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Abstract
We study deterministic online embeddings of metric spaces into normed spaces of various dimensions
and into trees. We establish some upper and lower bounds on the distortion of such embedding, and
pose some challenging open questions.

2012 ACM Subject Classification Networks → Network algorithms

Keywords and phrases Metric spaces, online embedding

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.32

Funding Ilan Newman: This Research was supported by The Israel Science Foundation, grant
number 497/17.

1 Introduction

The modern theory of low-distortion embeddings of finite metrics spaces into various host
spaces began to take shape with the appearance of the classical results of Johnson and
Lindenstrauss [7]1 and Bourgain [4]2, in the last decades of the 20’th century. It was soon
observed that this theory provides powerful tools for numerous theoretical and practical
algorithmic problems. Nowadays, it is a mathematically deep and widely applicable developed
theory, whose importance to algorithmic design is well recognized.

In this paper we study a relatively neglected aspect of metric embeddings, the online
embeddings. In this setting, the vertices of the input finite metric space (V, d) are exposed
one by one, together with their distances to the previously exposed vertices. Each newly
exposed vertex v is mapped to the host space (H, dH) before the next vertex is exposed, and
without altering the embedding of previously exposed vertices. The quality of the resulting
embedding φ : V → H is measured by its expansion and contraction:

expansion : max
v,u∈V

dH(φ(v), φ(u))
d(v, u) contraction : max

v,u∈V

d(v, u)
dH(φ(v), φ(u))

The product of the two is called the (multiplicative) distortion of φ. The distortion dist(d ↪→
dH) of embedding (V, d) into (H, dH) is the minimum possible distortion of any such mapping
φ. Since usually (and in this paper in particular) the host space is scalable, dist(d ↪→ dH) can
be alternatively defined in the offline setting as the minimum possible expansion over non-
contracting mappings, or the minimum possible contraction over non-expanding mappings.

1 Any n-point Euclidean metric can be efficiently embedded into `
logn
ε2

2 with (1 + ε)-distortion.
2 Any n-point metric can be efficiently embedded into the Euclidean space of dimension O(logn).
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32:2 Online Embedding of Metrics

In the online setting the above three notions may not, and probably do not, coincide. This
is so since the scaling of φ cannot be performed in the end, after having finished constructing
the entire mapping. For the same reason, in the online setting, the maximum between
the distortion and the contraction may be a more suitable measure of similarity than the
multiplicative distortion. Also, the knowledge of n = |V | in advance matters, and may
potentially be of help.

In addition to deterministic online embedding algorithms, it is natural to consider
probabilistic online embeddings against non-adaptive adversary. In this setting, instead of
considering the distortion between d and dH for a fixed embedding, we consider the expected
distortion between d and a random embedding that is selected from some pre-designed
distribution.

In this paper we focus only on deterministic embeddings into the standard normed spaces
`2, `1, `∞ of various dimensions, and into trees. Our results clarify what can be achieved in
dimension 1, and in dimension exponential in n. What happens in between is a challenging
open problem. We also present a lower bound on online embedding of a size-n metrics into
`2 of unbounded dimension.

It is our hope that the findings of the present paper may provide a good starting point
for further studies of deterministic online embeddings.

1.1 Previous Work
To the best of our knowledge, the first result about online embedding appeared implicitly in
a paper of the authors [8]. The authors show a (

√
logn) lower bound on the distortion of

an offline embedding of a shortest path metric of a certain family of serious-parallel graphs
{Dn} into `2. Without ever mentioning the term “online”, the proof, in fact, establishes a
lower bound of

√
n on the distortion of an online embedding of the shortest path metric of a

certain family of graphs G2n on 2n vertices that are subgraphs of Dn. Although [8] received
due attention, and its online implications were noticed e.g. by the authors of [6]3, the explicit
statement (which was and still remains state of the art in its context) has never appeared in
print, and went largely unnoticed. Here we amend this situation (see Section 2).

Another related result appeared in [1] (Th. 3.1) in a rather unrelated context. It claims
the following. Let (V, d) an arbitrary metric space with |V | = n. Assume that V is exposed
in a random uniform order. Then the greedy online algorithm that attaches each new point
v to the closest one among the points exposed so far, say u, by an edge of length d(v, u),
produces a random dominating tree T so that E[dT ] expands d by O(n2).

If the order is fixed, a similar by simpler analysis implies that dT expands d by at most
O(2n). Since this turns out to be rather tight (up to the basis of the exponent) for a
deterministic embedding into a tree, we shall discuss it in more details in Section 3. Another
somewhat related notion, that we do not discuss here, is that of terminal embedding and
using extension techniques [5].

The first (and, to our knowledge, the only) published paper explicitly dedicated to online
embeddings is [6]. Observing that a large part of the offline embedding procedure from [2]
can be implemented online, the authors in [6] establish quite strong results for probabilistic
online embeddings. Most of these results depend on the so called aspect ratio ∆ of the input
metric d – that is, the ratio between the largest and the smallest distance in it. The main
results of [6] are as follows (it is assumed that |V | = n):

3 It served as partial motivation for their paper. [Private communication]
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1. A metric space (V, d) can be probabilistically online embedded into `logn·(log ∆)1/p

p with
distortion O(logn · log ∆) for any p ∈ [1,∞].
For p =∞, (V, d) can also be embedded in `logO(1) n

∞ with distortion O(logn ·
√

log ∆).
On the negative side, (V, d) cannot be online embedded into `D2 with distortion better
than Ω(n1/D−1) even when d is (1 + ε)-close to a submetric of `D2 .

