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Abstract
An ordered binary decision diagram (OBDD) is a directed acyclic graph that represents a Boolean
function. Since OBDDs have many nice properties as data structures, they have been extensively
studied for decades in both theoretical and practical fields, such as VLSI (Very Large Scale Integration)
design, formal verification, machine learning, and combinatorial problems. Arguably, the most
crucial problem in using OBDDs is that they may vary exponentially in size depending on their
variable ordering (i.e., the order in which the variables are to be read) when they represent the same
function. Indeed, it is NP hard to find an optimal variable ordering that minimizes an OBDD for a
given function. Friedman and Supowit provided a clever deterministic algorithm with time/space
complexity O∗(3n), where n is the number of variables of the function, which is much better than
the trivial brute-force bound O∗(n!2n). This paper shows that a further speedup is possible with
quantum computers by presenting a quantum algorithm that produces a minimum OBDD together
with the corresponding variable ordering in O∗(2.77286n) time and space with an exponentially
small error probability. Moreover, this algorithm can be adapted to constructing other minimum
decision diagrams such as zero-suppressed BDDs.
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1 Introduction

1.1 Background
Ordered binary decision diagrams

The ordered binary decision diagram (OBDD) is one of the data structures that have been
most often used for decades to represent Boolean functions in practical situations, such
as VLSI design, formal verification, optimization of combinatorial problems, and machine
learning, and it has been extensively studied from both theoretical and practical standpoints
(see standard textbooks and surveys, e.g., Refs. [8, 12, 7]). Moreover, many variants of OBDDs
have been invented to more efficiently represent data with properties observed frequently in
specific applications. More technically speaking, OBDDs are directed acyclic graphs that
represent Boolean functions and also known as special cases of oblivious read-once branching
programs in the field of complexity theory. The reason for OBDDs’ popularity lies in their
nice properties – they can be uniquely determined up to isomorphism for each function
once variable ordering (i.e., the order in which to read the variables) is fixed and, thanks to
this property, the equivalence of functions can be checked by just testing the isomorphism
between the OBDDs representing the functions. In addition, binary operations such as AND
and OR between two functions can be performed efficiently over the OBDDs representing
those functions [2]. Since these properties are essential in many applications, OBDDs
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36:2 Quantum Algorithm for Finding the Optimal Variable Ordering for BDDs

have gathered much attention from various research fields. To enjoy these nice properties,
however, we actually need to address a crucial problem, which is that OBDDs may vary
exponentially in size depending on their variable ordering. For instance, a Boolean function
f(x1, . . . , x2n) = x1x2 + x3x4 + · · ·+ x2n−1x2n has a (2n+ 2)-sized OBDD for the ordering
(x1, . . . , x2n) and a 2n+1-sized OBDD for the ordering (x1, x3, . . . , x2n−1, x2, x4, . . . , x2n) [8,
Sec. 8.1] (see Figure 1 for the case where n = 6). This is not a rare phenomenon; it could
happen in many concrete functions that one encounters. Thus, since the early stages of
OBDD research, one of the most central problems has been how to find an optimal variable
ordering, i.e., one that minimizes OBDDs. Since there are n! permutations over n variables,
the brute-force search requires at least n! = 2Ω(n logn) time to find an optimal variable
ordering. Indeed, finding an optimal variable ordering for a given function is an NP hard
problem (see a short survey in the full paper [11]).

To tackle this high complexity, many heuristics have been proposed to find an optimal
variable ordering or a relatively good one. These heuristics work well for Boolean functions
appearing in specific applications since they are based on very insightful observations, but
they do not guarantee a worst-case time complexity lower than that achievable with the
brute-force search. The only algorithm with a much lower worst-case time complexity bound,
O∗(3n) time (O∗(·) hides a polynomial factor), than the brute-force bound O∗(n!2n) for all
Boolean functions with n variables was provided by Friedman and Supowit [5], and that was
almost thirty years ago!

1.2 Our Results
In this paper, we show that quantum speedup is possible for the problem of finding an
optimal variable ordering of the OBDD for a given function. This is the first quantum
speedup for the OBDD-related problems. Our algorithms assume the quantum random
access memory (QRAM) model [6], which is commonly used in the literature concerned with
quantum algorithms. In the model, one can read contents from or write them into quantum
memory in a superposition. We provide our main result in the following theorem.

I Theorem 1. There exists a quantum algorithm that, for a function f : {0, 1}n → {0, 1} given
as its truth table, produces a minimum OBDD representing f together with the corresponding
variable ordering in O∗(γn) time and space with an exponentially small error probability with
respect to n, where the constant γ is at most 2.77286. Moreover, the OBDD produced by
our algorithm is always a valid one for f , although it is not minimum with an exponentially
small probability.

This improves upon the classical best bound O∗(3n) [5] on time/space complexity. The
classical algorithm achieving this bound is a deterministic one. However, there are no
randomized algorithms that compute an optimal variable ordering in asymptotically less
time complexity as far as we know.

It may seem somewhat restricted to assume that the function f is given as its truth
table, since there are other common representations of Boolean functions such as DNFs,
CNFs, Boolean circuits and OBDDs. However, this is not the case. Our algorithm actually
works in more general settings where the input function f is given as any representation such
that the value of f on any specified assignment can be computed over the representation
in polynomial time in n, such as polynomial-size DNFs/CNFs/circuits and OBDDs of any
size. This is because, in such cases, the truth table of f can be prepared in O∗(2n) time and
the minimum OBDD is computable from that truth table with our algorithm. We restate
Theorem 1 in a more general form as follows.
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I Corollary 2. Let R(f) be any representation of a Boolean function f with n variables such
that the value of f(x) on any given assignment x ∈ {0, 1}n can be computed on R(f) in
polynomial time with respect to n. Then, there exists a quantum algorithm that, for a function
f : {0, 1}n → {0, 1} given as R(f), produces a minimum OBDD representing f together with
the corresponding variable ordering in O∗(γn) time and space with an exponentially small error
probability with respect to n, where the constant γ is at most 2.77286. Possible representations
as R(f) are polynomial-size DNFs/CNFs/circuits and OBDDs of any size for function f .

There are many variants of OBDDs, among which the zero-suppressed BDDs (ZDDs
or ZBDDs) introduced by Minato [9] have been shown to be very powerful in dealing
with combinatorial problems (see Knuth’s famous book [7] for how to apply ZDDs to such
problems). With slight modifications, our algorithm can construct a minimum ZDD with
the same time/space complexity. We believe that similar speedups are possible for many
other variants of OBDDs (adapting our algorithm to multiterminal BDDs (MTBDDs) [8] is
almost trivial).

