
Exact Exponential Algorithms for Two Poset
Problems
László Kozma
Freie Universität Berlin, Institute of Computer Science, Germany
http://www.lkozma.net/
laszlo.kozma@fu-berlin.de

Abstract
Partially ordered sets (posets) are fundamental combinatorial objects with important applications in
computer science. Perhaps the most natural algorithmic task, given a size-n poset, is to compute its
number of linear extensions. In 1991 Brightwell and Winkler showed this problem to be #P-hard.
In spite of extensive research, the fastest known algorithm is still the straightforward O(n2n)-time
dynamic programming (an adaptation of the Bellman-Held-Karp algorithm for the TSP). Very
recently, Dittmer and Pak showed that the problem remains #P-hard for two-dimensional posets,
and no algorithm was known to break the 2n-barrier even in this special case. The question of
whether the two-dimensional problem is easier than the general case was raised decades ago by
Möhring, Felsner and Wernisch, and others. In this paper we show that the number of linear
extensions of a two-dimensional poset can be computed in time O(1.8286n).

The related jump number problem asks for a linear extension of a poset, minimizing the number
of neighboring incomparable pairs. The problem has applications in scheduling, and has been widely
studied. In 1981 Pulleyblank showed it to be NP-complete. We show that the jump number problem
can be solved (in arbitrary posets) in time O(1.824n). This improves (slightly) the previous best
bound of Kratsch and Kratsch.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases poset, linear extension, jump number, exponential time

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.30

Funding László Kozma: Research supported by DFG grant KO 6140/1-1.

1 Introduction

A partially ordered set (poset) P = (X,≺) consists of a ground set X and an irreflexive
and transitive binary relation ≺ on X. A linear extension of P is a total order on X that
contains ≺. The main problem considered in this paper is to determine, given a poset P on
a ground set of size n, the number of linear extensions LE(P) of P . We refer to this counting
problem as #LE. A poset can alternatively be seen as a transitive directed acyclic graph
(DAG), where #LE asks for the number of topological orderings of the graph.

Posets are fundamental objects in combinatorics (for a detailed treatment we refer to the
monographs [44, 37], [40, § 3], [19, § 8]) with several applications in computer science. For
instance, every comparison-based algorithm (e.g. for sorting) implicitly defines a sequence of
posets on the input elements, where each poset captures the pairwise comparisons known to
the algorithm at a given time. An efficient sorter must find comparisons whose outcomes
split the number of linear extensions in a balanced way. A central and long-standing open
question in this area is whether a comparison with ratio (at worst) 1/3 : 2/3 exists in every
poset [5]; slightly weaker constant ratios are known to be achievable [23, 4].

Counting linear extensions (exactly or approximately) is a bottleneck in experimental
work, e.g. when testing combinatorial conjectures. In computer science the #LE problem
is relevant, besides the mentioned task of optimal comparison-based sorting, for learning

© László Kozma;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.lkozma.net/
mailto:laszlo.kozma@fu-berlin.de
https://doi.org/10.4230/LIPIcs.SWAT.2020.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Exact Exponential Algorithms for Two Poset Problems

graphical models [45, 34], probabilistic ranking [46, 18, 30], reconstruction of partial orders
from sequential data [31], convex rank tests [32], multimedia delivery in networks [1], and
others.

The complexity of #LE has been thoroughly studied (see Linial [28] for an early reference).
Lovász [29, § 2.4] mentions the problem as a special case of polytope volume computation;
Stanley [39] gives a broad overview of the polytope-formulation of #LE. Brightwell and
Winkler [6] show that #LE is #P-hard, and thus unlikely to admit a polynomial-time solution.
In fact, despite the significant attention the problem has received (e.g. the mentioned papers
and references therein and thereof), the best upper bound on the running time remains
O(n2n). This bound can be achieved via dynamic programming over the subsets of the
ground set [26, 11], an approach1 that closely resembles the Bellman-Held-Karp algorithm
for the traveling salesman problem (TSP) [3, 20].

A bound of 2n appears to be a natural barrier2 for the running time of #LE, similarly
to some of the most prominent combinatorial optimization problems (e.g. set cover/hitting
set, CNF-SAT, graph coloring, TSP).3 We show that #LE can be solved faster when the
input poset is two-dimensional. Dimension is perhaps the most natural complexity-measure
of posets, and can be seen informally as a measure of the nonlinearity of a poset (see e.g.
Trotter [44]). As one-dimensional posets are simply total orders, the first nontrivial case is
dimension two. The structure of two-dimensional posets is, however, far from trivial. Posets
in this class capture the point-domination order in the plane.

The question of the complexity of #LE in two-dimensional posets was raised in the 1980s
by Möhring [33] and later by Felsner and Wernisch [17]. An even earlier mention of the
problem is by Atkinson, Habib, and Urrutia, in a discussion of open problems concerning
posets, cf. Rival [37, p. 481].

Efficient algorithms for #LE are known for various restricted classes of posets, e.g. series-
parallel [33], low treewidth [25, 24, 15], small width [11], avoiding certain substructures [16],
and others; see Möhring [33] for an early survey of tractable special cases. However, as the
techniques used in these works rely on certain kinds of sparsity in the input, they are not
applicable for the case of two-dimensional posets. It is easy to see that the latter may be
arbitrarily dense, containing, for example, a complete bipartite graph of linear size. In fact,
Dittmer and Pak [12] recently showed that #LE is #P-hard already for this class of inputs.
Our first result is stated in the following theorem.