2. A metric space (V, d) can be probabilistically online embedded into a distribution of a non-
contracting ultrametics (and subsequently tree-metrics) with distortion O(logn · log ∆).
On the negative side, (V, d) cannot be probabilistically online embedded into a distribution
of a non-contracting ultrametics with distortion better than min{n, log ∆}.

A very recent result [3] also discuss probabilistic online embeddings into trees, in the context of
terminal-embedding. In particular they also obtain lower bounds on probabilistic embeddings
into trees that are parameterized by the aspect ratio.

1.2 Our Results
We are interested in deterministic online embeddings into normed spaces, and in particular
in the interplay between the distortion and the dimension of the host space. Unlike [6], we
seek bounds independent of the aspect ratio.
1. Embedding Into `2 : There exists a family of metrics {d2n} such that each d2n (a

metric on 2n points) requires distortion
√
n in any deterministic online embedding into

`2 of any dimension. The metrics {d2n} are the shortest-path metrics of a family {G2n}
of weighted series-parallel graphs. These metrics are quite simple; e.g., they embed into
the line with a constant universally bounded distortion.
By John’s Theorem from the theory of finite-dimensional normed spaces, this implies an√
n/D lower bound on online embedding of d2n into any normed space of dimension D.

Comparing to the corresponding lower bounds of [6] (and ignoring the restrictions on
d), we conclude that their result is stronger for D = 2, 3, and incompatible or weaker for
other dimensions.
Our only positive results for online embedding into `2 follow from the embedding into
the line.

2. Embedding Into the line, and into trees. As mentioned above, a simple greedy
online embedding algorithms results in a dominating tree whose metric distorts the input
metric dn, on n points, by at most O(2n). Using a more complicated argument, we show
that d can be online embedded into the line with distortion O(n · 6n).
We also establish a lower bound of Ω(2n/2) for online embedding metrics on n points into
trees. The “hard” metrics used in the proof are in fact submetrics of a (continuos) cycle,
and they embed (offline) in the line with a constant universally bounded distortion.

3. Distortion and dimension. What is the smallest dimension D such that d can be
embedded into `D∞ with distortion at most 1 + ε?4 Our first, rather surprising result, is
that even a metric d on 4 points requires D = Ω

(
log 1

ε

)
in this setting.

On the positive side, we (efficiently) prove that D =
( 4n
ε

)n suffices.
4. Isometric online embeddings. We show that size-n tree metrics d (i.e., arbitrary

submetrics of the shortest-path metrics of weighted trees) isometrically online embed
into `n−1

1 . This implies that such d isometrically online embeds into `2n−2

∞ for n > 1. One
conclusion is that if d probabilistically online embeds with expansion a into a distribution
of tree metrics supported on at most k trees, then d embeds with the same expansion
into `k(n−1)

1 and `2k(n−1)−1

∞ .

4 It is well known that any metric d of size n can be isometrically embedded into `n−1
∞ . Thus, unlike any

other `p, `∞ is universal in the sense that any metrics is isometric to its submetric.

SWAT 2020
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Open questions:
Can every n-points metric be online embedded into `2 (of some dimension) with poly(n)
small distortion?
Can every n-points metric be online embedded into `D∞, where D is at most polynomial in
n, and with poly(n) distortion. In particular this is open for D = 2, with a polynomially
small distortion?
At what rate does the quality of the best online embedding (e.g., into `D∞) improve when
D grows?

2 A lower bound for embeddings into `2

As mentioned in the previous section, the following theorem is implied by the proof of the
main result of [8]:

I Theorem 1. There is a family of metrics {d2n} on 2n points for any natural n, that
requires expansion ≥

√
n in any non-contracting online embedding into `2 of any dimension

(including infinite dimension).

Given an online non-contracting embedding algorithm A, the “hard” {d2n} is constructed as
follows. It will be the shortest-path metric of the following weighted graph G2n. G2 is simply
unit-weighted K2. The graph G2n+2 is obtained by choosing an edge e = (v, u) of weight
22−n in G2n, and replacing it by a 4-cycle v-x-u-y-v with edges of weight 23−n. It remains
to specify the edge e. It is proven in [8], inductively, that one of weight 22−n edges in G2n
is expanded by A, by at least

√
n. Further, this implies that of the four new edges (v, x),

(x, u), (u, y) and (y, u), at least one edge must be expanded by A by at least
√
n. This is the

new edge to be chosen by the adversary.
As mentioned above, the metrics d2n are very simple. E.g., it is an easy matter to verify

that each d2n (offline) embeds into the line with distortion ≤ 3, and isometrically embeds
into `1.