Technical Contribution

Recently, Ambainis et al. [1] has introduced break-through quantum techniques to speed
up classical dynamic programming approaches. Inspired by their technique, our quantum
algorithm speeds up the classical one (called FS) discovered by Friedman and Supowit [5].
Ambainis et al.’s results depend on the property that a large problem can be divided into
subproblems that can be regarded as a scale-down version of the original problem and can be
solved with the same algorithm, as is often the case with graph problems. In our case, firstly,
it is unclear whether the problem can be divided into subproblems. Secondly, subproblems
would be to optimize the ordering of variables starting from the middle variable or even
from the opposite end, i.e., from the variable to be read first, toward the one to be read last.
Such subproblems cannot be solved with the algorithm FS, and, in particular, optimizing in
the latter case essentially requires the equivalence check of subfunctions of f , which is very
costly. Our technical contribution is to find, by carefully observing the unique properties
of OBDDs, that it is actually possible to even recursively divide the original problem into
not the same but somewhat similar kinds of subproblems, to generalize the algorithm FS so
that it can solve the subproblems, and to use the quantum minimum finding algorithm to
efficiently select the subproblems that essentially contribute to the optimal variable ordering.
In the full paper [11], we provide the technical outline of our algorithm, which would help
readers understand the structure of our algorithm.

2 Preliminaries

2.1 Basic Terminology

Let N, Z and R be the sets of natural numbers, integers, and real numbers, respectively. For
each n ∈ N, let [n] be the set {1, . . . , n}, and Sn be the permutation group over [n]. We may
denote a singleton set {k} by k for notational simplicity if it is clear from the context; for
instance, I \ {k} may be denoted by I \ k, if we know I is a set. For any subset I ⊆ [n], let
Πn(I) be the set of π ∈ Sn such that the first |I| members {π[1], . . . , π[|I|]} constitutes I,
i.e.,

Πn(I) := {π ∈ Sn : {π[1], . . . , π[|I|]} = I} ⊆ Sn.

SWAT 2020
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For simplicity, we omit the subscript n and write Π(I). More generally, for any two disjoint
subsets I, J ⊆ [n], let

Πn(〈I, J〉) := {π ∈ Sn : {π[1], . . . , π[|I|]} = I, {π[|I|+ 1], . . . , π[|I|+ |J |]} = J} ⊆ Sn.

For any disjoint subsets I1, . . . , Im ⊆ [n] for m ∈ [n], Πn(〈I1, . . . , Im〉) is defined similarly.
For simplicity, we may denote 〈I〉 by I, if it is clear from the context.

We denote the union operation over disjoint sets by t (instead of ∪) when we emphasize
the disjointness of the sets.

For n Boolean variables x1, . . . , xn, any set I ⊆ [n], and any vector b = (b1, . . . , b|I|) ∈
{0, 1}|I|, xI denotes the ordered set (xj1 , . . . , xj|I|), where {j1, . . . , j|I|} = I and j1 <

· · · < j|I|, and xI = b denotes xji = bi for each i = [|I|]. For any Boolean function
f : {0, 1}n → {0, 1} with variables x1, . . . , xn, we denote by f |xI=b the function obtained by
restricting f with xI = b. If I is a singleton set, say, I = {i}, we may write xi and f |xi=b to
mean x{i} and f |x{i}=b, respectively, for notational simplicity. We say that g is a subfunction
of f if g is equivalent to the function f |xI=b for some I ⊆ [n] and b ∈ {0, 1}|I|.

For any function g(n) in n, we use the notation O∗(g(n)) to hide a polynomial factor in
n. We further denote X = O∗(Y ) by X / Y .

We use the following upper bound many times in this paper. For n ∈ N and k ∈ [n]∪{0},
it holds that

(
n
k

)
≤ 2nH(k/n), where H(·) represents the binary entropy function H(δ) :=

−δ log2 δ − (1− δ) log2(1− δ).

2.2 Ordered Binary Decision Diagrams
We provide a quick review of OBDDs. For more details, consult standard textbooks (e.g.,
Refs. [8, 12]).

For any Boolean function f : {0, 1}n → {0, 1} over variables x1, . . . , xn and any permuta-
tion π ∈ Sn (called a variable ordering), an OBDD B(f, π) is a single-rooted directed acyclic
graph G(V,E) that is unique up to isomorphism, defined as follows (examples are shown in
Figure 1).
1. The node set V is the union of two disjoint sets N and T of non-terminal nodes with

out-degree two and terminal nodes with out-degree zero, respectively, where T contains
exactly two nodes: T = {f, t}. The set N contains a unique source node r, called the root.

2. B(f, π) is a leveled graph with n + 1 levels. Namely, the node set can be partitioned
into n subsets: V := V0 t V1 t · · · t Vn, where Vn = {r} and V0 = T = {t, f}, such that
each directed edge (u, v) ∈ E is in Vi × Vj for a pair (i, j) ∈ [n] × ({0} t [n − 1]) with
i > j. For each i ∈ [n], subset Vi (called the level i) is associated with the variable xπ[i],
or alternatively, each node in Vi is labeled with xπ[i].1 For convenience, we define a map
var : N → [n] such that if v ∈ Vi then var = π[i].

3. The two edges emanating from every non-terminal node v are called the 0-edge and the
1-edge, which are labeled with 0 and 1, respectively. For every u ∈ N , let u0 and u1 be
the destinations of the 0-edge and 1-edge of u, respectively.

4. Let F(f) be the set of all subfunctions of f . Define a bijective map F : V → F(f) as
follows: (a) F (r) = f for r ∈ Vn; (b) F (t) = true and F (f) = false for t, f ∈ V0; (c) For
every u ∈ N and b ∈ {0, 1}, F (ub) is the subfunction obtained from F (u) by substituting
xvar(u) with b, i.e., F (ub) = F (u)|xvar(u)=b.

1 In the standard definition, Vi is associated with the variable xπ[n−i]. Our definition follows the one
given in [5] to avoid complicated subscripts of variables.
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Figure 1 The OBDDs represent the function f(x1, x2, x3, x4, x5, x6) = x1x2 + x3x4 + x5x6 under
two variable orderings: (x1, x2, x3, x4, x5, x6) (left) and (x1, x3, x5, x2, x4, x6) (right), where the
solid and dotted arcs express 1-edges and 0-edges, respectively, and the terminal nodes for true
and false are labeled with T and F, respectively. For each n ∈ N, the function f(x1, . . . , x2n) =
x1x2 + x3x4 + · · · + x2n−1x2n has a (2n + 2)-sized OBDD for the ordering (x1, . . . , x2n) and a
2n+1-sized OBDD for the ordering (x1, x3, . . . , x2n−1, x2, x4, . . . , x2n).

