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Abstract—Information and communication technologies are increasingly 
mediating learning and teaching practices as well as how educational institu-
tions are handling their administrative work. As such, students and teachers are 
leaving large amounts of digital footprints and traces in various educational 
apps and learning management platforms, and educational administrators regis-
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ter various processes and outcomes in digital administrative systems. It is 
against such a background we in recent years have seen the emergence of the 
fast-growing and multi-disciplinary field of learning analytics. In this paper, we 
examine the research efforts that have been conducted in the field of learning 
analytics in Austria, Denmark, Finland, Norway, Germany, Spain, and Sweden. 
More specifically, we report on developed national policies, infrastructures and 
competence centers, as well as major research projects and developed research 
strands within the selected countries. The main conclusions of this paper are 
that the work of researchers around Europe has not led to national adoption or 
European level strategies for learning analytics. Furthermore, most countries 
have not established national policies for learners’ data or guidelines that gov-
ern the ethical usage of data in research or education. We also conclude, that 
learning analytics research on pre-university level to high extent have been 
overlooked. In the same vein, learning analytics has not received enough focus 
form national and European national bodies. Such funding is necessary for tak-
ing steps towards data-driven development of education.  

Keywords—Learning analytics, Europe, data-driven improvement, education  

1 Introduction 

Over the past decades, the world has undergone a transformation process, which 
many consider to be as important as the Industrial Revolution once. In this post-
industrial society, also called the information and knowledge society, information 
technology plays a crucial role. It permeates and transforms how we work, study, 
relate to information and knowledge and how we spend our free time. As a conse-
quence of this digitization, huge quantities of data, i.e. big data, is generated that re-
flects our activities. Therefore, in many fields, such as business or medicine, we have 
witnessed how essential the use of analytics has become to process generated big data 
in order to develop data-driven insights into people’s activities for the optimization of 
processes and outputs. 

Today, the educational systems around the world are also undergoing major digital 
transformations. Information and communication technologies are increasingly medi-
ating learning and teaching practices as well as how educational institutions are han-
dling their administrative work. As such, students and teachers are leaving large 
amounts of digital footprints and traces in various educational apps and learning man-
agement platforms, and educational administrators register various processes and 
outcomes in digital administrative systems.  

It is against such a background we in recent years have seen the emergence of the 
fast-growing and multi-disciplinary field of learning analytics. The field, which origi-
nates from disciplines such as “business intelligence, web analytics, educational data 
mining and recommender systems” [1, p. 1) attempts to exploit data generated in edu-
cational settings “for purposes of understanding and optimizing learning and the 
environments in which it occurs” [2, p. 34]. 

iJAI ‒ Vol. 1, No. 1, 2019 9



Paper—Efforts in Europe for Data-Driven Improvement of Education 

Although the field of learning analytics is still in its infancy, seen from an interna-
tional perspective, it has already produced innovative educational research that 
demonstrate the utility of learning analytics on the micro level (understanding and 
developing learning and teaching), on the meso level (understanding and developing 
single educational organizations), and on the macro level (understanding and develop-
ing on a national level or across educational organizations) [3, 4, 5]. 

From a European standpoint, the potentials of learning analytics were recognized 
early on. Already in 2013, only two years after the official birth of the field of learn-
ing analytics, the European Commission emphasized that learning analytics can con-
tribute to “develop new solutions for better personalised learning, by allowing teach-
ers to have a more accurate and up-to-date follow up of each learner. Through learn-
ing analytics, new and more learner-centred teaching methods can emerge since the 
evolution of learners who use ICT regularly can be closely monitored.” [6, p.5). In 
another more recent report the European Commission Working Group on Digital 
Skills and Competences (ET2020) once again pointed to the potential of learning 
analytics to “contribute to the quality of teaching and learning and the modernization 
of educational systems in Europe.” [7, p.2]. Moreover, ET2020 urged for capacity 
building in the field and collaborative research projects. And indeed, research in 
learning analytics is growing in Europe, especially from countries such as Spain, 
United Kingdom, Germany, Netherlands, and Austria. Furthermore, several European 
countries, such as Norway, Denmark, and Netherlands, are developing nationwide 
learning analytics strategies that includes infrastructure, competence centers, and 
national policies. 

In this paper, we examine the research efforts that have been conducted in the field 
of learning analytics in Austria, Denmark, Finland, Norway, Germany, Spain, and 
Sweden. More specifically, we report on developed national policies, infrastructures 
and competence centers, as well as major research projects and developed research 
strands within the selected countries. 