Currently, we do not know how tight is the above bound, and whether is it at all possible
to obtain a polynomially small in n (online) distortion for online embedding into `2. We do
know that it is possible for tree metrics (in view of Theorem 15), and that in general it is at
most exponential (by Theorem 10).

3 Online embedding into trees

In tree embeddings we refer to online embeddings that constructs a tree whose vertices may
contain Steiner points. That is, the constructed tree, besides the points corresponding to the
input metric, may contain additional points. At each step, once a new vertex is exposed, the
embedding algorithm picks an existing edge of the tree, subdivide it (without changing its
total weight) by creating a new Steiner point, and attaches to it the new vertex by a new
edge of a corresponding weight. The new edge is always a leaf, except when the weight is 0.

I Theorem 2. Any metric on n points can be deterministically online embedded into a tree
with distortion ≤ 2n−1 − 1, even without using Steiner points.

Proof. Just connect the new point v to the previously exposed point u that is the closest
to v in the metric d, by an edge of weight d(v, u).
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The analysis is essentially the same as in [1]. Let d̃ denote the tree metric approximating d.
Clearly, d̃ is not-contracting. Let αk denote the its expansion after k steps. Then, α2 = 1,
and αk+1 ≤ 2αk + 1. Indeed, let x be the new point, and assume it was connected to y.
Then, for any previously exposed vertex a,

d̃(a, x) = d̃(a, y) + d(x, y) ≤ αk · d(a, y) + d(x, y) ≤ αk · (d(a, x) + d(x, y)) + d(x, y)
≤ (2αk + 1) · d(a, x)

where the penultimate inequality is by the triangle inequality, and the last one follows from
the choice of y.
The recursive formula αk+1 ≤ 2αk + 1 implies that αn ≤ 2n−1 − 1. J

In view of the above theorem, this is rather tight:

I Theorem 3. There is a class of metrics on n points for which any online embedding algo-
rithm for that class into a tree metric, results in a distortion of at least 2(n−4)/2. Furthermore,
every metric in the class is (offline) embeddable into a line with constant distortion.

Proof. The metric that will be exposed is a finite submetric of the continuous unit cycle C.
Let dC be the shortest path metric induced on C. We will show that for every k ≥ 1, the
tree that is constructed on the first 4 + 2k points distorts dC on the induced 4 + 2k points
by no less than 2k.

Working with the infinite metric space C (instead of a finite metric space), simplifies
notions. One may consider the case in which n, the number of points in the metric space that
is going to be exposed is given to the algorithm at the beginning. Even then, the following
proof works. Moreover, we may restrict ourselves to the finite submetric space of C induced
by 2n points that are uniformly placed on C.

We start with the following simple facts. For two points x, y PT (x, y) will always refer to
the path between x and y in the tree T that would be relevant to the context.

B Claim 4. Let u1, u2, u3, u4 be four vertices in a tree T = (Y,E). Let P (ui, uj), 1 ≤
i < j ≤ 4 be the path in the tree form ui to uj . Then either P (u1, u2) ∩ P (u3, u4) 6= ∅ or
P (u2, u3) ∩ P (u1, u4) 6= ∅.

The lower bound on the distortion will follow from the following claim.

B Claim 5. Let p, q, r, s be points in a metric space such that d(p, q), d(r, s) ≤ α while
d(p, r), d(p, s), d(q, r), d(q, s) ≥ β. Assume also that p, q, r, s are embedded into a weighted
tree, T , such that PT (p, q) ∩ PT (r, s) 6= ∅. Then the tree distance dT distort d by at least
β/α.

Proof. Assume that the expansion is γ ≥ 1. Then in the tree, dT (p, q), dT (r, s) ≤ γ · α. In
particular it follows that,∑

e∈P1

w(e) +
∑
e∈P2

w(e) = dT (p, q) + dT (r, s) ≤ 2γ · α (1)

However, as the paths P1 = PT (p, q) and P2 = PT (r, s) intersect, it follows that their union
include the paths P = {PT (p, s), PT (s, q), PT (q, r), PT (r, p)}. More over, every edge in P1∪P2
appears in exactly two of the paths from P. Hence we conclude that,∑
e∈PT (p,s)

w(e)+
∑

e∈PT (s,q)

w(e)+
∑

e∈PT (q,r)

w(e)+
∑

e∈PT (r,p)

w(e) ≤ 2
∑
e∈P1

w(e)+2
∑
e∈P2

w(e) (2)

SWAT 2020
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Where the last inequality may be strict as the edges in the intersection of P1 and P2 contribute
four times to the right hand side.

Combining Equations (1) and (2), we conclude that for at least one path P ∈ P, the
length of P is at least γ ·α. Assume w.l.o.g that P = P (p, s), then the contraction is at least
ν = d(p,s)

γ·α ≥
β
γ·α which implies that the distortion is at least ν · γ ≥ β/α. C

We return to the proof of the theorem. Let d = dC the metric induced by C. For two subsets
S, T ⊆ C let d(S, T ) = mins∈S,t∈T d(s, t) (in our applications this minimum will always exist).
We fix one point in the cycle v(0) ∈ C as a reference point, this then defines every point by
its distance along the cycle going clockwise. Thus we denote by v(α), 0 ≤ α < 1 the point of
length α form v(0) when going along the cycle. For two points x = v(α), y = v(β) let C[x : y]
be the segment of the cycle on the shortest path between x and y. The mid point of C[x : y]
is the point on the geodesic path between x, y which is of equal distance from x and y (this
is not well defined only if d(x, y) = 1/2, but we will never use this definition in this case).