5. B(f, π) must be minimal in the sense that the following reduction rules cannot be applied.
In other words, B(f, π) is obtained by maximally applying the following rules:
a. if there exists a redundant node u ∈ N , then remove u and its outgoing edges, and

redirect all the incoming edges of u to u0, where a node u is redundant if u0 is the
same node as u1.

b. if there exist equivalent nodes {u, v} ⊂ N , then remove v (i.e., any one of them) and its
outgoing edges, and redirect all incoming edges of v to u, where u and v are equivalent
if (1) var(u) is equal to var(v), and (2) u0 and u1 are the same nodes as v0 and v1,
respectively.

For each j ∈ [n], Costj(f, π) denotes the width at the level associated with the variable
xj , namely, the number of nodes in the level π−1[j] (see Figure 2 in Appendix). For I ⊆ [n],
let πI be a permutation π in Π(I) that minimizes the number of nodes in level 1 to level |I|:

πI := arg min


|I|∑
j=1

Costπ[j](f, π) : π ∈ Π(I)

 . (1)

Note that
∑|I|
j=1 Costπ[j](f, π) =

∑
i∈I Costi(f, π) for π ∈ Π(I). More generally, for disjoint

subsets I1, . . . , Im ⊆ [n], π〈I1,...,Im〉 is a permutation in Π(〈I1, . . . , Im〉) that minimizes the
number of the nodes in level 1 to level |I1|+ · · ·+ |Im| over all π ∈ Π(〈I1, . . . , Im〉):

π〈I1,...,Im〉 := arg min


|I1|+···+|Im|∑

j=1
Costπ[j](f, π) : π ∈ Π(〈I1, . . . , Im〉)

 . (2)

Note that min
∑|I1|+···+|Im|
j=1 Costπ[j](f, π) =

∑
i∈I1t···tIm Costi(f, π) for any π ∈ Π(〈I1, . . . , Im〉).

The following well-known lemma captures the essential property of OBDDs. It states that
the number of nodes at level i ∈ [n] is constant over all π, provided that the two sets
{π[1], . . . , π[i− 1]} and {π[i+ 1], . . . , π[n]} are fixed (see Figure 3 in Appendix).

SWAT 2020
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I Lemma 3 ([5]). For any non-empty subset I ⊆ [n] and any i ∈ I, there exists a constant
cf such that, for each π ∈ Π(〈I \ {i}, {i}〉), Costπ[|I|](f, π) ≡ Costi(f, π) = cf .

For convenience, we define shorthand for the minimums of the sums in Eqs. (1) and (2).
For I ′ ⊆ I ⊆ [n], mincostI [I ′] is defined as the number of nodes in the levels associated
with variables indexed by elements in I ′ under permutation πI , namely, mincostI [I ′] :=∑

i∈I′ Costi(f, πI). More generally, for disjoint subsets I1, . . . , Im ⊆ [n] and I ′ ⊆ I1t · · ·t Im,

mincost〈I1,...,Im〉[I
′] :=

∑
i∈I′

Costi(f, π〈I1,...,Im〉).

As a special case, we denote mincost〈I1,...,Im〉[I1 t · · · t Im] by mincost〈I1,...,Im〉. We define
mincost∅ as 0.

2.3 The Algorithm by Friedman and Supowit
This subsection reviews the algorithm by Friedman and Supowit [5]. We will generalize their
idea later and heavily use the generalized form in our quantum algorithm. Hereafter, we call
their algorithm FS.

2.3.1 Key Lemma and Data Structures
The following lemma is the basis of the dynamic programming approach used in FS.

I Lemma 4. For any non-empty subset I ⊆ [n] and any Boolean function f : {0, 1}n → {0, 1},
the following holds:
mincostI = mink∈I

(
mincostI\k + Costk(f, π〈I\k,k〉)

)
= mink∈I

(
mincost〈I\k,k〉

)
.

The proof is given in the full paper [11].
Before sketching algorithm FS, we provide several definitions. For any I ⊆ [n], tableI

is an array with 2n−|I| cells each of which stores a non-negative integer. Intuitively, for
b ∈ {0, 1}n−|I|, the cell tableI [b] stores (the pointer to) the unique node of B(f, πI) associated
via F with function f |x[n]\I=b. Hence, we may write tableI [x[n]\I = b] instead of tableI [b]
to clearly indicate the value assigned to each variable xj for j ∈ [n] \ I. The purpose of
tableI is to relate all subfunctions f |x[n]\I=b (b ∈ {0, 1}n−|I|) to the corresponding nodes of
B(f, πI). We assume without loss of generality that the pointers to nodes of B(f, πI) are
non-negative integers and, in particular, those to the two terminal nodes corresponding to
false and true are the integers 0 and 1, respectively. Thus, table∅ is merely the truth table
of f .

Algorithm FS computes tableI together with πI , mincostI , and another data structure,
nodeI for all I ⊆ [n], starting from table∅ via dynamic programming. nodeI is the set of
all triples of (the pointers to) nodes, (u, u0, u1) ∈ N × (N t T )× (N t T ), in B(f, πI), where
var(u) = πI [|I|], and (u, u0) and (u, u1) are the 0-edge and 1-edge of u, respectively. Thus,
nodeI contains the structure of the subgraph of B(f, πI) induced by V|I|. The purpose of
the nodeI is to prevent the algorithm from duplicating existing nodes, i.e., creating nodes
associated with the same subfunctions as those with which the existing nodes are associated.
By the definition, node∅ is the empty set. We assume that nodeI is implemented with an
appropriate data structure, such as a balanced tree, so that the time complexity required for
membership testing and insertion is the order of logarithm in the number of triples stored in
nodeI . An example of tableI and nodeI is shown in Figure 4 in Appendix.
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More generally, for disjoint subset I1, . . . , Im ⊆ [n], table〈I1,...,Im〉 is an array with
2n−|I1t···tIm| cells such that, for b ∈ {0, 1}n−|I1t···tIm|, table〈I1,...,Im〉[b] stores the nodes
of B(f, π〈I1,...,Im〉) associated with the function f |x[n]\I1t···tIm=b. node〈I1,...,Im〉 is defined
similarly for B(f, π〈I1,...,Im〉). For simplicity, we hereafter denote by FS(〈I1, . . . , Im〉) the
quadruplet (π〈I1,...,Im〉,mincost〈I1,...,Im〉,table〈I1,...,Im〉,node〈I1,...,Im〉).

2.3.2 Sketch of Algorithm FS
Algorithm FS performs the following operations for k = 1, . . . , n in this order. For each
k-element subset I ⊆ [n], compute FS(〈I \ i, i〉) from FS(〈I \ i〉) for each i ∈ I in the manner
described later (note that, since the cardinality of the set I \ i is k − 1, FS(〈I \ i〉) has
already been computed). Then set FS(I)←− FS(〈I \ i∗, i∗〉), where i∗ is the index i ∈ I
that minimizes mincost〈I\i,i〉, implying that πI is π〈I\i∗,i∗〉. This is justified by Lemma 4.
A schematic view of the algorithm is shown in Figure 5 in Appendix.

