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Abstract

Given a response Y and a vector X = (X1, . . . , Xd) of d predictors, we investigate the
problem of inferring direct causes of Y among the vector X. Models for Y that use all
of its causal covariates as predictors enjoy the property of being invariant across different
environments or interventional settings. Given data from such environments, this prop-
erty has been exploited for causal discovery. Here, we extend this inference principle to
situations in which some (discrete-valued) direct causes of Y are unobserved. Such cases
naturally give rise to switching regression models. We provide sufficient conditions for the
existence, consistency and asymptotic normality of the MLE in linear switching regression
models with Gaussian noise, and construct a test for the equality of such models. These
results allow us to prove that the proposed causal discovery method obtains asymptotic
false discovery control under mild conditions. We provide an algorithm, make available
code, and test our method on simulated data. It is robust against model violations and
outperforms state-of-the-art approaches. We further apply our method to a real data set,
where we show that it does not only output causal predictors, but also a process-based
clustering of data points, which could be of additional interest to practitioners.

Keywords: causal discovery, invariance, switching regression models, hidden Markov
models, latent variables

1. Introduction

1.1. Causality

In many real world applications, we are often interested in causal rather than purely statis-
tical relations. In the last decades, seminal work by Imbens and Rubin (2015), Spirtes et al.
(2000), and Pearl (2009) has provided a solid mathematical basis for formalizing causal
questions. They often start from a given causal model in the form of a structural causal
model (SCM) or potential outcomes. In practice, we often do not know the underlying
causal model, and the field of causal discovery aims at inferring causal models from data.
There are several lines of work that are based on different assumptions. Among them are
constraint-based methods (Spirtes et al., 2000; Pearl, 2009; Maathuis et al., 2009), score-
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based methods (Chickering, 2002; Silander and Myllymak, 2006; Koivisto, 2006; Cussens,
2011), methods based on restricted SCMs (Shimizu et al., 2006; Mooij et al., 2016; Peters
et al., 2017), and methods based on the independence of causal mechanisms (Janzing et al.,
2012; Steudel et al., 2010). The problem of hidden variables has been addressed in several
works (e.g., Spirtes et al., 1995; Silva et al., 2006; Silva and Ghahramani, 2009; Sgouritsa
et al., 2013; Claassen et al., 2013; Ogarrio et al., 2016; Silva and Evans, 2016; Richardson
et al., 2017; Tsagris et al., 2018). These methods usually consider slightly different setups
than our work does; e.g., they concentrate on full causal discovery (rather than estimating
causal parents), and consider different model classes.

In this work, instead of aiming to learn all of the data generating structure, we consider
the subproblem of inferring the set of causal parents of a target variable Y among a set of
variables X = (X1, . . . , Xd). We furthermore assume that some of the causal predictors are
unobserved. While in general, this is a notoriously hard problem to solve, we will constrain
the influence of the hidden variables by assuming that they take only few different values.
Such a model is applicable whenever the system may be in one of several unobserved states
and was motivated by an example from Earth system science, see Section 5.2. We further
assume that the data are not purely observational but come from different environments.

For the case when all causal parents are observed, Peters et al. (2016) recently pro-
posed the method invariant causal prediction (ICP). Under the assumption that the causal
mechanism generating Y from its causal predictors remains the same in all environments
(“invariant prediction”), it is possible to obtain the following guarantee: with large proba-
bility, the inferred set is a subset of the true set of causal predictors. A concise description
of the method is provided in Section 1.3.

If some of the causal predictors are unobserved, the above guarantee will, in general, not
hold anymore. Under the additional assumption of faithfulness, one can still prove that ICP
infers a subset of the causal ancestors of the target Y . In many cases, however, the method
of ICP infers the empty set, which is not an incorrect, but certainly an uninformative
answer. This paper extends the idea of invariant models to situations, in which relevant
parts of the system are unobserved. In particular, we suggest a relaxation of the invariance
assumption and introduce the formal framework of h-invariance (“hidden invariance”). If
the influence of the hidden variable is not too complex, e.g., because it takes only a few
discrete values, this property is restrictive enough to be exploited for causal discovery.
The assumption of h-invariance gives rise to switching regression models, where each value
of the hidden variable corresponds to a different regression coefficient (we provide more
details in Section 1.2). For building an invariance-based procedure, we require a test for
the equality of switching regression models. In this paper, we provide such a test and show
that it satisfies asymptotic level guarantees. This result allows us to prove that our causal
discovery procedure is asymptotically correct under mild assumptions. In case of sequential
data, we allow for the possibilities that the hidden variables follow an i.i.d. structure or a
hidden Markov model (e.g., Zucchini et al., 2016). We suggest efficient algorithms, provide
code and test our method on simulated and real data.
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1.2. Switching Regression Models

Switching regression models are often used to model statistical dependencies that are sub-
ject to unobserved “regime switches”, and can be viewed as ordinary regression models that
include interactions with a discrete hidden variable. Roughly speaking, each data point
(Xi, Yi) is assumed to follow one of several different regression models; a formal definition
is given in Definition 1. Switching regression models have been used in various disciplines,
e.g., to model stock returns (Sander, 2018), energy prices (Langrock et al., 2017) or the
propagation rate of plant infections (Turner, 2000). Statistical inference in switching re-
gression models is a challenging problem for several reasons: switching regression models
are non-identifiable (permuting mixture components does not change the modeled condi-
tional distribution), and their likelihood function is unbounded (one may consider one of the
regression models containing a single point with noise variance shrinking toward zero) and
non-convex. In this paper, we circumvent the problem of an unbounded likelihood function
by imposing parameter constraints on the error variances of the mixture components (e.g.,
Hathaway, 1985; Goldfeld and Quandt, 1973). We then construct a test for the equality of
switching regression models by evaluating the joint overlap of the Fisher confidence regions
(based on the maximum likelihood estimator) of the respective parameter vectors of the
different models. We establish an asymptotic level guarantee for this test by providing suf-
ficient conditions for (i) the existence, (ii) the consistency and (iii) the asymptotic normality
of the maximum likelihood estimator. To the best of our knowledge, each of these three
results is novel and may be of interest in itself. We further discuss two ways of numerically
optimizing the likelihood function.

Without parameter constraints, the likelihood function is unbounded and global max-
imum likelihood estimation is an ill-posed problem (e.g., De Veaux, 1989). Some analysis
has therefore been done on using local maxima of the likelihood function instead. Kiefer
(1978) show that there exists a sequence of roots of the likelihood equations that yield
a consistent estimator, but provide no information on which root, in case there is more
than one, is consistent. Another popular approach is to impose parameter constraints on
the error variances of the mixture components. In the case of ordinary, univariate Gaus-
sian mixture models, Hathaway (1985) formulate such a constrained optimization problem
and prove the existence of a global optimum. In this paper, we present a similar result for
switching regression models. The proof of Hathaway (1985) uses the fact that the maximum
likelihood estimates of all mean parameters are bounded by the smallest and the largest
observation. This reasoning cannot be applied to the regression coefficients in switching
regression models and therefore requires a modified argument. We also provide sufficient
conditions for the consistency and the asymptotic normality (both up to label permutations)
of the proposed constrained maximum likelihood estimator. Our proofs are based on the
proofs provided by Bickel et al. (1998) and Jensen and Petersen (1999), who show similar
results for the maximum likelihood estimator in hidden Markov models with finite state
space. Together, (ii) and (iii) prove the asymptotic coverage of Fisher confidence regions
and ensure the asymptotic level guarantee of our proposed test.

Readers mainly interested in inference in switching regression models, may want to skip
directly to Section 3. Additionally, Sections 2.5 and 2.6 contain our proposed test for the
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equality of switching regression models that is available as the function test.equality.sr

in our code package.

1.3. The Principle of Invariant Causal Prediction

This section follows the presentation provided by Pfister et al. (2019b). Suppose that we
observe several instances (Y1, X1), . . . , (Yn, Xn) of a response or target variable Y ∈ R and
covariates X ∈ R1×d. We assume that the instances stem from different environments
e ⊆ {1, . . . , n}, and use E to denote the collection of these, i.e.,

⋃̇
e∈Ee = {1, . . . , n}. These

environments can, for example, correspond to different physical or geographical settings
in which the system is embedded, or controlled experimental designs in which some of the
variables have been intervened on. The crucial assumption is then that there exists a subset
S∗ ⊆ {1, . . . , d} of variables from X that yield a predictive model for Y that is invariant
across all environments.

More formally, one assumes the existence of a set S∗ ⊆ {1, . . . , d}, such that for all x
and all 1 ≤ s, t ≤ n, we have

Ys | (XS∗
s = x)

d
= Yt | (XS∗

t = x), (1)

where XS∗
t denotes the covariates in S∗ at instance t. For simplicity, the reader may think

about (1) in terms of conditional densities. Also, the reader might benefit from thinking
about the set S∗ in the context of causality, which is why we will below refer to the set S∗

as the set of (observable) direct causes of the target variable. If, for example, data come
from a structural causal model (which we formally define in Appendix A), and different
interventional settings, a sufficient condition for (1) to hold is that the structural assignment
for Y remains the same across all observations, i.e., there are no interventions occurring
directly on Y . In Section 2.3, we will discuss the relationship to causality in more detail.
Formally, however, this paper does not rely on the definition of the term “direct causes”.

Since each instance is only observed once, it is usually hard to test whether Equation (1)
holds. We therefore make use of the environments. Given a set S ⊆ {1, . . . , d}, we implicitly
assume that for every e ∈ E , the conditional distribution PYt|XS

t

1 is the same for all t ∈ e,
say P e

Y |XS , and check whether for all e, f ∈ E , we have that

P eY |XS = P f
Y |XS . (2)

In the population case, Equation (2) can be used to recover (parts of) S∗ from the condi-
tional distributions P e

Y |XS : for each subset S ⊆ {1, . . . , d} of predictors we check the validity

of (2) and output the set

S̃ :=
⋂

S satisfies (2)

S (3)

of variables that are necessary to obtain predictive stability. Under assumption (1), S̃ only

contains variables from S∗. For purely observational data, i.e., (Yt, Xt)
d
= (Ys, Xs) for all

s, t, Equation (2) is trivially satisfied for any set S ⊆ {1, . . . , d} and thus S̃ = ∅. It is

1. We use PYt|XS
t

as shorthand notation for the family
(
PYt|(XS

t =x)

)
x

of conditional distributions.
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the different heterogeneity patterns of the data in different environments that allow for
causal discovery. If only a single i.i.d. data set is available, the method’s result would not
be incorrect, but it would not be informative either. Based on a sample from (Yt, Xt)t∈e
for each environment, Peters et al. (2016) propose an estimator Ŝ of S̃ that comes with a
statistical guarantee: with controllable (large) probability, the estimated set Ŝ is contained
in S∗. In other words, whenever the method outputs a set of predictors, they are indeed
causal with high certainty.

In this paper, we consider cases in which the full set of direct causes of Y is not observed.
We then aim to infer the set of observable causal variables S∗ ⊆ {1, . . . , d}. Since the
invariance assumption (1) cannot be expected to hold in this case, the principle of invariant
prediction is inapplicable. We therefore introduce the concept of h-invariance, a relaxed
version of assumption (1). If the the latent variables are constrained to take only few
values, the h-invariance property can, similarly to (3), be used for the inference of S∗.

1.4. Organization of the Paper

The remainder of the paper is organized as follows. Section 2 explains in which sense the
principle of invariant causal prediction breaks down in the presence of hidden variables and
proposes an adaptation of the inference principle. It also contains hypothesis tests that
are suitable for the setting with hidden variables. In Section 3, we establish asymptotic
guarantees for these tests. This section contains all of our theoretical results on the inference
in switching regression models, and can be read independently of the problem of causal
inference. In Section 4, we combine the results of the preceding sections into our overall
causal discovery method (ICPH), provide an algorithm and prove the asymptotic false
discovery control of ICPH. The experiments on simulated data in Section 5 support these
theoretical findings. They further show that even for sample sizes that are too small for the
asymptotic results to be effective, the overall method generally keeps the type I error control.
The method is robust against a wide range of model misspecifications and outperforms other
approaches. We apply our method to a real world data set on photosynthetic activity and
vegetation type. Proofs of our theoretical results are contained in Appendix C. All our code
is available as an R package at https://github.com/runesen/icph, and can be installed
by devtools::install_github("runesen/icph/code"), for example. Scripts reproducing
all simulations can be found at the same url.

2. Invariant Causal Prediction in the Presence of Latent Variables

Consider a collection (Y,X,H) = (Yt, Xt, Ht)t∈{1,...,n} of triples of a target variable Yt ∈ R,

observed covariates Xt ∈ R1×d and some latent variables Ht ∈ R1×k. For simplicity, we
refer to the index t as time, but we also allow for an i.i.d. setting; see Section 3.1 for details.
When referring to properties of the data that hold true for all t, we sometimes omit the
index altogether.

In analogy to Section 1.3, we start by assuming the existence of an invariant predictive
model for Y , but do not require all relevant variables to be observed. That is, we assume
the existence of a set S∗ ⊆ {1, . . . , d} and a subvector H∗ of H such that the conditional
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distribution of Yt | (XS∗
t , H∗t ) is the same for all time points t. Based on the observed data

(Y,X), we then aim to infer the set S∗.
Section 2.1 shows why the original version of invariant causal prediction is inapplicable.

In Sections 2.2 and 2.4 we introduce the formal concept of h-invariance and present an
adapted version of the inference principle discussed in Section 1.3. In Sections 2.5 and 2.6
we then present tests for h-invariance of sets S ⊆ {1, . . . , d}, which are needed for the
construction of an empirical estimator Ŝ of S∗. A causal interpretation of the h-invariance
property is given in Section 2.3.

2.1. Latent Variables and Violation of Invariance

The inference principle described in Section 1.3 relies on the invariance assumption (1). The
following example shows that if some of the invariant predictors of Y are unobserved, we
cannot expect this assumption to hold. The principle of ordinary invariant causal prediction
is therefore inapplicable.

Example 1 (Violation of invariance assumption due to latent variables) We con-
sider a linear model for the data (Yt, X

1
t , X

2
t , H

∗
t )t∈{1,...,n} ∈ Rn×4. Assume there exist i.i.d.

zero-mean noise variables ε1, . . . , εn such that for all t, (X1
t , H

∗
t , εt) are jointly independent

and
Yt = X1

t +H∗t + εt.

Assume furthermore that the distribution of the latent variable H∗t changes over time, say
E[H∗r ] 6= E[H∗s ] for some r, s. Then, with S∗ := {1}, the conditional distribution PYt|(XS∗

t ,H∗t )

is time-homogeneous, but

E[Yr|XS∗
r = x] = x+ E[H∗r ] 6= x+ E[H∗s ] = E[Ys|XS∗

s = x],

which shows that PYt|XS∗
t

is not time-homogeneous, i.e., S∗ does not satisfy (1).

