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Maintaining mitochondrial health is emerging as a keystone in aging and associated
diseases. The selective degradation of mitochondria by mitophagy is of particular
importance in keeping a pristine mitochondrial pool. Indeed, inherited monogenic
diseases with defects in mitophagy display complex multisystem pathologies but
particularly progressive neurodegeneration. Fortunately, therapies are being developed
that target mitophagy allowing new hope for treatments for previously incurable
diseases. Herein, we describe mitophagy and associated diseases, coin the term
mitophaging and describe new small molecule interventions that target different steps in
the mitophagic pathway. Consequently, several age-associated diseases may be treated
by targeting mitophagy.
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MITOCHONDRIAL INTEGRITY DEFINES ORGANISMAL HEALTH

Mitochondria, the powerhouses of eukaryotic cells, are the key organelles for energy production
allowing organismal growth and survival. Besides serving as adenosine triphosphate generators,
mitochondria act as signaling hubs for programmed cell death, regulate calcium homeostasis
and are required for cholesterol, nucleotide and amino acid synthesis (Sun et al., 2016). To
fulfil their broad range of biological roles, mitochondria contain more than 1,000 proteins that
localize and function in four specialized compartments, the outer membrane, the inner membrane,
the intermembrane space and the matrix. The minority of mitochondrial proteins are encoded
by the circular mitochondrial genome, whereas the vast majority is encoded in the nuclear
genome. However, mutations in both genomes can cause a heterogeneous group of disorders,
known as mitochondrial diseases, which are characterized by severe metabolic and neurological
defects. Due to their highly variable clinical features, the prevalence of mitochondrial diseases
has likely been underestimated (Haas et al., 2007; Wallace, 2018). Nevertheless, advances in next
generation sequencing technologies have simplified the clinical diagnosis and enabled molecular
characterization of so far undescribed mitochondrial diseases (Calvo et al., 2012; Cui et al., 2013;
Legati et al., 2016). Notably, computational approaches relying on phenotypic description of
mitochondrial diseases can help to characterize new mitochondrial diseases of previously unknown
pathogenesis (Scheibye-Knudsen et al., 2013).

Increased evidence indicates that mitochondrial integrity is disrupted during the aging process
and contributes to the pathogenesis of age-related disorders in humans (Kauppila et al., 2017; Youle,
2019). In line with this, mice that carry a defective proof-reading mitochondrial DNA polymerase
gamma show an accelerated aging phenotype that may be driven by the accumulation of mutations
in the mitochondrial DNA (mtDNA) (Trifunovic et al., 2004). The described correlation between
levels of mtDNA deletions in human brain and aging as well as the association between mtDNA
haplogroups and diseases, further supports the direct influence of mitochondria on health- and
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lifespan in organisms (Cortopassi and Arnheim, 1990; Corral-
Debrinski et al., 1992; Hudson et al., 2014; Wallace, 2015). Indeed,
dysfunctional degradation of mitochondria through the process
of mitophagy is increasingly associated with degenerative diseases
and aging, a phenomenon we call mitophaging. Evidently, the
maintenance of functional mitochondria is necessary to sustain
cellular homeostasis and organismal health.

MITOCHONDRIAL QUALITY CONTROL
MECHANISMS

Mitochondria have evolved multiple mechanisms ensuring
mitochondrial quality. For instance, mitochondrial chaperones
and proteases are constantly preventing the accumulation of
misfolded and aggregated proteins by monitoring proteostasis
through the mitochondrial unfolded protein stress response
(UPRmt) (Melber and Haynes, 2018), a mechanism that has been
shown to be critical for longevity in mammals (Houtkooper
et al., 2013; Mouchiroud et al., 2013). Further, mitochondria are
dynamic organelles existing in large tubular and highly dynamic
networks that constantly undergo fission and fusion processes,
thereby leading to the dilution of non-functional mitochondria
(Youle and van der Bliek, 2012).

Nevertheless, autophagy is the only known pathway that
mediates the turnover of whole mitochondria to avoid cellular
damage and apoptosis. The degradation process is mediated by
a double-membrane vesicle, known as the autophagosome, and
it was first observed in mammalian cells by electron microscopy
(De Duve and Wattiaux, 1966). For a long time, autophagy was
considered a non-selective bulk degradation pathway, however,
when the yeast mitochondrial protein Uth1p was found to be
involved in the selective degradation of mitochondria (Kissová
et al., 2004), the term “mitophagy” was subsequently introduced
(Lemasters, 2005).

Herein, we discuss the role of mitophagy in impacting
human disease development and the aging process itself. Further,
interventions that target mitophagy will be discussed that may
provide a promising strategy for the treatment of a broad
spectrum of diseases.

WHAT IS MITOPHAGY?

