. An nE × nN oriented incident matrix Δ of
the graph gives each edge a unique direction, and we can
thus tie to each edge a (signed) flow Fe. We furthermore
define the source vector S with Ssource ¼ 1, Ssink ¼ −1, and
Si ¼ 0 elsewhere and require that the flow obeys Kirchoff’s
current law

ΔTF ¼ S: ð1Þ
Since nN < nE, the flow is far from determined by this
condition alone.
To make the flow well defined, we require that it

is derivable from a potential based on the effective
conductivities:

F ¼ CeffΔp; ð2Þ

where pi is the potential (pressure) defined at the nodes
and Ceff is a diagonal matrix with entries Ceff

ee ¼
Ce=Le. Combining Eqs. (1) and (2), we can solve for the
potential as

p ¼ ½ΔTCeffΔ�†S; ð3Þ

where † denotes the pseudoinverse. While the system of
equations is singular, it can be solved, as stated, by the
pseudoinverse if

P
i Si ¼ 0, which is indeed the case here.

From the potentials p, the flows are immediately obtained
from Eq. (2).
The total power dissipation of the system is P ¼P
e F

2
e=Ceff

ee [1–3]. As mentioned, minimizing this term
leads to tree topologies for a single source and sinks
everywhere [Ssource ¼ 1, Si ¼ −1=ðnN − 1Þ elsewhere].
This optimum on our network topology is shown in
Fig. 2(a). The minimization is done under constant
“material cost”

P
e LeC

γ
e, and the treelike structures are

obtained for γ < 1. In the optimum, the conductivities scale
with the flow as [16]

Ce ∼ jFej2=ð1þγÞ; ð4Þ

i.e., a larger conductivity is needed where there is a lot
of flow.
Figure 2(b) shows the “vascular shunting” solution

obtained by minimizing power dissipation in the network
with just a single source and single sink. This is also,
naturally, the time-minimizing network for flow between
the source and the sink.
We are interested in network structures that visit all

nodes in an “optimal” way. Indeed, proper distribution of
vessels is far more important in pancreatic islets and other
systems than the (potentially minuscule) power being
dissipated. As such, we consider instead graphs that

FIG. 1. Vasculature of pancreatic islets. Idealized center-to-
periphery flow (a), left-right symmetric flow (b), and periphery-
to-center flow (c). (d) Microscopy of vasculature, from Ref. [10],
showing the high degree of tortuousness in the vasculature of
pancreatic islets. (e) The network structure considered. This is
constructed by taking a circular subsection of a hexagonal grid of
nodes. Neighbors are induced from a Delaunay triangulation.
Each edge has a conductivity Ce associated to it, which are the
parameters to be optimized over. The inlet and outlet are shown
by arrows.

FIG. 2. Optimized network structures. (a) Minimal dissipation
network with sinks at all nodes. (b) Minimal dissipation network
with a single sink at the edge. (c) Per-node time-minimizing
network with a single sink at the edge. Cell colors indicate the
average time to the outlet(s). Flow lines are colored by pressure,
their thickness indicating the (square root of) flow magnitude.
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minimize the average time for the product (e.g., insulin)
being produced at the nodes to reach the outlet (the
opposite inlet-centric definition will be discussed later).
This time-optimized graph we define as follows: Denote
for each node Ti the average time taken from that node for
the product to reach the outlet. The average time is thus

hTi ¼ 1

nN

X
Ti; ð5Þ

where Ti is found by the recursive relation which follows
by letting the product flow in proportion to the fluid flow:

Ti ¼
P

j∈Oi
jFijjðTj þ TijÞP
j∈Oi

jFijj
; ð6Þ

with the special case Tsink ¼ 0. This is a linear equation for
Ti, whereOi is the set of nodes that are outgoing from node
i. Whether an edge e is outgoing from node i can be
identified by the criteria FeΔei > 0. Tij, the time taken for
the product to flow from node i to neighboring node j,
defines the physics of the system. We will fix this by the
relation

Tij ∼
Lij

jFijjδ
: ð7Þ

Equation (7) states that the time spent for blood to flow
over an edge of length Lij scales as a power law with the
flux over that edge. This is the physical flow time spent
under restrictions of a “building rule” requiring the con-
ductivity to scale with the flux. To see this, consider that
each blood vessel corresponds to a tube of a given radius re.
We can then relate Fe ∼ ver2e, where ve is the fluid velocity
along the tube. Furthermore, in Poiseuille flow Ce ∼ r4e, and
thus Tij ¼ Te ¼ Le=ve ∼ Le

ffiffiffiffiffiffi
Ce

p
=Fe. Equation (7) is then

obtained by requiring Ce to scale as a power law of Fe.
Optimizing directly without this requirement yields solu-
tions of vanishingly small conductivities everywhere, as in
small tubes the liquid will have to move faster for the same
flux F. Such solutions are severely dissipation inefficient,
and our rule ensures a balance of global time optimization
with local power efficiency.
In one interpretation, our rule can be seen as local power