The above example shows that in the presence of hidden variables, assumption (1) may be
too strong. The distribution in the above example, however, allows for a different invariance.
For all t, s and all x, h we have that2

Yt | (XS∗
t = x,H∗t = h)

d
= Ys | (XS∗

s = x,H∗s = h). (4)

Ideally, we would like to directly exploit this property for the inference of S∗. Given a
candidate set S ⊆ {1, . . . , d}, we need to check if there exist H∗1 , . . . ,H

∗
n such that (4) holds

true for S∗ = S. Similarly to (3), the idea is then to output the intersection of all sets for
which this is the case. Without further restrictions on the influence of the latent variables,
however, the result will always be the empty set.

2. In the remainder of this work, we implicitly assume that for every t, (Yt, Xt, Ht) is abs. continuous
w.r.t. a product measure. This ensures the existence of densities ft(y, x, h) for (Yt, Xt, Ht). The
marginal density ft(x, h) can be chosen strictly positive on the support of (Xt, Ht) and thereby de-
fines a set of conditional distributions {Yt | (Xt = x,Ht = h)}(x,h)∈supp((Xt,Ht)) via the conditional
densities ft(y |x, h) = ft(y, x, h)/ft(x, h). Strictly speaking, we therefore assume that the conditional
distributions can be chosen s.t. (4) holds for all (x, h) ∈ supp((XS∗

t , H∗t )) ∩ supp((XS∗
s , H∗s )).
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Proposition 1 (Necessity of constraining the influence of H∗) Let S ⊆ {1, . . . , d}
be an arbitrary subset of the predictors Xt. Then, there exist variables H1, . . . ,Hn such that
(4) is satisfied for S∗ = S and (H∗t )t∈{1,...,n} = (Ht)t∈{1,...,n}.

The proof is immediate by choosing latent variables with non-overlapping support (e.g., such
that for all t, P (Ht = t) = 1). Proposition 1 shows that without constraining the influence
of H∗, (4) cannot be used to identify S∗. Identifiability improves, however, for univariate,
discrete latent variables H∗ ∈ {1, . . . , `} with relatively few states ` ≥ 2. Equation (4) then
translates into the following assumption on the observed conditional distributions PYt |XS∗

t
:

for all t, x it holds that

PYt|(XS∗
t =x) =

∑̀
j=1

λjxtP
j
x , (5)

for some λ1
xt, . . . , λ

`
xt ∈ (0, 1) with

∑`
j=1 λ

j
xt = 1 and distributions P 1

x , . . . , P
`
x that do not

depend on t. This fact can be seen by expressing the conditional density of PYt|(XS∗
t =x) as

ft(y |x) =
∫
ft(y |x, h)ft(h |x)dh. By (4), ft(y |x, h) does not depend on t. Property (5)

then follows by taking λjxt = P (H∗t = j |XS∗
t = x) and letting P jx denote the distribution

of Y1 | (XS∗
1 = x,H∗1 = j).

The conditional distributions of Yt | (XS∗
t = x) are thus assumed to follow mixtures

of ` distributions, each of which remains invariant across time. The mixing proportions
λxt may vary over time. In the following subsection, we translate property (5) into the
framework of mixtures of linear regressions with Gaussian noise. The invariance assumption
on P 1

x , . . . P
`
x then corresponds to time-homogeneity of the regression parameters of all

mixture components.

2.2. Hidden Invariance Property

As motivated by Proposition 1, we will from now on assume that H∗ only takes a small
number of different values. We now formalize the dependence of Y on (XS∗ , H∗) by a
parametric function class. We purposely refrain from modeling the dependence between
observations of different time points, and come back to that topic in Section 3.1. Since the
inference principle described in Section 1.3 requires us to evaluate (5) for different candidate
sets S, we state the following definition in terms of a general p-dimensional vector X (which
will later play the role of the subvectors XS , see Definition 2).

Definition 1 (Switching regression) Let X be a p-dimensional random vector, ` ∈ N
and λ ∈ (0, 1)` with

∑`
j=1 λj = 1. Let furthermore Θ be a matrix of dimension (p+2)×` with

columns Θ·j = (µj , βj , σ
2
j ) ∈ R × Rp × R>0, for j ∈ {1, . . . , `}. The joint distribution P of

(Y,X) ∈ R(1+p) is said to follow a switching regression of degree ` with parameters (Θ, λ), if
there exist H ∼ Multinomial(1, λ) and εj ∼ N (0, σ2

j ), j ∈ {1, . . . , `}, with (ε1, . . . , ε`) ⊥⊥ X,
such that

Y =
∑̀
j=1

(µj +Xβj + εj)1{H=j},

where 1{H=j} denotes the indicator function for the event H = j.

7
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A few remarks are in place. First, we will as of now let ` ≥ 2 be fixed. The reader
is encouraged to think of ` = 2, which is also the case to be covered in most examples
and experiments. (Non-binary latent variables are considered in Appendix E.1.) Second,
it will be convenient to parametrize the matrix Θ by a map θ 7→ Θ(θ), θ ∈ T , where
T is a subset of a Euclidean space. This allows for a joint treatment of different types
of parameter contraints such as requiring all intercepts or all variances to be equal. We
will use SRΘ(θ, λ |X) (“Switching Regression”) to denote the distribution P over (Y,X)
satisfying Definition 1 with parameters (Θ(θ), λ), although we will often omit the implicit
dependence on Θ and simply write SR(θ, λ |X). For now, the reader may think of (Θ, T )
as the unconstrained parametrization, where T = (R×Rp×R>0)` and where Θ consists of
the coordinate projections Θij(θ) = θ(j−1)(p+2)+i. Finally, we will for the rest of this paper
disregard the intercept terms µj as they can be added without loss of generality by adding
a constant predictor to X.

The following definition and assumption translate (5) into the model class SR.

Definition 2 (h-invariance) A set S ⊆ {1, . . . , d} is called h-invariant w.r.t. (Y,X) =
(Yt, Xt)t∈{1,...,n} if there exist θ and λ1, . . . , λn such that, for all t, P(Yt,XS

t ) = SR(θ, λt |XS
t ).

Definition 2 describes an invariance in the regression parameters θ and makes no restriction
on the mixing proportions λ1, . . . , λn. This allows the influence of the latent variable to
change over time. From now on, we assume the existence of an h-invariant set S∗.

Assumption 1 There exists a set S∗ ⊆ {1, . . . , d} which is h-invariant w.r.t. (Y,X).

This assumption is at the very core of the proposed methodology, with the unknown h-
invariant set S∗ as inferential target. In Section 2.3 we show that if the data (Y,X,H)
are generated by different interventions in an SCM (see Appendix A), in which the variable
H∗ ∈ {1, . . . , `} acts on Y , Assumption 1 is satisfied by the set S∗ = PA0(Y ) of observable
parents of Y . Here, interventions are allowed to act on the latent variables, and thus
indirectly on the target Y . For illustrations of the h-invariance property, see Figures 1 and 2.

2.3. Relation to Causality

Assumption 1 is formulated without the notion of causality. The following proposition
shows that if the data (Y,X,H) do come from an SCM, the set S∗ may be thought of as
the set of observable parents of Y .

Proposition 2 (Causal interpretation of S∗) Consider an SCM over the system of vari-
ables (Yt, Xt, H

∗
t )t∈{1,...,n}, where for every t, (Yt, Xt, H

∗
t ) ∈ R1 × Rd × {1, . . . , `}. Assume

that the structural assignment of Y is fixed across time, and for every t ∈ {1, . . . , n} given
by

Yt := f(X
PA0(Y )
t , H∗t , Nt),

where (Nt)t∈{1,...,n} are i.i.d. noise variables. Here, PA0(Y ) ⊆ {1, . . . , d} denotes the set of

parents of Yt among (X1
t , . . . , X

d
t ). The structural assignments for the remaining variables

X1, . . . , Xd, H∗ are allowed to change between different time points. Then, property (4)
is satisfied for S∗ = PA0(Y ). If furthermore the assignment f(·, h, ·) is linear for all
h ∈ {1, . . . , `} and the noise variables Nt are normally distributed, then, Assumption 1

8
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Figure 1: An illustration of the h-invariance property based on simulated data from the
SCM in Example 2. The causal graph (left) and rolling window estimates of re-
gression coefficients in the linear interaction model for the conditional distribution
of Y given (X1, H∗), (X2, H∗) and (X3, H∗), respectively (right). Within both
regimes H∗t = 1 and H∗t = 2 (corresponding to different background colors in the
plot), the regression coefficient for X2 (green) is time-homogeneous, and the set
S∗ = {2} is therefore h-invariant with respect to (Y,X). Due to heterogeneity
in the data (“the variable E acts on X1, X2 and H∗”), neither of the sets {1} or
{3} satisfy h-invariance. In practice, we test for h-invariance using environments,
rather than rolling windows, see Section 2.5.

is satisfied for S∗ = PA0(Y ). That is, the set of observable parents of Y is h-invariant with
respect to (Y,X) = (Yt, Xt)t∈{1,...,n}.

From a causal perspective, Proposition 2 informs us about the behavior of PY |(XS∗=x) under

interventions in the data generating process. The set S∗ = PA0(Y ) will be h-invariant under
any type of intervention that does not occur directly on the target variable (except through
the latent variable H∗). The following example demonstrates the h-invariance property for
an SCM in which the assignments of some of the variables change between every time point.

Example 2 Consider an SCM over the system of variables (Yt, Xt, H
∗
t )t∈{1,...,n}, where for

every t, the causal graph over (Yt, Xt, H
∗
t ) ∈ R1 × R3 × {1, 2} is given as in Figure 1. The

node E denotes the “environment variable” and the outgoing edges from E to X1, X2 and
H∗ indicate that the structural assignments of these variables change throughout time. The
structural assignment of Y is fixed across time, and for every t ∈ {1, . . . , n} given by

Yt := (1 +X2
t + 0.5Nt)1{H∗t =1} + (1 + 2X2

t + 0.7Nt)1{H∗t =2},

where (Nt)t∈{1,...,n} are i.i.d. standard Gaussian noise variables. Then, by Proposition 2,
the set S∗ = {2} of observable parents of Y is h-invariant w.r.t. (Y,X), see Figure 1.
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2.4. Inference of the h-Invariant Set

In general, Definition 2 does not define a unique set of predictors. In analogy to Peters
et al. (2016), we thus propose to output the intersection of all h-invariant sets. We define

H0,S : S is h-invariant with respect to (Y,X), and (6)

S̃ :=
⋂

S:H0,S true

S, (7)

where S runs over subsets S ⊆ {1, . . . , d}. In (7), we define the intersection over an empty
index set as the empty set. In practice, we are given a sample from (Y,X), and our goal is
to estimate S̃. Given a family of tests (ϕS)S⊆{1,...,d} of the hypotheses (H0,S)S⊆{1,...,d}, we
therefore define an empirical version of (7) by

Ŝ :=
⋂

S:ϕS accepts H0,S

S. (8)

Using that {ϕS∗ accepts H0,S∗} ⊆ {Ŝ ⊆ S∗}, we immediately obtain the following impor-
tant coverage property.

Proposition 3 (Coverage property) Under Assumption 1 and given a family of tests
(ϕS)S⊆{1,...,d} of (H0,S)S⊆{1,...,d} that are all valid at level α, we have that P(Ŝ ⊆ S∗) ≥ 1−α.
In words, the (setwise) false discovery rate of (8) is controlled at level α.

The set S∗ in Proposition 3 may not be uniquely determined by the h-invariance property.
But since our output is the intersection (8) of all h-invariant sets, this ambiguity does
no harm—the coverage guarantee for the inclusion Ŝ ⊆ S∗ will be valid for any choice
of h-invariant set S∗. The key challenge that remains is the construction of the tests
(ϕS)S⊆{1,...,d}, which we will discuss in Section 2.5.

2.4.1. Tests for non-causality of individual predictors

Proposition 3 proves a level guarantee for the estimator Ŝ. To obtain statements about the
significance of individual predictors that could be used for a ranking of all the variables in
X, for example, we propose the following construction. Whenever at least one hypothesis
H0,S is accepted, we define for every j ∈ {1, . . . , d} a p-value for the hypothesis Hj

0 : j 6∈ S∗
of non-causality of Xj by pj := max{p-value for H0,S : j 6∈ S}. When all hypotheses H0,S ,
S ⊆ {1, . . . , d}, are rejected (corresponding to rejecting the existence of S∗), we set all of
these p-values to 1. The validity of thus defined tests is ensured under the assumptions of
Proposition 3, and is a direct consequence of ϕS∗ achieving correct level α.

2.5. Tests for the Equality of Switching Regression Models

We will now focus on the construction of tests for the hypotheses H0,S that are needed to
compute the empirical estimator (8). Let S ⊆ {1, . . . , d} be fixed for the rest of this section.
We will make use of the notation XS to denote the columns of X with index in S and

10
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X1

environment 1 environment 2 environment 3

−5 0 5 −5 0 5 −5 0 5

0

5

10

15

X1

Y
X2

environment 1 environment 2 environment 3

−3 0 3 6 −3 0 3 6 −3 0 3 6

0

5

10

15

X2

Y

Figure 2: Testing procedure for H0,S , here illustrated for the sets {1} (black; not h-
invariant) and {2} (green; h-invariant) using the same data that generated Fig-
ure 1. First, we split data up into several environments, here e1 = {1, . . . , 200},
e2 = {201, . . . , 400} and e3 = {401, . . . , 600}. Then, we fit an SR model to each
data set (Ye,X

S
e ), e ∈ E , separately, and evaluate whether the mixture com-

ponents remain invariant across all environments. For illustration purposes, we
indicate model fits by dashed lines, and assign points to the most likely hidden
state (• : Ĥ∗t = 1, M: Ĥ∗t = 2). (This explicit classification of points is not part
of the proposed testing procedure.)

Ye = (Yt)t∈e and XS
e = (XS

t )t∈e for the restrictions of Y and XS to environment e ∈ E .
For notational convenience, we rewrite H0,S(E) := H0,S as follows.

H0,S(E) :

{
There exist λ1, . . . , λn and (θe)e∈E , such that, for all e ∈ E ,
P(Yt,XS

t ) = SR(θe, λt |XS
t ) if t ∈ e, and for all e, f ∈ E , θe = θf .

Intuitively, a test ϕS = ϕS(E) of H0,S(E) should reject whenever the parameters θe and θf
differ between at least two environments e, f ∈ E . This motivates a two-step procedure:

(i) For every e ∈ E , fit an SR model to (Ye,X
S
e ) to obtain an estimate θ̂e with confidence

intervals, see Section 3.

(ii) Based on (i), test if θe = θf for all e, f ∈ E , see Section 2.6.

For (i), we use maximum likelihood estimation and construct individual confidence regions
for the estimated parameters θ̂e using the asymptotic normality of the MLE. For (ii), we
evaluate the joint overlap of these confidence regions. Any other test for the equality of SR
models can be used here, but to the best of our knowledge, we propose the first of such tests.
Figure 2 illustrates step (i) for the two canditate sets {1} and {2}. Here, we would expect a
test to reject the former set, while accepting the truly h-invariant set S∗ = {2}. A generic
approach for comparing ordinary linear regression models across different environments can
be based on exact resampling of the residuals (e.g., Pfister et al., 2019b). This procedure,
however, is not applicable to mixture models: after fitting the mixture model, the states
Ht are unobserved, and thus, there are multiple definitions of the residual rjt = Yt −XS

t β̂j ,
j ∈ {1, . . . , `}.