2 European Research 

2.1 Austria 

The research efforts in Austria has been started already back in 20111. Based on 
personal meetings between George Siemens, Erik Duval and Martin Ebner at the ED-
Media conference in Lisbon, Portugal, the idea of a conference on Big Data for Learn-
ing was shared to a large community - today, well known as International Conference 
Learning Analytics and Knowledge, shortly LAK. The second was done in Vancou-
ver, Canada in April 20122. At this conference, a first research work from Austria was 
presented and discussed - just a simple multiplication trainer for schoolchildren aged 
8-12 years [8].  

 
1  https://www.aace.org/review/ed-media-2011-lisbon-portugal-final-call-for-participation-april-12/ (last 

visited June 2019) 
2 https://solaresearch.org/events/lak/#lak12 (last visited in June 2019) 
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The research team followed the idea to collect and gather all calculations done by 
the children and to give feedback to the learners as well as the teachers. Today the 
application holds more than 1.000.000 calculations and we know very precisely how 
the learning of the multiplication table is happening described in several publications 
[9] [10] [11].  

In addition, the research team worked on more applications for school children - an 
addition, a subtraction [12], a division and a multi-digit trainer [13]. As follow up, 
Graz University of Technology contributed to a first European project about German 
spelling acquisition [14]. The project aims to offer children an online editor for writ-
ing short essay. In the background beside a typical spell-checking dictionary an intel-
ligent one was implemented. This developed one holds words, written in all possible 
and false forms, categorized in different groups. The Learning Analytics part analyses 
each text and provide feedback to learners and teachers divided to the defined catego-
ries.  

Beside this project in secondary education in 2014 first research has been done in 
higher and adult education. The University of Graz as well as the University of Tech-
nology of Graz founded in 2014 the first and till now online MOOC platform in Aus-
tria, called iMooX. Due to the fact that MOOCs are addressing a huge amount of 
learner’s data driven investigations seems to be a logical step firstly described in de-
tail in [15]. Different studies pointed out how Learning Analytics can help to identify 
different kind of learners [16], how students remain in MOOCs [17], how gamifica-
tion elements assist the learning process [18] and even how new didactical approach-
es, called Inverse Blended Learning, are introduced [19]. 

Another joint project on European level between KU Leuven, University Notting-
ham, TU Delft and TU Graz called STELA (“Successful Transition from secondary to 
higher Education using Learning Analytics”) aimed to assist students during their 
transition phase from secondary to higher education [20]. The outcome of the project 
provided a general framework for building students’ dashboards [21] (Leitner & Eb-
ner, 2016) and different prototypes at each single university. 

Finally, there are also some work done on a policy level for national issues. Due to 
the fact that in Austria the data protection law is rather strong, it is from high im-
portance to think about how Learning Analytics can be integrated on an institutional 
level. One first research work was about the de-identification of data [22] and general 
challenges to overcome if Learning Analytics will be introduced in Higher education 
institutions [23]. 

Currently a white paper on Learning Analytics for Higher Education is elaborated 
under the lead of the nationwide association of new media for teaching and learning. 
Finally, the ministry of education, science and research announced to give financial 
support for Learning Analytics applications in the next years. 

2.2 Denmark 

Learning Analytics as a field in Denmark seems rather as disconnected islands than 
as a connected whole. While research efforts within the scope of LA as defined in this 
article have been done for some time, research has until recently been conducted at 
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separate universities and university colleges without much interaction and collabora-
tion. Furthermore, the two overall aims for LA, understanding and optimizing seem to 
be a source of divisions in the Danish landscape. Some researchers focus on under-
standing from an educational standpoint [24], others on optimizing from a computer 
science standpoint [25]. In addition to this division, a third division seems to be be-
tween econometrics and educational research, where econometrics as a field is more 
interested in the effects of intervention and use educational test-data as outcome vari-
ables [26]. 

Also, worth mentioning, though not as such LA research, is a strand of research 
critically monitoring the consequences of the digital transformation of the Danish 
educational system, among other things, focusing on the consequences of integrating 
analytics into the ecosystem of public primary education.  