I Theorem 1. The number of linear extensions of a two-dimensional poset of size n can be
computed in time O(1.8286n).

Our second result is an algorithm for the jump number problem. In this (optimization)
problem a linear extension of P is sought, such as to minimize the number of adjacent pairs
of elements that are incomparable in P (such pairs are called jumps). The problem is known
to be NP-hard [36], and has been well-studied due to its applications in scheduling.

Similarly to #LE, the jump number problem can be solved by dynamic programming in
time 2nnO(1). An improved algorithm with running time O(1.8638n) was given by Kratsch
and Kratsch [27]. We also refer to their paper for further background and motivation for the
problem. Improving the bound of Kratsch and Kratsch, we obtain the following result.

1 A finer bound on the running time is O(w · |I|), where w is the width of the poset, and I is its set of
ideals (i.e. downsets); in the worst case, however, this expression does not improve the given bound.

2 We only study exact algorithms in this paper; for approximating LE(P), fully polynomial-time randomized
schemes are known [14, 7].

3 The strong exponential time hypothesis [21] states that a running time O(cn) with c < 2 is not achievable
for CNF-SAT, and a similar barrier has been conjectured for set cover [10].

L. Kozma 30:3

I Theorem 2. The jump number problem can be solved in time O(1.824n).

Note that in this case no assumption is made on the dimension of the input poset.
Whether jump number remains NP-hard in two-dimensional posets is a long-standing open
question [33, 8, 42].

Poset dimension. Formally, the dimension dim(P) of a poset P = (X,≺) is the smallest
number d of total orders, whose intersection is P . In other words, if dim(P) = d, then there
exists a collection of orders <1, . . . , <d (called realizers of P), such that for all x, y ∈ X, we
have x ≺ y if and only if x <k y for all 1 ≤ k ≤ d.

Poset dimension was introduced by Dushnik and Miller in 1941 [13], and the concept
has since been extensively studied; we refer to the monograph of Trotter dedicated to poset
dimension theory [44]. Various kinds of sparsity of P are known to imply upper bounds on
dim(P) (see e.g. [22, 38] for recent results in a long line of such works). The converse is, in
general, not true, as two-dimensional posets may already be arbitrarily dense, and are known
not to have a characterisation in terms of finitely many forbidden substructures [2, 33].

The term dimension is motivated by the following natural geometric interpretation.
Suppose P is a d-dimensional, size-n poset with realizers <1, . . . , <d. The ground set can
then be viewed as a set of n points in d-dimensional Euclidean space, with no two points
aligned on any coordinate, such that the ordering of the points according to the k-th
coordinate coincides with the order <k, for all 1 ≤ k ≤ d. The partial order ≺ is then
exactly the point-domination order, i.e. x ≺ y if and only if all d coordinates of y are larger
than the corresponding coordinates of x. In this geometric view, a linear extension of a
low-dimensional poset can be seen as a tour that visits all points, never moving behind the
Pareto front of the already visited points.

Two-dimensional posets are particularly natural, as they are in bijection with permutations
(the ranks of points by <1 and <2 can be seen respectively as the index and value of a
permutation-entry). Swapping the two coordinates yields a dual poset, turning chains into
antichains and vice versa. It follows that the complement of the comparability graph is itself a
comparability graph, which is yet another exact characterization of two-dimensional posets.4
It is not hard to see that two-dimensional posets are exactly the inclusion-posets of intervals
on a line.

Yet another interpretation of two-dimensional posets relates them to the weak Bruhat
order on permutations. In this setting the number of linear extensions of a two-dimensional
poset equals the number of permutations that are reachable from a given permutation π

by a sequence of swaps between mis-sorted adjacent elements; a question of independent
interest [17, 12].

2 Counting linear extensions in two-dimensional posets

Denote [k] = {1, . . . , k}. For a set Y with partial order ≺, let max (Y) denote the set of
maxima of Y , i.e. the set of elements x ∈ Y with the property that x ≺ y implies y /∈ Y .

Let P = (X,≺) be a size-n poset. To introduce the main elements of our #LE algorithm,
we review first the classical O(n2n) time algorithm.

4 Given a poset P = (X,≺), its comparability graph is C(P) = (X, E), where {x, y} ∈ E if x ≺ y or y ≺ x.
The width of P is the size of the largest antichain in P, i.e. independent set in C(P), and the height of
P is one less than the size of the largest chain in P, i.e. clique in C(P).

SWAT 2020

30:4 Exact Exponential Algorithms for Two Poset Problems

For all Y ⊆ X, let LE(Y) denote the number of linear extensions of the subposet of P
induced by Y , and let LE(∅) = 1. We recursively express LE(Y) for all nonempty Y , by
removing in turn all elements that can appear at the end of a total order on Y :

LE(Y) =
∑

x∈max (Y)

LE (Y \ {x}). (1)

To compute LE(P) = LE(X), we evaluate recurrence (1), saving all intermediate entries
LE(Y) for Y ⊆ X. There are at most 2n such entries, and computing each takes O(n) time,
once the results of the recursive calls are available. (With simple bookkeeping, max (Y) is
available for all calls without additional overhead.)