2.6. Intersecting Confidence Regions

Assume H0,S(E) is true and let θ0 be the true vector of regression parameters (that is the
same for all environments). If for e ∈ E , Cαe = Cαe (Ye,X

S
e ) are valid (1 − α)–confidence

11
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regions for θe = θ0, we can obtain a p-value for H0,S(E) by considering their joint overlap.
More formally, we construct the test statistic TS : Rn×(1+|S|) → [0, 1] by

TS(Y,XS) := max

{
α ∈ [0, 1] :

⋂
e∈E

Cα/|E|e (Ye,X
S
e ) 6= ∅

}
, (9)

and define a test ϕαS by ϕαS = 1 :⇔ TS < α. Due to the Bonferroni correction of the
confidence regions, such a test will be conservative. The construction of confidence regions
is discussed in the following section.

3. Inference in Switching Regression Models

In this section, we discuss maximum likelihood estimation and the construction of confi-
dence regions for the parameters in SR models. In Sections 3.1–3.2 we present two different
models for time dependencies in the data, introduce the likelihood function for SR models,
and present two types of parameter constraints that ensure the existence of the maximum
likelihood estimator. In Section 3.3–3.4 we construct confidence regions based on the max-
imum likelihood estimator, and in Section 3.5 we show that these confidence regions attain
the correct asymptotic coverage. As a corollary, we obtain that the test defined in (9)
satisfies asymptotic type I error control.

Let S ⊆ {1, . . . , d} and consider a fixed environment e, say e = {1, . . . ,m}. Throughout
this section, we will omit all indications of S and e and simply write (Yt, Xt) ∈ R1+p for
(Yt, X

S
t ) and (Y,X) for (Ye,X

S
e ).

3.1. Time Dependence and Time Independence

Assume there exist parameters θ and λ1, . . . , λm such that, for all t ∈ {1, . . . ,m}, (Yt, Xt) ∼
SR(θ, λt |Xt). Let H = (Ht)t∈{1,...,m} ∈ {1, . . . , `}m be such that for every t ∈ {1, . . . ,m},
the distributional statement in Definition 1 holds for (Yt, Xt, Ht). We will now consider two
different models for the dependence between observations of different time points:

• Independent observations (“IID”): All observations (Yt, Xt, Ht) across different time
points t = 1, . . . ,m are jointly independent and the marginal distribution of H is
time-homogeneous. Furthermore, for every t ∈ {1, . . . ,m}, the variables Xt and Ht

are independent.

• A hidden Markov model (“HMM”): The dependence in the data is governed by a
first order Markovian dependence structure on the latent variables H as described in
Figure 3. The Markov chain H is initiated in its stationary distribution. Furthermore,
for every t ∈ {1, . . . ,m}, the variables Xt and Ht are independent.

We conveniently assume the independence of X and H, which allows for likelihood inference
without explicitly modelling the distribution of X. Our robustness analysis in Section 5.1.5
suggests, however, that violations of this assumption do not negatively affect the perfor-
mance of our causal discovery method.

For i, j ∈ {1, . . . , `}, let Γij = P (Ht = j |Ht−1 = i) denote the transition probabilities
of H. By considering different parametrizations γ 7→ Γ(γ), γ ∈ G, where G is a subset of a
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· · · Ht−1 Ht Ht+1 · · ·

Yt−1 Yt Yt+1Xt−1 Xt Xt+1

Figure 3: A hidden Markov model for (Y,X). All observations (across different t ∈
{1, . . . ,m}) are conditionally independent given H, and (Yt, Xt) only depends
on H through the present state Ht. Moreover, the variables in H resemble a first
order Markov chain, that is, (H1, . . . ,Ht−1) ⊥⊥ Ht+1 |Ht for all t ∈ {2, . . . ,m−1}.

Euclidean space, we can encompass both of the above models simultaneously. The model
IID then simply corresponds to a map Γ satisfying that, for every γ ∈ G, Γ(γ) has constant
columns. For details on the parametrizations of the models IID and HMM, see Appendix B.

3.1.1. Notation

The characteristics of the model for the joint distribution of (Y,X) are determined by the
parametrizations (Θ, T ) and (Γ,G) of the regression matrix Θ and the transition matrix Γ,
respectively. For every γ ∈ G, let λ(γ) = λ(Γ(γ)) ∈ R1×` be the stationary distribution of
Γ(γ). The stationary distribution λ(γ) exists (and is unique) if the matrix Γ(γ) is irreducible
and aperiodic (e.g., Ching and Ng, 2006, Propositions 1.31–1.33). In the remainder of
this work, we therefore require the image Γ(G) to be a subset of the space of irreducible
and aperiodic matrices of dimension ` × `. We use SR(Θ,Γ)(θ, γ |X) to denote the joint
distribution P over (Y,X) with marginals (Yt, Xt) ∼ SRΘ(θ, λ(γ) |Xt) and a dependence
structure given by Γ(γ). Unless explicit parametrizations are referred to, we will usually
omit the dependence on Θ and Γ and simply write SR(θ, γ |X). For every j ∈ {1, . . . , `},
we use βj(·) and σ2

j (·) to denote the parametrizations of the jth regression coefficient and
the jth error variance, respectively, as induced by (Θ, T ). Finally, φ denotes the combined
parameter vector (θ, γ) with corresponding parameter space P := T × G.

3.2. Likelihood

Consider a fixed pair of parametrizations (Θ, T ) and (Γ,G). For (θ, γ) ∈ T × G, the joint
density of (Y,X,H) induced by the distribution SR(θ, γ |X) is given by

p(Θ,Γ)(y,x,h | θ, γ) = p(x)λ(γ)h1

m∏
s=2

Γhs−1hs(γ)

m∏
t=1

N (yt |xtβht(θ), σ2
ht(θ)),

where p(x) is the (unspecified) density of X, and where, for j ∈ {1, . . . , `}, N (yt |xtβj , σ2
j )

is short hand notation for the density of a N (xtβj , σ
2
j ) distribution evaluated at yt. Given a

sample (y,x) from (Y,X), the loglikelihood function for the model {SR(θ, γ |X) : (θ, γ) ∈
T × G} is then given by

`(Θ,Γ)(y,x | θ, γ) = log
∑
h1

· · ·
∑
hm

p(Θ,Γ)(y,x,h | θ, γ), (θ, γ) ∈ T × G. (10)
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It is well known that, in general, the loglikelihood function (10) is non-concave and may
have several local maxima. For unconstrained parametrizations (Θ, T ) and (Γ,G), it is even
unbounded. To see this, one may, for example, choose (θ, γ) ∈ T × G such that all entries
of Γ(γ) are strictly positive and such that xt0β1(θ) = yt0 for a single fixed t0. By letting
σ2

1(θ) go to zero while keeping all other regression parameters fixed, p(Θ,Γ)(y,x,h | θ, γ)
approaches infinity for all h with ht = 1⇔ t = t0.

We consider two kinds of parameter constraints: (i) a lower bound on all error variances,
and (ii) equality of all error variances. These constraints can be implemented using the
parametrizations (Θc, T c) and (Θ=, T =) given in Appendix B. In the following theorem, we
show that either of these parametrizations ensures the existence of the maximum likelihood
estimator.

Theorem 1 (Existence of the MLE) Let (y,x) be a sample of (Y,X) = (Yt, Xt)t∈{1,...,m}
and assume that the set {(yt, xt) | t ∈ {1, . . . ,m}} is not contained in a union of ` hyper-
planes of dimension p. Let G be a compact subset of a Euclidean space and let Γ : G →
[0, 1]`×` be a continuous parametrization of the transition matrix Γ. Then, with (Θ, T ) be-
ing either of the parametrizations (Θc, T c) or (Θ=, T =) (see Appendix B), the loglikelihood
function `(Θ,Γ) attains its supremum on T × G.

The assumption involving hyperplanes excludes the possibility of a perfect fit. The
conditions on (Γ,G) ensure that the space of possible transition matrices is a compact set.
The continuity of all parametrizations together with the parameter constraints inherent
in (Θc, T c) and (Θ=, T =) make for a continuous and bounded likelihood function. We
use two different methods for likelihood optimization: a numerical optimization routine3

and an EM-type algorithm. These methods make use of the R packages nlm and mixreg,
respectively, and will be referred to as “NLM” and “EM”; see Appendix D for details.

3.3. Fisher Confidence Regions

Using the asymptotic normality of maximum likelihood estimators, we can now construct
(approximate) confidence regions for θ. Let therefore φ̂ = (θ̂, γ̂) be a global maximizer of
the likelihood function and let J (φ̂) be the observed Fisher information (e.g., Lehmann and
Casella, 2006, Chapter 2) at φ̂. For α ∈ (0, 1), we define the region

Cα(θ̂) :=
{
θ̂ + J −1/2(θ̂)v : ‖v‖22 ≤ qχ2(dim(θ))(α)

}
, (11)

where dim(θ) is the length of the parameter vector θ, qχ2(f)(α) is the α-quantile of a χ2(f)-

distribution and J −1/2(θ̂) is the submatrix of J (φ̂)−1/2 corresponding to θ̂. For these
confidence regions to achieve the correct asymptotic coverage, we need to adjust for the
label switching problem described in the following subsection.

3.4. Label Permutations

The distribution SR(φ |X) is invariant under certain permutations of the coordinates of
the parameter vector φ. For example, when ` = 2, the hidden variable has two states. If

3. We are grateful to Roland Langrock who who shared parts of his code with us.
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we exchange all parameters corresponding to the first state with those corresponding to
the second state, the induced mixture distribution is unchanged. In general, the model
{SR(φ |X) : φ ∈ P} is therefore not identifiable. More formally, let Π denote the set of
all permutations of elements in {1, . . . , `}. For every permutation π ∈ Π with associated
permutation matrix Mπ, define the induced mappings πT := Θ−1 ◦ (Θ 7→ ΘMT

π ) ◦ Θ,
πG := Γ−1 ◦ (Γ 7→ MπΓMT

π ) ◦ Γ and πP := (πT , πG) on T , G and P, respectively. Then,
for every φ ∈ P and every π ∈ Π, the distributions SR(φ |X) and SR(πP(φ) |X) coincide
(and thus give rise to the same likelihood). The likelihood function therefore attains its
optimum in a set of different parameter vectors, all of which correspond to permutations of
one another. Coverage properties of the confidence region (11) depend on which particular
permutation of the MLE is output by the optimization routine (even though each of them
parametrizes the exact same distribution). To overcome this ambiguity, we introduce the
permutation-adjusted confidence regions

Cαadjusted(θ̂) :=
⋃
π∈Π

Cα(πT (θ̂)). (12)

In the following section, we make precise under which conditions these confidence regions
achieve the correct asymptotic coverage.

3.5. Asymptotic Coverage of Adjusted Confidence Regions

Assume that the distribution of Xt is stationary across e = {1, . . . ,m} and has a density
f with respect to the Lebesgue measure on Rp. Consider a fixed pair (Θ, T ) and (Γ,G)
of parametrizations. Let φ0 = (θ0, γ0) ∈ P := T × G be the true parameters and let
Θ0 = Θ(θ0) and Γ0 = Γ(γ0) be the associated regression matrix and transition matrix,
respectively.

Suppose now that the data within environment e accumulates. For every m ∈ N, write
(Ym,Xm) = (Yt, Xt)t∈{1,...,m}, let Pm0 := SR(θ0, γ0 |Xm) and use P0 to denote the (infinite-
dimensional) limiting distribution of Pm0 . Similarly, E0 denotes the expectation with respect
to P0. We require the following assumptions.

(A1) The maximum likelihood estimator exists.

(A2) The true parameter φ0 is contained in the interior of P.

(A3) The transition matrix Γ0 is irreducible and aperiodic (e.g., Ching and Ng, 2006, Sec-
tion 1).

(A4) For every i ∈ {1, . . . , p+1} and j, k ∈ {1, . . . , `}, the maps θ 7→ Θij(θ) and γ 7→ Γjk(γ)
have two continuous derivatives.

(A5) For every m ∈ N, assume that the joint distribution of (Ym,Xm) has a density with
respect to the Lebesgue measure that we denote by fm. Then, the Fisher information
matrix I0 defined as

I0 := E0[ηηT ], where η = lim
m→∞

∂

∂φ
fm(Ym, Xm |Ym−1,Xm−1, φ)

∣∣∣∣
φ=φ0

,

is strictly positive definite.
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(A6) All coordinates of X1 have finite fourth moment.

(A7) E[|log f(X1)|] <∞.

Assumptions (A1) and (A4) are satisfied for the explicit parametrizations of the models
IID and HMM given in Appendix B, see Theorem 1. The irreducibility of Γ0 assumed in
(A3) guarantees all latent states to be visited infinitely often, such that information on all
parameters keeps accumulating. Assumption (A5) is needed to ensure that, in the limit,
the loglikelihood function has, on average, negative curvature and hence a local maximum
at φ0. Finally, (A6) and (A7) are mild regularity conditions on the (otherwise unspecified)
distribution of Xt.

Essentially, the asymptotic validity of the adjusted confidence regions (12) rests on two
results: (1) consistency of the MLE and (2) asymptotic normality of the MLE. For every
φ ∈ P, let [φ] := {πP(φ) : π ∈ Π} ⊆ P denote the equivalence class of φ, i.e., the set
of parameters in P that are equal to φ up to a permutation πP as defined in Section 3.4.
Consistency in the quotient topology (“[φ̂m] → [φ0]”) then simply means that any open
subset of P that contains the equivalence class of φ0, must, for large enough m, also contain
the equivalence class φ̂m. With this notation, we can now state an asymptotic coverage
result for confidence regions (12). The main work is contained in Theorems 2 and 3. Their
proofs make use of results given by Leroux (1992) and Bickel et al. (1998), which discuss
consistency and asymptotic normality, respectively, of the MLE in hidden Markov models
with finite state space.

Theorem 2 (Consistency of the MLE) Assume that (A1), (A3), (A4) and (A7) hold
true. Then, P0-almost surely, [φ̂m]→ [φ0] as m→∞.

Theorem 2 says that (φ̂m)m∈N alternates between one or more subsequences, each of which
is convergent to a permutation of φ0. The following theorem proves a central limit theorem
for these subsequences.

Theorem 3 (Asymptotic normality of the MLE) Assume that the maximum likeli-

hood estimator is consistent. Then, under (A1)–(A6), it holds that J (φ̂m)1/2(φ̂m−φ0)
d−→

N (0, I) under P0.

Together, Theorems 2 and 3 imply the following asymptotic coverage guarantee.

Corollary 1 (Asymptotic coverage of adjusted confidence regions) Under Assump-
tions (A1)–(A7), the adjusted confidence regions (12) achieve the correct asymptotic cover-
age. That is, for any α ∈ (0, 1),

lim inf
m→∞

Pm0 (θ0 ∈ Cαadjusted(θ̂m)) ≥ 1− α. (13)

As another corollary, the asymptotic type I error control of the tests defined by (9) follows
by applying Corollary 1 to each environment separately.