To compute FS(〈I \ i, i〉) from FS(〈I \ i〉), do the following. First set node〈I\i,i〉 ← ∅
and mincost〈I\i,i〉 ← mincostI\i as their initial values. Then, for each b ∈ {0, 1}n−|I|, set

u0 ← tableI\i[x[n]\I = b, xi = 0], u1 ← tableI\i[x[n]\I = b, xi = 1].

If u0 = u1, then store u0 in table〈I\i,i〉[b]. Otherwise, test whether (u, u0, u1) for some u is
a member of nodeI\i. If it is, store u in the table〈I\i,i〉[b]; otherwise create a new triple
(u′, u0, u1), insert it to node〈I\i,i〉 and increment mincost〈I\i,i〉. Since u′ is the pointer to
the new node, u′ must be different from any pointer already included in node〈I\i,i〉 and
from any pointer to a node in V1 t · · · t Vk−1 in B(f, π〈I\i〉), where k = |I|. Such u′ can
be easily chosen by setting u′ to two plus the value of mincost〈I\i,i〉 before the increment,
since the mincost〈I\i,i〉 is exactly the number of triples in node〈I\i,i〉 plus |V1 t · · · t Vk−1|,
and the numbers 0 and 1 are reserved for the terminal nodes. We call the above procedure
table folding with respect to xi, because it halves the size of table〈I\i〉. We also mean it by
“folding table〈I\i〉 with respect to xi”.

The complexity analysis is fairly simple. For each k, we need to compute FS(I) for(
n
k

)
possible I’s with |I| = k. For each I, it takes O∗(2n−k) time since the the size of

tableI\i is 2n−k+1 and each operation to nodeI\i takes a polynomial time in n. Thus,
the total time is

∑n
k=0 2n−k+1(n

k

)
= 2 · 3n up to a polynomial factor. The point is that

computing each FS(I) takes time linear to the size of tableI\i up to a polynomial factor.
The space required by Algorithm FS during the process for k is dominated by that for tableI ,
tableI\i and nodeI for all I and i ∈ I, which is O∗

(
2n−k

(
n
k

))
. The space complexity is

thus O∗
(
maxk∈{0}∪[n] 2n−k

(
n
k

))
= O∗(3n).

I Theorem 5 (Friedman and Supowit [5]). Suppose that the truth table of f : {0, 1}n → {0, 1}
is given as input. Algorithm FS produces FS([n]) in O∗(3n) time and space.

2.4 Quantum Computation
We assume that readers have a basic knowledge of quantum computing (e.g., Ref. [10]). We
provide only a lemma used to obtain our results.

I Lemma 6 (Quantum Minimum Finding [4, 3]). For every ε > 0 there exists a quantum
algorithm that, for a function f : [N ]→ Z given as an oracle, finds an element x ∈ [N ] at
which f(x) achieves the minimum, with error probability at most ε by making O(

√
N log(1/ε))

queries.

SWAT 2020
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In this paper, the search space N is exponentially large in n and we are interested in
exponential complexities, ignoring polynomial factors in them. We can thus safely assume
ε = 1/2p(n) for a polynomial p(n), so that the overhead is polynomially bounded. Since our
algorithms use Lemma 6 a constant number of times, their overall error probabilities are
exponentially small for a sufficiently large p(n). In the following proofs, we thus assume that
ε is exponentially small whenever we use Lemma 6, and do not explicitly analyze the error
probability for simplicity.

Our algorithms assume the quantum random access memory (QRAM) model [6], which
is commonly used in the literature when considering quantum algorithms. In the model, one
can read contents from or write them into quantum memory in a superposition.

3 Quantum Algorithm with Divide-and-Conquer

We generalize Lemma 4 and Theorem 5 and use them in our quantum algorithm.

I Lemma 7. For any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅ and any Boolean
function f : {0, 1}n → {0, 1}, the following holds:

mincost〈I1,...,Im,J〉 = min
k∈J

(
mincost〈I1,...,Im,J\{k}〉 + Costk(f, π〈I1,...,Im,J\{k},{k}〉)

)
= min

k∈J

(
mincost〈I1,...,Im,J\{k},{k}〉

)
.

The proof of this lemma is very similar to that of Lemma 4 and given in the full paper [11].
Based on Lemma 7, we generalize Theorem 5 to obtain algorithm FS∗ (its pseudo code is
given below, and a schematic view of FS∗ is shown in Figure 6 in Appendix).

I Lemma 8 (Classical Composition Lemma). For disjoint subsets I1, . . . , Im, J ⊆ [n] with
J 6= ∅, there exists a deterministic algorithm FS∗ that produces FS(〈I1, . . . , Im, J〉) from
FS(〈I1, . . . , Im〉) for an underlying function f : {0, 1}n → {0, 1} in O∗

(
2n−|I1t···tImtJ| · 3|J|

)
time and space. More generally, for each k ∈ [|J |], the algorithm produces the set {FS(〈I1, . . . ,
Im,K〉) : K ⊆ J, |K| = k} from FS(〈I1, . . . , Im〉) in O∗

(
2n−|I1t···tImtJ|

∑k
j=0 2|J|−j

(|J|
j

))
time and space.

Note that if I1 t · · · t Im = ∅ and J = [n], then we obtain Theorem 5.

Proof. We focuses on the simplest case of m = 1, for which our goal is to show an algorithm
that produces FS(〈I, J〉) from FS(I). It is straightforward to generalize the proof to the
case of m ≥ 2. Starting from FS(I), the algorithm first folds tableI with respect to each
variable in {xj : j ∈ J} to obtain FS(〈I, j〉) for every j ∈ J , then fold table〈I,j1〉 with
respect to xj2 and table〈I,j2〉 with respect to xj1 to obtain FS(〈I, {j1, j2}〉) by taking the
minimum of mincost〈I,j1,j2〉 and mincost〈I,j2,j1〉 for every j1, j2 ∈ J , and repeat this to
finally obtain FS(〈I, J〉). This algorithms is justified by Lemma 7. For each j ∈ [|J |], K ⊆ J
with |K| = j, and h ∈ K, the time complexity of computing FS(〈I,K〉) from FS(〈I,K−h〉)
is linear to the size of table〈I,K〉, i.e., 2n−|I|−j up to a polynomial factor. The total time is
thus, up to a polynomial factor,

|J|∑
j=1

2n−|I|−j
(
|J |
j

)
< 2n−|I|−|J|

|J|∑
j=0

2|J|−j
(
|J |
j

)
= 2n−|ItJ| · 3|J|.