The process of mitophagy can act either as a response to various
stress stimuli including nutrient starvation and oxidative stress
or as a programmed removal of mitochondria (Palikaras et al.,
2018; Pickles et al., 2018). Different pathways are known to
regulate mitophagy, the best-studied pathway is mediated by
the phosphatase and tensin homologue (PTEN)-induced putative
kinase 1 (PINK1) and the E3-ubiquitin ligase Parkin (Figure 1A).
Mutations in both genes encoding PINK1 and Parkin (PARK2),
have been reported to cause autosomal recessive forms of
Parkinson’s Disease (PD) (Kitada et al., 1998; Valente et al.,
2004). Under un-stressed conditions, PINK1 is imported via
the translocase of the outer membrane and translocase of the
inner membrane (TOM/TIM) complex in a membrane potential

dependent manner into mitochondria, leading to proteolytic
cleavage of PINK1 (Jin et al., 2010; Deas et al., 2011; Meissner
et al., 2011). The N-terminal truncated PINK1 is subsequently
released to the cytosol, and degraded by the proteasome (Yamano
and Youle, 2013). Loss of mitochondrial membrane potential
disrupts the transport of PINK1 across the mitochondrial
membrane leading to the accumulation of uncleaved PINK1
at the outer mitochondrial membrane. Subsequently, PINK1
regulates the recruitment and activation of the cytosolic Parkin
via direct phosphorylation of the Parkin Ub-like (UBL) domain
or via the phosphorylation of ubiquitin (Kondapalli et al., 2012;
Shiba-Fukushima et al., 2012; Iguchi et al., 2013; Kane et al.,
2014; Kazlauskaite et al., 2014; Koyano et al., 2014; Ordureau
et al., 2014; Wauer et al., 2015). Once activated, Parkin drives the
ubiquitination of multiple substrates, which leads to a positive
feed forward mechanism through the generation of additional
substrates for Pink1 (Ordureau et al., 2014).

In recent years, several substrates, in particular mitochondrial
outer membrane proteins and autophagy receptors, have been
identified to be ubiquitinated by the PINK1/Parkin-mediated
signaling pathway (Sarraf et al., 2013). For instance, the
mitochondrial fusion proteins mitofusin 1 and 2 (Mfn1 and
Mfn2) are degraded in a PINK1/parkin dependent manner to
make mitochondria accessible for degradation and to prevent
fusion of damaged mitochondria with the healthy network (Gegg
et al., 2010; Tanaka et al., 2010). However, conditional double-
knockout of Mfn1 and Mfn2 in mice leads to mitochondrial
dysfunction and, in line with this, Mfn2-depleted cardiomyocytes
are deficient in Parkin recruitment to the mitochondrial outer
membrane (Chen et al., 2011; Chen and Dorn, 2013). A similar
priming function of mitochondria has been described for other
mitochondrial proteins such as Miro1 and VDAC1 (Geisler
et al., 2010; Wang et al., 2011; Sun et al., 2012; Safiulina
et al., 2019). Recently, the apoptotic protein BAK has been
identified as a Parkin target, further connecting Parkin-mediated
mitophagy to the regulation of cellular apoptosis (Bernardini
et al., 2019). The ubiquitination events driven by PINK1 and
Parkin enable the recruitment of autophagy substrate receptors
to the mitochondrial membrane including p62, Optineurin and
NDP52, thereby promoting the engulfment of mitochondria by
autophagosomes (Geisler et al., 2010; Wong and Holzbaur, 2014;
Lazarou et al., 2015).

Notably, transcriptional regulation is a crucial process
for functional PINK1-Parkin-mediated mitophagy. For
instance, PINK1-Parkin-mediated mitophagy induction
upon cellular stress such as through reactive oxygen species
or ethanol exposure leads to the nuclear translocation of several
transcription factors, including the transcription factor EB
(TFEB) and the nuclear respiratory factors (NRFs), controlling
the expression of mitochondrial, autophagy and lysosomal
genes (Nezich et al., 2015; Ivankovic et al., 2016; Eid et al.,
2019). Parkin expression itself has also been shown to be tightly
controlled by stress pathways such as the unfolded protein
response pathway and its activating transcription factor 4
(ATF4) (Bouman et al., 2011). Altogether, this highlights the
great number of potential therapeutic avenues to target the
PINK1-Parkin signaling pathway.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 April 2020 | Volume 8 | Article 239

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00239 April 9, 2020 Time: 17:55 # 3

Bakula and Scheibye-Knudsen Mitophagy in Aging and Disease

FIGURE 1 | Mitophagy pathways. (A) Ubiquitin-dependent PINK1/Parkin-mediated mitophagy. Upon mitochondrial damage, PINK1 is stabilized at the outer
mitochondrial membrane, leading to Parkin activation and subsequent ubiquitination of mitochondrial proteins. Finally, autophagy receptors such as NDP52, OPTN,
and p62 are recruited to mediate the engulfment of mitochondria by the autophagosomal membrane through the interaction with LC3. A possible source of the
autophagosomal membrane is provided by the endoplasmic reticulum, where the autophagy core complexes VPS34 and ULK1 initiate the membrane formation.
The membrane formation is further mediated by WIPI1 and WIPI2, leading to the recruitment of the ATG16L1-complex and LC3, thereby facilitating the formation of
autophagosomes. Finally, autophagosomes fuses with acidic lysosomes, a step that is regulated by concerted action of autophagosomal and lysosomal proteins.
(B) Ubiquitin-independent receptor-mediated mitophagy. Ubiquitin-independent receptor mediated mitophagy is mediated by the recruitment of autophagy receptor
proteins such as NIX, BNIP3, and FUNDC1 to the mitochondrial membrane. The receptor proteins recruit LC3, which enables the engulfment of mitochondria by
autophagosomes. (C) Alternative degradation pathways. Piecemeal mitophagy and mitochondrial-derived vesicle degradation are cellular pathways that mediate
localized degradation of mitochondria.

Pink1/Parkin-independent mitophagy pathways mainly rely
on receptor proteins which mediate the recruitment of
LC3/GABARAPs for the removal of mitochondria (Figure 1B).