Apart from divisions in terms of research focus, the divisions between educational 
research and econometrics is evidenced by public debates [27] in the wake of public 
reports on Danish national tests [28]. We speculate that the origin of this divide is 
determined by the broad field of the researcher; computer scientists engaging in LA 
are more likely to focus on optimizing, while educational researchers are more likely 
to link LA data to e.g. constructivist theories of learning. Econometrics seems to be 
narrowly focused on establishing causal relationships using linear models. Thus, we 
see a gap between (at least) three traditions: a computer scientist tradition, an econo-
metrics tradition, and an educational tradition. Here, we provide examples to illustrate 
the LA landscape in Denmark and then present current or very recent efforts to begin 
bridging the gap. 

The Danish Center for Big Data Analytics Driven Innovation (DABAI), was estab-
lished in 2016, with learning analytics as one of the goals. Within the field, DABAI is 
to pursue optimization of e-learning personalization, student behavior modeling, pre-
dicting student performance, similarity among quizzes, authorship verification, and 
curriculum trainer [25]. With regards to student behavior modeling, researchers have 
created a model of student drop-outs in Danish upper secondary school.  

Another avenue of research in play is a design-based approach. Here, educational 
researchers design online and blended learning materials for science courses while at 
the same time monitoring clickstreams, videotaping lessons, and audiotaping student 
discussions for joint multimodal analyses [29]. On such project is the Virtual Neu-
trons for Teaching project (eneutrons.org), in which students learn neutron scattering 
via online textbooks and quizzes [30] [31]. One of the outcomes of the projects is a 
novel method for analyzing online student behaviors using clickstream data [32].  

Two large ongoing projects, both funded by Innovation Fund Denmark (Innova-
tionsfonden), are also worth mentioning. The first, Game-based Leaning in the 21st 
Century (GBL21), is a large collaborative project aimed at developing design thinking 
skills through game-based learning (https://gbl21.aau.dk). As a part of GBL21 educa-
tional researchers from DPU, Aarhus University and Aalborg University are develop-
ing an online tool for assessing different aspects of design thinking skills. The other 
project, Automatically Tracking Early Stage Literacy Skills (ATEL), involves re-
searchers from DPU, Aarhus University and Technical University of Denmark (DTU) 
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collaborating on developing analytics tools for tracking early stage literacy develop-
ment ( 

Furthermore, in 2010, Denmark implemented national tests in grades 2-4 as well as 
6-8 in primary school. The tests are obligatory and target different subjects in differ-
ent grades (https://www.uvm.dk/folkeskolen/elevplaner-nationale-test--trivselsmaaling-og-spr 
ogproever/nationale-test/klassetrin-fag-og-profilomraader). The tests are adaptive, meaning 
that each student will be presented with test items during the test-period (usually 1 
hour in-class) and that the difficulty of test item i+1 is dependent on the student an-
swer to test item i. The system collects data on the students, which is used to monitor, 
single students, classes, and schools. While in-depth analyses are possible, research 
seems to have focused mainly on macro-scale variables, such as whether there is a 
positive or negative effect of the national tests.  

We have argued that in Denmark, a gap between LA as undertaken by computer 
scientists, econometrics researchers, and educational researchers exists. We believe 
that in order to bridge this gap, computer scientists will need to learn to operationalize 
current educational theories and results, while educational researchers need to utilize 
and interpret results from currently used computer algorithms. The gap between edu-
cational researchers and econometrics researchers seems to be rooted in substantially 
different aims and methods for the two fields. Bridging all of these gaps will require 
extensive cooperation and probably compromises.  

Despite the lack of coherence and collaboration in the Danish LA research com-
munity, there are, however, efforts to connect to the larger Nordic cross-disciplinary 
community of LA researchers, e.g. by hosting the Nordic LASI 2018 at Aalborg Uni-
versity and organizing Learning Analytics Research Symposium (LARS), which was 
held at University of Copenhagen in November 2018 (https://www.ind.ku.dk/lars2018 ) 

2.3 Finland 

Research on learning analytics started early in Finland with a focus on the social 
and collaborative aspects of learning. Tervakari and colleagues investigated the “TUT 
circle” which was an online social media enhanced learning platform at Tampere 
University of Technology. They reported on the utility of visualization of students’ 
interactions, and researched the learning analytics potentials of the platform. The 
group later contributed with research on content analytics, social media analytics and 
teacher tools [33]. Other aspects of learning analytics followed such as predicting 
students’ performance in programming courses and using machine learning methods 
to predict students’ need for assistance [34]. A notable body of research comes from 
Järvelä and colleagues on self-regulated and collaborative learning, who investigated 
social shared regulation, interactions and engagement with collaborative learning and 
the temporal sequence of regulatory processes [35] [36]. The group are also working 
on multimodal physiological data as well as dispositional learning analytics [37] [38]. 
As the field is gaining recognition, many Finnish universities are now embracing the 
concept and research is increasingly reported from most Finnish universities. 