2.1 A first improvement
A well-known observation is that when computing LE(X) by (1) only those subproblems
Y ⊆ X arise where y ∈ Y and x ≺ y imply x ∈ Y , i.e. the downsets of P. In general, the
number of downsets can be as high as 2n, when P consists of a single antichain. Nonetheless,
we can give better bounds on the number of downsets, if necessary, by modifying the input
poset P.

Large matching case. An observation already made in previous works (e.g. [27]) is the
following. Consider a size-m matching M in the comparability graph C(P), with matched
edges {xi, yi}, where xi ≺ yi, for all i ∈ [m]. Let W denote the set of vertices matched by
M and let A = X \W .

Then, the sets Y ⊆ X where Y ∩ {xi, yi} = {yi} for some i ∈ [m] are not downsets and
cannot be reached by recursive calls. The remaining sets can be partitioned as T0∪T1∪· · ·∪Tm,
where T0 ⊆ A is an arbitrary subset of the unmatched vertices, and Ti ∈ {∅, {xi}, {xi, yi}}
for i ∈ [m].

The number of sets of this form is 2n−2m · 3m. If m = αn, this quantity equals (2 · (3
4)α)n.

When α ≥ 1/3, the number of subproblems is thus less than 1.8172n, and the running time
is within the required bounds.

Small matching case. Let us assume from now on that M is a maximum matching of size
m = αn for α < 1/3. The maximality of M implies that the unmatched vertices A form an
independent set in C(P), i.e. an antichain of P, of size |A| = (1− 2α)n. We assume α > 0,
as otherwise P is a single antichain and the problem is trivial.

For x ∈ A, let N(x) denote the open neighborhood of x in C(P), i.e. the set of elements
in X that are comparable with x. Observe that N(x) ∩A = ∅ for all x ∈ A.

If N(x) ∩ A = ∅ for an element x ∈ W , then we say that x is incomparable with A.
Otherwise, if x ≺ y for some y ∈ N(x) ∩A, we say that x is below A, and if y ≺ x, for some
y ∈ N(x) ∩ A, we say that x is above A. Observe that x cannot be both below and above
A, as that would make two elements of A comparable, contradicting the fact that A is an
antichain.

The sets N(x) define a partition of A, where x, y ∈ A are in the same class if and only
if N(x) = N(y). In general posets there can be as many as min {2n−|A|, |A|} classes. The
following lemma states that in two-dimensional posets the number of classes is much smaller.

I Lemma 3. Let P = (X,≺) be a size-n poset, with dim(P) ≤ 2, and let A ⊆ X be an
antichain. Then, N(·) partitions A into at most 2(n− |A|) classes.

L. Kozma 30:5

Before proving Lemma 3, we show that it can be used to compute LE(P) more efficiently.
Let A1, . . . , A` be the partition of A defined by N(·), and for each i ∈ [`], denote ai = |Ai|.
Let xk

i , where i ∈ [`] and k ∈ [ai], be a virtual element, and let Q denote the set of all such
virtual elements.

Construct a new poset P ′ = (X ′,≺′) as follows. Let X ′ = W ∪Q. In words, the ground
set X ′ contains all vertices matched by M , and instead of the elements of the antichain A, it
contains the virtual elements of Q. Observe that |Q| = |A| and therefore |X ′| = |X|.

The relation ≺′ is defined as follows, covering all cases:
if x, y ∈W , then x ≺′ y ⇐⇒ x ≺ y,
if x = xp

i and y = xq
j , then x ≺′ y ⇐⇒ i = j and p < q,

if x ∈W and y = xp
i , then x ≺′ y ⇐⇒ x ≺ z, for some z ∈ Ai,

if x = xp
i and y ∈W , then x ≺′ y ⇐⇒ z ≺ y, for some z ∈ Ai.

In words, ≺′ preserves the relation ≺ between elements of W . Virtual elements with the
same index i form a chain x1

i ≺′ · · · ≺′ x
ai
i , for all i ∈ [`]. Virtual elements with different

indices are incomparable. The relation between a virtual element xk
i and an element y ∈W

preserves the relation ≺ between an arbitrary element z ∈ Ai and y. The choice of z is
indeed arbitrary, as the elements in Ai are by definition indistinguishable.

Intuitively, xk
i is a placeholder for the element of Ai that appears as the k-th among all

elements of Ai in some linear extension of P. The sequence x1
i , . . . , x

ai
i corresponds to an

arbitrary permutation of the elements of Ai. This intuition is captured by the following
statement.

I Lemma 4. With the above definitions:

LE(P) =
∏
i∈[`]

(ai!) · LE(P ′).

Let us postpone proving Lemma 4 as well, and state our first algorithm, #LE-2D, as
Algorithm 1. The algorithm constructs the poset P ′ and computes its number of linear
extensions using recurrence (1), then computes the correct count for P via Lemma 4.

Algorithm 1 Algorithm #LE-2D.

Input: Poset P = (X,≺), where |X| = n.
Output: The number of linear extensions LE(P) of P.

1: Find a maximum matching M of C(P) with vertex set W .
2: Let A = X \W .
3: Let A1, . . . , A` be the partition of A by the neighborhoods in C(P).
4: Let ai = |Ai| for i ∈ [`].
5: Construct P ′ = (X ′,≺′), as described.
6: Compute N = LE(P ′) using (1).
7: return

∏
i∈[`] (ai!) ·N .