4. ICPH: Algorithm and False Discovery Control

We can now summarize the above sections into our overall method. In Section 4.1 we provide
a pseudo code for this procedure, and Section 4.2 presents our main theoretical result—an
asymptotic version of Proposition 3, which states that our procedure is consistent.
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4.1. Algorithm

Given data (Y,X) and a collection E of environments, we run through all S ⊆ {1, . . . , d},
test the hypothesis H0,S with the test defined by (9) using the adjusted confidence re-
gions (12), and output the intersection of all accepted sets. Below, this procedure is for-
malized in a pseudo code.

Algorithm 1: ICPH (“Invariant Causal Prediction in the presence of Hidden
variables”)

1 Input: response Y ∈ Rn, covariates X ∈ Rn×d, environment indicator
E ∈ {1, . . . , |E|}n (i.e., Et = k ⇔ t ∈ ek);

2 Options: model ∈ {“IID”, “HMM”}, method ∈ {“EM”, “NLM”},
variance.constraint ∈ {“lower bound”, “equality”}, number.of.states ∈ N≥2,
intercept ∈ {TRUE, FALSE},
test.parameters ⊆ {“intercept”, “beta”, “sigma”}, alpha ∈ (0, 1);

3 for S ⊆ {1, . . . , d} do
4 for e ∈ E do
5 Fit an SR model to (Ye,X

S
e ), see Section 3.2;

6 Construct the permutation-adjusted confidence region (12);

7 end
8 Compute a p-value pS for H0,S using the test defined by (9);

9 end

10 Output: the empirical estimator Ŝ =
⋂
S:pS>α

S;

Most of the options in Algorithm 1 are self-explanatory. The option test.parameters

allows the user to specify the “degree of h-invariance” that is required of the sets S ⊆
{1, . . . , d}. If, for example, test.parameters = {“beta”, “sigma”}, a set S will be re-
garded h-invariant if the mixture components of PYt|XS

t
are “invariant in β and σ2”, i.e.,

time-homogeneous up to changes in the intercept between different environments. Code
is available online (see Section 1.4). To make Algorithm 1 scalable to a large number of
predictors, it can be combined with a variable screening step, e.g., using Lasso (Tibshirani,
1994); see Section 4.2 for more details.

4.2. Asymptotic False Discovery Control of ICPH

The cornerstone for the false discovery control of ICPH is given in Corollary 1. It proves that
if Assumptions (A1)–(A7) are satisfied for the true set S∗, then the test ϕS∗ achieves the
correct asymptotic level, which in turn guarantees an asymptotic version of Proposition 3.
We will now summarize this line of reasoning into out main theoretical result.

Assume that we are given data ((Yn,Xn))n∈N =
(
(Yn,t, Xn,t)t∈{1,...,n}

)
n∈N from a trian-

gular array, where, for every n, (Yn,Xn) ∈ Rn×(1+d). Consider a fixed number of K envi-
ronments and let (En)n∈N be a sequence of collections En = {en,1, . . . , en,K}, such that, for all
n, en,1, . . . , en,K are disjoint with ∪ken,k = {1, . . . , n} and such that, for all k, |en,k| → ∞
as n → ∞. For all n and k, write (Yn,k,Xn,k) = (Yt, Xt)t∈en,k

. Consider a transition

parametrization (Γ,G) and a family of regression parametrizations {(ΘS , T S)}S⊆{1,...,d}, i.e.,

for every S ⊆ {1, . . . , d}, ΘS maps T S into the space of matrices of dimension (|S|+ 1)× `
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with columns in R|S| × R>0. For every n and every S ⊆ {1, . . . , d}, let Hn
0,S denote the

hypothesis (6) for the data (Yn,X
S
n) and let ϕnS be the corresponding test defined by (9)

with the confidence regions (12). Finally, define for every n the estimator

Ŝn :=
⋂

S:ϕn
S accepts Hn

0,S

S. (14)

We then have the following result.

Theorem 4 (Asymptotic false discovery control) Assume that Assumption 1 is sat-
isfied. That is, there exists a set S∗ ⊆ {1, . . . , d} which, for every n, is h-invariant with
respect to (Yn,Xn). Assume furthermore that, for every k, (A1)–(A7) hold true for the
data (Yn,k,X

S∗
n,k) with parametrizations (ΘS∗ , T S∗) and (Γ,G). Then, the estimator Ŝn

enjoys the following coverage property

lim inf
n→∞

Pn0 (Ŝn ⊆ S∗) ≥ 1− α, (15)

where Pn0 is the law of (Yn,Xn).

If the number of predictor variables is large, our algorithm can be combined with an upfront
variable screening step. Given a family (Ŝnscreening)n∈N of screening estimators, we can for

every n ∈ N construct an estimator S̄n of S∗ analogously to (14), but where the inter-
section is taken only over those S additionally satisfying that S ⊆ Ŝnscreening. Given that

lim infn→∞ Pn0 (S∗ ⊆ Ŝnscreening) ≥ 1− α, it then follows from

Pn0 (S̄n 6⊆ S∗) = Pn0 ([S̄n 6⊆ S∗] ∩ [S∗ ⊆ Ŝnscreening]) + Pn0 ([S̄n 6⊆ S∗] ∩ [S∗ 6⊆ Ŝnscreening])

≤ Pn0 (ϕnS∗ rejects Hn
0,S∗) + Pn0 (S∗ 6⊆ Ŝnscreening),

that the estimator (S̄n)n∈N satisfies the asymptotic false discovery control (15) at level
1−2α. In high-dimensional models, assumptions that allow for the screening property have
been studied (see, e.g., Bühlmann and van de Geer, 2011).

5. Experiments

In this section, we apply our method to simulated data (Section 5.1) and to a real world
data set on photosynthetic activity and sun-induced fluorescence (Section 5.2). We only
report results using the NLM optimizer. In all experiments, the results for EM were almost
identical to those for NLM, except that the computation time for EM was larger (by ap-
proximately a factor of 6). For an experiment that uses the EM-method, see Appendix D.2.

5.1. Simulated Data

We start by testing the sample properties of the adjusted confidence regions, disregarding
the problem of causal discovery, see Section 5.1.1. In Section 5.1.2, we present the multivari-
ate data generating process that we will use in the subsequent analyses. In Section 5.1.3,
we see that, even for sample sizes that are too small for the confidence regions to achieve
the correct coverage, our overall method (ICPH) is able to keep the type I error control.
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Section 5.1.4 contains a power analysis. In Section 5.1.5, we test the robustness of ICPH
against a range of different model violations, and include a comparison with two alternative
causal discovery methods. The performance of ICPH for non-binary latent variables, for
large numbers of predictor variables, or under violations of the h-invariance assumption,
can be found in Appendix E.

5.1.1. Empirical coverage properties of adjusted confidence regions

The finite sample coverage properties of the confidence regions (12) depend on the true
distribution over (Y,X) (i.e., on the parameters of the SR model as well on the marginal
distribution of X) and on the sample size. We here illustrate this sensitivity in the i.i.d.
setting. Consider a joint distribution P over (Y,X,H) ∈ R1+p × {1, . . . , `} which induces
an SR model over (Y,X). For every j ∈ {1, . . . , `} let pj(y, x) = P(H = j |Y = y,X = x)
denote the posterior probability of state j based on the data (y, x). We then use the
geometric mean of expected posterior probabilities

GMEP :=

∏̀
j=1

E[pj(Y,X) |H = j]

1/`

∈ [0, 1] (16)

as a measure of difficulty of fitting the SR model induced by P.4 We expect smaller
values of GMEP to correspond to more difficult estimation problems, which negatively
affect the convergence rate of (13) and result in low finite sample coverage. If the between-
states differences in the regression parameters of X are small, for example, we expect the
unobserved states to be difficult to infer from the observed data (i.e., for every j, the
expected posterior probabilities E[pi(Y,X) |H = j] are close to uniform in i), resulting in
small GMEP.

We now perform the following simulation study. For different model parameters and
sample sizes, we generate i.i.d. data sets from the SCM

H := NH
λ , X := µX + σXN

X , Y := µY + β1X · 1{H=1} + β2X · 1{H=2} + σYN
Y , (17)

where all noise variables are jointly independent with marginal distributions NH
λ ∼ Ber(λ),

NX , NY ∼ N (0, 1). We construct adjusted confidence regions (12) for the vector of
regression parameters θ0 = (µY , β1, µY , β2, σ

2
Y ) using the likelihood function (10) with

parametrizations (Θ=, T =) and (ΓIID,GIID) (see Appendix B). We first sample 50 different
sets of parameters independently as µX , µY , β1, β2 ∼ Uniform(−1, 1), σX ∼ Uniform(0.1, 1),
σY ∼ Uniform(0.1, 0.5) and λ ∼ Uniform(0.3, 0.7). For each setting, we compute empirical
coverage degrees based on 1000 independent data sets, each consisting of 100 independent
replications from (17), and compare them to the GMEP of the underlying models, see
Figure 4 (left). For the same simulations, we also compare the p-values

p := max{α ∈ [0, 1] : θ0 6∈ Cαadjusted(θ̂)} (18)

4. If each of the distributions P(Y,X)|H=j , j ∈ {1, . . . , `} has a density w.r.t. the Lebesgue measure on R1+p,
each factor in (16) is given as an integral over R1+p. In practice, we approximate these integrals by
numerical integration.
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Figure 4: Empirical coverage properties of the adjusted confidence regions (12) using data
simulated from the model (17). The left panel shows empirical coverage of 95%-
confidence regions for different model parameters (see Equation 16 for a definition
of GMEP), and a fixed sample size of 100. We see that the coverage properties
strongly depend on GMEP, and that the poor performance for low GMEP is not
an optimization problem (the likelihood scores obtained from starting the algo-
rithm in the true values exceed those obtained from data driven initialization in
less than 0.2% of simulations). In the middle panel, we use the same simula-
tions, but only consider data-driven initialization. Each column corresponds to
a histogram of p-values (18). For increasing GMEP, the p-value distribution ap-
proximates the desired uniform distribution. For 5 different parameter settings,
we further increase the sample size (right). As suggested by Corollary 1, the
empirical coverage gradually improves, although very low GMEP demand large
amounts of data to obtain satisfactory coverage.

for the (true) hypotheses H0 : θ = θ0 to a uniform distribution (Figure 4 middle). For
5 models of different degrees of difficulty (GMEP ≈ 0.50, 0.55, 0.60, 0.65, 0.70), we then
compute empirical coverage degrees for increasing sample size (Figure 4 right).

For difficult estimation problems (i.e., low GMEP), the finite sample variance of the
MLE is inflated, resulting in low empirical coverage and too small p-values (Figure 4 left
and middle). Although there is no proof that NLM finds the global optimum, it is assuring
that there is little difference when we start the algorithm at the (usually unknown) true
values (Figure 4 left, hollow circles). Indeed, the thus obtained likelihood scores exceed
those obtained from data driven initialization in less than 0.2% of simulations. As seen
in Figure 4 (right), coverage properties improve with increasing sample size, although in
models with low GMEP, we require large amounts of data in order to obtain satisfactory
performance. We will see in Section 5.1.3 that even cases where we cannot expect the
confidence regions to obtain valid coverage, our overall causal discovery method maintains
type I error control.
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Figure 5: Data generated from the SCM described in Section 5.1.2 for each of the three
environments (black, red, blue). Here, the only h-invariant set is S∗ = {1, 2}
and we would therefore like our method to correctly identify the violations of
the h-invariance of the sets {1}, {2} and {3}. These violations are indicated
by the different model fits (colored lines), which for none of the three variables
are stable across all environments. For numerical results on such data sets, see
Sections 5.1.3 and 5.1.4. The issue of label permutations can be seen from the
occasional mismatch between the true latent states (• : Ht = 1, M: Ht = 2) and
the estimated labels ( : Ĥt = 1, : Ĥt = 2).

5.1.2. Data generating process

We now specify the data generating process used in the following sections. We consider an
SCM over the system of variables (Y,X1, X2, X3, H) given by the structural assignments

X1 := N1, H := NH , X2 := β21X1 +N2

Y :=
∑̀
j=1

(µYj + βY1jX
1 + βY2jX

2 + σY jN
Y )1{H=j}

X3 := β3Y Y +N3,

where NH ∼ Multinomial(1, λ), NY ∼ N (0, 1) and N j ∼ N (µj , σ2
j ). In Sections 5.1.3–

5.1.5, the latent variable H is assumed to be binary, while Appendix E.1 treats the more
general case where ` ≥ 2. The different environments are constructed as follows. We first
draw random change points 1 < t1 < t2 < n and then generate data as described below.

• e1 = {1, . . . , t1}: Here, we sample from the observational distribution.

• e2 = {t1 + 1, . . . , t2}: Here, we set X2 := β21X1 + Ñ2, where Ñ2 is a Gaussian ran-
dom variable with mean sampled uniformly between 1 and 1.5 and variance sampled
uniformly between 1 and 1.5. Also, the mixing proportions λ are resampled.

• e3 = {t2 + 1, . . . , n}: We again sample data from the above SCM, but this time we
intervene on X3. The structural assignment is replaced by X3 := Ñ3, where Ñ3

is a Gaussian random variable with mean sampled uniformly between −1 and −0.5
and the same variance as the noise N3 from the observational setting. The mixing
proportions λ are again resampled.
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causal DAG
CPDAG from
cond. indep.

X2

E YH X1

X3

X2

E Y X1

X3

Figure 6: Left: the causal graph induced by the SCM in Section 5.1.2. The node E rep-
resents the different environments (E points into variables that have been inter-
vened on, the color corresponds to the environments shown in Figure 5). Right:
the CPDAG representing the Markov equivalence class of the graph where H is
marginalized out. Since the edge X2 − Y is not oriented, the full set of causal
parents S∗ = {1, 2} cannot be identified only from conditional independence
statements. Our method exploits the simple form of the influence of H on Y .
Note that in the case of an additional edge E → X1, none of the edges among
the variables (Y,X1, X2, X3) would be oriented in the CPDAG.

A sample data set can be seen in Figure 5, where points have been colored according to
the above environments (black, red and blue for e1, e2 and e3, respectively). The only
h-invariant set is the set S∗ = {1, 2} of observable parents of Y . In the population case, our
method therefore correctly infers S̃ = {1, 2}, see Equation (7). The causal graph induced
by the above data generating system can be seen in Figure 6 (left). Here, the environment
is drawn as a random variable.5 We also display the CPDAG representing the Markov
equivalence class of the induced graph over the observed variables (right), showing that the
full set of causal parents S∗ = {1, 2} cannot be identified only from conditional independence
statements.