Fix an online embedding algorithm for n points from C into a tree T , and denote the
resulted metric is dT . The adversary first exposes u1 = v(0), u2 = v( 1

4 ), u3 = v( 1
2 ), u4 = v( 3

4 ).
Let T1 be the tree constructed by the algorithm just after this point. Using fact 4 (with
that order on the points) we may assume w.l.o.g that P (u1, u2) ∩ P (u3, u4) 6= ∅. Note that
d(C[u1 : u2], C[u3 : u4]) ≥ 1/4.

The adversary will work in phases, each time exposing 2 points. The initial phase
(numbered as k = 0 exposing 4 points) results in T0 above. Let T = Tk be the tree that
is constructed by the algorithm at steps k = 1, . . . after exposing 4 + 2k points. The
adversary will always hold two pairs of points that are already exposed x, y ∈ C[u1 : u2],
x′, y′ ∈ C[u3 : u4], maintaining the invariant that: all points in C[x : y] \ {x, y} and in
C[x′ : y′] \ {x′, y′} are not exposed, and PT (x, y) ∩ PT (x′, y′) 6= ∅. It will also be the case
that dC(C[x : y], C[x′ : y′]) ≥ 1/4, while dC(x, y) = dC(x′, y′) = 2−k−2.

For k = 0 the points x = u1, y = u2, x
′ = u3, y

′ = u4 already comply with the invariants
above. Assume that after phase k we already have exposed 4 + 2k and the adversary holds
x, y, x′, y′ as required. Then at phase k+1 the adversary exposes two new vertices: z that is the
mid point in C[x : y] and z1 that is the mid point of C[x′, y′]. Since PT (x, y)∩PT (x′, y′) 6= ∅
then at least one of PT (x, z), PT (z, y) intersects PT (x′, y′). We replace y with z if PT (x, z)
intersects PT (x′, y′), otherwise, we replace x with z. Similarly, we replace either x′ or y′ with
z1, so that the resulting two paths still intersect. It is easy to see that the distances are as
claimed.

Finally, by Claim 5, applied on x, y, x′, y′ (in this order) at the end of any phase k, we
conclude that the tree distance dT distort dC on the four points by at least 2k.

We end this proof by noting that the actual metric that is exposed is (offline) embeddable
into a tree and even into a line with a constant distortion. This can be done by e.g., ’cutting’
C at the point v(7/8) and embedding each point x at v(x) in the resulting interval. J

4 Embedding into the line

Theorem 3 implies that online embedding of general metrics into the line results in a distortion
that in the worst case is at least exponential in the number of points. This is true even for
online embedding of tree metrics into the line (using a similar argument as in the proof of
Theorem 3). Here we show that any metric (V, d) on n points can be online embedded into
the line with distortion that is most exponential (in the number of points exposed so far).
We don’t assume here that n, the number of points or any upper bound on this number is
given in advance.
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I Theorem 6. Let (V, d) be a metric, then V can be online embedded into the line (without
a priori knowing n = |V |), with distortion bounded by O(n6n).

Proof. For every point x that is already embedded let φ(x) be its embedding.
Assume at stage i that xi is exposed and let z be the closet point to xi from the previously

exposed points, with d(xi, z) = d. Let I be the left most interval of length 3−id that is right
of z and is empty of any previously exposed point. We then place xi in the mid point of I.
Note that since there are only i− 1 previously exposed points (including z), then there must
be such empty interval at distance at most (i− 2) · 3−id.

In the following we call z the father of xi in this embedding and denote it as father(xi).
We are going to bound separately the expansion and the contraction.

Let γ(k) denote the bound on the expansion after the kth point is embedded. Bounding
γ(k) is by a similar argument to the tree embedding. Let xk be the last point that is
embedded, let z = father(xk) and let y be any previously exposed point. The triangle
inequality asserts that,

d(y, z) ≤ d(y, xk) + d(xk, z) ≤ 2d(xk, y) (3)

Thus, by the definition of the embedding of xk and the induction hypothesis,

|φ(xk)− φ(y)| ≤ |φ(xk)− φ(z)|+ |φ(z)− φ(y)| ≤
+(k − 1.5) · 3−kd(xk, z) + γ(k − 1)d(z, y) ≤ k3−k · d(xk, y) + γ(k − 1)d(z, y) (4)

where the last inequality is by the fact that d(xk, z) ≤ d(xk, y).
Using equation (3) we get,

|φ(xk)− φ(y)| ≤ (k3−k + 2γ(k − 1)) · d(xk, y). (5)

We get the following recursion on γ(k): γ(k) ≤ k3−k + 2γ(k − 1) which implies that
γ(k) ≤ 3 · 2k.