Despite the development of techniques and methods to model and predict human 
learning, the field still lacks ability to connect the powers of learning sciences and 
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learning analytics in effective way to understand the complexity of learning alone or 
together, reveal hidden human mental processes and model and trace trigger moments 
and critical patterns of learning processes [37]. The emerging need to combine the 
power of learning sciences and learning analytics is also recognized by Finish Science 
Academy, which funds high-quality scientific research and strengthens the position of 
science and research. For example, in spring 2019 Academy of Finland launched a 
project call “Digital Humanities” which reflects the emerging need to develop new 
methodologies. Especially Digital Humanities program emphasizes new ways to ad-
dress novel methods and techniques in which digital technology and state-of-the-art 
computational science methods are used for collecting, managing and analyzing data 
in humanities and social sciences research as well as for modelling humanities and 
social science phenomena. Thus, the emphasis lies not only in collecting "big data", 
but also "small" (deep, rich) data, since so far, the potential of many overarching con-
ceptual and methodological questions remain unexplored and under-theorized. 

The large body of empirical and theoretical advances in the field of self-regulated 
learning (SRL) [37] has indisputable evidence that such skills improve learning with 
students of all ages. However, there has been much less understanding how learning 
analytics are grounded in the literature on self-regulated learning and how self-
regulated learning is supported. This is much due the fact, that SRL processes (i.e. 
cognitive, metacognitive, motivational and emotional) are invisible for naked eye and 
therefore difficult to capture [37]. Fortunately, due the technological and methodolog-
ical advancements in the field, there is potential to transform these mental processes at 
least to some extent in a visible form to provide learning analytics for teacher and 
students. 

During the past years, there has been increasing interest to collect and analyze mul-
timodal data (i.e. log data, physiological data, situated self-reports) to better capture 
the mental processes of human learning [37]. For example, [39] applied multimodal 
data (e.g. physiological data, facial expression data and video data) evidencing that it 
is possible to make situational characteristic involving to the regulated learning pro-
cess visible. Facial expression recognition has potential to reveal valence of emotions 
during collaborative learning. Visible interactions recorded from the video data has 
potential to reveal type of interaction, but also instances when students engage for 
self-regulated learning.  

2.4 Germany 

In 2016, Ifenthaler and Schumacher [40] report that research on learning analytics 
in Germany is scarce and that there are only a few projects focusing on the implemen-
tation of learning analytics systems. In 2019, several research projects are being fund-
ed by the German Federal Ministry of Education and Research focusing on technolo-
gy integration and analytics in educational organizations [41]. For example, the aim of 
the project ‘Utilizing Learning Analytics for Study Success’ is to conduct a systematic 
review and construct a set of policies for German higher education institutions to 
adopt learning analytics capabilities into their existing learning environments. Precise-
ly, the goals of the project are a) first to build a systematic review of empirical evi-
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dence demonstrating how learning analytics have been successful in facilitating stu-
dent success in continuation and completion of their university courses both nationally 
and internationally, and forming the basis for aim b) to make policy recommendations 
for the German higher education sector in order to accept and implement such systems 
within institutions.  

It became evident from the integrative review that robust empirical findings on a 
large scale to support the effectiveness of learning analytics actually retaining students 
onto courses are still lacking [42]. Therefore, it is imperative to leverage existing 
learning theory, psychological methods and connecting them to advances of learning 
analytics research for designing (quasi-)experimental studies including theoretical 
frameworks and sound empirical methodologies. The project findings of the interview 
study indicate that more work on ethical and privacy guidelines supporting a wider 
adoption of learning analytics systems is needed [42] as well as work towards a stand-
ardized learning analytics system which can be integrated into any learning environ-
ment providing reliable at-risk student prediction, prevention and intervention strate-
gies [43]. In particular, personalized learning environments are increasingly demand-
ed and valued in education institutions to create a tailored learning package optimized 
for each individual learner based on their personal profile which could contain infor-
mation such as their geo-social demographic backgrounds, their previous qualifica-
tions, how they engaged in the recruitment journey, their activities on social media 
and websites, as well as tracking information on their searches [44].  