5.1.3. Level analysis

Given that the theoretical coverage guarantees are only asymptotic, we cannot expect the
tests (9) to satisfy type I error control for small sample sizes—especially if GMEP is low,
see also Section 5.1.1. The following empirical experiments suggest, however, that even
if the test level of the true hypothesis H0,S∗ is violated, ICPH may still keep the overall
false discovery control. We use data sets (Yt, X

1
t , X

2
t , X

3
t )t∈{1,...,n} generated as described in

Section 5.1.2, and analyse the performance of ICPH for different sample sizes and different
GMEP. Since the latter is difficult to control directly, we vary the between-states difference
in regression coefficients for X1 and X2 in the structural assignment for Y , and report

5. To view the data set as i.i.d. realizations from such a model one formally adds a random permutation
of the data set, which breaks the dependence of the realizations of the environment variable (this has
no effect on the causal discovery algorithm, of course). Constantinou and Dawid (2017) discuss a non-
stochastic treatment of such nodes.
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Figure 7: Estimates P̂(ϕS∗ rejects H0,S∗) (left) and P̂(Ŝ 6⊆ S∗) (right) of the type I error
rates of the test ϕS∗ and the overall method ICPH, respectively, based on the
experiment described in Section 5.1.3 and 100 repetitions. The desired level is α =
0.05. We have used NLM with parametrizations Θ= and ΓIID (see Appendix B).
The average GMEP values are 0.51, 0.56, 0.64, 0.66, 0.78 (ordered in accordance
to the vertical axis). For small sample sizes, and in particular for low GMEP, the
type I error control of the test ϕS∗ is violated. Even in these cases, however, the
false causal discovery control of ICPH is satisfied.

the average GMEP for each setting. For every n ∈ {100, 200, 300, 400, 500} and every
∆β ∈ {0, 0.5, 1, 1.5, 2}, we simulate 100 independent data sets by drawing model parameters
µ ∼iid Uniform(−0.2, 0.2), σ2 ∼iid Uniform(0.1, 0.3) (with the restriction that σ2

Y 1 = σ2
Y 2),

β ∼iid Uniform([−1.5,−0.5] ∪ [0.5, 1.5]) and λ ∼ Uniform(0.3, 0.7). For j ∈ {1, 2} we then
assign βYj,2 := βYj,1 +sign(βYj,1)∆β. The results are summarized in Figure 7. We see that even
in settings for which the true hypothesis H0,S∗ is rejected for about every other simulation,
ICPH stays conservative.

5.1.4. Power analysis

Since the only h-invariant set is the set S∗ = {1, 2} of causal parents of Y , the population
version of our method correctly infers S̃ = {1, 2}, see Equation (7). For finite samples,
identifiability of S∗ is determined by the power of the tests for the hypotheses H0,S . For a
fixed value of ∆β = 1.5 (average GMEP of 0.66) and increasing sample size, we generate
i.i.d. data sets as described in Section 5.1.3 and analyze the performance of ICPH for two
different variance constraints σ2

Y 1 = σ2
Y 2 and σ2

Y 1, σ
2
Y 2 ≥ 10−4. The results in Figure 8

suggest that the former constraint results in higher performance, and it will therefore be
our default setting for the rest of this section. As the sample size increases, ICPH tends to
identify the set S∗ (larges shares of green in bar plots).

For the same data that generated Figure 8, we compute rejection rates for non-causality
(i.e., empirical proportions of not being contained in Ŝ) for each of the predictors X1, X2

and X3. Here, we also add a comparison to other methods. We are not aware of any other
method that is suitable for inferring S∗, but we nevertheless add two approaches as baseline.
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Figure 8: Output of ICPH (bar plots) and rejection rates for individual hypotheses (curve
plots) for the experiment in Section 5.1.4 with parameter constraint σ2

Y 1, σ
2
Y 2 ≥

10−4 (left) and σ2
Y 1 = σ2

Y 2 (right). The larger the proportion of blue and green
colors in the bar plots, the more power our method has. Simulations are ordered
such that, within each bar, the bottom colors (yellow, light orange, dark orange,
purple) correspond to false positives, i.e., cases where Ŝ 6⊆ S∗. Even though the
level of the test for H0,S∗ is violated in the finite sample case, ICPH controls the
empirical type I error rate at α = 0.05 (indicated by a dashed horizontal line).
Enforcing equality on error variances is beneficial, especially for small data sets.
For both settings, the identification of S∗ improves with increasing sample size.

• “k-means ICP”: Pool data points from all environments and infer estimates Ĥ of the
hidden states using 2-means clustering. Run the ordinary ICP algorithm (Peters et al.,
2016) on each of the data sets {(Yt, Xt) : Ĥt = j}, j ∈ {1, 2}, testing all hypotheses
at level α/2, and obtain Ŝ1 and Ŝ2. Output the final estimate Ŝ = S1 ∪ S2.

• “JCI-PC”: We use a modified version of the PC algorithm (Spirtes et al., 2000), which
exploits our background knowledge of E being a source node: in between skeleton
search and edge orientation, we orient all edges connecting E to another node. The
resulting algorithm may be viewed as a variant of the of JCI algorithm (Magliacane
et al., 2016). We apply it to the full system of observed variables (E, Y,X1, X2, X3),
and output the set of variables (among {X1, X2, X3}) which have a directed edge to
Y in the resulting PDAG.6

In the JCI-PC algorithm, we use conditional independence tests based on partial corre-
lations. Since we apply it to a system of mixed variables (i.e., continuous as well as discrete),
the assumptions underlying some of the involved tests will necessarily be violated. We are
not aware of any family of tests which is more suitable. However, even in the population
case, we cannot expect constraint-based methods such as JCI-PC to infer the set full S∗, see
Figure 6. ICPH solves a specific problem and is the only method which exploits the simple
influence of H on Y . The results in Figure 9 (black curves) confirm our previous findings:

6. Note that H can be marginalized out, so it is not necessary to use FCI. Furthermore, since we do not
assume the intervention targets to be known, search algorithms for interventional data such as the GIES
algorithm (Hauser and Bühlmann, 2012) are not applicable.
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Figure 9: Rejection rates for non-causality. This figure contains two comparisons (one
among all black curves, and another among all curves with round points). For
data generated from the SCM in Section 5.1.2 (black), we compare the perfor-
mance of ICPH (•) against the two alternative methods k-means ICP (N) and
JCI-PC (�) described in Section 5.1.4. For increasing sample size, ICPH out-
performs both methods in terms level and power. As a robustness analysis, we
further we apply ICPH to simulated data sets from the modified SCMs described
in Section 5.1.5 (colored). Each of the modified SCMs yields a misspecification
of the model for PY |XS∗ that is assumed by our method. Most of these model
misspecifications do not qualitatively affect the results: for increasing sample size,
both causal parents X1 and X2 tend to be identified. For a continuous hidden
variable, none of the variables is identified as causal (which is not incorrect, but
uninformative). In all scenarios, ICPH maintains empirical type I error control.

causal discovery improves with increasing sample size, and our method stays conservative.
ICPH outperforms both other methods in terms of level and power.

5.1.5. Robustness analysis

Our results are based on various assumptions, and we now investigate the robustness of
ICPH against different kinds of model violations. We use data generated from the following
modified versions of the SCM in Section 5.1.2. Unless mentioned otherwise, parameters are
sampled as described in Section 5.1.3.

• Heterogeneous variances: The error variances σ2
Y 1 and σ2

Y 2 are sampled independently.

• Non-Gaussian noise: We generate errors NY from (i) a uniform distribution and (ii)
a Laplace distribution.

• A direct effect H → X1: We allow for an influence of H on X1 through binary shifts in
(i) the mean value and (ii) the error variance. Parameters are sampled independently
as µ1

1, µ
1
2 ∼ Uniform(−1, 1) and σ2

11, σ
2
12 ∼ Uniform(0.1, 1).

• A continuous hidden variable: We substitute the structural assignment for Y by
Y := (µY + βY1 X

1 + βY2 X
2)H + σYN

Y , where H ∼ N (0, 1). The distribution of H
does not change across environments.
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variable description

Y sun-induced fluorescence (SIF)
X1 incident shortwave radiation (SW)
X2 absorbed photosynthetically active radiation (APARchl)
X3 gross primary productivity (GPP)
H vegetation type

E

X1

H
X2

X3 Y

Figure 10: Variable descriptions (left) and causal graph constructed from background
knowledge (right). In our analysis, we use the temporal ordering of data to con-
struct the environment variable E. Due to seasonal cycles of aggradation and
degradation of chlorophyll, APARchl is not a constant fraction of SW (which
itself is time-heterogeneous). The environment therefore “acts” on the variables
X1 and X2. Furthermore, different vegetation types differ not only in their
chlorophyll composition (and thus in APARchl), but also in their respective ef-
ficiencies of converting APARchl into GPP and SIF—hence the arrows from H
to X2, X3 and Y .

We now repeat the power analysis from Section 5.1.4 for data sets generated in the above
way (Figure 9, colored curves). Most model violations do not qualitatively affect the results.
Only the assumption on the state space of H is crucial for the power (not the level) of our
method; for a continuous hidden variable, we mostly output the empty set.

5.2. Sun-Induced Fluorescence and Land Cover Classification

We now consider a real world data set for which we can compare our method’s output against
a plausible causal model constructed from background knowledge. The data set is related to
the study of global carbon cycles, which are determined by the movement of carbon between
land, atmosphere and ocean. Carbon is emitted, e.g., during fossil fuel combustion, land use
change or cellular respiration, and assimilated back into the Earth’s surface by processes
of carbon fixation. A major component hereof is photosynthesis, where inorganic carbon
is converted into organic compounds by terrestrial ecosystems. Direct measurements of
carbon fluxes can be obtained from fluxtowers (http://fluxnet.fluxdata.org), but are
only available at single locations. Constructing reliable global models for predicting photo-
synthesis using satellite data is an active line of research. While most of the commonly used
models (e.g., Jung et al., 2009; Running and Zhao, 2015) use sunlight as the predominant
driver, recent work (e.g., Guanter et al., 2012; Zhang et al., 2016) explores the predictive
potential of sun-induced fluorescence (SIF), a (remotely sensible) electromagnetic radiation
that is emitted by plants during the photosynthetic process.

Here, we take SIF as the target variable. As predictors, we include the incident shortwave
radiation (SW), the photosynthetically active radiation absorbed by the plants’ chlorophyll
cells (APARchl), and the gross primary productivity (GPP), the latter of which is a measure
of photosynthesis. Since GPP cannot be directly measured, we use spatially upscaled mea-
surements from a network of fluxtowers (Jung et al., 2009). Background knowledge suggests
that out of these three variables, only APARchl is a direct causal parent of the target SIF.
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Zhang et al. (2016) suggest evidence for a linear relationship between SIF and APARchl,
and show that this relationship strongly depends on the type of vegetation. Estimates of
the vegetation type can be obtained from the IGBP global land cover data base (Loveland
et al., 2000). We use the IGBP classification to select data coming from two different veg-
etation types only. In the resulting data set, we thus expect the causal influence of SIF on
APARchl to be confounded by a binary variable. When applying our method to these data,
we remove information on vegetation type, so that this binary variable becomes latent. The
data and the ground truth we consider is shown in Figure 10.

In Section 5.2.1, we use our causal discovery method to identify the causal predictor
of SIF. In Section 5.2.2, we explore the possibility to reconstruct the vegetation type from
the observed data (Y,X1, X2, X3) when assuming that we have inferred the correct causal
model. We believe that such estimates may be used to complement conventional vegetation
type classifications.

5.2.1. Causal discovery

We denote the observed variables by (Y,X1, X2, X3) as described in Figure 10 (left). The
data are observed along a spatio-temporal grid with a temporal resolution of 1 month (Jan
2010 – Dec 2010), and a spatial resolution of 0.5◦ × 0.5◦ covering the North American
continent. The setup is directly taken from Zhang et al. (2016), and we refer to their work
for a precise description of the data preprocessing for the variables (Y,X2, X3). The data
for X1 is publicly available at https://search.earthdata.nasa.gov. We select pixels
classified as either Cropland (CRO) or Evergreen Needleleaf Forest (ENF). These vegetation
types are expected to differ in their respective relationships X2 → Y (Zhang et al., 2016).
As environments we use the periods Feb – Jul and Aug – Jan.7

The goal of the statistical analysis is to identify the set S∗ = {2} of causal parents of
Y among the vector (X1, X2, X3). Since the variables X1 and X2 are closely related, we
regard distinguishing between their respective causal relevance for Y as a difficult problem.
We analyze the data for different sample sizes. To do so, we gradually lower the spatial
resolution in the following way. For every c ∈ {1, . . . , 16}, we construct a new data set
by increasing the pixel size of the original data set by a factor of c2, and then averaging
observations within each pixel. Grid cells that do not purely contain observations from
either of the two vegetation types are discarded. We then apply our causal discovery
method to each of the generated data sets, allowing for a binary hidden variable. The
results are illustrated in Figure 11.8 Indeed, for several sample sizes (n ≤ 390), the true
hypothesis H0,S∗ is accepted, and our method mostly correctly infers Ŝ = {2} (left plot).
In all experiments, the variable X2 is attributed the highest significance as a causal parent
of Y (right plot). Also, we consistently do not reject the only non-ancestrial variable X3,
and the causal ordering implied by the right hand plot is in line with the assumed causal

7. We also conducted the experiments with alternative constructions of the environments. Since switching
regression models are hard to fit if the distribution of the predictors strongly differs between states,
some choices of environments make our method output the empty set—a result that is not incorrect, but
uninformative.

8. We omit all intercept terms, impose an equality constraint on the error variances, and assume an i.i.d.
structure on the hidden variables. For estimation, we use the NLM optimizer. In our implementation of
the test (9), the lowest attainable p-value is 10−4.
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Figure 11: P -values for h-invariance of different sets S ⊆ {1, 2, 3} (left) and p-values for non-
causality (see Section 2.4.1) of the individual variables X1, X2 and X3 (right).
For every experiment, the estimated set Ŝ in the left plot is indicated by a
triangle. For several sample sizes, our method correctly infers Ŝ = {2} (left), and
the causal parent X2 consistently obtains the lowest p-value for non-causality
(right). Experiments for which all p-values for non-causality are equal to 1
correspond to instances in which all sets have been rejected. For large amounts
of data, this is always the case (the two largest sample sizes are not shown here).
At sample sizes 436, 797 and 1045, our method infers the set Ŝ = {1, 2}. This
finding may be due to imperfect measurements of the variable X2, that do not
contain all information from X1 that is relevant for Y .

structure from Figure 10. As the sample size grows, the power of our tests of the hypotheses
H0,S increases, and even small differences in regression coefficients are detected. For sample
sizes above 1459 (the two largest sample sizes are not shown here), all hypotheses H0,S are

rejected, and our method returns the uninformative output Ŝ = ∅. At sample sizes 436,
797 and 1045, our method infers the set Ŝ = {1, 2}, that is, the two predictors APARchl

and SW. A possible explanation is that the true chlorophyll content is unknown, and that
APARchl therefore itself is estimated (on the basis of the greenness index EVI (Huete et al.,
2002)). Due to these imperfect measurements, X1 may still contain information about Y
that cannot be explained by X2.