Analysis of the running time. Step 1 amounts to running a standard maximum matching
algorithm (see e.g. [43]). Computing the partition in Step 3 takes linear time with careful
data structuring. Steps 2,4,5,7 clearly take linear time overall.

The polynomial-time overhead of steps other then Step 6, as well as the polynomial factor
in the analysis of (1) are absorbed in the exponential running time of Step 6, where we round
the base of the exponential upwards. To derive a worst-case upper bound on the running
time of Step 6, it only remains to bound the number of downsets of P ′.

SWAT 2020

30:6 Exact Exponential Algorithms for Two Poset Problems

Observe that the ground set X ′ can, by construction, be partitioned into chains. The
matched vertices of W are partitioned into m chains xi ≺′ yi, for i ∈ [m], as before. The
virtual elements of Q are partitioned into ` chains of lengths a1, . . . , a`, where the i-th chain is
x1

i ≺′ · · · ≺′ x
ai
i . All downsets of P ′ are then of the form (T1∪· · ·∪Tm)∪(Q1∪· · ·∪Q`), where

Ti ∈ {∅, {xi}, {xi, yi}} for i ∈ [m], and Qi = {xj
i : j ≤ ti}, for some threshold 0 ≤ ti ≤ ai,

for i ∈ [`].
The number of such sets is 3m ·

∏
i∈[`] (ai + 1). Recall that m = αn and |A| = (1− 2α)n.

The quantity
∏`

i=1 (ai + 1) is maximized when the values ai + 1 are all equal, and thus equal

to (|A|+ `)/`, yielding the overall upper bound
(

3α
(

(1−2α)n
` + 1

)`
)n

. (Observe that ` ≥ 1

always holds.)
Since the quantity is increasing in `, and ` ≤ 2(n− |A|) = 4αn by Lemma 3, we obtain

the upper bound
(

3α
(1+2α

4α
)4α
)n

. In the range of interest 0 < α < 1/3 the base achieves its
maximum for α ≈ 0.258 at a value below 1.975, resulting in the bound O(1.975n) on the
running time.

To reach the bound given in Theorem 1, we need further ideas. Let us first prove the two
lemmas from which the correctness of the current algorithm and its analysis follow.

Proof of Lemma 4. Let q =
∏`

i=1 (ai!). We describe an explicit mapping from linear
extensions of P to linear extensions of P ′.

Consider a linear extension < of P viewed as a sequence z = (z1, . . . , zn), where z1 <

· · · < zn. The sequence z contains ` disjoint subsequences of lengths a1, . . . , a` formed
respectively by the elements of A1, . . . , A`. Let z′ = (z′1, . . . , z′n) be the sequence obtained
from z by replacing, for all i ∈ [`], the elements of Ai in the sequence z, in the order of their
appearance, by the virtual elements x1

i , . . . , x
ai
i .

We proceed via two claims about the mapping z → z′ from which the statement follows:
(1) z′ is a linear extension of P ′, and (2) for every linear extension z′ of P ′ there are q
different linear extensions of P that map to z′.

For (1), let i1, i2 be two arbitrary indices 1 ≤ i1 < i2 ≤ n. We need to show that z′i2
⊀′ z′i1

.
The four cases to consider are: (1a) z′i1

, z′i2
∈W , (1b) z′i1

= xp
i and z′i2

= xq
j , (1c) z′i1

∈W
and z′i2

= xp
i , and (1d) z′i1

= xp
i , and z′i2

∈ W . These correspond to the four cases in the
definition of ≺′ and the claim easily follows in each case by the construction of z′.

For (2), consider a linear extension (sequence) z′ of P ′, and for all i ∈ [`] replace the
elements {x1

i , . . . , x
ai
i } in z′ by an arbitrary permutation of the elements of Ai. In this way

we obtain q different linear extensions of P, and when applying the above mapping to these
linear extensions, they all yield the same z′. J

Proof of Lemma 3. Let t = |A|, and let us label the elements of A as z1, . . . , zt. Let <1 and
<2 be the realizers of the two-dimensional poset P. Then, as A is an antichain, its elements
can be labeled such that z1 <1 · · · <1 zt, and zt <2 · · · <2 z1. The crucial observation is
that the neighborhood of an arbitrary y ∈ X \A in A is defined by an interval of indices.

Formally, for y ∈ X \A that is above or below A, let zi, zj be the elements of N(y) ∩A
with smallest, resp. largest index (it may happen that i = j). Define b(y) = i − 0.5 and
b′(y) = j + 0.5 the boundaries of the neighborhood of y. If y is incomparable with A, set the
boundaries to dummy values b(y) = 0, b′(y) = t+ 1.

If y is above A, then for all k such that b(y) < k < b′(y), we have zk ≺ y. To see this,
observe that zk <1 zj <1 y, and zk <2 zi <2 y.

Symmetrically, if y is below A, then for all k such that b(y) < k < b′(y), we have y ≺ zk.
To see this, observe that y <1 zi <1 zk, and y <2 zj <2 zk.