Additional findings document issues with organizational readiness (Ifenthaler, 
2017). For example, a standard infrastructure of educational institutions includes a 
student management system, a learning management system and a course manage-
ment system. However, these systems are deeply embedded into the organization’s 
infrastructure and often are not designed to reveal data for analytics [45]. For access-
ing the necessary data, various connections to the organizations’ legacy systems have 
to be established which are able to access the students’ profiles, to capture the actual 
learning processes and get access to curricula data. As these legacy systems are often 
based on various technologies, each connection has to be implemented as an individu-
al project which is labor and cost intensive. Besides the technological challenges, staff 
capabilities are also changing when implementing learning analytics systems. Not 
only new staff roles but also further development of existing staff is required for suc-
cessful implementation of learning analytics systems [46]. 

2.5 Norway 

Although the collection, interpretation, and visualization of multimodal data has 
been extremely challenging for researchers, recent technological developments and 
data science, and AI advancements have boosted the growth of non-invasive high-
frequency multimodal-data collections. 

 Learners’ traces are generated during their interaction with technologies, such in-
teraction is often complex but offers opportunities for collecting rich and multimodal 
data [47] [48], MultiModal Learning Analytics (MMLA), as the literature refers to 
them. In order to unfold the benefits of MMLA, the Learner-Computer Interaction 
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(LCI) lab at the Norwegian University of Science and Technology (NTNU) focuses 
on overcoming the difficulties in gathering and making sense of MMLA. In other 
words, we attempt to identify, how insights generated during learner-computer inter-
action help us to design future learning environments and improve the learning expe-
rience.  

 For many years, the design of learning technologies has been utilizing click-
streams and keystrokes as the primary data source for modelling and predicting learn-
ing behavior. In recent work at NTNU researchers set out to quantify what, if any, 
advantages do physiological sensing techniques provide for the design of learning 
technologies [47] in a lab context with 251 game sessions and 17 users focusing on 
skill development (i.e., user's ability to master complex tasks).  

Furthermore, when dealing with data channels in multiple modes and modalities, a 
major issue lies in determining combinations of the multimodal data channels that are 
necessary for one to make valid and reliable inferences regarding the temporally un-
folding learning processes, and selecting the algorithms and analytical tools to use. 
Recent research at NTNU has proposed a novel approach, called “grey-box” ap-
proach, that bridges the hypothesis/literature-driven (measurements/feature selection) 
“white-box” approach with the computation-driven (feature fusion) “black-box” ap-
proach [49]. The authors aimed to extend current methodological paradigms in under-
standing effortful behavior and learning performance in adaptive learning conditions 
with new, cutting-edge, interdisciplinary work on building pipelines for educational 
data, using innovative tools and techniques  

 Another research dimension explored at NTNU with regard to multimodal learn-
ing analytics is the modelling of learner behavior, by taking advantage of the inherent 
temporality in the physiological data. The Generalized Auto-Regressive Conditional 
Heteroskedasticity (GARCH) method was applied with learners’ physiological time-
series data to model their behavior, and make suggestions about how the models can 
be further utilized to provide proactive feedback to learners [49]. 

Moreover, investigating and explaining the patterns of learners’ engagement in 
adaptive learning conditions is a core issue towards improving the quality of personal-
ized learning services. The research group at NTNU bridged complexity theory with 
multimodal data in order to capture specific patterns of engagement that foretell and 
explain learners’ level of performance on adaptive learning procedures [50].  

In a different context, the joint collaboration between the Centre for the Science of 
Learning & Technology (SLATE) from University of Bergen in Norway and Erasmus 
University Rotterdam from the Netherlands gave birth to interesting research studies 
in MOOCs. The first one was on exploring self-regulated learning in Coursera plat-
form by [51]. Wong et al [51] employed sequence pattern mining to identify self-
regulated learning studying strategies to a group in MOOCs where student was of-
fered self-reflection and monitoring intervention. One more contribution between 
SLATE and the Dutch university is a book chapter titled “Educational Theories and 
Learning Analytics: From Data to Knowledge” by [52]. The chapter aimed at discuss-
ing how learning theories and learning analytics are important components of educa-
tional research. In addition, the chapter suggests that more experimental studies are 
needed for applied learning analytics in general and in Europe more specifically. 
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In Norway as well, there has been research on ethical aspects of learning analytics. 
For instance [53] carried out a research study at the Open University in the United 
Kingdom in which they examined student’s behavior in higher education and their 
attitudes to privacy. The authors plan to carry out the same research study in Norway 
next year together with South Africa. Furthermore, the study by [53] looked at the 
three levels of consent in MOOCs, micro, meso, and macro. Based on reviewing the 
policies of the biggest four MOOC providers, the paper proposes a need for greater 
transparency around the implications of users granting consent at the point of registra-
tion. 