optimization under global material cost constraints: Eq. (4)
states that, in power-optimal solutions of systems with a
fixed material cost, the conductivities scale with the flux.
If we assume that the material cost is kept fixed on a large
scale on which power is exclusively optimized for, say,
the entire vasculature of an organism, then locally (say, in
organs), Eq. (4) specifies that, in order to be power
efficient, a flux of size F must be associated with a
conductivity of size jFj2=ð1þγÞ. Equation (7) is then obtained
by setting δ ¼ γ=ð1þ γÞ. We discuss the situation in which
material cost is kept constant on the local scale in

Supplemental Material [17]. Other approaches such as
Pareto efficiency, could also be considered for jointly
balancing power and time minimization.
Equations (5)–(7) define the optimization problem,

which we solve by a momentum-based version of gradient
descent and simulated annealing [17]. We note that the
system has many local optima (akin to the optimization of
dissipation) and that simulated annealing is not guaranteed
to yield the true global optimum.
Periphery-center optima.—We begin by fixing δ ¼ ½

and discuss variations later. The result of our minimization
scheme is shown in Fig. 2(c). The single-source-sink
system prevents self-similar branching solutions that are
known from single-source, multiple-sink systems. Instead,
the solution has only a few main branches, in particular,
one at the periphery and one at the center. Interestingly,
this pattern is one of the three idealized topologies
[Figs. 1(a)–1(c)] of pancreatic islet blood flow observed
in nature [13,14].
In some species, such as rodents, the glucagon-producing

alpha cells and the insulin-producing beta cells comprising
the islets are heterogeneously distributed with the beta cells
in the center and alpha cells at the periphery. It has thus been
suggested that the order of the flow suggests intercellular
communication and regulation [13], i.e., beta cells regulating
alpha cells or vice versa, depending on the flow topology.
Our results show a separate, but nonexclusive explanation,
namely, that the patterns can appear due to an optimization of
the flow itself, independent of anyheterogeneous distribution
of cells.
The equal distribution of flow to each node and the

sparsity of the network in the optimum [Fig. 2(c)] is
possible due to the choice of δ ¼ ½ in Eq. (7). In fact,
our model works for a broad range of δ. To illustrate
this, consider the simple network of three nodes shown in
Fig. 3(a). Taking 1 ¼ F1 þ F2, it follows that 2hTi ¼
ð1 − F1Þ1−δ þ 2F1−δ

1 þ F−δ
1 , which is shown in Fig. 3(b)

for various values of δ. Minimizing hTi, the optimal F1 is
shown in Fig. 3(c), which demonstrates that this system has
a discontinuous phase transition at δ ≈ 0.275 and a con-
tinuous phase transition at δ ¼ 1 in F1. Between these

(a)

(b) (c)

FIG. 3. Phase transition in triangle geometry. (a) Triangle
geometry. We consider Ssource ¼ 1 ¼ F1 þ F2. (b) Energy
(hTi) landscape for various δ. Circles indicate select minima.
(c) Value of F1 obtained by minimizing hTi for various scalings
δ. There is a discontinuous transition at δ ≈ 0.275 and a
continuous transition at δ ¼ 1.
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values, the optimal F1 is independent of δ, which is the
regime we study.
The discontinuous phase transition occurs because the

left and top nodes in Fig. 3(a) have conflicting optima: The
left node minimizes its time by having F2 large, whereas
the top node needs F1 large. Large δ favor large F1,
because then a larger flow velocity compensates for the
larger length of the upper branch. In contrast, a small δ
favors the shorter path of the lower branch, while leaving
only a small flux through the upper branch required to
transport the product from the top node.
For more complex graphs such as the one we consider

[Fig. 1(e)], the phase transition behavior is more complex
but remains qualitatively similar, albeit with the lower
transition pushed to even lower values of δ (see
Supplemental Material [17] for examples). Our choice of
δ ¼ ½ lies safely within the regime, where the results are
independent of the precise value of δ and where the
resulting networks are sparse graphs. Thus, our results
are to a large degree independent of the scaling in Eq. (7).
The left-right asymmetry and thus the periphery-to-

center flow in Fig. 2(c) stems from the fact that we are
minimizing the time for the product to reach the outlet from
the nodes. The large collection branch emerging from the
center thus minimizes the time for many nodes by provid-
ing a fast route. Had we instead minimized the time from
the source to the nodes hTri, the solution would be

reversed, since it would be important to reach the nodes
fast. Indeed, this opposite situation, with flow from center
to periphery, is the most commonly observed topology in
rodents [13] and could perhaps hint that the time for
“information” (e.g., glucose levels) to reach the cells is
more important than the product to exit the islet.
Naturally, the combination of time from the inlet to