For instance, the BCL2-related protein NIX (also known as
BNIP3L) mediates mitophagy in mammals during reticulocyte
differentiation, a process that requires the elimination of
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mitochondria (Schweers et al., 2007; Sandoval et al., 2008; Novak
et al., 2010). In line with this, NIX knockout mice develop
anemia and reticulocytosis (Schweers et al., 2007; Sandoval
et al., 2008). The interaction of NIX with LC3 protein members
is mediated via the LC3-interacting (LIR) motif, however, re-
expression of LIR-mutant NIX in NIX deficient reticulocytes
partially rescued the observed phenotype, indicating LC3-
independent or even autophagy-independent mechanisms for
mitochondrial clearance in reticulocyte differentiation (Novak
et al., 2010). Another LIR-motif containing protein, FUNDC1,
regulates mitophagy under hypoxic conditions by promoting
mitochondrial fission (Liu et al., 2012; Chen et al., 2016). During
cardiac progenitor cell differentiation, FUNDC1 and NIX, but
not Pink1 and Parkin, are upregulated to maintain a functional
mitochondrial network (Lampert et al., 2019). Mitophagy is
therefore also regulated in a lineage dependent fashion.

Localized removal of mitochondrial subdomains can be
mediated by piecemeal mitophagy or mitochondrial-derived
vesicles (Figure 1C). Mitochondrial-derived vesicle formation
is thought to be dependent on PINK1/Parkin but independent
of the canonical autophagy machinery (Soubannier et al., 2012;
McLelland et al., 2014). Whereas, the accumulation of misfolded
mitochondrial protein aggregates leads to localized recruitment
of Parkin and autophagy proteins, thereby facilitating the
degradation of mitochondrial subdomains (Burman et al.,
2017). A PINK1/Parkin-independent piecemeal mitophagy has
been recently reported that drives LC3C- and p62-mediated
degradation of mitochondrial subregions (Le Guerroué et al.,
2017). However, the protein machinery for these mitochondrial
degradation pathways may overlap with the classic mitophagy
pathways as well as their physiological relevance needs to be
further investigated.

MITOPHAGING

A decline in mitochondrial function is a hallmark of the aging
process and is connected to other aging hallmarks such as
telomere dysfunction, genome instability and cellular senescence.
However, it remains largely unclear how these processes are
interconnected and finally provoke disruption of the cellular and
tissue integrity (López-Otín et al., 2013). There is accumulating
evidence that mitophagy impacts health- and lifespan in different
model organisms. Using a transgenic mouse strain that expresses
the fluorescent mitophagy reporter mt-Keima, a decreased
mitophagy level was observed in the hippocampal dentate gyrus
in 21-month old mice compared to 3-month old mice (Sun
et al., 2015). A decline in mitophagy was also observed in
aged mouse hearts, in line with this, altered mitophagy has
been shown to influence different cardiac pathologies (Hoshino
et al., 2013; Bravo-San Pedro et al., 2017). Other tissues that
contribute to aging phenotypes are also characterized by defective
mitophagy, as shown recently for aged skeletal muscle satellite
cells isolated from humans or mice (García-Prat et al., 2016).
Notably, decreased expression of mitophagy genes was observed
in the skeletal muscle of physically inactive elderly women
(Drummond et al., 2014).

The effect of changes in mitophagy on health- and lifespan
has been particularly demonstrated by using the model
organisms C. elegans and D. melanogaster. Several genetic
studies in D. melanogaster revealed that the overexpression
of mitochondrial and mitophagy genes leads to increased
health- and/or lifespan. For instance, the overexpression of the
mitochondrial fission protein dynamin-related protein 1 (DRP1)
increased the lifespan along with a prolonged healthspan in flies
(Rana et al., 2017). The importance of mitochondrial fission on
drosophila lifespan was further demonstrated by the observation
that lifespan extension caused by the overexpression of p62 was
abrogated in DRP1 mutant flies (Aparicio et al., 2019). Lifespan
extension in flies was also observed after overexpression of
Parkin and Pink1, whereby, Parkin overexpression counteracted
increased Mfn2 levels, which can be observed during aging
(Todd and Staveley, 2012; Rana et al., 2013). These findings
are consistent with studies in C. elegans, where mitophagy has
been shown to contribute to lifespan regulation (Palikaras et al.,
2015; Schiavi et al., 2015). Evidently, there is substantial data
supporting a role of declining mitophagy, mitophaging, in aging.

WHAT HAPPENS WHEN MITOPHAGY
GOES WRONG?

Impaired mitophagy contributes to the pathogenesis of
several human diseases, in particular to age-related sporadic
disorders, such as Parkinson’s disease, Alzheimer’s disease,
cardiomyopathies and cancer (Bernardini et al., 2017; Fivenson
et al., 2017; Levine and Kroemer, 2019). While these observations
yield interesting correlations between certain disease states
and alterations in mitophagy it is difficult to deduct causation.
Here, monogenic diseases with specific defects in mitophagy
may give us mechanistic understanding of pathogenesis and
biology (Table 1). Thus, monogenic disorders may provide
valuable tools for studying molecular pathomechanisms that are
driven by defective mitophagy. To explore the clinical phenotype
of autophagy diseases, we identified the clinical descriptions
in the literature of all the diseases in Table 1 and performed
hierarchical clustering based on the prevalence of those features
(Figure 2A; Scheibye-Knudsen et al., 2013; Andreassen et al.,
2019). Although the clustering did connect clinically similar
diseases (such as Charcot–Marie–Tooth 2A2 and 2B), it became
immediately apparent that there is no good correlation between
clinical outcome and the putative molecular function of the
gene responsible for the disease. Indeed, principal component
analysis also did not show any obvious separation of clinical
groups based on proposed molecular functions (Figure 2B). This
suggests that our knowledge of the pathogeneses of most of these
disorders is quite limited. Nevertheless, when looking at the
average prevalence of clinical features across all aging diseases
there was a considerable overrepresentation of neurological
features suggesting that defects in autophagy often leads to
brain disease (Figure 2C). More specifically, the phenotype in
the autophagy disorders show significant overlap with what is
seen in mitochondrial diseases indicating that mitochondrial
dysfunction may be driving diseases in many autophagy-related
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TABLE 1 | Examples of autophagy/mitophagy-related monogenic disorders.