If we stop the algorithm at j = k, then the algorithm produces the set {FS(〈I,K〉) : K ⊆
J, |K| = k}. The time complexity in this case is at most 2n−|I|−|J|

∑k
j=0 2|J|−j

(|J|
j

)
, up to a

polynomial factor.
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Since the space complexity is trivially upper-bounded by the time complexity, we complete
the proof. J

I Remark 9. It is not difficult to see that the algorithm FS∗ works even when the function f
has a multivalued function: f : {0, 1}n → Z. The only difference from the Boolean case is that
the truth table maps each Boolean assignment to a value in Z. In this case, the algorithm
produces a variant of an OBDD (called a multi-terminal BDD, MTBDD) of minimum size.
In addition, our algorithm with slight modifications to the table folding rule in FS∗ can
construct a minimum zero-suppressed BDD (ZDD) [9] for a given Boolean function. The
details are described in the full paper [11]. These modifications are also possible for the
quantum algorithms described later, since they perform table folding by running FS∗ as a
subroutine.

Algorithm FS∗ Composable variant of algorithm FS. “A← B” means that B is substituted
for A.
Input: disjoint subsets I, J ∈ [n] and FS(I)
Output: FS(〈I, J〉)

1 Function Main()
2 for ` := 1 to |J | do
3 for each `-element subset K ⊆ J do
4 mincost〈I,K〉 ← +∞; // init.
5 for each k ∈ K do
6 FS(〈I,K \ k, k〉)← FOLD(I,K, k,FS(〈I,K \ k〉));
7 if mincost〈I,K〉 > mincost〈I,K\k,k〉 then
8 FS(〈I,K〉)← FS(〈I,K \ k, k〉);
9 end

10 end
11 end
12 end
13 return FS(〈I, J〉)
14 end
15 Function FOLD(I,K, k,FS(〈I,K \ k〉)) // produce FS(〈I,K \ k, k〉) from FS(〈I,K \ k〉)
16 π〈I,K\k,k〉 ∈ {π ∈ Π(〈I,K \ k, k〉) : π[i] = π〈I,K\k〉[i] (i = 1, . . . , |I tK| − 1)} ; // init.
17 mincost〈I,K\k,k〉 ← mincost〈I,K\k〉; // init.
18 node〈I,K \ k, k〉 ← ∅; // init.
19 for b ∈ {0, 1}n−|I|−|K| do
20 u0 ← table〈I,K\k〉[x[n]\(ItK) = b, xk = 0];
21 u1 ← table〈I,K\k〉[x[n]\(ItK) = b, xk = 1];
22 if u0 = u1 then
23 table〈I,K\k,k〉[x[n]\(ItK) = b]← u0

24 else if ∃u (u, u0, u1) ∈ node〈I,K \ k, k〉 then
25 table〈I,K\k,k〉[x[n]\(ItK) = b]← u

26 else // create a new node
27 u← mincost〈I,K\k,k〉 + 2;
28 table〈I,K\k,k〉[x[n]\(ItK) = b]← u;
29 mincost〈I,K\k,k〉 ← mincost〈I,K\k,k〉 + 1;
30 insert (u, u0, u1) into node〈I,K \ k, k〉
31 end
32 end
33 return FS(〈I,K \ k, k〉)
34 end
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The following theorem is the basis of our quantum algorithms.

I Lemma 10 (Divide-and-Conquer). For any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅
and any k ∈ [|J |], it holds that mincost〈I1,...,Im,J〉[J ] is equal to

min
K : K⊆J,|K|=k

(
mincost〈I1,...,Im,K〉[K] + mincost〈I1,...,Im,K,J\K〉[J \K]

)
. (3)

In particular, when I1 t · · · t Im = ∅ and J = [n], it holds that

mincost[n] = min
K⊆[n],|K|=k

(
mincostK + mincost〈K,[n]\K〉[[n] \K]

)
. (4)

Proof. We first prove the special case of I1 t · · · t Im = ∅ and J = [n]. By the definition, we
have

mincost[n] =
n∑
j=1

Costπ[j](f, π) =
k∑
j=1

Costπ[j](f, π) +
n∑

j=k+1
Costπ[j](f, π)

for the optimal permutation π = π[n]. Let K = {π[1], . . . , π[k]}. By Lemma 3, the
first sum is independent of how π maps {k + 1, . . . , n} to [n] \ K. Thus, it is equal to
the minimum of

∑k
j=1 Costπ1[j](f, π) over all π1 ∈ Π(K), i.e., mincostK . Similarly, the

second sum is independent of how π maps [k] to K. Thus, it is equal to the minimum of∑n
j=k+1 Costπ2[j](f, π) over all π2 ∈ Π(〈K, [n] \ K〉), i.e., mincost〈K,[n]\K〉[[n] \ K]. This

completes the proof of Eq. (4).
We can generalize this in a straightforward manner. Let π = π〈I1,...,Im,J〉 and ` =

|I1 t · · · t Im|. Then, we have

mincost〈I1,...,Im,J〉[J ] =
k∑
j=1

Costπ[`+j](f, π) +
|J|∑

j=k+1
Costπ[`+j](f, π).

By definingK := {π[`+1], . . . , π[`+k]}, the same argument as the special case of ` = 0 implies
that the first and second sums are mincost〈I1,...,Im,K〉[K] and mincost〈I1,...,Im,K,J\K〉[J \K],
respectively. This completes the proof of Eq. (3). J

A schematic view of the above lemma is shown in Figure 7 in Appendix.

3.1 Simple Cases
We provide simple quantum algorithms on the basis of Lemma 10. The lemma states
that, for any k ∈ [n], mincost[n] is the minimum of mincostK + mincost〈K,[n]\K〉[[n] \K]
over all K ⊆ [n] with |K| = k. To find K from among

(
n
k

)
possibilities that minimizes

this amount, we use the quantum minimum finding (Lemma 6). To compute mincostK +
mincost〈K,[n]\K〉[[n] \K] = mincost〈K,[n]\K〉, it suffices to first compute FS(K) (including
mincostK), and then FS(〈K, [n]\K〉) (including mincost〈K,[n]\K〉) from FS(K). The time
complexity for computing FS(K) from FS(∅) isO∗(2n−k3k) by Lemma 8 with I1t· · ·tIm = ∅
and J = K, while that for computing FS(〈K, [n] \ K〉) from FS(K) is O∗(3n−k) by
Lemma 8 with m = 1, I1 = K, and J = [n] \K. Thus, the time complexity for computing
FS(〈K, [n] \K〉) from FS(∅) is O∗(2n−k3k + 3n−k). Thus, for k = αn with α ∈ [0, 1] fixed
later, the total time complexity up to a polynomial factor is