To bound the contraction let a, b be any two exposed points. By the embedding algorithm
there are two sequences z = y1, y2, . . . , yk = a and z = w1, w2, . . . , w` = b where yi =
father(yi+1), wi = father(wi+1) and {yi}k1 , {wi}`1 are disjoint. A marginal case is when
z = a and one of the sequences is empty. The argument for the marginal case will be
presented at the end of the proof (after the proof of Claim 8).

Let δi = d(yi−1, yi), i = 2, . . . , k and νi = d(wi−1, wi), i = 2, . . . , `. For any point x let
order(x) = ` if x = x` namely, x is the ` exposed point (do not confuse the order(x) with
its location in the sequences of yi’s or wi’s).

Let D = max{d(x, father(x))} where x ranges over all points except z in the two
sequences above, and assume w.l.o.g. that the last exposed point among the two sequences,
xj , for which d(xj , father(xj)) = D is yi (namely, that the maximum is achieved in the
sequence that corresponds to a). Let s = order(yi).

By our algorithm yi = xs is embedded in the middle of an empty interval I of size 3−sD.
We use the following claims.
For j = 1, . . . , k − i let rj = order(yi+j)− s.

B Claim 7. For any j ≥ 1, yi+j is embedded inside I and 0 ≤ φ(yi+s)−φ(yi) ≤ |I|2 ·(1−2−rj ).

Proof. We first describe the situation for the case j = 1. The case for larger j is similar. Let
r1 = order(yi+1) = r. Namely, r − 1 points xs+1, . . . xs+r−1 are exposed after yi and before
yi+1.

SWAT 2020
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Recall that at time i when yi is embedded, I is empty, and yi is placed in the middle of I
splitting I into two empty intervals IL, IR of size |I|/2 each. According to the algorithm yi+1
needs to be embedded in the middle of an interval of size α = 3−(r+s) · δi+1 ≤ 3−r · 3−s ·D ≤
3−r · |I| that is empty at time s+ r. If r = 1, namely if yi+1 is exposed right after yi = xs,
then obviously there is a α-size empty interval right of φ(yi), as IR is empty at this point
and |I|/2 > α. Generally, for r > 1, some of the r − 1 points that are exposed between yi
and yi+1 may occupy parts of I forcing yi+1 to be embedded further to the right.

Each time a point x 6= yi+1 is placed in IR it must be in the middle of an empty interval
splitting the right empty interval of IR into two empty subintervals, hence leaving an empty
interval of at least half the size at the right of IR. Hence after placing at most r − 1 such
points, there will still be an empty interval of size |IR|/2r−1 > α. Hence there is a suitable
empty interval for yi+1 in IR and it follows that φ(yi+1)−φ(yi) ≤ |I|/2− 2−r+1|IR|+α/2 ≤
|I|
2 · (1− 2−r).

In the general case for yi+j the argument is identical except that rj − 1 points might
have been embedded into IR before yi+j . C

B Claim 8. |φ(a)− φ(b)| ≥ 2−(rk+1)|I|.

Proof. Claim 7 asserts that a = yk is embedded inside I to the right of yi and φ(a)−φ(yi) ≤
|I|
2 · (1− 2−rk).

We now consider the place where b is embedded. Let t be the largest so that wt is exposed
before yi. Again, since I is empty when yi is exposed, wt must be embedded to the right or
to the left of I. If wt is embedded to the right of I then b, that is embedded right of wt, is
right of I and hence φ(b)− φ(a) ≥ |I|2 · 2

−rk implying the claim.
On the other hand, if wt is embedded to the left of I, then by a similar calculation

that is done in Claim 7, all points wt+j are embedded at most at distance |I|2 from wt.
(Since they all are exposed after yi and in particular have νt+j < D and order(wt+j) > s)).
Since φ(yi) − φ(wt) ≥ |I|/2 by the assumption that wt is left of I, we conclude that
φ(a)− φ(b) ≥ φ(a)− φ(yi) + φ(yi)− φ(wt) ≥ |I|2 · 2

−rk in this case too.
This completes the proof of Claim 8. C

Now with this lower bound on |φ(a) − φ(b)|, to bound the contraction it is enough to
upper bound d(a, b). Indeed,

d(a, b) ≤
k∑
1
d(yi, yi−1) +

∑̀
1
d(wi, wi−1) ≤ n ·D =⇒

d(a, b)
|φ(a)− φ(b)| ≤

nD

2−(rk+1)|I|
≤ n2rk+1 · 3s ≤ n3n

To complete the proof, consider the case where one of the sequences is empty. Namely w.l.o.g
z = b. If b is exposed before yi then we are at the same situation as in Claim 8, implying the
same lower bound on φ(yi)− φ(b). If z = yi then Claim 7 asserts that a = yk is embedded
in I, and φ(a)− φ(b) ≥

∑k
j=2(φ(yj)− φ(yj−1) ≥

∑k
2 δj · 3−rj/2, where the inequality is by

the fact that for every j, yj is embedded to the right of yj−1 at distance at least 3−rjδj/2.
But this last expression is at least 3−n

2
∑k

2 δj ≥ 3−nd(a, b)/2 proving that in this case the
contraction is bounded by 2 · 3n as well.