Disease Gene Protein function Symptoms References

Amyotrophic lateral sclerosis OPTN (AD) Autophagy receptor Motor neuron degeneration Weil et al., 2018

Alzheimer’s disease APP (AD) Transmembrane protein Dementia Fang et al., 2019

Ataxia-telangiectasia ATM (AR) DNA-damage response Cerebellar degeneration,
Telangiectasia,
Radiosensitivity

Fang et al., 2016

Autosomal dominant optic
atrophy

OPA1 (AD) Mitochondrial fusion protein Optic atrophy White et al., 2009; Liao
et al., 2017

Barth syndrome TAZ (XLR) Mitochondrial protein 3-Methylglutaconic aciduria,
Cardiomyopathy,
Neutropenia; Muscle
weakness

Hsu et al., 2015

Charcot–Marie–Tooth
disease

MFN2, RAB7 (AD, AR) Mitochondrial fusion protein,
endolysosomal protein

Neuropathy, Muscle
weakness

Yamano et al., 2014; Rizzo
et al., 2016

Charlevoix-Saguenay spastic
ataxia

SACS (AR)* Co-chaperone Cerebellar degeneration,
Neuropathy, Spasticity

Bradshaw et al., 2016;
Morani et al., 2019

Cockayne syndrome ERCC6 (AR) DNA damage repair Cerebellar degeneration,
Short stature, Sun sensitivity

Scheibye-Knudsen et al.,
2012

Danon disease LAMP2 (XLD) Autolysosome formation Cardiomyopathy,
Developmental delay,
Myopathy

Tanaka et al., 2000; Hashem
et al., 2017

Fabry disease GLA (XL) Lysosomal enzyme Nephropathy,
Cardiomyopathy, Hearing
loss, Neuorpathy

Chévrier et al., 2010;
Ivanova et al., 2019

Fanconi anemia FANCC (AR) DNA damage repair Short stature, Anemia, Skin
pigmentation changes,
Osteopenia

Sumpter et al., 2016

Frontotemporal dementia
and/or amyotrophic lateral
sclerosis

TBK1, SQSTM1 (AD) Serine/threonine protein
kinase, autophagy receptor

Dementia, Motor neuron
degeneration,

Geisler et al., 2010; Richter
et al., 2016

Gaucher disease GBA1 (AR) Lysosomal enzyme Hepatosplenomegali,
Pancytopenia, Gaucher cells

Osellame et al., 2013

Intellectual developmental
disorder with short stature
and variable skeletal
anomalies

WIPI2 (AR) Autophagosome formation Mental retardation, Cerebral
atrophy, Short stature

Zachari et al., 2019

Krabbe disease GALC (AR)* Lysosomal enzyme Spasticity, Leukodystrophy,
Myoclonus

Del Grosso et al., 2019

Lafora disease EPM2A (AR) Glycogen synthesis Seizures, Mental retardation Lahuerta et al., 2018

Microcephaly 18 WDFY3 (AD) Selective autophagy,
aggrephagy

Cognitive deficits,
Microcephaly

Napoli et al., 2018

MRXST HUWE1 (XL) E3-ubiquitin protein ligase Mental retardation,
Macrocephaly,
Macroorchidism, Seizures

Di Rita et al., 2018

Mucolipidosis II GNPTAB (AR)* Lysosomal enzyme Developmental delay, Short
stature, Cardiomegaly,
Dysostosis multiplex

Otomo et al., 2009

Multiple sulfatase deficiency SUMF1 (AR)* ER-resident enzyme Cerebellar degeneration,
Mental retardation,
Hepatosplenomegaly

Settembre et al., 2008

NADGP SQSTM1 (AR) Autophagy receptor Cerebellar degeneration,
Mental retardation, Vertical
gaze palsy, Dystonia

Geisler et al., 2010

NBIA5 WDR45 (XLD)* Autophagosome formation Cerebellar degeneration,
Developmental delay, Brain
iron accumulation, Dystonia

Saitsu et al., 2013

NEDSBAS WDR45B (AR)* Autophagosome formation Seizures, Developmental
delay, Spasticity, Cerebral
atrophy

Bakula et al., 2017;
Suleiman et al., 2018

(Continued)
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TABLE 1 | Continued

Disease Gene Protein function Symptoms References

Neuronal Ceroid
Lipofuscinosis

PPT1 (AR)* Lysosomal enzyme Mental retardation, Seizures,
Cerebellar degeneration

Mukherjee et al., 2019

Niemann-Pick disease NPC1 (AR)* Lysosomal protein Seizures, Jaundice,
Hepatosplenomegaly, Mental
retardation