T (n) =

√(
n

αn

)(
2(1−α)n3αn + 3(1−α)n

)
≤ 2 1

2 H(α)n
{

2[(1−α)+α log2 3]n + 2[(1−α) log2 3]n
}
.
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To balance the both terms, we set (1 − α) + α log2 3 = (1 − α) log2 3 and obtain α = α∗,
where α∗ = log2 3−1

2 log2 3−1 ≈ 0.269577. We have

min
α∈[0,1]

T (n) = O
(

2 1
2 H(α∗)n+(1−α∗)n+α∗(log2 3)n

)
= O(γn0 ),

where γ0 = 2.98581 . . . . 2 This slightly improves the classical best bound O∗(3n) on the
time complexity. To improve the bound further, we introduce a preprocess that classically
computes FS(K) for every K with |K| = αn (α ∈ (0, 1)) by using Algorithm FS∗. By
Lemma 8, the preprocessing time is then

αn∑
j=1

2n−j ·
(
n

j

)
≤ αn · max

j∈[αn]
2n−j

(
n

j

)
/

{
2(1−α)n+H(α)n (α < 1/3)
2 2

3n+H(1/3)n (α ≥ 1/3), (5)

since 2n−j
(
n
j

)
increases when j < n/3 and decreases otherwise. Note that once this preprocess

is completed, we can use FS(K) for free and assume that the cost for accessing FS(K) is
polynomially bounded for all K ⊆ [n] with |K| = αn.

Then, assuming that α < 1/3, the total time complexity up to a polynomial factor is

T (n) =
αn∑
j=1

2n−j ·
(
n

j

)
+

√(
n

αn

)(
nO(1) + 3(1−α)n

)
/ 2[(1−α)+H(α)]n+2[ 1

2 H(α)+(1−α) log2 3]n.

To balance the both terms, we set (1 − α) + H(α) = 1
2H(α) + (1 − α) log2 3 and obtain

the solution α = α∗, where α∗ := 0.274863 . . . , which is less than 1/3 as we assumed. At
α = α∗, we have T (n) / 2[(1−α∗)+H(α∗)]n = O∗(γn1 ), where γ1 is at most 2.97625 (< γ0).
Thus, introducing the preprocess improves the complexity bound. A schematic view of the
above algorithm is shown in Figure 8 in Appendix.

3.2 General Case
We can improve this bound further by applying Lemma 10 k times. We denote the resulting
algorithm with constant parameters k ∈ N and α := (α1, . . . , αk) by OptOBDD(k,α) where
0 < α1 < · · · < αk < 1. Its pseudo code is given below. In addition, we assume α1 < 1/3
and αk+1 = 1 in the following complexity analysis.

To simplify notations, define two function as follows: for x, y ∈ (0, 1) such that x < y,
f(x, y) := 1

2y ·H (x/y) + g(x, y) and g(x, y) := (1− y) + (y − x) log2(3).
By Lemma 8, the time required for the preprocess is

∑α1n
`=1 2n−` ·

(
n
`

)
up to a polynomial

factor. Thus, the total time complexity can be described as the following recurrence:

T (n) =
α1n∑
`=1

2n−` ·
(
n

`

)
+ Lk+1(n), (6)

Lj+1(n) =

√(
αj+1n

αjn

)(
Lj(n) + 2(1−αj+1)n3(αj+1−αj)n

)
=

√(
αj+1n

αjn

)(
Lj(n) + 2g(αj ,αj+1)n

)
, (7)

2 More precisely, α∗ must be rounded so that α∗n is an integer. We assume hereafter for simplicity of
analysis that n is sufficiently large so that the rounding error is negligible compared to the approximation
error in the optimum parameter values, such as α∗.
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Algorithm OptOBDD(k, α) Quantum OBDD-minimization algorithm with constant paramet-
ers k ∈ N and α := (α1, . . . , αk) ∈ [0, 1]k satisfying 0 < α1 < · · · < αk < 1, where the quantum
minimum finding algorithm is used in line 8, and FS∗ is used in lines 2 and 15. “A← B” means
that B is substituted for A.
Input: FS(∅) :={ table∅, π∅, mincost∅, node∅ } (accessible from all Functions)
Output: FS([n])

1 Function Main()
2 compute the set {FS(K) : K ⊆ [n], |K| = bα1nc} by algorithm FS (or FS∗);
3 make the set of these FS(K) global (i.e., accessible from all Functions);
4 return DivideAndConquer([n], k + 1)
5 end
6 Function DivideAndConquer(L, t) // Compute FS(L) with α1, . . . , αt(= |L|/n)
7 if t = 1 then return FS(L); // FS(L) has been precomputed.
8 Find K(⊂ L) of cardinality bαt−1nc, with Lemma 6, that minimizes mincost〈K,L\K〉,
9 which is computed as a component of FS(〈K,L \K〉) by calling ComputeFS(K,L \K, t);

10 let K∗ be the set that achieves the minimum;
11 return FS(〈K∗, L \K∗〉)
12 end
13 Function ComputeFS(K,M, t) // Compute FS(〈K,M〉) with α1, . . . , αt
14 FS(K)← DivideAndConquer(K, t− 1);
15 FS(〈K,M〉)← FS∗(K,M,FS(K));
16 return FS(〈K,M〉)
17 end

where j ∈ [k] and L1(n) = O∗(1). Intuitively, Lj(n) is the time required for producing
FS(〈K1,K2 \K1, . . . ,Kj \Kj−1〉) such that mincost〈K1,K2\K1,...,Kj\Kj−1〉 is minimum over
all K1, . . . ,Kj−1 satisfying |K`| = α`n for every ` ∈ [k + 1] and K` ⊂ K`+1 for every ` ∈ [k].

Since L1(n) = O∗(1), we have L2(n) /
√(

α2n
α1n

)
· 2g(α1,α2)n / 2f(α1,α2)n. By setting

f(α1, α2) = g(α2, α3), we have L3(n) =
√(

α3n
α2n

)
· (L2(n)+2g(α2,α3)n) /

√(
α3n
α2n

)
·2g(α2,α3)n /

2f(α2,α3)n. In general, for j = 2, . . . , k, setting f(αj−1, αj) = g(αj , αj+1) yields

Lj+1(n) / 2f(αj ,αj+1)n.

Therefore, the total complexity [Eq. (6)] is

T (n) /
α1n∑
`=1

2n−` ·
(
n

`

)
+ 2f(αk,αk+1)n / 2(1−α1)n+H(α1)n + 2f(αk,1)n,

where we use α1 < 1/3, αk+1 = 1, and Eq. (5). To optimize the right-hand side, we set
parameters so that 1− α1 + H(α1) = f(αk, 1).