Another interesting project brought from Norway are those related to the medical 
and health sector. SLATE from the University of Bergen is involved in a consortium 
project called OERBioMed. Biomedicine seeks to explain physiological processes at 
the molecular and individual level. Such information is essential for the understanding 
of disease progression and for the development of new treatments and therapies. This 
current and future medical research relies on the existence of people with expertise in 
the biomedical field. To raise the quality of teaching, training and learning within the 
field of biomedicine, new and innovative approaches are required. To this end, this 
project deals with open-access and online courses to increase the bioethical 
knowledge and awareness in the biomedical community. SLATE is involved in this 
project by providing help and support to launch massive open online courses in col-
laboration with all the partners from the Nordic countries. SLATE also provide learn-
ing analytics and statistical services to the partners. 

2.6 Spain 

Data driven education has been a hot topic in Spain in the last 10 years. In fact, 
there are several relevant works in the field of Learning Analytics, Visual Analytics, 
Educational Data Mining, Multimodal Analytics, etc. However, there are some issues 
in the Spanish landscape related with Data Driven Education, issues that are also 
common in other countries. These are: 

• Data driven education is a relatively new research field, and therefore the quantity 
and variety of topics of interest is high 

• The current level of global or campus-wide application of learning analytics in 
companies and public and private organizations is low 

• The fragmentation of research groups, and the difficulty they have to reuse and 
replicate research designs, results and outcomes of others 

• The focus of disciplines such as learning analytics has been mostly technical and it 
is necessary a multidisciplinary perspective that involves also profiles such as edu-
cators, psychologist or sociologist 

• It is also desirable to engage different organizations in the use of disciplines such 
as Learning Analytics (companies, public administrators, non-higher education in-
stitutions, etc.) 
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• The low number of professionals in this field, with the emergence of the new data 
scientists this is close to be solved, but it is still needed a very specific profile in the 
educational field 

• The knowledge that research groups have about themselves, ongoing projects, 
institutions and organizations interested in Data Driven Education is limited. 

In order address these problems and centralize the efforts carried out related to 
these topics SNOLA was defined. SNOLA (Spanish Network Of Learning Analytics, 
http://snola.es), informally created in 2013, emerges as a network composed of the 
main national researchers in the LA field, comprising 10 researchers from 9 Spanish 
Research Groups. SNOLA primarily has a technical approach, but it also integrates 
other educational visions and disciplines that give the network a wider scope. The 
main objectives of SNOLA are: 

• The promotion of collaboration among the participants in the Network, as well as 
with other interested parties (companies and public and private educational institu-
tions) and other European and international LA collaboration networks 

• The diffusion and organization of LA initiatives at a national scale 
• Making resources to effectively integrate LA in educational processes available to 

the public; and 4) provide researchers and professionals adequate training to face 
and give answer to the new challenges of Digital Society risen by the incorporation 
of ICT in education. From December of 2015 to June of 2018, SNOLA was grant-
ed by the Spanish Government as Thematic Network which help the network to 
support different events and activities. 

At the same time that SNOLA was defined several projects have been developed 
with Spanish institutions related with Data Driven Education. Some are international 
projects (mostly European) such as: LACE Project (http://www.laceproject.eu/), 
SHEILA Project (https://sheilaproject.eu/), Make World (https://makeworld.eu), Go-Lab 
(https://www.golabz.eu/) or LALA Project (https://www.lalaproject.org/); some other are 
granted by the Spanish Government through national calls such as the projects EEE or 
RESET; or by Regional Governments such as eMadrid. These projects deal with dif-
ferent issues and in some of them Data Driven Education is the main topic and in 
other it is employed to support the results, processes or products developed. Some of 
topics explored could be the teamwork assessment, intelligent tutors that make sug-
gestions depending on learning evidences or the use of Learning Analytics in CSCL. 