5.2.2. Reconstruction of the Vegetation Type

We know that (Y,X2) follows a switching regression model (see Figure 10), and that the
hidden variable in this model corresponds to the true vegetation type. We can thus obtain
estimates of the vegetation type by reconstructing the values of the hidden variable in the
fitted model. We use the data set at its highest resolution, and exploit the background
knowledge that H does not change throughout the considered time span. All observations
obtained from one spatial grid cell are therefore assumed to stem from the same under-
lying regime. Let S ⊆ R2 and T = {1, . . . , 12} be the spatial and the temporal grid,
respectively, along which data are observed. We then classify each grid cell s ∈ S as
Ĥs := arg maxj∈{1,2}

∑
t∈T P̂(Hst = j |Yst, Xst), where P̂ refers to the fitted model. Our
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Figure 12: Vegetation type by IGBP (left) and estimates obtained from reconstructing the
values of the hidden variable, as described in Section 5.2.2 (middle). We cor-
rectly classify more than 95% of the pixels. The right hand plot illustrates the
vegetation-dependent linear relationship between Y and X2. Switching regres-
sion model fits are indicated by straight lines, and points are colored according
the reconstructed value of Ĥ. Since the data are not well-clustered in the X2-Y
space, classifying observations based on data from (Y,X2) is generally not a
straight-forward task.

method correctly reconstructs the hidden variable in more than 95% of the grid cells (Fig-
ure 12, left and middle). As seen in Figure 12 (right), reconstructing H based on data from
(Y,X2) is not an easy classification problem.

So far, we have assumed that the IGBP classification corresponds to the true vegetation
type. In reality, it is an estimate based on greenness indices that are constructed from
remotely sensed radiation reflected from the Earth’s surface. The outcome of our method
may be viewed as an alternative ecosystem classification scheme, which additionally comes
with a process-based interpretation: each cluster corresponds to a different slope parameter
in the linear regression of SIF on APARchl. This parameter represents the efficiency at
which absorbed energy is quenched as fluorescence, and is referred to as fluorescence yield.

6. Conclusions and Future Work

This paper discusses methodology for causal discovery that is applicable in the presence
of discrete hidden variables. If the data set is time-ordered, the hidden variables may
follow a Markov structure. The method is formulated in the framework of invariant causal
prediction. It aims at inferring causal predictors of a target variable and comes with the
following coverage guarantee: whenever the method’s output is non-empty, it is correct
with large probability. Our algorithm allows for several user choices and is tested on a
wide range of simulations. We see that also in small sample regimes and under a variety
of different model violations, the coverage is not negatively affected. Our implementation
allows for using either the EM-algorithm or a numerical maximization technique. In our
experiments, we find that the two options yield very similar results, but that the latter is
computationally faster and more suitable for handling parameter constraints. The power of
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both methods decreases with an increasing number of hidden states. This conforms to the
theoretical result that, in general, identifiability of causal predictors cannot be achieved if
the hidden variable may take arbitrarily many states, for example.

As part of the method, we propose a test for the equality of two switching regression
models; to the best of our knowledge this is the first example of such a test and may be
of interest in itself. We prove the asymptotic validity of this test by providing sufficient
conditions for the existence, the consistency and the asymptotic normality of the maximum
likelihood estimator in switching regression models.

On the real world data, the true causal parent is consistently attributed the highest
significance as a causal predictor of the target variable. Switching regression models can
also be used for classifying data points based on reconstructed values of the hidden variables.

For large sample sizes, most goodness of fits test are usually rejected in real data. Since
the h-invariance assumption may not hold exactly either, it may be interesting to explore
relaxations of this assumption. For example, Pfister et al. (2019a) propose a causal rank-
ing, and Rothenhäusler et al. (2018) interpolate between prediction and invariance. Our
robustness analysis in Section 5.1.5 suggests that the performance of our method is not
negatively affected when allowing for a dependence between X and H, and we believe that
our theoretical results could be extended to such scenarios (possibly adding mild assump-
tions). To widen the range of applicability of our method, it might also be worthwhile to
consider non-linear models. In particular, it would be interesting to construct conditional
independence tests that are able to take into account a mixture model structure.
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Appendix A. Structural Causal Models

Below, we formally define structural causal models (Pearl, 2009; Bollen, 2014), and use a
presentation similar to Peters et al. (2017, Chapter 6).

Definition 3 (Structural causal model) A structural causal model (SCM) over vari-
ables (Z1, . . . , Zp) consists of a family of structural assignments

Zj := fj(PAj , Nj), j = 1, . . . , p,

where for each j ∈ {1, . . . , p}, PAj ⊆ {Z1, . . . , Zp} \ {Zj} denotes the parent set of variable
Zj, and a product distribution over the noise variables (N1, . . . , Np). Every SCM induces
a graph over the nodes in {Z1, . . . , Zp}: for every j, one draws an arrow from each of the
variables in PAj to Zj. We here require this graph to be acyclic. A variable Zi is a cause
of Zj, if there exists a directed path from Zi to Zj. The variables in PAj are said to be the
direct causes of Zj.
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Due to the acyclicity of the graph, an SCM induces a distribution over the variables
Z1, . . . , Zp. An intervention on Zj corresponds to replacing the corresponding assignment.
(We still require joint independence of all noise variables, as well as the acyclicity of the
induced graph to be preserved under interventions.) This yields another SCM and another
distribution, the intervention distribution.

Appendix B. Parametrizations of the Models IID and HMM

Define GIID := [0, 1]`−1 and GHMM := {γ ∈ [0, 1](`−1)` | for all j ∈ {1, . . . , `} :
∑`−1

k=1 γj`+k ≤
1} and parametrize the transition matrix via the maps ΓIID : GIID → [0, 1]`×` and ΓHMM :
GHMM → [0, 1]`×`, for all i, j ∈ {1, . . . , `} given by

ΓIID
ij (γ) =

{
γj j < `

1−
∑`−1

k=1 γk j = `
and ΓHMM

ij (γ) =

{
γi`+j j < `

1−
∑`−1

k=1 γi`+k j = `.

For the regression matrix Θ, we consider the two types of parameter constraints discussed
in Section 3.2. For c > 0, let T c := (Rp × [c,∞))` and T = := Rp` × (0,∞) and parametrize
the regression matrix via the maps Θc : T c → Rp×` and Θ= : T = → Rp×`, for all i ∈
{1, . . . , p+ 1} and j ∈ {1, . . . , `} given by

Θc
ij(θ) = θ(j−1)(p+1)+i and Θ=

ij(θ) =

{
θ(j−1)p+i i ≤ p
θp`+1 i = p+ 1.

Both of the parameter constraints induced by (Θc, T c) and (Θ=, T =) ensure the existence
of the maximum likelihood estimator, see Theorem 1. Since all of the above coordinate
mappings are linear in θ and γ, Assumption (A4) in Section 3.5 is satisfied for any pair
(Θ,Γ) with Θ ∈ {Θc,Θ=} and Γ ∈ {ΓIID,ΓHMM}.

Appendix C. Proofs

C.1. Proof of Proposition 2

Recall that by Definition 3, we require the underlying causal graph to be acyclic. For every
t ∈ {1, . . . , n}, we can therefore recursively substitute structural assignments to express

(X
PA0(Y )
t , H∗t ) as a function of all noise variables appearing in the structural assignments

of the ancestors of Yt. Using the joint independence of all noise variables (see Definition 3),

it follows that (X
PA0(Y )
t , H∗t ) ⊥⊥ Nt. Using the i.i.d. assumption on (Nt)t∈{1,...,n}, we have

that for all t and for all x, h, the distribution of Yt | (XPA0(Y )
t = x,H∗t = h)

d
= f(x, h,Nt)

does not depend on t, which shows that S∗ = PA0(Y ) satisfies (4). By writing Yt =∑`
h=1 f(X

PA0(Y )
t , h,Nt)1{H∗t =h} and using the linearity of the functions f(·, h, ·), it follows

that S∗ = PA0(Y ) is h-invariant with respect to (Y,X). �

C.2. Proof of Theorem 1

We first introduce some notation. Since neither of the parametrizations in question impose
any constraints on the regression coefficients, we will throughout this proof write θ = (β, δ),
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where β = (β1, . . . , β`) ∈ B := Rp×` and δ ∈ D is the part of θ that parametrizes the error
variances, i.e., D= = (0,∞) and Dc = [c,∞)`. Also, we will use D̄= = [0,∞], D̄c = [c,∞]`,
B̄ = (R ∪ {−∞,+∞})p×` to denote the “compactifications” of Dc, D= and B, respectively.
For every h ∈ {1, . . . , `}m and every j ∈ {1, . . . , `} define Th=j := {t ∈ {1, . . . ,m} : ht = j}
and write the likelihood function as G =

∑
h∈{1,...,`}m gh, where

gh(φ) = p(x)λ(γ)h1

m∏
s=2

Γhs−1hs(γ)
∏̀
j=1

∏
t∈Th=j

N (yt |xtβht , σ2
ht(δ)),

where the product over an empty index set is defined to be 1.
Let G∗ := supφ∈P G(φ) ∈ (0,∞]. We want to show that there exists φ∗ ∈ P with

G(φ∗) = G∗ (which in particular shows that G∗ <∞). The idea of the proof is as follows.
We first show that given an arbitrary point φ̄ in the compactification P̄ and an arbitrary
sequence (φn)n∈N in P that converges to φ̄, we can construct a sequence (φ̃n)n∈N with limit
point φ̃ ∈ P, such that limn→∞G(φ̃n) ≥ limn→∞G(φn). We then let (φ∗n)n∈N be a sequence
with limn→∞G(φ∗n) = G∗. By compactness of P̄, we can wlog assume that (φ∗n)n∈N is
convergent in P̄ (otherwise we may choose a convergent subsequence). By the first part of
the proof, there exists a sequence (φ̃∗n)n∈N that is convergent to some φ∗ ∈ P, and with
limn→∞G(φ̃∗n) = G∗. By continuity of G, G(φ∗) = G∗.

Let φ̄ = (β̄, δ̄, γ) ∈ P̄ and let (φn)n∈N = (βn, δn, γn)n∈N be such that limn→∞ φ
n = φ̄.

If φ̄ ∈ P, there is nothing to prove. Assume therefore φ̄ ∈ P̄ \ P. Since G was assumed
to be compact, P̄ = B̄ × D̄ × G. The problem can therefore be divided into the two cases
δ̄ ∈ D̄\D and β̄ ∈ B̄\B, which are treated in Lemma 1 and Lemma 2, respectively. Together,
they imply the existence of a sequence (φ̃n)n∈N with limn→∞ φ̃

n ∈ P and limn→∞G(φ̃n) ≥
limn→∞G(φn), thereby completing the proof of Theorem 1.

We first consider the case where δ̄ ∈ D̄ \ D.

Lemma 1 Let (φn)n∈N be a sequence in P that converges to a point φ̄ = (β̄, δ̄, γ) ∈ B̄ ×
(D̄ \ D) × G and assume that the limit limn→∞G(φn) exists in [0,∞]. Then, there exists
a sequence (φ̃n)n∈N with limit point (β̄, δ, γ) ∈ B̄ × D × G, such that lim supn→∞G(φ̃n) ≥
limn→∞G(φn).

Proof We treat the two parametrizations (Θc, T c) and (Θ=, T =) separately.
If D = Dc, then D̄ \ D = {(δ̄1, . . . , δ̄`) ∈ [c,∞]` : δ̄j = ∞ for at least one j}. Let j be

such that δ̄j =∞. Since for every h ∈ {1, . . . , `}m,

gh(φn)

{
→ 0 as n→∞ if Th=j 6= ∅
does not depend on δnj otherwise,

(19)

we can simply substitute (δnj )n∈N by the sequence (δ̃nj )n∈N that is constantly equal to c, to

obtain (φ̃n)n∈N with lim supn→∞G(φ̃n) ≥ limn→∞G(φn). By repeating this procedure for
all j with δ̄j =∞, we obtain a sequence (φ̃n)n∈N with lim supn→∞G(φ̃n) ≥ limn→∞G(φn)
and such that δ = limn→∞ δ

n ∈ D.
If D = D=, then D̄ \ D = {0,∞}. If δ̄ = ∞, then limn→∞G(φn) = 0 and the result

is trivial. Assume therefore that δ̄ = 0. Let h ∈ {1, . . . , `}m be fixed. By the assumption
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on the sample (y,x), there exists no set of parameters that yield a perfect fit. We may
therefore find a sequence (s(n))n∈N of elements in {1, . . . ,m} such that ys(n)−xs(n)β

n
hs(n)

is

bounded away from zero for all n large enough. For every n ∈ N we have

gh(φn) ≤ p(x)(2πσ2
1(δn))−m/2 exp

(
− 1

2σ2
1(δn)

(ys(n) − xs(n)β
n
hs(n)

)2

)
.

Since the last factor on the right hand side goes to zero exponentially fast in σ2
1(δn), it

follows that limn→∞ gh(φn) = 0. Since h was arbitrary, we have that limn→∞G(φn) = 0,
and the result follows.

We now turn to the case where β̄ ∈ B̄ \ B.

Lemma 2 Let (φn)n∈N be a sequence in P that converges to a point φ̄ = (β̄, δ, γ) ∈ (B̄ \
B) × D × G. Then, there exists a sequence (φ̃n)n∈N with limit point (β, δ, γ) ∈ B × D × G,
such that limn→∞G(φ̃n) ≥ lim supn→∞G(φn).

Proof The idea of the proof is as follows. We construct a bounded sequence (β̃n)n∈N,
such that the sequence (φ̃n)n∈N obtained from (φn)n∈N by substituting (βn)n∈N by (β̃n)n∈N
satisfies that limn→∞G(φ̃n) ≥ lim supn→∞G(φn). Since (δn)n∈N was assumed to be con-
vergent in D (and hence bounded) and by compactness of G, the whole sequence (φ̃n)n∈N is
bounded. We can therefore find a compact set K ⊆ P, such that {φ̃n : n ∈ N} ⊆ K. Conse-
quently, we can wlog assume that (φ̃n)n∈N is convergent in K (otherwise we may choose a
convergent subsequence). The sequence (φ̃n)n∈N then fulfills the requirements in Lemma 2,
thereby completing the proof.

The crucial part that remains is the construction of the sequence (β̃n)n∈N. This is done
by induction. Let (φn)n∈N = (βn1 , . . . , β

n
` , δ

n, γn) be as stated in Lemma 2 and let K∞ be the
set of states k, for which ‖βnk ‖ → ∞ as n→∞. We then construct (β̃n)n∈N in the following
way. Pick an arbitrary k ∈ K∞ and construct a bounded sequence (β̃nk )n∈N (this con-
struction is described below), such that the sequence (φ̃n(k))n∈N obtained from (φn)n∈N by

substituting (βnk )n∈N by (β̃nk )n∈N satisfies that lim supn→∞G(φ̃n(k)) ≥ lim supn→∞G(φn).

We then take k′ ∈ K∞ \ {k} and similarly construct (φ̃n(k,k′))n∈N from (φ̃n(k))n∈N such

that lim supn→∞G(φ̃n(k,k′)) ≥ lim supn→∞G(φ̃n(k)). By inductively repeating this proce-

dure for all elements of K∞, we obtain a bounded sequence (β̃n)n∈N, such that (φ̃n)n∈N =
(β̃n, δn, γn)n∈N satisfies that lim supn→∞G(φ̃n) ≥ limn→∞G(φn). Once again, we can wlog
assume that (G(φ̃n))n∈N converges, since otherwise we can choose a convergent subsequence
(G(φ̃ni))i∈N with limi→∞G(φ̃ni) = lim supn→∞G(φ̃n).