In summary, we need to find the values of parameters α1, . . . , αk that satisfy the following
system of equations and α1 < 1/3:

1− α1 + H(α1) = f(αk, 1), (8)
f(αj−1, αj) = g(αj , αj+1) (j = 2, . . . , k). (9)

By numerically solving this system of equations, we obtain T (n) = O(γnk ), where γk is at most
2.83728 for k = 6. The value of γk becomes smaller as k increases. However, incrementing k
beyond 6 provides only negligible improvement of γk. Since the space complexity is trivially
upper-bounded by the time complexity, we have the following theorem. Note that the values



S. Tani 36:13

of αi’s are not symmetric with respect to 1/2. This reflects the fact that optimizing cost is
not symmetric with respect to 1/2, contrasting with many other combinatorial problems.

I Theorem 11. There exists a quantum algorithm that, for the truth table of f : {0, 1}n →
{0, 1} given as input, produces FS([n]) with probability 1− exp(−Ω(n)) in O∗(γn) time and
space, where the constant γ is at most 2.83728, which is achieved by OptOBDD(k,α) with
k = 6 and α = (0.183791, 0.183802, 0.183974, 0.186131, 0.206480, 0.343573).

4 Quantum Algorithm with Composition

4.1 Quantum Composition Lemma
By generalizing the quantum algorithm given in Theorem 11, we now provide a quantum
version of Lemma 8, called the quantum composition lemma.

I Lemma 12 (Quantum Composition: Base Part). For any disjoint subsets I1, . . . , Im, J ⊆ [n]
with J 6= ∅, there exists a quantum algorithm that, with probability 1− exp(−Ω(n)), produces
FS(〈I1, . . . , Im, J〉) from FS(〈I1, . . . , Im〉) for an underlying function f : {0, 1}n → {0, 1} in
O∗
(
2n−|I1t···tImtJ| · γ|J|

)
time and space, where γ is the constant defined in Theorem 11.

The proof is given in the full paper [11]. The proof idea is similar to that used in the
proof of Lemma 8. A pseudo code of the algorithm provided in Lemma 12 is shown below
as OptOBDD∗Γ(k,α), where the subroutine Γ appearing in line 17 is set to the deterministic
algorithm FS∗, and k and α are set to the values specified in Theorem 11.

Algorithm OptOBDD∗Γ(k, α) Composable Quantum OBDD-minimization algorithm with
subroutine Γ and constant parameters k ∈ N and α = (α1, . . . , αk) ∈ [0, 1]k satisfying 0 < α1 <

· · · < αk < 1, where the quantum minimum finding algorithm is used in line 9, and subroutine Γ
is used in line 17. “A← B” means that B is substituted for A. Γ(I1, I2, J,FS(I1, I2)) produces
FS(〈I1, I2, J〉) from FS(〈I1, I2〉).

Input: I ⊆ [n], J ⊆ [n], FS(I). (accessible from all Functions)
Output: FS(〈I, J〉)

1 Function Main()
2 n′ ← |J |; // init.
3 compute the set {FS(〈I,K〉) : K ⊆ J, |K| = bα1n

′c} by algorithm FS∗;
4 make n′ and the above set of FS(〈I,K〉) global (i.e., accessible from all Functions);
5 return DivideAndConquer(J, k + 1)
6 end
7 Function DivideAndConquer(L, t) // Compute FS(〈I, L〉) with α1, . . . , αt
8 if t = 1 then return FS(I, L); // FS(I, L) has been precomputed.
9 Find K(⊂ L) of cardinality bαt−1n

′c, with Lemma 6, that minimizes mincost〈I,K,L\K〉
10 which is computed as a component of FS(〈I,K,L \K〉)
11 by calling ComputeFS(I,K,L \K, t);
12 let K∗ be the set that achieves the minimum;
13 return FS(〈I,K∗, L \K∗〉)
14 end
15 Function ComputeFS(I,K,M, t) // Compute FS(〈I,K,M〉) with α1, . . . , αt
16 FS(I,K)← DivideAndConquer(K, t− 1);
17 FS(〈I,K,M〉)← Γ(I,K,M,FS(I,K));
18 return FS(〈I,K,M〉)
19 end
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I Lemma 13 (Quantum Composition: Induction Part). Suppose that Γ is a quantum algorithm
that, for any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅, produces FS(〈I1, . . . , Im, J〉)
from FS(〈I1, . . . , Im〉) with probability 1 − exp(−Ω(n)) in O∗

(
2n−|I1t···tImtJ| · γ|J|

)
time

and space for an underlying function f : {0, 1}n → {0, 1}. Then, for any constant para-
meters k ∈ N and α = (α1, . . . , αk) ∈ [0, 1]k with α1 < · · · < αk and for any disjoint
subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅, OptOBDD∗Γ(k,α) produces FS(〈I1, . . . , Im, J〉) from
FS(〈I1, . . . , Im〉) with probability 1 − exp(−Ω(n)) in O∗

(
2n−|I1t···tImtJ| · β|J|k

)
time and

space for the function f , where βnk upper-bounds, up to a polynomial factor, the time complex-
ity required for OptOBDD∗Γ(k, α) to compute FS([n]) from FS(∅), that is, T (n) = O∗(βnk )
for T (n) that satisfies the following recurrence:

T (n) =
α1n∑
`=1

2n−`
(
n

`

)
+ Lk+1, (10)

Lj+1 =

√(
αj+1n

αjn

)(
Lj + 2(1−αj+1)nγ(αj+1−αj)n

)
=

√(
αj+1n

αjn

)(
Lj + 2gγ(αj ,αj+1)

)
,

(11)

where j ∈ [k], L1 = O∗(1) and gγ(x, y) := (1− y) + (y − x) log2 γ.

Proof. Recall that algorithm FS∗ is used as a subroutine in OptOBDD(k,α) provided in
Theorem 11. Since the input and output of Γ assumed in the statement are the same as those
of algorithm FS∗, one can use Γ instead of algorithm FS∗ in OptOBDD(k,α) (compromising
on an exponentially small error probability). Let OptOBDDΓ(k,α) be the resulting algorithm.
Then, one can see that the time complexity T (n) of OptOBDDΓ(k,α) satisfies the recurrence:
Eqs. (10)-(11), which are obtained by just replacing g(x, y) with gγ(x, y) in Eqs. (6)-(7).
Suppose that T (n) = O∗(βnk ) follows from the recurrence.