Pacheco et al., 2007

Parkinson’s disease LRRK2, PARK2, PARK6 (AD) Mitochondrial proteins Bradykinesia, Rigidity,
Tremor, Dementia

Ryan et al., 2015

Pompe disease GAA (AR)* Lysosomal enzyme Muscle weakness,
Cardiomyopathy, Hypotonia

Raben et al., 2012

Spastic paraplegia 15 ZFYVE26 (AR)* Autophagosome formation Spasticity, Hyperactive
reflexes, Mental retardation

Vantaggiato et al., 2013;
Denton et al., 2018

Spastic paraplegia 49 TECPR2 (AR)* LC3/GABARAP binding
protein

Developmental delay,
Spasticity, Dysmorphism,
Microcephaly, Hypotonia,
Short stature

Oz-Levi et al., 2012

Spinocerebellar ataxia 25 ATG5 (AR) Autophagosome formation Developmental delay,
Cerebellar degeneration,
Mental retardation

Sun et al., 2015

Spinocerebellar ataxia 4 VPS13D (AR) Lysosomal enzyme Hyperactive reflexes, Muscle
atrophy, Cerebeller
degeneration

Anding et al., 2018

Vici syndrome EPG5 (AR)* Autolysosome formation Cataracts, Cardiomyopathy,
Developmental delay,
Hypotonia, Immune
deficiency, Corpus callosum
agenesis

Cullup et al., 2013

Wolfram syndrome WFS1 (AR) Calcium homeostasis Diabetes mellitus type 1,
Optic atrophy, Hearing loss,
Diabetes insipidus

Cagalinec et al., 2016

Xeroderma pigmentosum
group A

XPA (AR) DNA damage repair Sun sensitivity, Cerebellar
degeneration, Cancer,
Neuropathy

Fang et al., 2014

Zellweger syndrome PEX13 (AR) Peroxisome biogenesis Developmental delay,
Dysmorphism,
Hepatosplenomegaly,
Seizures

Lee et al., 2017

For genes that are marked with an asterisk the function in mitophagy remains largely unknown, however, defects in autophagy and mitochondrial dysfunction have been
reported. Abbreviations: AD, autosomal dominant; AR, autosomal-recessive; XLR, X-linked recessive; XLD, X-linked dominant.

disorders ranging from lysosomal diseases to bonafide mitophagy
deficiencies (Figures 2C,D). In the following we will examine a
few key examples of these disorders.

Defects in the Autophagic Machinery
To date, only a few monogenic diseases caused by single
mutations in the autophagy core machinery have been reported.
One of them, spinocerebellar ataxia-25 (SCAR25), is caused by
a mutation in the autophagy-related 5 gene (ATG5), encoding
a protein that is part of the ATG12-ATG5-ATG16L1 complex,
which facilitates LC3/GABARAP conjugation (Mizushima,
2020). So far, two siblings have been identified with SCAR25,
presenting with clinical symptoms such as truncal ataxia
and intellectual disability (Kim et al., 2016). In line with the
neurological phenotypes, a neuron-specific knockout of ATG5 in
mice causes neuronal degeneration, by contrast, a complete ATG5
knockout is neonatal lethal (Kuma et al., 2004; Hara et al., 2006).
Ataxia is a common feature of many mitochondrial disorders
(Scheibye-Knudsen et al., 2013), however, mitochondrial

viability in SCAR25 has not been investigated so far. Thus,
the contribution of mitochondrial defects to the reported
clinical features in SCAR25 remains speculative, since ATG5-
independent mitophagy pathways have been reported (Honda
et al., 2014; Hirota et al., 2015).

Mutations in members of the human WD-repeat protein
interacting with phosphoinositides (WIPI) family are known
to cause neurological deficits. The WIPI protein family
consists of four members, WIPI1–WIPI4, that contribute
to the early steps of autophagosome formation (Proikas-
Cezanne et al., 2004). The family member WIPI2 localizes
in a phosphatidylinositol 3-phosphate-dependent manner to
the autophagosomal membrane, where it facilitates ATG16L1
recruitment and LC3 lipidation (Dooley et al., 2014; Bakula et al.,
2017). Recently, patients with mutations in the WIPI2 gene have
been described with multisystemic clinical features, primarily,
neurological and skeletal deficiencies that are characterized by
severe mental retardation and short stature (Jelani et al., 2019).
Notably, WIPI2 overexpression prevents age-related autophagy
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FIGURE 2 | Phenotype clustering of autophagy diseases. (A) Hierarchical clustering of diseases based on the published prevalence of clinical features in the
diseases (for data and references see www.mitodb.com). (B) Principal component analysis of diseases based on the prevalence of clinical features. (C) The average
prevalence of top-20 clinical features in all autophagy-related disorders (Red, shared with the top-20 features in mitochondrial disorders). (D) The average prevalence
of clinical features in mitochondrial diseases.

decline in dorsal root ganglion neurons (Stavoe et al., 2019).
Patients with mutations in the genes WIPI3 (WDR45B) or
WIPI4 (WDR45) show severe and progressive neurodegenerative
phenotypes (Haack et al., 2012; Hayflick et al., 2013; Saitsu
et al., 2013; Suleiman et al., 2018). Notably, WIPI4 mutations
result in degeneration of the substantia nigra, a target area of
the brain affected in Parkinson’s disease (Mann et al., 1992). In
line with these observations, WIPI3 or WIPI4 knockout mice
show neurological defects, possibly caused by defective neuronal
autophagy (Zhao et al., 2015; Ji et al., 2019). WIPI3 and −4

knockout mice display mitochondrial dysmorphology, which was
also evident in WIPI4 mutant human fibroblast cells (Zhao et al.,
2015; Seibler et al., 2018; Ji et al., 2019). The patient phenotypes
caused by mutations in the WIPI genes highlight the importance
of the WIPI protein members for neuronal function, however,
the contribution of WIPI-mediated clearance of mitochondria in
neurodegeneration remains unclear.