Regarding the scientific events it should be noted that exist several relevant initia-
tives: 

The Learning Analytics Summer Institute Spain, linked to the SOLAR intiative. It 
is a conference supported by SNOLA with several editions. First Spanish Edition was 
hold in 2013 at Granada (http://grinugr.org/noticias-de-eventos/lasi-spain/), 2014 at Ma-
drid (http://lasimadrid2014.scc.uned.es/), 2015 (https://blogs.deusto.es/lasi2015Bilbao/) and 
2016 (https://lasi16.snola.es/) at Bilbao, 2017 at Madrid (https://lasi17.snola.es/) and 2018 
at León (https://lasi18.snola.es/). This year will take place in Vigo. It began as an event 
for discussion between researchers in the field of Learning Analytics and also as a 
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contact point with experts. However now it includes also sessions with scientific pa-
pers presentations, networking sessions, companies’ sessions, etc. 

The Learning Analytics Track included in the TEEM Conference, an international 
scientific conference defined in Spain in 2013. The track is leaded by Spanish re-
searchers but includes works from people all around the world. It began in 2013 and 
since then this track has taken place every year. During the track several scientific 
papers are briefly presented and discussed with experts. Some of this track editions 
have been associated to special issues in journals such as Computers in Human Be-
havior [2] or the International Journal of Engineering Education [3]. Several topics 
have been discussed during the track, some of the most significant could be: Predic-
tion of students success or failure based in their learning and interaction evidences; 
tools to improve learning process, Learning Analytics and Mobile devices, Ethics 
about Learning Analytics, Visual Learning Analytics, Academic Analytics, Multi-
modal Learning Analytics, Social Network Analytics, Competence Assessment 
through Learning Analytics, Discussion about the quantity and quality of data to make 
decisions in educational contexts, Application of Learning Analytics tools and tech-
niques, Personalization of Learning by using Learning Analytics, etc. More infor-
mation about this track and the research woks included in it can be found here [54-
59]. 

Other seminars such as LAIKA, SIIE 2016, WPLA at ECTEL, LATCEE (in 
Educon) were also leaded by Spanish research groups and deals with similar topics as 
the previous ones. 

It should be noted that in conferences such as LASI – Spain companies were in-
volved. In this way it was possible to know what were they doing about Learning 
Analytics and what they require from the academy. Companies such IBM, Euskaltel, 
Sun Edison, Brambles or Eticas Consulting participate in several LASI Conference 
and enrich the perspective about Data Driven Education in Spain. 

2.7 Sweden 

Even though the field of learning analytics is an evolving field of both research and 
practice [4], there have already been some relevant efforts in terms of its development 
in a Swedish context. These attempts are currently expanding in higher educational 
settings. For instance, a number of research directions have been explored with a 
learning analytics approach by a research group at Stockholm University, focusing on 
aspects such as problem-based learning [60], teacher education [61], collaborative 
learning [62], self-regulated behavior [63], prediction of student performance in 
blended learning and in flipped classroom settings [64], and prediction of perfor-
mance and completion of master- and bachelor thesis [65]. 

Other examples of research conducted by Swedish researchers include the explora-
tion of multimodal learning analytics [66], and prediction of students’ mastery of 
skills [67]. 

The efforts in K-12 education are in particular relevant to an ongoing digitalization 
of the Swedish education system. One of the recent developments in this regard in-
clude: i) the Swedish government decision for digitalization of the schools, with a 
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supplement that presents a national strategy for this (and ii) National action plan for 
digitization of the Swedish school system. Both of these documents highlight a need 
for a strategic and systematic data collection for increased opportunities for follow-up 
of the school system's digitalization, with the main purpose to increase the availability 
of comparable data that makes it possible to study the connection between methods 
and results. However, these endeavors are still in their infancy. Thus, the present re-
port illustrates the state of the art that largely relates to adult and particularly, higher 
education.  

We are only aware of one project at the K-12 level, which focused on 21st century 
skills and collaborative problem-solving of students in secondary school [68]. In this 
project, which was funded by Swedish Association of Local Authorities and Regions 
(SKL), researchers aimed to assess collaborative problem-solving skills in technolo-
gy-enhanced environments. The project included students from five different schools 
in the Stockholm area. In this particular study, the researchers exploited multimodal 
data (video and log data) in order to identify and predict students collaborative prob-
lem-solving skills.        