This completes the proof of the Theorem. J
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5 Online embedding into `∞ with (1 + ε) distortion

It is well known that any metric on n points can be (offline) embedded isometrically online
into `n−1

∞ . It therefore comes as a surprise that even the metics on 4 points cannot be online
isometrically embedding into `∞ of any finite dimension. This will be proven using a special
class of 4-points metrics that are submetrics of a continuous cycle.

I Theorem 9. There exists µ on four points for which any online embedding into `D∞
incurs a distortion (1 + Ω(1/42D)). Consequently, to ensure a distortion (1 + ε), one needs
Ω(log(1/epsilon)) dimensions.

Proof. The metrics under discussion look as depicted in Figure 1. They are all defined by 4
points on the cycle whose circumference is of size 2. All these metrics contain two antipodal
points a, b as in Figure 1, that are exposed first and with d(a, b) = 1. After a, b are embedded
the next two points c, d are exposed. c, d are also antipodal and are defined by the distance
d(a, c) = ν.

 
a

c
u

u
d

b

Figure 1 The metric µ4. a, b are exposed first and then ν is set (defining c, d).

We view φ as D online non-contacting embeddings into the line Φ = {ψ1, . . . , ψd}, where
ψi : {a, b, c, d} → R, i = 1, . . . , D. The adversary reveals first the antipodal points a, b. It
will then choose ν appropriately, and reveal the corresponding antipodal points c, d.

Let δ = 4−(D+1). Assume that a, b are exposed and w.l.o.g., 0 = ψ(a) ≤ ψ(b) for every
ψ ∈ Φ. Moreover, we may assume that every ψi is not expanding by more than 1 + δ, as
otherwise we are done. Hence by multiplying by 1

1+δ we may assume that every ψ ∈ Φ is
non-expanding.

We partition the interval [0, 1] into d + 1 sets B0 = (1 − 4−D, 1], Bi = (1 − 4i−D, 1 −
4i−D−1], i = 1, . . . , D − 1, and finally BD = [0, 3/4].

After exposing a, b, ψ(b) is determined for every ψ ∈ Φ. This partitions Φ into D + 1
classes B̃0, . . . B̃d by letting ψ ∈ B̃i if ψ(b) ∈ Bi. Hence for some i ∈ [D + 1], B̃i = ∅. Fix
such an i, and set ν = 4i−D/3, which define c and d.

Consider first the case j > i, then for ψ ∈ B̃j , ψ(b) < 1− 4i−D ≤ 1− 3ν.
Since ψ is non-expanding, µ(a, c) = ν implies that ψ(c) ∈ Ic = [−ν, ν]. Similarly,

ψ(d) ∈ Id = [1− ψ(b)− ν, 1− ψ(b) + ν]. But max{|y − x|, y ∈ Id, x ∈ Ic} ≤ 1− ψ(b) + 2ν.
Hence the contraction of µ(c, d) in this case is at least 1

1−ψ(b)+2ν ≥
1

1−4i−D−1 .
On the other hand, for ψ ∈ B̃j and j < i, ψ(b) ≥ 1− 4i−1−D. But then since ψ is non-

expanding, it follows that ψ(d) ≤ 1− ν (on account of µ(a, d)), and ψ(c) ≥ ψ(b)− (1− ν) =
ν− (1−ψ(b)). It follows that the ψ(d)−ψ(c) ≤ 1− 2ν + (1−ψ(b)) ≤ 1− 2·4i−D

3 + 4i−1−D ≤
1− 4i−D−1. Hence each such ψ contracts µ(c, d) by at least 1

1−4i−D−1 .

SWAT 2020



32:10 Online Embedding of Metrics

We conclude that for the above setting of ν, every ψ contracts µ(c, d) by at least 1
1−4−(D+1) .

Recall that we have started the proof by multiplying Φ by 1
1+δ . Hence the distortion of Φ is

at least 1
(1+δ)(1−4−(D+1)) ≥

1
1−4−2(D+1) . J

Let us note, without providing more details here, that for metrics µ as above the about
lower bound is tight and cannot be strengthened. We conjecture that every metric on 4
points can be online embedded in `D∞ with distortion 1 + exp(−D).

Next we show a result complementary to Theorem 9. That is – any metric can be
embedded into `∞ with distortion arbitrary close to 1, using large enough dimension.

I Theorem 10. Let (V, d) be any metric space, ε > 0 an arbitrary small constant, and let
n = |V | (or an upper bound on |V |) be known in advance. Then using ( 2n

ln(1+ε) )2n coordinates
one can embed d online in a 1-Lipschitz embedding with contraction bounded by (1 + ε).

Proof. The proof idea is to approximate the universal embedding of d into `∞∞.
Let V ′ ⊆ V be points from V and z ∈ V ′ one fixed point. Let φUz (U here stands for

universal) be the following embedding of V ′ into the line. φUz (z) = 0 and for every x ∈ V ′,
φUz (x) = d(z, x).

The following claim is standard and immediate form the defintion.