Deficiency in the late stage of autophagy is observed in
the autosomal recessive neurological disorder, Vici syndrome.
The disease is caused by mutations in the ectopic P-granules
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autophagy protein 5 gene (EPG5), encoding for a Rab7 effector
protein that is required for the fusion of late autophagosomes
with lysosomes (Cullup et al., 2013; Wang et al., 2016). The
disease is characterized by multisystemic defects that show
some overlap with mitochondrial diseases, such as agenesis of
corpus callosum, cardiomyopathy, immunodeficiency, cataracts
and hypopigmentation (Cullup et al., 2013). Mitochondria with
abnormal shape and distribution were observed in muscle
tissue biopsies from patients with Vici syndrome or EPG5
knockout mice (Cullup et al., 2013; Zhao et al., 2013). The
importance of EPG5 in mitochondrial homeostasis was further
highlighted by a study showing deficient mitochondrial clearance
during spermatogenesis in an EPG5-deficient medaka fish line
(Herpin et al., 2015).

Cargo recognition and degradation in selective autophagy is
mediated by autophagy receptor proteins, such as optineurin
and p62. Both proteins are associated with the progressive
neurological disorder amyotrophic lateral sclerosis (ALS), which
is primarily caused by loss of motor neurons (Maruyama et al.,
2010; Fecto et al., 2011). Around 10% of ALS cases are caused by
inherited single gene mutations and frequently show comorbidity
with frontotemporal dementia (FTD). Interestingly, optineurin
and p62 are phosphorylated by tank-binding kinase 1 (TBK1),
a serine/threonine kinase that has also been implicated in ALS-
FTD disease development (Cirulli et al., 2015; Freischmidt et al.,
2015; Pottier et al., 2015). Thus, there is a striking correlation with
mutations in multiple mitophagy players leading to ALS.

Defects in Mitochondrial Quality Control
Proteins involved in the regulation of mitochondrial quality
control are essential modulators of mitophagy, consequently,
understanding their molecular mechanisms may give important
insights into the consequences of impaired mitophagy. In recent
years, mitochondrial dysfunction has been extensively discussed
as an important contributor to neurodegeneration in familial
Parkinson’s disease, as well as in idiopathic forms (Bose and Beal,
2016). Early onset recessive familial Parkinson’s disease can be
caused by mutations in the genes Park2 (Parkin), Park6 (Pink1),
or Park7 (DJ-1). All three proteins localize to mitochondria and
loss of each of them leads to increased sensitivity toward oxidative
stress along with mitochondrial and energetic dysfunction
(Dodson and Guo, 2007). Pink1 and Parkin are directly involved
in the mitophagy pathway, whereas, the precise function of
DJ-1 remains under discussion. Interestingly, overexpression of
Pink1 and Parkin rescues the observed phenotype caused by DJ-
1 deficiency, suggesting partial redundancies in the mitophagic
apparatus (Irrcher et al., 2010).

Mitochondrial fission and fusion are critical events for
controlled degradation of damaged mitochondria. Optic atrophy
1 (OPA1) is an inner mitochondrial membrane protein that
regulates the fusion of mitochondria, together with MFN1 and
MFN2. Mutation in the OPA1 gene has been observed to cause
autosomal dominant optic atrophy (ADOA) often accompanied
by myopathy and progressive ataxia (Yu-Wai-Man et al., 2010).
Myopathy and neurodegeneration is also observed in patients
with Charcot–Marie–Tooth syndrome caused by loss of the
MFN2 gene (Calvo et al., 2009), underscoring the importance

of mitochondrial function in muscle and brain tissues. For both
diseases impaired mitophagy has been reported, suggesting that
dysfunctional mitophagy may contribute to the described disease
pathology (White et al., 2009; Rizzo et al., 2016; Liao et al., 2017).

Defects in Lysosomal Function
Another group of diseases that may be partial driven by deficient
mitophagy, are lysosomal storage disorders, a heterogenous
group of more than 60 rare monogenic diseases that are
caused by defects in lysosomal function (Platt et al., 2018).
Some of the most well described are Gaucher disease and
Niemann–Pick type C. Gaucher disease is caused by mutations
in the glucocerebrosidase (GBA) gene, encoding a lysosomal
enzyme required to hydrolyze the glycolipid glucosylceramide.
Patients with Gaucher disease display features in multiple organs
caused by lysosomal accumulation of glucosylceramide with
a subset of patients display progressive neurodegeneration.
Notably, the GBA gene represents a major risk locus for
inherited Parkinson’s disease supporting the idea that mitophagy
is important in this disease (Goker-Alpan et al., 2004; Lwin
et al., 2004). Reduced mitochondrial respiration, increased ROS
production and increased alpha-synuclein accumulation can be
observed in various GBA deficiency models, cellular changes
that are also described to be central drivers of neuronal loss
in Parkinson’s disease (Osellame et al., 2013; Chen et al.,
2019). Nieman Pick type C is caused by mutations in the
NPC1 gene and is characterized by developmental delay,
progressive neurodegeneration, dysphagia and vertical gaze
palsy, a combination of phenotypes that can also be observed
in mitochondrial disorders. In patient-derived fibroblast cells
and NPC1-deficient neuronal cells impaired autophagy and an
accumulation of mitochondrial fragments have been observed
upon lysosomal cholesterol accumulation (Pacheco et al., 2007;
Elrick et al., 2012; Ordonez et al., 2012).