Next, we generalize OptOBDDΓ(k,α) so that it produces FS(〈I1, . . . , Im, J〉) from
FS(〈I1, . . . , Im〉) for any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅. The proof is
very similar to that of Lemma 12. The only difference is that the time complexity of Γ is
O∗
(
2n−|I1t···tImtJ| · γ|J|

)
, instead of O∗

(
2n−|I1t···tImtJ| · 3|J|

)
. Namely, when m = 1 and

n′ = |J |, the time complexity of OptOBDD∗Γ(k,α) satisfies the following recurrence: for each
j ∈ [n],

T ′(n, n′) = 2n−|I|−n
′
α1n

′∑
`=1

2n
′−`
(
n′

`

)
+ L′k+1(n, n′),

L′j+1(n, n′) =

√(
αj+1n′

αjn′

)(
L′j(n, n′) + 2n−|I|−αj+1n

′
γ(αj+1−αj)n′

)
[j ∈ [n]],

L′1(n, n′) = O∗(1),

from which it follows that T ′(n, n′) = 2n−|I|−n′T (n′) = O∗
(

2n−|ItJ| · β|J|k
)
. It is straight-

forward to generalize to the case of m ≥ 2.
The total error probability is exponentially small by union bound, if the error probabilities

of Γ and the quantum minimum finding (Lemma 6) are made sufficiently small. J

4.2 The Final Algorithm
Lemmas 12 and 13 naturally lead to the following algorithm. We first define Γ1 as
OptOBDD∗FS∗(k(0),α(0)) for some k(0) ∈ N and α(0) ∈ [0, 1]k(0) . Then, we define Γ2 as
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OptOBDD∗Γ1
(k(1),α(1)) for some k(1) ∈ N and α(1) ∈ [0, 1]k(1) . In this way, we can define

Γi+1 as OptOBDD∗Γi(k
(i),α(i)) for some k(i) ∈ N and α(i) ∈ [0, 1]k(i) .

Fix k(i) = 6 for every i. Note that, in the proof of Lemmas 12 and 13, parameter
α(i) = (α(i)

1 , . . . , α
(i)
6 ) ∈ [0, 1]6 is set for each i so that it satisfies the system of equations, a

natural generalization of Eqs. (8)-(9),

1− α(i)
1 + H(α(i)

1 ) = fγ(α(i)
6 , 1), (12)

fγ(α(i)
j−1, α

(i)
j ) = gγ(α(i)

j , α
(i)
j+1) (j = 2, . . . , 6), (13)

where fγ(x, y) := 1
2y ·H (x/y) + gγ(x, y) and gγ(x, y) := (1− y) + (y − x) log2 γ.

By numerically solving this system of equations for γ = 3, we have β6 < 2.83728 as shown
in Theorem 11. Then, numerically solving the system of equations with γ = 2.83728, we have
β6 < 2.79364. In this way, we obtain a certain γ less than 2.77286 at the tenth composition.
We therefore obtain the following theorem.

I Theorem 14. There exists a quantum algorithm that, for the truth table of f : {0, 1}n →
{0, 1} given as input, produces FS([n]) in O∗(γn) time and space with probability 1 −
exp(−Ω(n)), where the constant γ is at most 2.77286.
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A Appendix
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Figure 2 Schematic expression of Costj(f, π).
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Figure 3 Schematic expression of Lemma 3: For any two permutations π, π′ ∈ Sn such that
{π[1], . . . , π[|I| − 1]} = {π′[1], . . . , π′[|I| − 1]} and π[|I|] = π′[|I|], it holds that the number of nodes
labeled with xi in B(f, π) is equal to that of nodes labeled with xi in B(f, π′).
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[𝑛] − 𝐼
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NODE=
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001 2

010 3

011 4

100 6

101 7

110 5

111 8

Table=

𝐼 = {1,3,5} 𝜋= = (1,3,5,2,4,6)

Figure 4 Examples of data structures used in Algorithm FS: tableI and nodeI with I = {1, 3, 5}
for the OBDD (rhs) representing f(x1, . . . , x6) = x1x2 + x3x4 + · · ·+ x5x6 for the variable ordering
(x1, x3, x5, x2, x4, x6). The pointers (integers) to the nodes labeled with x1, x3, x5 are each shown at
the top-left positions of the nodes.

∅
𝑛

Each dot corresponds to 
ℱ𝒮(𝐼) for a subset 𝐼 ⊂ 𝑛
of size 𝑘

𝑘𝑘 − 1

𝑖∗ = argmin-mincost .⟨"∖$, ⟩$

0 𝑛

𝜋! = 𝜋⟨!∖$∗ , ⟩$∗

Figure 5 Schematic view of Friedman-Supowit Algorithm. The algorithm goes from the left to
the right. On the vertical line indicated by k, there are

(
n
k

)
dots, each of which corresponds to

FS(I) for a subset I ⊆ [n] of size k. FS(I) is computed from FS(〈I \ i〉) for all i ∈ I, which are
arranged as dots on the line indicated by k − 1 and have already been computed.
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Lemma There is a deterministic algorithm FS* that, 
given the partial OBDD for 𝜋! and 𝐽 ⊆ 𝑛 ∖ 𝐾, 
produces the partial OBDD for 𝜋!⊔# in time 
𝑂∗ 2%& ! & # 3 # time/space.

𝐼

ℱ𝒮(𝐼 ⊔ 𝐽)
ℱ𝒮(𝐼)

|𝐼 ⊔ 𝐽|

Figure 6 Schematic view of FS∗. This view corresponds to the case where m = 1 and J ⊂ [n] \ I
in Lemma 8. The shaded area is the one that FS∗ sweeps to produce FS(〈I, J〉).

ℱ𝒮( 𝐼, 𝑛 ∖ 𝐼 )

This corresponds to ℱ𝒮 𝐼
for 𝐼 ⊂ 𝑛 .

|𝐼|0 𝑛

Output 𝜋 +, , ∖+

ℱ𝒮(∅)

Figure 7 Schematic view of Eq. (4) in Lemma 10. Intuitively, the lemma says that it is possible
to decompose FS∗ into the parts each of which consists of the two shaded rectangles that share the
dot corresponding to FS(I) on the line indicated by |I| for a subset I ⊆ [n] of some fixed size. The
optimal variable ordering is induced by one of the parts.
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ℱ𝒮(∅) ℱ𝒮( 𝑛 )

𝑘

Quantumly 
find the 
minimum

FS*

Computed in the 
classical preprocess 
(a truncation of FS*)

Figure 8 Schematic view of our algorithm in the simplest case (one-parameter case). The dotted
area is computed in the classical preprocess, which is realized by truncating the process of FS∗ as
stated in Lemma 8. The shaded area is computed by using FS∗. The actual algorithm runs the
quantum minimum finding, which calls FS∗ to coherently compute the shaded area corresponding to
every dot on the vertical line indicated by k.
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