L. Kozma 30:7

Let b1, . . . , b2(n−t) be the multiset of neighborhood boundaries sorted in increasing order.
Their number is 2(n − t) as each of the n − t elements of X \ A contribute exactly two
boundaries. Let us add the two dummy boundaries b0 = 0 and b2(n−t)+1 = t + 1 (in case
they never occurred during the process).

The classes of A defined by the partition N(·) are then of the form {zj : bi < j < bi+1}
where 0 ≤ i ≤ 2(n− t). There are at most 2(n− t) + 1 such classes (not all boundaries are
necessarily distinct, and we can now remove empty classes due to duplicate boundaries).
Moreover, the two classes delimited by b0 to the left, respectively by b2(n−t)+1 to the right
are identical, corresponding to elements of A incomparable to all y ∈ X \A. The claimed
bound on the maximum number of classes follows. J

2.2 A faster algorithm
We now describe the improvements to Algorithm #LE-2D and its analysis that lead to the
running time claimed in Theorem 1.

Canonical matchings. Observe that set A in Lemma 3 denotes an arbitrary antichain.
When A is assumed to be the complement of a maximum matching with a certain property,
a stronger statement can be shown.

Let M be a maximum matching of C(P), let W be its vertex set, and let A = X \W . We
call an edge {xi, yi} of M separated, if there exist x1, x2 ∈ A such that xi ≺ x1 and x2 ≺ yi.
(In other words, xi is below A, and yi is above A.) Observe that, in this case, x1 and x2
must be the same, as otherwise M could be made larger by replacing edge {xi, xj} by the
two edges {xi, x1}, {x2, xj}. A matching is canonical if it contains no separated edges.

We argue that in an arbitrary poset a canonical matching of the same size as the
maximum matching can be found in polynomial time. Indeed, start with an arbitrary
maximum matching M . If M contains no separated edges, we are done. Otherwise, let
{xi, yi} be an edge of M with x ∈ A such that xi ≺ x ≺ yi. (Such a triplet can easily be
found in polynomial time.) Replace the edge {xi, yi} in M by the edge {x, yi}. As x was
previously not matched, the resulting set of edges is still a maximum matching. We claim
that with O(n2) such swaps we obtain a canonical matching (i.e. one without separated
edges). To see this, consider as potential function the sum of ranks of all vertices in the
current matching, according to an arbitrary fixed linear extension of P . Each swap increases
the potential by at least one (since x must come after xi in every linear extension). Since
the sum of ranks is an integer in O(n2), the number of swaps until we are done is also in
O(n2). In the following, we can therefore assume that M is a canonical maximum matching.
We can now state the stronger structural lemma.

I Lemma 5. Let P = (X,≺) be a size-n poset, with dim(P) ≤ 2. Let M be a canonical
maximum matching in C(P) with vertex set W , and let A = X \W . Then, N(·) partitions
A into at most |W | classes.

Proof. Since M is canonical, for every edge {xi, yi}, one of the following must hold:
(i) xi and yi are both above A,
(ii) xi and yi are both below A,
(iii) xi is incomparable with A and yi is above A,
(iv) yi is incomparable with A and xi is below A.

Recall that in the proof of Lemma 3, we considered, for all y ∈ X \A, the two boundaries
of the interval N(y) ∩ A. Now, in cases (iii) and (iv), only one of xi and yi need to be
considered, as the neighborhood of the other is disjoint from A.

SWAT 2020

30:8 Exact Exponential Algorithms for Two Poset Problems

In cases (i) and (ii), it is also sufficient to consider only one of xi and yi as we have
N(xi) ∩ A = N(yi) ∩ A. Furthermore, in this case |N(xi) ∩ A| = 1. To see this, suppose
that there are z, z′ ∈ A such that z ∈ N(xi) and z′ ∈ N(yi). Then M could be extended by
replacing the edge {xi, yi} with the edges {z, xi} and {z′, yi}, contradicting the maximality
of M .

It follows that in the argument of Lemma 3 we only need to consider the intervals created
by |M | elements of X \ A, yielding the bound 2|M | = |W | on the number of classes. It is
easy to construct examples where the bound is tight. J

It follows that, if we require the matching M in Step 1 of Algorithm #LE-2D to be
canonical, then by Lemma 4, the bound on the number of downsets improves to

(
3α
(1

2α
)2α
)n

.
In the range of interest 0 < α < 1/3 this quantity is easily upper bounded by 1.8912n with
maximum at α ≈ 0.319.

Packing triplets and quartets. The final improvement in running time comes from the
attempt to find, instead of a matching (i.e. a packing of edges), a packing of larger connected
structures. Beyond the concrete improvement, the technique may be of more general
applicability and interest, which we illustrate in § 3 for the jump number problem.

Assume, as before, that M is a canonical maximum matching of C(P) of size αn with
vertex set W and that A denotes the antichain X \W . Let us form an auxiliary bipartite
graph B with vertex sets L and R, where L = A, and R = M , i.e. R consists of the edges of
M . A vertex x ∈ L is connected to a vertex {xi, yi} ∈ R exactly if x is comparable to one or
both of xi and yi. Let MB be a maximum matching of B, of size βn. Clearly, β ≤ α.

Edges of MB connect vertices in A to matched edges of M , forming triplets of vertices of
X that induce connected subgraphs in C(P). Let T denote the set of all triplets created by
edges of MB .