We now prove the induction step. Assume that we have iteratively constructed sequences
for k1, . . . , kj ∈ K∞ (if j = 0, this corresponds to the base case). For simplicity write
(φ̌n)n∈N = (φ̃n(k1,...,kj))n∈N. Pick an arbitrary k ∈ K∞\{k1, . . . , kj}. If for all t ∈ {1, . . . ,m},
|xtβnk | → ∞ as n → ∞, we could (similar to the proof of Lemma 1) take (β̃nk )n∈N to be a
constant sequence. Since in general, there might exist s such that |xsβnk | 6→ ∞ as n → ∞,
we divide the problem as follows. Define S1 := {s ∈ {1, . . . ,m} : |xsβnk | → ∞ as n → ∞},
S2 := {1, . . . ,m} \ S1, H1 := {h ∈ {1, . . . , `}m : Th=k ∩S1 6= ∅} and H2 := {1, . . . , `}m \H1,
and write the likelihood function as G = G1 + G2, where G1 :=

∑
h∈H1

gh and G2 :=
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∑
h∈H2

gh. We now show that limn→∞G1(φ̌n) = 0. We formulate a slightly more general
result, which we will also make use of later in the proof:

(*) Let h ∈ {1, . . . , `}m and assume there exists a sequence (s(n))n∈N of elements in Th=k,
such that |xs(n)β

n
k | → ∞ as n→∞. Then, limn→∞ gh(φn) = 0.

Proof [*] Since (δn)n∈N was assumed to be convergent in D, all sequences {σ2
j (δ

n)}n∈N,
j ∈ {1, . . . , `}, are bounded from above and bounded away from 0. Since for all n ∈ N,

gh(φn) ≤ p(x)(2π)−n/2
m∏
t=1

(σ2
ht(δ

n))−1/2 exp

(
− 1

2σ2
k(δ

n)
(ys(n) − xs(n)β

n
k )2

)
︸ ︷︷ ︸

→−∞

,

we are done.

For h ∈ H1, we can simply pick s0 ∈ Th=k ∩ S1 and consider the sequence (s(n))n∈N
that is constantly equal to s0. The result (*) therefore shows that limn→∞G1(φ̌n) =
0. It thus suffices to construct (φ̃nk)n∈N from (φ̌n)n∈N such that lim supn→∞G2(φ̃nk) ≥
lim supn→∞G2(φ̌n). Since for every h ∈ H2 we have Th=k ⊆ S2, we take a closer look at
S2. For every s ∈ S2, the sequence (|xsβnk |)n∈N is either bounded or can be decomposed
into two sequences, one of which is bounded and one of which converges to infinity. For
every s ∈ S2, let therefore Ibs and I∞s be disjoint subsets of N with Ibs ∪ I∞s = N, such
that (|xsβnk |)n∈Ibs is bounded and such that either I∞s = ∅ or |I∞s | = ∞ with (|xsβnk |)n∈I∞s
converging to infinity. Let Ib := ∪s∈S2Ibs and define a sequence (β̃nk )n∈N by

β̃nk :=

{
the projection of βnk onto spanR({xs : s satisfies n ∈ Ibs}) if n ∈ Ib

0 otherwise.

We now show that the above defines a bounded sequence.

(◦) The sequence (β̃nk )n∈N is bounded.

Proof [◦] For every S ⊆ S2, define IbS := {n ∈ N : n ∈ Ibs ⇔ s ∈ S} (where Ib∅ := N \ Ib).
We can then decompose (β̃nk )n∈N into the subsequences (β̃nk )n∈IbS

, S ⊆ S2, and prove that

each of these sequences is bounded. Let S ⊆ S2 and let {u1, . . . , ud} be an orthonormal
basis for spanR({xs : s ∈ S}). Since all sequences in {(|xsβ̃nk |)n∈IbS : s ∈ S} are bounded,

then so are the sequences (|u1β̃
n
k |)n∈IbS , . . . , (|udβ̃

n
k |)n∈IbS (this follows by expressing each of

the uis as a linear combination of elements in {xs : s ∈ S}). The result now follows from
the identities ‖β̃nk ‖2 =

∑d
j=1|uj β̃nk |2, n ∈ IbS .

Let (φ̃nk)n∈N be the sequence obtained from (φ̌n)n∈N by substituting (βnk )n∈N by (β̃nk )n∈N.
Finally, we show the following result.

(4) lim supn→∞G(φ̃nk) ≥ lim supn→∞G(φ̌n).
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Proof [4] Let h ∈ H2 and define I∞h :=
⋃
s∈Th=k

I∞s (if Th=k = ∅, we define I∞h := ∅).
The idea is to decompose (φ̌n)n∈N into (φ̌n)n∈I∞h and (φ̌n)n6∈I∞h and to treat both sequences
separately.

We start by considering (φ̌n)n6∈I∞h . First, observe that for every s, N (ys |xsβk, σ2
k(δ))

only depends on βk via the inner product xsβk. By construction of I∞h and (β̃nk )n∈N, we
thus have that for all n 6∈ I∞h and for all s ∈ Th=k, the function values N (ys |xsβ̃nk , σ2

k(δ
n))

and N (ys |xsβnk , σ2
k(δ

n)) coincide. Consequently, we have that for all n 6∈ I∞h , gh(φ̃nk) =
gh(φ̌n). In particular, the sequences (ǧnh,b)n∈N and (g̃nh,b), for every n ∈ N defined by ǧnh,b :=

gh(φ̌n)1{n6∈I∞h } and g̃nh,b := gh(φ̃n)1{n6∈I∞h }, coincide.

We now consider (φ̌n)n∈I∞h . By construction of the sets I∞s , s ∈ Th=k, either I∞h = ∅ or
|I∞h | =∞. If |I∞h | =∞, then for every n ∈ N, there exists š(n) ∈ Th=k such that n ∈ I∞š(n).

By applying (*) to the sequence (φ̌n)n∈I∞ with (s(n))n∈I∞h = (š(n))n∈I∞h , it follows that

limn→∞,n∈I∞h gh(φ̌n) = 0. In particular, the sequences (ǧnh,∞)n∈N and (g̃nh,∞)n∈N, for every

n ∈ N defined by ǧnh,∞ := gh(φ̌n)1{n∈I∞h } and g̃nh,∞ := gh(φ̃n)1{n∈I∞h }, converge to 0 as
n→∞ (this holds also if I∞ = ∅).

By combing the above results for all h ∈ H2, we finally have

lim sup
n→∞

G2(φ̌n) = lim sup
n→∞

∑
h∈H2

ǧnh,b +
∑
h∈H2

ǧnh,∞

 = lim sup
n→∞

∑
h∈H2

ǧnh,b


= lim sup

n→∞

∑
h∈H2

g̃nh,b

 ≤ lim sup
n→∞

∑
h∈H2

g̃nh,b +
∑
h∈H2

g̃nh,∞


= lim sup

n→∞
G2(φ̃nk).

Since lim supn→∞G1(φ̃nk) ≥ 0 = lim supn→∞G1(φ̌n), the result follows.

This completes the proof of Lemma 2.

C.3. Proof of Theorem 2

We start by introducing some notation to be used in the proofs of Theorem 2 and Theorem 3.
Let K := Rp×(0,∞) be the full parameter space for a single pair κ = (βT , σ2)T of regression
parameters. In analogy to previous notation, we will use κj(θ) to denote the jth pair of
regression parameters of a parameter vector θ ∈ T . If the conditional distribution of
Yt | (Xt = x,Ht = j) is a normal distribution with regression parameters κ, we will denote
the conditional density of (Xt, Yt) | (Ht = j) by f(x, y |κ). We use P0 for the distribution
SR(φ0 |X1) and E0 for the expectation with respect to P0. Finally, for every k ∈ N, let
SRk(· |X1) denote the unconstrained class of mixture distributions of degree k (i.e., all
parameters can vary independently within their range).

Theorem 2 now follows from Leroux (1992, Theorem 3). To prove the applicability of
their result, we first state slightly adapted versions of their conditions (L1)–(L6) and prove
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afterwards that they are satisfied. (L1) Γ0 is irreducible, (L2) for each (x, y), κ 7→ f(x, y |κ)
is continuous and vanishes at infinity (see the last paragraph of Section 2 in Leroux (1992)),
(L3) for all j, k ∈ {1, . . . , `}, the maps θ 7→ κj(θ) and γ 7→ Γjk(γ) are continuous, (L4) for
all j ∈ {0, . . . , `}, E0[|log f(X1, Y1 |κj(θ0))|] < ∞, (L5) for all κ ∈ K, there exists a δ > 0
such that E0[supκ′:‖κ−κ′‖<δ(log f(X1, Y1 |κ′))+] <∞, and (L6) for every k ∈ {1, . . . , `}, the

class SRk(· |X1) satisfies the following identifiability property. Define

Λk := {(λ1, . . . , λk) :

k∑
j=1

λj = 1}, and

Qk :=

{
{(λ1, κ1), . . . , (λk, κk)} :

(λ1, . . . , λk) ∈ Λk and κ1, . . . , κk ∈ K
with all κjs being distinct

}
and consider the mapping ϕk : Qk → SR(· |X1) that sends q = {(λ1, κ1), . . . , (λk, κk)} into
the mixture distribution Pq ∈ SR(· |X1) with density

fq(x, y) :=

k∑
j=1

λjf(x, y |κj) = f(x)

k∑
j=1

λjf(y |x, κj).

Then, for every k ∈ {1, . . . , `}, ϕk is a one-to-one map of Qk onto SRk(· |X1). It is therefore
the set {(λ1, κ1), . . . , (λk, κk)}, rather than the parameters (κ1, . . . , κk) and (λ1, . . . , λk)
themselves, that is required to be identifiable.

We now show that (L1)–(L6) are satisfied. Condition (L1) is implied by (A3). Condi-
tion (L2) follows by the continuity of κ 7→ N (y |x, κ) and (L3) is implied by (A4). For (L4),
we see that for all j ∈ {0, . . . , `},

log f(X1, Y1 |κj(θ0)) = log(2πσ2
j (θ

0))− 1

2σ2
j (θ

0)
(Y1 −X1βj(θ

0))2 + log f(X1) ∈ L1(P0),

by (A7) and by moment-properties of the normal distribution. For (L5), let κ = (β, σ2) ∈ K
and choose δ := σ2/2. We then have

E0

[
sup

κ′:‖κ′−κ‖<δ
(log f(X1, Y1|κ′))+

]
≤ E0

[
sup

κ′:‖κ′−κ‖<δ
(log f(Y1|X1, κ

′))+ + |log f(X1)|

]

≤ E0

[
sup

σ′:‖σ′2−σ2‖<δ
(−1

2
log(2πσ′2))+ + |log f(X1)|

]

≤ E0

[
1

2
|log(πσ2)|+ |log f(X1)|

]
<∞.

It is left to prove (L6), the identifiability of the classes SRk(· |X1). Teicher (1963, Propo-
sition 1) shows an analogous result for mixtures of univariate normal distributions, that
are parametrized by their mean and variance. His result will be the cornerstone for our
argument. Consider a fixed k ∈ {1, . . . , `}, let q = {(λ1, β1, σ

2
1), . . . , (λk, βk, σ

2
k)}, q′ =

{(λ′1, β′1, σ′1
2), . . . , (λ′k, β

′
k, σ
′
k

2)} ∈ Qk and assume that the induced mixtures Pq and Pq′ are
identical. Collect q and q′ into two matrices Q,Q′ with columns Q·j = (λj , σ

2
j , β

T
j )T and
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Q′·j = (λ′j , σ
′
j
2, β′j

T )T for j ∈ {1, . . . , k}. We wish to show that Q and Q′ are equal up to
a permutation of their columns. Because the densities fq and fq′ coincide Lebesgue-almost
everywhere, it holds that, for all x ∈ int(supp(X1)),

fq(y |x) =

k∑
j=0

λjf(y |x, κj) =

k∑
j=0

λ′jf(y |x, κ′j) = fq′(y |x) for almost all y.

It now follows from Teicher (1963, Proposition 1) that, for all x ∈ int(supp(X1)),

{(λ1, σ
2
1, xβ1), . . . , (λk, σ

2
k, xβk)} = {(λ′1, σ′

2
1, xβ

′
1), . . . , (λ′k, σ

′2
k, xβ

′
k)}. (20)

In the remainder of the proof, we will consider several x simultaneously (rather than a fixed
x). This will help us to draw conclusions about the betas. Equation (20) means that for
every z ∈ Z := R2 × int(supp(X1)), the vectors zQ and zQ′ are equal up to a permutation
of their entries (this permutation may depend on z). Let Σ denote the (finite) family of
permutation matrices of size k × k and consider the partition

Z =
⋃
M∈Σ

ZM , where ZM = {z ∈ Z : zQ = zQ′MT }.

Since Z is an open subset of Rp+2, there exists an element M0 ∈ Σ, such that ZM0 contains
an open subset of Rp+2. We can therefore choose p + 2 linearly independent elements
z1, . . . , zp+2 ∈ ZM0 and construct the invertible matrix Z = [zT1 , . . . , z

T
p+2]T . Since ZQ =

ZQ′MT
0 , it follows that Q = Q′MT

0 . �

C.4. Proof of Theorem 3

Throughout the proof, we make use of the notation introduced in the first paragraph of
Appendix C.3. Theorem 3 follows if both the below statements hold true.

(i) m−1J (φ̂m)→ I0 as m→∞ in P0-probability.

(ii)
√
m(φ̂m − φ0)I1/2

0
d−→ N (0, I) as m→∞ under P0.

These results correspond to slightly adapted versions of Lemma 2 and Theorem 1, respec-
tively, in Bickel et al. (1998) (here referred to as L2 and T1). L2 builds on assumptions
(B1)–(B4) to be stated below. T1 additionally assumes that φ0 ∈ int(P) and that the Fisher
information matrix I0 is positive definite, i.e., our (A2) and (A5). Assumptions (B1)–(B4)
state local regularity conditions for a neighborhood of the true parameter φ0. We therefore
need to verify that there exists an open neighborhood T0 of θ0, such that the following
conditions are satisfied.

(B1) The transition matrix Γ0 is irreducible and aperiodic.

(B2) For all j, k ∈ {1, . . . , `} and for all (x, y), the maps γ 7→ Γjk(γ) and θ 7→ f(x, y|κj(θ))
(for θ ∈ T0) have two continuous derivatives.

(B3) Write θ = (θ1, . . . , θK). For all n ∈ {1, 2}, i1, . . . , in ∈ {1, . . . ,K} and j ∈ {1, . . . , `},
it holds that
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(i) ∫
sup
θ∈T0

∣∣∣∣ ∂n

∂θi1 · · · ∂θin
f(x, y|κj(θ))

∣∣∣∣ d(x, y) <∞, and

(ii)

E0

[
sup
θ∈T0

∣∣∣∣ ∂n

∂θi1 · · · ∂θin
log f(X1, Y1|κj(θ))

∣∣∣∣3−n
]
<∞.

(B4) For all (x, y), define

ρ(x, y) = sup
θ∈T0

max
0≤i,j≤`

f(x, y|κi(θ))
f(x, y|κj(θ))

.