B Claim 11. φUz is a 1-Lipschitz embedding of d and for every x ∈ V ′ it does not distort d(z, x).

It follows then that if for every z ∈ V there is a coordinate on which φUz is realized, then
the embedding is an isometry of d in `∞. Hence, `∞ of dimension n− 1 is universal for any
metric space on n points.

Here we will online approximate each of these coordinates by preparing in advance a
coordinate (in fact a collection of coordinates) for each possible new z. Suppose that the
points a1, . . . , ak are exposed (not necessarily in that order), and that for a new point z,
there is a line (coordinate) in which a1, . . . , ak are embedded in increasing order that is
consistent with the distance order to z. We show below that under some restrictions on the
embedding of these first k points, there is an augmentation of this embedding to any possible
consistent z.

Since there are only finite number of ordering of the first k points with respect to their
distance from z, we will prepare in advance a line (in fact, a set of lines) for every possible
ordering. This will allows us to embed every possible new coming z.

We start with the following Claim asserting that a consistent ordering on the line can be
augmented to a new point, under some suitable restriction.

B Claim 12. Let k < n and {a1, . . . , ak} ⊂ V a set of arbitrary points. Let δ > 0 be a
small constant and 1 ≤ `i ≤ n

δ , i = 2, . . . k, a sequence of integers. Let φ̃ a fixed 1-Lipschitz
embedding of a1, . . . , ak on the line with φ̃(ai+1) = φ̃(ai)+ li+1−1

n ·δd(ai, ai+1), i = 1, . . . , k−1.
Then for any z ∈ V \ {a1, . . . , ak} such that
1. d(z, ai) ≤ d(z, ai+1), i = 1, . . . , k − 1.
2. For every i = 1, . . . , k − 1,

(`i+1 − 1)δ
n

· d(ai+1, ai) < d(z, ai+1)− d(z, ai) ≤
`i+1δ

n
· d(ai+1, ai)

The augmentation of φ̃ with φ̃(z) = φ̃(a1)− d(z, a1) is 1-Lipschitz, contracting the distances
d(z, ai), i = 1, . . . , k by at most e2δ.

We call such φ̃ “additive shifted approximation” of φUz .
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Proof. We will show that for any possible z for which the premises of the Claim hold, the
augmented embedding φ̃ above is an approximation of φUz .

Fix a1, . . . , ak and let φ̃ be the augmented embedding for an arbitrary z for which the
assumptions of the claim hold. Let ci = e2δi/n. We prove by induction on i = 1, . . . , k that

cid(z, ai) ≤ d̃(z, ai) = φ̃(ai)− φ̃(z) ≤ d(z, ai). (6)

Which will assert that the embedding is 1-Lipschitz and with contraction of d(z, ak) which is
at most ck.

Indeed for i = 1, d̃(z, a1) = d(z, a1).
Assume that Equation (6) is already proved for i and let us prove it for i+ 1.
By definition, d̃(z, ai+1) = d̃(z, ai)+ (li+1−1)δ

n ·d(ai, ai+1) ≤ d(z, ai)+d(z, ai+1)−d(z, ai) ≤
d(z, ai+1), where the inequality follows from the induction hypothesis that d̃(z, ai) ≤ d(z, ai)
and the 2nd condition in the claim. This establish the fact that the mapping is non-expanding.

The contraction ci+1 is bounded by (again using condition 2 of the claim)

d(z, ai+1)
d̃(z, ai+1)

≤
d(z, ai) + `i+1 · δn · d(ai+1, ai)

d̃(z, ai) + (`i+1 − 1) · δn · d(ai+1, ai)
(7)

Next we note that by assumption d(z, ai+1) − d(z, ai) ≤ `i+1 · δn · d(ai, ai+1), while by
the triangle inequality d(ai, ai+1) ≤ d(z, ai+1) + d(z, ai). Combining these two conditions
implies that,

d(z, ai) ≥
1
2 · (1− `i+1 ·

δ

n
)d(ai, ai+1) (8)

Plugging this in Equation (7), using that by induction d̃(z, ai) ≥ d(z, ai)/ci, we get,

ci+1 ≤ ci ·
d(z, ai) + `i+1 · δn · d(ai, ai+1)

d(z, ai) + ci · (`i+1 − 1) δn · d(ai, ai+1)

≤ ci ·
d(z, ai) + `i+1 · δn · d(ai, ai+1)

d(z, ai) + (`i+1 − 1) δn · d(ai, ai+1)
≤

ci · (1 +
δ
n · d(ai.ai+1)

d(z, ai) + (`i+1 − 1) δn · d(ai, ai+1)
)

Using again equation (8) for d(z, ai) in the denominator we get,

ci+1 ≤ ci · (1 +
2δ
n

1 + (`i+1 − 2) δn
)

The last expression is the largest when `i+1 = 1 for which we get ci+1 ≤ ci · (1 + 2 δn ) and the
claim follows. C

To complete the proof, we will show that when exposing the k+ 1 point z, having already
embedded the first k points in a 1-Lipschitz embedding, there is a coordinate for which the
points are placed along the line according to non-decreasing order of the distances from z,
and with pairwise distances φ̃(ai+1)− φ̃(ai) that are approximated as in the second item of
the Claim.

