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In Kneip et al. (2016) a series of tests for important hypotheses when nonparametric
efficiency studies are performed are suggested. As the authors state, it is essential to
validate the assumptions made, e.g., assumptions on returns to scale and/or convexity,
before concluding on real-world empirical studies.

To ensure that their proposed test statistic for returns to scale does not have a degenerate
asymptotic distribution under the null hypothesis, the authors suggest to randomly split
the sample into two samples. However, this initial random split introduces uncontrollable
randomness, as the resulting p–values are highly dependent on the specific initial split.
Thus, very different conclusions can be obtained for a give data set depending on this
randomness.

Specifically, in an analysis carried out for the benchmark regulation of electricity distrib-
utors in Denmark, the test for returns to scale, i.e., the test statistic in equation 39 in
Kneip et al. (2016), has been applied to a data set with 28 companies, 3 output variables
and 1 input variable (total cost). We have performed the test 10 000 times each with a
unique execution of choosing the random split. The resulting p–values range from 0 to
1 and have the empirical distribution illustrated in Figure 1.

This clearly highlights the randomness of the p–values due to the initial split in the
given data set. This problem is not easily overcome. One solution could have been
to combine results from more than one initial split, but the joint distribution of test
statistics across different splits is not obtainable. Kneip et al. (2016) suggest to base
inference on bootstrapped confidence limits but the effect of the randomness of the initial
split is undoubtedly inherited in this method. We suggest to use the permutation based
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Figure 1: Distribution of p–values based on 10 000 random splits

test for returns to scale introduced in Rønn-Nielsen et al. (2019), which does not suffer
from the described weakness.

To investigate the randomness of the p–values created by the initial random split in
situations with more observations than in the electricity example, we have simulated
a number of data sets following simulation procedure 1 in Rønn-Nielsen et al. (2019).
In the simulations, the parameter γ measures the departure from the CRS hypothesis.
When γ = 1, the hypothesis is true, while decreasing the value will give an increasing
departure from the hypothesis. For each of the parameter values γ = 0.96 and 1 we have
generated data sets following the algorithm with n = 200 and 1000 observations. For
each of the four data sets we have performed the test 1000 times. The resulting p–values
are illustrated in the histograms in Figure 2.

The upper left histogram in Figure 2 corresponds to a data set with 200 observations
and with γ = 1, such that the CRS hypothesis is actually true. Here we see the same
pattern as in the previous example: Given the data set, the p–value exhibits a very high
degree of randomness due to the initial split. This is also seen in the lower left histogram
that represents a data set with n = 1000, where the CRS hypothesis is true. Also here,
all values of the p–value are possible outcomes.

The upper right histogram of Figure 2 shows the different p–values for a dataset with
n = 200 observations and with γ = 0.96. Thus, here the CRS hypothesis is incorrect
and we consequently see that the p–value is more often relatively small. However,
again very different outcomes are possible. This pattern is to a large extent repeated
when the number n of observations is increased to 1000, as depicted in the lower right
histogram: Though the p–value is most often rather small, there is a non–negligible
chance of observing a very large value.
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Figure 2: Simulated p–values based on 1000 random splits for all combinations of γ =
0.96, 1 and n = 200, 1000. The first row represents n = 200, while n = 1000
in the second. The first column represents γ = 1, and γ = 0.96 in the second
column.

In conclusion, the test for CRS proposed by Kneip et al. (2016) produces p–values that
for a given data set exhibit way too much randomness, and thereby leaves the researcher
with a very unreliable basis to draw conclusions upon.
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