Then for all j ∈ {1, . . . , `}, P0(ρ(X1, Y1) =∞|H1 = j) < 1.

We first construct the set T0. Let therefore ε > 0 and choose T0 so small that there
exists c > 0, such that for all θ ∈ T0 and for all j ∈ {1, . . . , `} and k ∈ {1, . . . , d}, it holds
that βjk(θ) ∈ (βjk(θ

0) − ε, βjk(θ0) + ε) and σ2
j (θ) ≥ c. We can now verify the conditions

(B1)–(B4).
Assumption (B1) is satisfied by (A3). For every (x, y), the maps κ 7→ f(x, y|κ) are two

times continuously differentiable on Rp × (0,∞). Together with (A4), this implies (B2),
independently of the choice of T0.

For the proof of (B3)(i)–(ii) we will make use of the following result. Let g be a poly-
nomial of (x, y) of degree at most 4, i.e., a sum of functions on the form bxrix

s
ky
t for some

i, k ∈ {1, . . . , p} and r, s, t ∈ {0, . . . , 4} with r + s + t ≤ 4. Then, for every κ ∈ K,∫
g(|x|, |y|)f(x, y |κ)d(x, y) < ∞, where |x| = (|x1|, . . . , |xp|). This result follows from the

fact that for every x,
∫
|y|tf(y |x, κ)dy is a polynomial of |x| of degree t, and the assumption

that, for all j ∈ {1, . . . , p}, E[|Xj
1 |4] <∞.

For (B3)(i), we treat all derivatives simultaneously. Let n ∈ {1, 2}, i1, . . . , in ∈ {1, . . . ,K}
and j ∈ {1, . . . , `} be fixed. Let {gθ}θ∈T0 be the functions, for all (x, y) and for all θ ∈ T0

defined by

∂n

∂θi1 · · · ∂θin
f(x, y |κj(θ)) = gθ(x, y) exp

(
− 1

2σ2
j (θ)

(y − xβj(θ))2

)
f(x),

(note that f(x) = 0 implies f(x, y|κj(θ)) = 0). Then, for all (x, y), θ 7→ gθ(x, y) is con-
tinuous, and for all θ ∈ T0, (x, y) 7→ gθ(x, y) is a polynomial of degree at most 4. By the
compactness of T̄0, the closure of T0, and by the continuity of θ 7→ gθ(x, y), there exists a
polynomial g of degree 4, such that, for all (x, y), supθ∈T0 |gθ(x, y)| ≤ g(|x|, |y|).

Consider now a fixed k ∈ {1, . . . , p}. By choice of T0, we have that for all xk and for
all θ ∈ T0, it holds that xk(βjk(θ

0) − sign(xk)ε) ≤ xkβjk(θ) ≤ xk(βjk(θ
0) + sign(xk)ε).

By writing s(x) = (sign(x1), . . . , sign(xp)) it follows that for all (x, y) and all θ ∈ T0,
y − x(βj(θ

0) − diag(s(x))ε) ≤ y − xβj(θ) ≤ y − x(βj(θ
0) + diag(s(x))ε). Consequently, we

may for every (x, y) find s(x, y) ∈ {−1, 1}p (either s(x) or −s(x)) such that for all θ ∈ T0,

−(y − xβj(θ))2 ≤ −(y − x(βj(θ
0) + diag(s(x, y))ε︸ ︷︷ ︸

=:βs

))2.
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By choosing C > 0 small enough, it follows that for all (x, y) and for all θ ∈ T0 it holds that

exp

(
− 1

2σ2
j (θ)

(y − xβj(θ))2

)
≤ exp

(
−C(y − xβj(θ))2

)
≤

∑
s∈{−1,1}p

exp
(
−C(y − xβs)2

)
.

Since all integrals
∫
g(|x|, |y|) exp(−C(y − xβs)2)f(x)d(x, y), s ∈ {−1, 1}p, are finite, this

completes the proof of (B3)(i).
The proof of (B3)(ii) is similar to that of (B3)(i). Fix n ∈ {1, 2}, i1, . . . , in ∈ {1, . . . ,K}

and j ∈ {1, . . . , `}. Let {hθ}θ∈T0 be the functions, for all (x, y) and for all θ ∈ T0 defined by

∂n

∂θi1 · · · ∂θin
log f(x, y |κj(θ)) = hθ(x, y).

Then, for all (x, y), θ 7→ hθ(x, y) is continuous, and for all θ ∈ T0, (x, y) 7→ hθ(x, y) is a
polynomial of degree at most 2. We can therefore find a dominating polynomial h of degree
2, such that, for all (x, y), supθ∈T0 |hθ(x, y)| ≤ h(|x|, |y|). Since h(|X1|, |Y1|) ∈ L2(P0), this
completes the proof of (B3)(ii).

(B4) is easily verified. Since the support S of the functions f(· |κ) does not depend on
κ, it is enough to consider (x, y) ∈ int(S). For all (x, y) ∈ int(S) and for all j ∈ {1, . . . , `},
θ 7→ f(x, y |κj(θ)) is bounded from above and bounded away from zero (by choice of T0).
The function ρ is therefore finite everywhere. �

C.5. Proof of Corollary 1

Let (A1)–(A7) hold true. By Theorem 2, we can decompose (φ̂m)m∈N = ((θ̂m, γ̂m))m∈N
into one or more subsequences, each of which is convergent to a permutation of φ0. We
can therefore find a sequence (πmP )m∈N = ((πmT , π

m
G ))m∈N of permutations on P, such that,

P0-almost surely, the sequence of maximum likelihood estimators (πmP (φ̂m))m∈N converges
to φ0 as m→∞. For α ∈ (0, 1) and for every m ∈ N, we then have

Pm0 (θ0 ∈ Cαadjusted(θ̂m)) ≥ Pm0 (θ0 ∈ Cα(πmT (θ̂m))) = Pm0 (φ0 ∈ Cα(πmT (θ̂m))× G).

By Theorem 3, the right hand side converges to 1− α as m→∞. �

C.6. Proof of Theorem 4

By Corollary 1, the adjusted confidence regions within each environment all achieve the
correct asymptotic coverage, ensuring the asymptotic validity of the test ϕS∗ of H0,S∗ .

Since, for every n, Pn0 (Ŝn ⊆ S∗) ≥ Pn0 (ϕnS∗ accepts Hn
0,S∗), the result follows. �

Appendix D. Further Details on Likelihood Optimization

Below, we describe the two optimization methods NLM and EM. Since the loglikelihood
function (10) is non-convex, the performance of these routines depend on the initializa-
tion. In practice, we restart the algorithms in 5 different sets of starting values (using the
regmix.init function from the R package mixtools).
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D.1. Method I (“NLM”): Non-Linear Maximization

This method maximizes the loglikelihood function (10) numerically. We use the R opti-
mizer nlm, which is a non-linear maximizer based on a Newton-type optimization routine
(e.g., Schnabel et al., 1985). The method also outputs an estimate of the observed Fisher
information, which is used for the construction of the confidence regions (11). An equal-
ity constraint on the error variances can be enforced directly by using the parametrization
(Θ=, T =) described in Appendix B. A lower bound (we use 10−4 as a default value) can
be imposed by suitable reparametrization of all error variances (e.g., Zucchini et al., 2016,
Section 3.3.1).

D.2. Method II (“EM”): The EM-algorithm

Given starting values φ(0) ∈ P, the EM-algorithm operates by alternating between the
following two steps until a convergence criterion is met. (1) The E-step: Compute the

posterior distribution P
(t)
(y,x) of H | (Y = y,X = x, φ(t)) given the current parameters φ(t).

(2) The M-step: Maximize the expected complete data loglikelihood

Q(φ |φ(t)) := E
P

(t)
(y,x)

[`complete(y,x,H |φ)] (21)

to obtain updates φ(t+1) ∈ arg maxφ∈P Q(φ |φ(t)). Here, `complete is the loglikelihood func-

tion of the complete data (y,x,h). The explicit forms of P
(t)
(y,x) and Q depend on the choice

of model. In model IID, P
(t)
(y,x) is a product distribution which can be computed by simple

applications of Bayes’ theorem. In model HMM, the posterior distribution is obtained by
the forward-backward algorithm. In both cases, (21) can be maximized analytically (e.g.,
Bishop, 2006, Chapters 9 and 13). The observed Fisher information J (φ̂) can be computed
analytically from the derivatives of (21), see Oakes (1999). In our R package, the EM-
algorithm is only implemented for model IID and makes use of the package mixreg. An
equality constraint on the error variances can be accommodated using the parametrization
(Θ=, T =) from Appendix B. A lower bound on the error variances is enforced by restarting
the algorithm whenever an update φ(t) contains a variance component that deceeds the
lower bound (mixreg uses the threshold 10−16).

Figure 13 shows numerical results for ICPH when using the EM-algorithm as optimiza-
tion routine. The results should be compared to Figure 8, where NLM has been applied to
the same data. The two methods perform very similarly, although NLM is computationally
faster (by approximately a factor of 6), and better suited for handling the lower bound
constraint on the error variances.

Appendix E. Additional Numerical Experiments

In this section, we present additional experimental results. In all simulations, we use slight
adaptations of the SCM in Section 5.1.2, and measure the performance of ICPH using rejec-
tion rates for non-causality (similar to Figure 9). All results are summarized in Figure 14.
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Figure 13: Output of ICPH (bar plots) and rejection rates for individual hypotheses (curve
plots) for the experiment in Section 5.1.4 with parameter constraint σ2

Y 1, σ
2
Y 2 ≥

10−16 (left) and σ2
Y 1 = σ2

Y 2 (right), using the EM-algorithm as optimization
routine. The results are very similar to those presented in Figure 8, where NLM
is applied to the same data. The only notable differences are the missing values
in the bar plots (left). These simulations correspond to instances in which the
EM-algorithm, after trying several different starting values, failed to converge
to a solution which satisfies the variance constraints.

E.1. Non-Binary Latent Variables and Unknown Number of States

ICPH requires the number of states as an input parameter—we test for h-invariance of
degree ` in line 8 of Algorithm 1. If ` is unknown, we propose the following modification. Let
K ≥ 3 be some predefined integer (e.g., K = 5), and let for every S ⊆ {1, . . . , d} and every
k ∈ {2, . . . ,K}, pkS be a p-value for the hypothesis Hk

0,S of h-invariance of degree k of the
set S, obtained from the test (9). We then substitute the p-value pS in line 8 of Algorithm 1
by p′S := max{pkS : 2 ≤ k ≤ K}. By construction, the test defined by p′S is a valid test
of H`

0,S for any (unknown) ` ∈ {2, . . . ,K}. Our code package automatically performs this
procedure when the supplied argument number.of.states is a vector of length greater than
one. We now investigate this procedure numerically. For a fixed sample size of n = 500 and
for every ` ∈ {2, 3, 4, 5}, we generate 100 i.i.d. data sets from the SCM in Section 5.1.2 with
parameters sampled as in Section 5.1.3. The probabilities λj = P (H = j), j ∈ {0, . . . , `}
are sampled uniformly between 0.1 and 1/(`+ 1) and standardized correctly. In Figure 14
(left), we compare three different approaches: (i) we always test for h-invariance of degree
2 (circles), (ii) we always test for h-invariance of degree less than or equal to 5, using
the approach described above (triangles), and (iii) we test for h-invariance using the true
number of states ` (squares). For all methods, ICPH maintains the type I error control, but
drops in power as the number of latent states increases. Even if the number of latent states
is unknown (but small), ICPH often recovers the causal parents X1 and X2. In general, we
propose to limit the application of ICPH to cases where the hidden variables is expected to
take only a few different values.
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Figure 14: Rejection rates for non-causality of the variables X1, X2 and X3 for the exper-
iments described in Appendix E. We investigate the performance of ICPH for
non-binary variables (left), for large numbers of predictors (middle), and under
violations of the h-invariance assumption (right). By simultaneously testing for
h-invariance of different degrees (see Appendix E.1 for details), we can recover
X1 and X2 even if the true number of latent states is unknown (left figure, trian-
gles). Our algorithm can be combined with an upfront variable screening (here
using Lasso), which results in satisfactory performance even for large number of
predictor variables (middle). Under violations of Assumption 1, the population
version of ICPH is not able to infer S∗ = {1, 2}. In the finite sample case we
still identify X1 and X2 if H0,S∗ is only mildly violated (right).

E.2. Systems with Large Numbers of Variables

For a fixed sample size of n = 300, we simulate data (Y,X1, X2, X3, H) as described in
Section 5.1.2. For increasing m ∈ {1, 10, 100, 1000}, we generate additional predictor vari-
ables (Z1, . . . , Zm) from the structural assignments Zj := αjX

3 +NZ
j , j = 1, . . . ,m, where

NZ
1 , . . . , N

Z
m are i.i.d. standard Gaussian noise variables, and all αj are drawn independently

from a Uniform(−1, 1) distribution. We then perform variable screening by selecting the
first 5 predictors included along the Lasso selection path (Tibshirani, 1994), and run ICPH
on the reduced data set. The results in Figure 14 (middle) suggest that even for a large
number of predictors, ICPH is generally able to infer S∗ (provided that S∗ contains only
few variables).

E.3. Violations of the h-Invariance Assumption

The theoretical guarantees of our method rely on the existence of an h-invariant set (As-
sumption 1). We now empirically investigate the performance of ICPH under violations
of this assumption. For a fixed sample size of n = 300, we generate data as described
in Section 5.1.2, but include direct interventions on Y . For increasing values of ∆ ∈
{0, 0.1, . . . , 0.5}, we change the coefficients (βY11, β

Y
21) in the structural assignment of Y

to (βY11 + ∆, βY21 + ∆) in environment e2, and to (βY11 −∆, βY21 −∆) in environment e3. As
expected, the power of our method drops with the strength of intervention (Figure 14 right).
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intervention effects from observational data. The Annals of Statistics, 37(6A):3133–3164,
2009.

S. Magliacane, T. Claasen, and J. M. Mooij. Joint causal inference on observational and
experimental datasets. arXiv preprint arXiv:1611.10351, 2016.

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing cause
from effect using observational data: methods and benchmarks. Journal of Machine
Learning Research, 17(32):1–102, 2016.

D. Oakes. Direct calculation of the information matrix via the EM. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 61(2):479–482, 1999.

44



Causal Inference and Discrete Latent Variables

J. M. Ogarrio, P. Spirtes, and J. Ramsey. A hybrid causal search algorithm for latent variable
models. In Proceedings of the 8th International Conference on Probabilistic Graphical
Models PGM, pages 368–379, 2016.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New
York, USA, 2nd edition, 2009.

J. Peters, P. Bühlmann, and N. Meinshausen. Causal inference by using invariant prediction:
identification and confidence intervals. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 78(5):947–1012, 2016.

J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference: Foundations and
Learning Algorithms. MIT Press, Cambridge, MA, USA, 2017.

N. Pfister, S. Bauer, and J. Peters. Learning stable and predictive structures in kinetic
systems. Proceedings of the National Academy of Sciences, 116(51):25405–25411, 2019a.
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