Let us form now another auxiliary bipartite graph B′ with vertex sets L′ and R′, where
L′ consist of the vertices of A unmatched in MB , and let R′ = T , i.e. the triplets found in the
previous round. A vertex x ∈ L′ is connected to a vertex z ∈ R′ exactly if x is comparable
to at least one of the vertices forming the triplet z. Let MB′ be a maximum matching of B′,
and denote its size by γn. Clearly, γ ≤ β.

Edges of MB′ connect vertices in A to triplets of T , forming quartets of vertices of X
that induce connected subgraphs in C(P). Let Q denote the set of all quartets created by
edges of MB′ .

Let A′ denote the vertices of A that were not matched in either of the two matching
rounds. Observe that |A′| = n(1− 2α− β− γ). We make the following observations.

(1) The endpoints of edges of M that were unmatched in MB are not comparable to
any vertex in A′ (assuming that A′ is nonempty), as otherwise MB would not have been
maximal. There are n(α− β) such unmatched edges. These contribute a factor of 3n(α−β)

to the number of downsets.
(2) The vertices in triplets of T that were unmatched in MB′ are not comparable to

any vertex in A′ (assuming that A′ is nonempty), as otherwise MB′ would not have been
maximal. There are n(β− γ) such triplets. A simple case-analysis shows that the number of
downsets of a size-3 poset with connected comparability graph is at most 5. It follows that
these triplets contribute a factor of at most 5n(β−γ) to the number of downsets.

L. Kozma 30:9

(3) There are γn quartets in Q. A case-analysis5 shows that the number of downsets of a
size-4 poset with connected comparability graph is at most 9. It follows that these quartets
contribute a factor of at most 9nγ to the number of downsets.

(4) All vertices in X \A′ are accounted for. As for the vertices in A′, we partition them
into classes A1, . . . , A` by N(·), and apply the same transformation as previously, creating a
new poset P ′. By the previous discussion, only the vertices from the quartets in Q may be
comparable to vertices in A′. Furthermore, in each quartet, only the vertices coming from
the original matching M may be comparable to a vertex in A′ (other vertices come from the
antichain A ⊇ A′). Thus, by Lemma 5, the number of classes created on A′ is ` ≤ 2γn.

Putting everything together, assuming γ > 0 (the case γ = 0 is discussed later), we
obtain the upper bound τn on the number of downsets of P ′, where τ = τ(α,β,γ) =
3(α−β) · 5(β−γ) · 9γ ·

(
1−2α−β+γ

2γ

)2γ
. Under the constraint 0 < γ ≤ β ≤ α < 1/3, the bound

τ < 1.8286 holds, with the maximum attained for α = β = γ(≈ 0.1882). Observe that the
least favorable case occurs when all edges of M are matched into triplets, and all triplets are
matched into quartets.

When γ = 0, no quartets are created, and A′ forms a single class, transformed in P ′ into
a single chain, contributing a linear factor to the overall bound. Thus, the upper bound
n · τn holds, with τ = τ(α,β) = 3(α−β) · 5β < 1.71, maximum attained for α = β(≈ 1/3).

The resulting algorithm #LE-2D∗ is listed as Algorithm 2. The correctness and running
time bounds (Theorem 1) follow from the previous discussion. We defer some remarks about
the algorithm and its analysis to § 4.

Open questions. The following questions about counting linear extensions are suggested in
increasing order of difficulty. (1) Can #LE be solved in two-dimensional posets faster than
the algorithm of Theorem 1? (2) Can #LE be solved in time O(cn) for c < 2 in d-dimensional
posets, for d ≥ 3? (3) Can #LE be solved in time O(cn) for c < 2 in arbitrary posets?

3 The jump number problem

In this section we present our improvement for the jump number problem. We start with
a formal definition of the problem, and the straightforward dynamic programming. We
then review the algorithm of Kratsch and Kratsch, followed by our extension. The result
is intended as an illustration of the matching technique of § 2, which is not specific to
two-dimensional posets.

Given a linear extension x1 < · · · < xn of a poset P = (X,≺), a pair of neighbors (xi,
xi+1) is a jump if xi ⊀ xi+1, and is a bump if xi ≺ xi+1. The number of jumps, resp. bumps
of the linear extension < of P is denoted as jump(<), resp. bump(<). The jump number
problem asks to compute the minimum possible value jump(<) for a linear extension < of P .
Additionally, a linear extension realizing this value should be constructed. In the algorithms
we describe, obtaining a linear extension that realizes the minimum jump number is a mere
technicality, we thus focus only on computing the minimum jump number.

An easy observation is that the relation jump(<) + bump(<) = n− 1 holds for all linear
extensions < of P. Minimizing the number of jumps is thus equivalent to maximizing the
number of bumps, allowing us to focus on the latter problem.

5 An easy induction shows more generally that the maximum number of downsets of a size-n poset with
connected comparability graph is 2n−1 + 1.

SWAT 2020

30:10 Exact Exponential Algorithms for Two Poset Problems

Let bump(P) denote the maximum bump number of a linear extension of P. For all
Y ⊆ X, and x ∈ max (Y), let bump(Y, x) denote the maximum bump number of a linear
extension of the subposet of P induced by Y that ends with element x. Let us define
bump({x}, x) = 0, for all x ∈ X. We recursively express bump(Y, x) by removing x from the
end and trying all remaining elements in turn as the new last element:

bump(Y, x) = max
y∈max (Y \{x})

(
bump(Y \ {x}, y) + [y ≺ x]

)
. (2)

The term [y ≺ x] denotes the value 1 if y ≺ x, i.e. if the last pair forms a bump, and 0
otherwise. Executing recurrence (2) naïvely leads to an algorithm that computes bump(P)
in time O(2n · n2).