Secondary Defects in Mitophagy
In addition to diseases with primary defects in mitophagy,
several diseases have been described with secondary mitophagic
dysfunction. In the context of monogenic diseases displaying
premature aging, loss of mitophagy was first described in
Cockayne syndrome, a disease characterized by progressive
neurodegeneration reminiscent of mitochondrial disorders
(Scheibye-Knudsen et al., 2012). The pathogenesis likely
involves dysregulation of uncoupling proteins (U) due to
decreased activity of the PGC-1alpha transcription factor. UCPs
regulate mitochondrial membrane potential and consequently a
reduction in UCPs lead to increased mitochondrial membrane
potential and loss of PINK1 mediated mitophagy. Accordingly,
overexpression of UCP2 can rescue mitochondrial and
mitophagic defects in Cockayne syndrome. Notably, the
same pathogenesis is found in related DNA repair disorders
xeroderma pigmentosum group A and ataxia-telangiectasia
(Fang et al., 2014, 2016).

Another disease that is characterized by mitochondrial
deficiency is Zellweger syndrome, which belongs to a subgroup
of peroxisome biogenesis disorders (Salpietro et al., 2015).
Zellweger syndrome is caused by mutations in one of 14 human
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PEX genes, encoding for peroxin proteins that are required
for the maintenance of peroxisomes (Waterham and Ebberink,
2012). Zellweger syndrome patients show dysmorphic features
and suffer from severe neurological symptoms. Recently, PEX13
was shown to be required for mitophagy, but interestingly,
dispensable for starvation-induced autophagy (Lee et al., 2017).
Similarly, PEX5, an interaction partner of PEX13, has been shown
to modulate autophagy via regulation of the mTOR signaling
pathway (Eun et al., 2018), in line with this, mitochondrial defects
can be observed in PEX5 knockout models (Baumgart et al.,
2001). However, it is still unclear, to what extent the clinical
features of Zellweger syndrome are driven by mitophagic defects.

IS MITOPHAGY A THERAPEUTIC
TARGET?

An increasing number of human diseases have been associated
with impaired mitophagy, thus, interventions that modulate
mitophagy may provide the possibility of counteracting disease
development or progression (Figure 3). In recent years, multiple
small molecules as well as lifestyle interventions have been
shown to modulate autophagy, thereby causing health- and
lifespan benefits in different organisms (Galluzzi et al., 2017).
Due to the dependency on core autophagy regulators, mitophagy
is modulated by most of the classic autophagy inducers such
as the mTOR inhibitor rapamycin, the AMP-activated protein
kinase (AMPK) activator AICAR as well as caloric restriction
and exercise. In particular, the effectiveness of rapamycin and
rapalogs has been intensively studied in the context of lifespan
regulation and human disease development and rapamycin
remain the most well documented compound for life- and
healthspan extension in laboratory animals (Saxton and Sabatini,
2017). Further connections between longevity and mitophagy
comes from work on the metabolite NAD+ and the NAD+-
dependent acetylase Sirtuin 1 (SIRT1). Here, it has been shown
that stimulation of SIRT1 through NAD+ augmentation or small
molecules leads to activation of the energy responsive kinase
AMPK that in turns regulates a central autophagy regulator, Unc-
51-like kinase 1 (ULK1) (Egan et al., 2011; Price et al., 2012).
Further, SIRT1 and AMPK also regulate the transcription factor
PGC-1alpha, a key regulator of mitochondrial function that was
initially found to control UCP levels and thereby mitochondrial
membrane potential (Puigserver et al., 1998; Cantó et al.,
2009). Indeed, SIRT1 activation leads to UCP-2 upregulation,
stimulation of mitophagy and rescue of aging features in
models of premature aging (Fang et al., 2014; Scheibye-Knudsen
et al., 2014). Notably, direct stimulation of AMPK through
the AMP-mimetic compound AICAR regulates mitochondrial
dynamics via the induction of mitochondrial fission, further
highlighting the broad effect of AMPK on mitochondrial function
(Toyama et al., 2016).

Due to their great diversity, natural compounds are a
tremendous source for novel mitophagy modulators. Urolithin
A, a gut metabolite of ellagic acid, extends health- and lifespan
in C. elegans as well as improving muscle function in rodent
models via the induction of mitophagy (Ryu et al., 2016). The

effectiveness of urolithin A was further highlighted in animal
models of Alzheimer’s disease, where the disease pathology was
ameliorated in the group of urolithin A-treated mice (Fang et al.,
2019). In a human clinical trial study, the safety of urolithin
A was evaluated, and signatures of improved mitochondrial
function were demonstrated (Andreux et al., 2019). Similar to
Urolithin A, the potency of antibacterial compound actinonin
was demonstrated in Alzheimer’s disease models (Fang et al.,
2019). Actinonin inhibits mitochondrial translation, thereby
inducing mitophagy via the activation of the PINK1/Parkin-
regulated signaling pathway (Richter et al., 2013; Sun et al., 2015;
Burman et al., 2017). Another natural compound that has been
suggested as a potential intervention for aging and diseases is
the polyamine spermidine (Eisenberg et al., 2009; Madeo et al.,
2018; Schwarz et al., 2018). The administration of spermidine
leads to an induction of mitophagy in cardiomyocytes, along
with cardio protection in mice (Eisenberg et al., 2016). The
induction of autophagy via spermidine has been associated,
among others, with the inhibition of the acetyltransferase EP300
and the ATM-driven activation of the PINK1/Parkin-regulated
mitophagy pathway (Pietrocola et al., 2015; Qi et al., 2016).