Swedish Educational Data: Data-Driven Innovation for World Learning Educa-
tion is one of the recent development projects (with no particular educational level 
focused) that aims at establishing Swedish Educational Data as a support organization 
for data-driven innovation for education (2017-2019). The project is funded by Vin-
nova, Sweden’s innovation agency and led by KTH Royal Institute of Technology. It 
includes both public and private actors from the education industry. They interact 
actively to increase data usage for education. This is important since fragmentation 
can cause each part to develop their own analytical methods and their own data man-
agement when they instead may be applicable across the entire field. The project’s 
results will be released at the end of 2019. 

In another recent research and development project funded by IFOUS (2017-2020), 
Programming in school subjects (“Programmering i ämnesundervisningen), which do 
not have an explicit focus on learning analytics, researchers are currently exploring 
how digital data generated in K-12 classrooms can be used to develop teaching prac-
tices and the identification of students computational thinking skills, based on prelim-
inary findings reported in [69].  

In general, albeit some research has been conducted in Sweden, so far learning ana-
lytics research has not been funded by the larger research agencies. 

3 Discussion 

Today, in the era of big data and analytics, researcher as well as educational stake-
holders are calling for data-driven development of education. Consequently, aiming to 
capitalize on the rewarding applications of big data in different fields, researchers are 
hard at work building the field of data-driven education and research (through the 
field of learning analytics). In Europe, learning analytics has been embraced by re-
searchers since the early days, contributions span all venues of research in the field, 
such as collaborative learning, visualization of learners’ interactions, learning dash-
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boards, dispositional learning analytics, self-regulated learning and multimodal learn-
ing analytics. Researchers have also explored all kinds of data from single course 
digital traces to large scale academic analytics. Efforts are increasingly organized to 
tackle new problems, establish collaborative research groups, set up learning analytics 
focused scientific events, and build capacity in the interdisciplinary field.  

Lately, Some European projects have been launched, examples are the STELA pro-
ject between KU Leuven, University of Nottingham, TU Delft and TU Graz (Leitner 
& Ebner, 2016), The LACE project (The Learning Analytics Community Exchange), 
SHEILA Project and the collaboration between (SLATE) at the University of Bergen 
and Erasmus University Rotterdam. Nonetheless, collaboration and funding on the 
European level are still relatively scarce. On the national level, funding of learning 
analytics projects is just taking off. In Austria, the ministry of education will support 
learning analytics research in the next years. In Denmark, The ATEL project was 
funded by Innovation Fund Denmark (Innovationsfonden) which will track the early 
stage literacy development through learning analytics. In Finland, the Finish Science 
Academy launched the project “Digital Humanities” to use data for analyzing and 
modelling humanities and social sciences. In Germany, the Federal Ministry of Edu-
cation and Research have funded some projects such as ‘Utilizing Learning Analytics 
for Study Success’ (Mao et al., 2019). In Norway and Spain several projects are start-
ing with the help of national funding agencies. However, in Sweden, the funded pro-
jects are still very few.  

Taking together, the previous examples for funding are way behind the expected in 
a time where learning is in the center of public and political attention. Let alone the 
accelerating successes of using big data across many disciplines. The rich and diverse 
potentials of data-driven applications are reflected in the heterogeneous nature of 
reported research from different research groups. Although such diversity and breadth 
of applications have helped emphasize the worth of using data to improve education, 
it has also emphasized a need for organizing efforts. Fragmentation, division and 
paucity of collaborative projects seem to be prevailing. Nevertheless, a number of 
collaborative groups are emerging. Examples include The Learning Analytics re-
search group at Stockholm University, The Danish Center for Big Data Analytics 
Driven Innovation (DABAI) and the Spanish Network of Learning Analytics. Relat-
edly, learning analytics scientific events have been organized, such as the Nordic-
LASI.  

As the field of learning analytics is relatively new, researchers around the world are 
working to tackle the emerging challenges, such as proving the value of using data-
driven decision making, aligning the field with learning sciences, collecting useful 
data while securing the privacy and agency of learners. European researchers are no 
exception, they are facing the same challenges as well as their own challenges. most 
important is that the large interest and work of researchers and groups around Europe 
has not led to national adoption or European level strategies relative the ubiquitous 
adoption of technology in education. Most countries have not established national 
policies for learners’ data or guidelines that govern the ethical usage of data in re-
search or education. We also conclude, that learning analytics research on pre-
university level to high extent have been overlooked. In the same vein, learning ana-
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lytics has not received enough focus form national and European national bodies. 
Such funding is necessary for taking steps towards data-driven development of educa-
tion.  
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