Indeed fix ε > 0 and let δ < 1
2 ln(1+ε), namely, such that e2δ < 1+ε. For every i = 2, . . . , n

(note that n needs to be known in advance), we will make sure that after exposing the kth
point, for any permutation π ∈ Sk, and any setting of (s2, . . . , sk) ∈ {0, 1, . . . bnδ c}

k we have
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at least one coordinate, namely a line and a 1-Lipschitz embedding ψ̃ of ai, i = 1, . . . , k
such that the points appear in order as specified by the permutation π, and in which
ψ(aπ(i+1))− ψ(aπ(i)) = si+1 · δnd(aπ(i+1), aπ(i)). Note, that we assume inductively that for
all coordinates (that is, lines) these embedding are required to be 1-Lipschitz.

Having such situation, once z is exposed, assume that a1, . . . , ak is a re-enumeration of
the points by their distance to z, and let si, i = 2, . . . , k be such that (`i+1−1)δ

n · d(ai+1, ai) <
d(z, ai+1) − d(z, ai) ≤ `i+1δ

n · d(ai+1, ai). By the triangle inequality, such sequence si, i =
2, . . . , k exists, and hence by assumption there is a line and an embedding of a1, . . . , ak for
which the conditions of Claim 12 hold with respect to z. Then Claim 12 asserts that z can
be placed in that line and the corresponding augmented embedding that is a “online” shifted
additive approximation of φUz is 1-Lipschitz, and with bounded contraction as needed.

For every other line we only need to place z so that it will remain 1-Lipschitz. Indeed
since the embedding of a1, . . . , ak is 1-Lipschitz on the line, it is folklore that z can be placed
too, so to result in a 1-Lipschitz embedding (e.g., by using the Helly property for the line).

One last thing to observe, is that in order to take care for future points, we also need to
make sure that any relevant order of ν ∈ Sk+1, namely including z and any set of relevant
integers s2, . . . , sk+1 is also realized. To do this, for any possible such set of integers, and
any permutation π ∈ Sk, we prepare enough identical copies of the same embedding of
{a1, . . . , ak+1} \ {z} so to be able to place place z in any of the corresponding k+ 1 intervals,
and in any of the possible n

δ placers in the interval, so to cover all possible sequences
s2, . . . , sk+1. Thus to estimate the required dimension, let f(k) denote the number of lines
needed for step k, in which we assume that every order and every sequence of numbers
s1, . . . , sk is realized. By the previous discussion we need f(k + 1) = f(k) · (k + 1) · nδ lines
for step k + 1. Since f(1) = 1, the recurrence implies that f(n) = n! · (nδ )n−1. We conclude
that the dimension needed for the online embedding above is at most f(n) < (nδ )2n in order
to embed any n-point metric. J

6 Isometric online embeddings

We conclude with a number of remarks on isometric embeddings. First, observe that the tree
metrics dT (like the Euclidean metrics) are essentially rigid, i.e., there exists an essentially
unique (minimal) weighted tree T ∗ with Steiner points realizing dT as its submetric. Moreover,
this T ∗ can be constructed in an online manner, regardless of the order of exposure.

I Theorem 13. Every tree metric dT can be isometrically embedded into a metric of a
weighted tree T ∗ (using Steiner points). The knowledge of n is not required.

Skipping the details, the embedding at each step, given a new point x, introduces a new
Steiner point yx into the tree constructed so far, and attaches x to yx by a new edge of
weight wx. Interestingly, the use of Steiner points is essential:

I Lemma 14. There is a family of tree metrics that suffer an exponential distortion in
every online embedding into a tree that does not use Steiner points, even when n is known in
advance.

The proof of Lemma 14 is based on the same ideas as in the proof of Theorem 3. We omit
further details from this draft.

Next, we claim that tree metrics isometrically embed online into `1.

I Theorem 15. Every tree metric on n points is isometrically online embeddable into `n−1
1 .
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We do not present a proof of this theorem here. The general idea is to follow the isometric
embedding into a weighted tree T ∗ as outlined above. The invariant property of the embedding
is that the adjacent points in the tree will differ by a simple coordinate. Thus, adding a
new Steiner point will require no increase in dimension. Attaching a new point x to the
corresponding Steiner point yx involves taking the vector representing yx, and adding to it a
new coordinate with value wx. The vectors constructed so far are assume to have value 0 on
this coordinate.

Our last remark is that if a metric d is online-embeddable into `1 of an a priori known
dimension D(n), then d can also be online embedded into `∞ of dimension 2D(n)−1. This is
so, since the embeddings: x = (x1, . . . , xD)→ (〈x, ε1〉, . . . , 〈x, ε2D 〉), where εi range over all
possible choices of D-dimensional ±1 vectors, is an isometry from `D1 into `2D∞ , and, moreover,
it is online constructible. 2D can be improved to 2D−1 by fixing the first sign to be 1. Thus,
e.g.,

I Theorem 16. Every tree metric on n points is isometrically online embeddable into `2n−2

∞ .
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