We now describe the improvement of Kratsch and Kratsch [27]. Observe that jumps
partition a linear extension of P uniquely into a sequence of chains of P, such that the last
element of each chain is incomparable with the first element of the next chain, and all other
neighboring pairs are comparable.

Consider a linear extension with minimum jump number and let C1, . . . , Ck denote the
non-trivial chains of its decomposition (i.e. all chains of length at least 2). Let C denote the
set of vertices of chains C1, . . . , Ck. Then, as all bumps occur between elements of C, the
bump number of P equals the bump number of the subposet induced by C. In other words,
to compute the maximum bump number, it is sufficient to consider in recurrence (2) the
subsets of the ground set X that are candidate sets C in the optimum.

Kratsch and Kratsch consider a maximum matching M of C(P) with vertex set W and
observe that the vertices of the antichain A = X \W that participate in nontrivial chains
(i.e. that are in C) form a matching with vertices of W . (This is because a vertex v ∈ A can
only form a bump together with a vertex from X \A, and two vertices v, v′ ∈ A cannot form
bumps with the same vertex, as that would contradict their incomparability.) Moreover,
v, v′ ∈ A cannot be the neighbors of the two endpoints of a matched edge of M , as that
would contradict the maximality of M .

Thus, it suffices to compute (2) over subsets of X that consist of W ∪A′, where A′ ⊆ A
and |A′| ≤ |M |. Furthermore, only downsets of P need to be considered, leading to a further
saving due to the fact that W forms a matching. Denoting |M | = αn, the overall number of
subsets of X that need to be considered is

((1−2α)n
≤αn

)
· 3αn.

Packing triplets. We now describe our improvement. Again, letM be a canonical maximum
matching of C(P) of size αn with vertex set W and let A denote the antichain X \W . Form
an auxiliary bipartite graph B with vertex sets L and R, where L = A, and R = M . A
vertex x ∈ L is connected to a vertex {xi, yi} ∈ R (i.e. an edge of M) exactly if x ≺ yi or
xi ≺ x. Let MB be a maximum matching of B, and denote its size by βn. Clearly, β ≤ α.

Edges of MB connect vertices in A to matched edges of M , forming triplets of vertices of
X that induce connected subgraphs in C(P). Let T denote the set of all such triplets. (To
keep the argument simple we forgo in this case further rounds of matching and the forming
of quartets. The result is thus not optimized to the fullest extent.)

Let A′ denote the vertices of A that were not matched in MB. Observe that |A′| =
n(1− 2α− β). We make the following observations.

(1) The endpoints of edges of M that were unmatched in MB are not comparable to any
vertex in A′ (assuming that A′ is nonempty), as otherwise MB would not have been maximal.
There are n(α− β) such edges. These edges contribute a factor of 3n(α−β) to the number of
downsets.

L. Kozma 30:11

(2) There are βn triplets in T . These contribute a factor of at most 5nβ to the number
of downsets.

(3) All vertices in X \A′ are accounted for. Vertices of A′ that participate in non-trivial
chains of the optimal linear extension can be matched to vertices in the triplets of T . A
vertex v ∈ A′ can only be connected to those vertices of a triplet in T that are endpoints of
an edge in M (all other vertices come from A, are thus incomparable with v). Furthermore,
v, v′ ∈ A′ may not connect to different endpoints of the same edge in M , as that would
contradict the maximality of M . It follows that each vertex in A′ that participates in C must
be matched to a unique triplet in T . Thus, at most βn vertices of A′ need to be considered.

The resulting Algorithm JN is listed as Algorithm 3. Its correctness follows from the
previous discussion.

Running time. In the large matching (α ≥ 1/3) case, the bound given in § 2 on the number
of downsets holds, and the running time is within the bound of Theorem 2. We assume
therefore that α < 1/3.

In the special case β = 0 only vertices in M need to be considered, with an overall upper
bound 3αn on the number of downsets. For α < 1/3, this quantity is below 1.443n.

Assuming β > 0, we have an upper bound τn on the number of downsets of P, where
τn = 3(α−β)n · 5βn ·

(
n(1−2α−β)
≤βn

)
. To obtain a simpler expression, we use a standard upper

bound [9, p. 406] on the sum of binomial coefficients. Assuming 0 ≤ 2b ≤ a ≤ 1, we have(
na
≤nb

)
=
∑nb

k=0
(

na
k

)
≤ nO(1) ·

(
aa

bb·(a−b)(a−b)

)n

.
Plugging in a = 1 − 2α − β and b = β, and assuming 2b ≤ a, we have 2α + 3β ≤ 1.

Omitting the polynomial factor, we obtain τ ≤ 3(α−β) · 5β · (1−2α−β)(1−2α−β)

ββ·(1−2α−2β)(1−2α−2β) . In the
critical region 0 < β ≤ α < 1/3 we obtain the bound τ < 1.824, with the maximum attained
for α = β(≈ 0.1918).