nodes and from nodes to the outlet can also be considered.
For instance, the weighted geometric mean of the two
hTci ¼ hT1−αTα

r i (0 ≤ α ≤ 1) can also be optimized over.
The arithmetic mean also works but is less robust against
variations at the edges of the systems. Figure 4(a) dem-
onstrates that at α ¼ 0.5 the solution becomes left-right
symmetric, yielding an islet topology similar to that in
Fig. 1(b). Taking α ¼ 1 [Fig. 4(b)] left-right mirrors the
original solution, showing that the three distinct topologies
of pancreatic islets (Fig. 1) can be obtained simply by
varying this parameter.
Minimal flow constraints.—Various constraints can

additionally be added to the system. For instance, while
the optimum in Fig. 2(c) does indeed distribute flow to all
nodes, some nodes see much more fluid flowing through
them than others. To equalize this, one can add flow
constraints to the optimization problem. The flow through
a node i with Si ¼ 0 is

F ¼
X

j∈Oi

jFijj; ð8Þ

and we can then require F ≥ Fm for all nodes for a given
value of Fm. With increasing Fm, the flow will have to
adapt in order to provide the required amount of blood to
each cell, until Fm becomes so large that this is no longer
possible.
This situation could model growth of the pancreatic

islets. During growth, if the blood flow source cannot keep
up, each cell or node will see a decrease in flow permeating
them. In this way, growth in networks flows can be
emulated by a decreasing Ssource [3]. At the same time, a
minimum amount of flow might be required at each cell.

FIG. 4. Varying the importance α between time from nodes to
the outlet and the inlet to nodes. (a) The left-right symmetric
solution obtained at α ¼ 0.5. (b) The solution in Fig. 2(c) is
reversed for α ¼ 1.0. Background color indicates T1−αTα

r .

(a) (b) (c) (d) (e) (f)

FIG. 5. Optimal graphs under minimal flow constraints. (a) AtFm ¼ 0.042, the network in Fig. 2(c) loses its front collection channels.
(b) The collection point starts moving to the right as Fm is increased to 0.062. (c) At Fm ¼ 0.073, the collection point has moved to the
far right. (d) One horizontal vessel has been removed by introducing kinks at F ¼ 0.078, which increases the flow in the remaining
vessels. (e) Buckling increases; Fm ¼ 0.125. As Fm → 1, the global optimum becomes a Hamiltonian path through the nodes. (f) In
dark blue (left axis), the average time hTi is shown as a function of Fm. The average flow through the nodes hF i is shown in light brown
(right axis). The dashed line shows fðxÞ ¼ x, which matches the slope of hF i in the buckling section. Background colors denote section:
global optimum in blue, unbuckled solution in green, and buckled in red.
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While our time measure is a global construct, this is a local
constraint on the fluxes, which could be relevant if, for
instance, insulin production or transmission depends
directly on the flux. Likewise, a large flux could ensure
accurate estimation of glucose levels, under the assumption
that these sensors metabolise only a fraction of the glucose
available in the blood stream. Other constraints, such as the
local concentration of glucose or insulin, could also be
tested on the system.
Obtained minima are shown in Fig. 5 under variations

of Fm. The optimal configuration in Fig. 2(c) has
miniF ¼ 0.041, and, thus, for any Fm smaller than this,
the same solution is obtained [blue section in Fig. 5(f)].
As Fm is increased above this, the network adapts to more
equally divide the flow. First, the two middle branches are
lost [Fig. 5(a)], and then the collection point starts moving
toward the outlet [Fig. 5(b)]. In the end of this process
[green section in Fig. 5(f)], the collection branch has moved
all the way to the right [Fig. 5(c)]. As can be seen in
Fig. 5(f), naturally, the average time hTi increases as Fm
increases. Figure 5(f) also shows that hF ii decreases
rapidly. So, as this reordering occurs, the minimum flow
rate increases at the expense of the average flow rate.
As Fm is increased further than reordering can accom-

modate for, buckling occurs [Fig. 5(d)], the degree of
which increases as Fm is increased [Fig. 5(e)]. As soon
as buckling occurs, hF i starts increasing as seen in
Fig. 5(f). This increase scales linearly with Fm; i.e., the
average flow rate, after buckling, stays at a fixed level
above Fm. We note that the noise in hF i in Fig. 5(f) most
likely indicates that our optimization scheme in some
cases fails to find the best optimum but ends in neighboring
local minima.
As shown in Fig. 1(d), pancreatic islets do indeed have a

severely tortuous vasculature [10] similar to that obtained
in Fig. 5. The mechanical reason for buckling in real islets
could be due to growth-induced buckling [15]. Our analysis
indicates circumstances under which such buckling could
actually be of benefit.
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