Transcriptional regulation of mitophagy has also been
shown as a viable pathway for increased mitochondrial health.
An example is the synthetic compound PMI that stimulates
mitophagy via the activation of the transcription factor Nrf2,
which controls the expression of mitophagy genes including
p62 (East et al., 2014; Bertrand et al., 2015). PMI treatment
facilitates LC3 recruitment and mitochondrial ubiquitination in a
PINK1/Parkin-independent manner, notably without disrupting
the mitochondrial membrane potential (East et al., 2014).

Besides targeting mitophagy core proteins, intervention
strategies targeting mitochondrial proteins may present a useful
approach for disorders that are characterized by abnormal
mitochondrial dynamic. Mdivi-1, has been identified in a
yeast screen for mitochondrial fission inhibitors and several
studies indicate its therapeutic potential for the treatment of
neurological disorders (Cassidy-Stone et al., 2008; Cui et al.,
2010; Solesio et al., 2012). However, the specificity of Mdivi-
1 toward its putative target Drp1 has recently been questioned
and needs to be further clarified (Bordt et al., 2017). USP30, a
deubiquitinase that targets mitochondrial proteins, may present
another promising target to facilitate mitophagy, since improved
mitochondrial function was obtained upon USP30 depletion
in different Parkinson’s disease models (Bingol et al., 2014).
Notably, MF-094 has been recently identified as a selective
inhibitor of USP30 that may thereby facilitate mitophagy through
increased ubiquitination of outer membrane proteins (Kluge
et al., 2018). Thus, a number of mitophagy modulators have
been identified, yet the main goal will be the precise and specific
targeting of damaged mitochondria. One possible way is to apply
chimeric molecules such as the recently generated autophagy-
targeting chimeric molecule (AUTAC4) that selectively targets
the mitochondrial membrane for ubiquitination and subsequent
degradation (Takahashi et al., 2019). These approaches may be
particularly efficacious in conditions of mitophaging where the
mitophagy apparatus is likely intact but mitophagy occurs at
suboptimal levels.
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FIGURE 3 | Mitophagy interventions. An overview of different mitophagy modulating compounds and their targets. Abbreviations: Ac, Acetylation; HAT, Histone
acetyltransferase.

In diseases characterized by dysfunctional lysosomes,
stimulation of mitophagy may be detrimental due to an
accumulation of undigested cargo material. In this regard, the
inhibition of mitophagy is considered as a therapeutic strategy.
In a mouse model of Pompe disease autophagy inhibition next
to an enzyme replacement therapy has been proposed as a
potential intervention (Raben et al., 2010). In line with this,
knockdown of the mTOR pathway inhibitor TSC2 in muscle

of Pompe disease mice reduced accumulation of autophagy
markers and a decline in muscle atrophy was osberved (Lim
et al., 2017). However, strategies to facilitate the fusion of
autophagosomes and lysosomes in lysosomal storage disorders
are also proposed for the treatment of several lysosomal storage
disorders (Spampanato et al., 2013; Bartolomeo et al., 2017).
TFEB, which controls the expression of autophagy as well as
lysosomal genes and longevity (Napolitano and Ballabio, 2016),
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may provide a promising target since its agonists, such as
the clinically approved cardiac drug digoxin or the natural
compound ikarugamycin, improve metabolic function in mice
and extend lifespan in C. elegans (Wang et al., 2017). The
therapeutic potential of TFEB in Parkinson’s disease was further
highlighted by a recent study that showed restored TFEB and
improved neurological function upon rapamycin treatment in
Q311X mutant parkin mice independently of the parkin E3 ligase
(Siddiqui et al., 2015).

In summary, great progress has been made in recent years,
however, the clinical safety of mitophagy modulating drugs
needs to be further clarified. More refined tools that allow the
distinction between mitophagy and general macroautophagy may
be beneficial and could accelerate future discoveries. Altogether,
this will enable us to step closer toward clinical validation of
mitophagy modulators.

CONCLUDING REMARKS

Mitophagy is emerging as a central process preserving organismal
and, especially, neurological health. Since most trials targeting
age-associated neurodegeneration in the last decades have been
disappointing, new pharmaceutical avenues are direly needed.
Here, mitophagy stimulators could play a key role. Indeed, several
clinical trials are underway testing the efficacy of mitophagy
modulating compounds and the outcome of these studies will
undoubtedly prove critical for the future translatability of the
field. Nonetheless, the regulatory mechanism of mitophagy and

its contribution to age-associated diseases still remains elusive
and potential issues with artificially augmenting mitophagy
have not been considered. However, given the central role of
mitophaging in multiple age-related pathologies it appears highly
likely that these new promising approaches may present possible
interventions in age-associated diseases. The future is bright!
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