When 2α + 3β ≥ 1, we use the easier upper bound on the sum of binomial coefficients(
na
≤nb

)
≤ 2na, obtaining τ ≤ 3(α−β) · 5β · 2(1−2α−β). In the allowed range 0 < β ≤ α < 1/3

and additionally requiring 2α + 3β ≥ 1, the quantity is maximized for α = β = 0.2, yielding
τ < 1.8206, within the required bounds.

4 Discussion

We start with some remarks about algorithm #LE-2D∗. It is straightforward to extend this
algorithm beyond pairs, triplets, and quartets, to also form k-tuples for k > 4 via further
matching rounds. A similar analysis, however, indicates no further improvements in the
upper bound. When forming triplets and quartets, other strategies are also possible. For
instance, we may try to combine connected pairs of edges fromM into quartets. The quartets
formed in this way are, in fact, preferable to those obtained by augmenting triplets, as their
number of downsets is strictly less than the value 9 given before. (The value 9 is attained
when 3 of the 4 vertices form an antichain, which is not possible if the quartet consists of
two matched edges.)

We observe that in some instances, the largest antichain may be significantly larger than
the antichain A obtained as the complement of the maximum matching. One can find the
largest antichain in time O(n5/2) via a reduction to bipartite matching (see e.g. [43]). In
these cases, using the partition of the antichain Ai, . . . , A` (without arguing about matchings)
may lead to a better running time. In two-dimensional posets with a realization <1, <2,
the largest antichain can be found in time O(n logn) by reduction to the largest decreasing
subsequence problem. In our analysis, we assumed the classes Ai to be of equal size. The
running time can, of course, be significantly lower when the distribution of class sizes is far
from uniform.

SWAT 2020

30:12 Exact Exponential Algorithms for Two Poset Problems

We further remark that the actual time and space requirement of our algorithms is
dominated by the number of downsets of a given poset P (or rather, of the transformed poset
P ′). The number of downsets (order ideals) is known to equal the number of antichains [40,
§ 3]. Counting antichains is, in general, #P-hard [35], but solvable in two-dimensional
posets in polynomial time [41, 33]. Thus, assuming that the transformed poset P ′ is also
two-dimensional, we can efficiently compute a precise, instance-specific estimate of the time
and space requirements of our algorithms.

To see that indeed, dim(P ′) ≤ 2, recall that P ′ is obtained from P by replacing antichains
Ai by chains of equal size, such that the comparability of the involved elements to elements
in X \A is preserved. We can obtain a two-dimensional embedding of P ′ by starting with a
two-dimensional embedding of P, with points having integer coordinates, and no two points
aligned on either coordinate. For an arbitrary x ∈ Ai, form a 0.5× 0.5 box around the point
x, and place the chain replacing Ai on the main diagonal of this box. Then the comparability
of points in the chain with elements in X \Ai is the same as for the point x.

Optimization. Our first two bounds in § 2 depend only on the fraction α of matched
vertices, and their maxima are found using standard calculus. The final bounds given
in Theorem 1 and Theorem 2 however, require us to optimize over unwieldy multivariate
quantities with constrained variables. The given numerical bounds were obtained using
Wolfram Mathematica software. We have, however, independently certified the bounds, by
the method illustrated next.

Suppose we want to show that τ < 1.8286, where τ = τ(α,β,γ) = 3(α−β) · 5(β−γ) · 9γ ·(
1−2α−β+γ

2γ

)2γ
, and A ≤ γ ≤ β ≤ α ≤ B, for A,B ∈ (0, 1/3).

Consider a box B = [α1,α2]× [β1,β2]× [γ1,γ2] ⊆ [A,B]3. Then, at an arbitrary point
(α,β,γ) ∈ B, the following (rather weak) upper bound holds.

τ(α,β,γ) ≤ 3α2 ·
(

5
3

)β2

·
(

9
5

)γ2

·
(

1− 2α1 − β1 + γ2

2γ1

)2γ2

.

To show τ < 1.8286, it is sufficient to exhibit a collection of boxes, such that (1) for all
boxes, the stated upper bound evaluates to a value smaller than 1.8286, and (2) the union of
the boxes covers the entire domain of the variables. We can find such a collection of boxes if
we start with a single box that contains the entire domain of the variables, and recursively
split boxes into two equal parts (along the longest side) whenever the upper bound evaluates
to a value larger than the required value.

Higher dimensions. A straightforward extension of Algorithms #LE-2D and #LE-2D∗ to
higher dimensional posets does not yield improvements over the naïve dynamic programming.
The crux of the argument in two dimensions is that a large antichain in P is split, according
to the neighborhoods in C(P) into a small number of classes. In dimensions three and above
it is easy to construct posets with an antichain containing almost all elements, e.g. such
that |X \A| = O(

√
n), with the property that all elements of A have unique neighborhoods.

In this case, the number of classes is |A| and the described techniques yield no significant
savings.

L. Kozma 30:13

Algorithm 2 Algorithm #LE-2D∗.

Input: Poset P = (X,≺), where |X| = n.
Output: The number of linear extensions LE(P) of P.

1: Find a maximum matching M of C(P) with vertex set W .
2: Let A = X \W .
3: Find T and Q as described, and let A′ be the unmatched part of A.
4: Let A1, . . . , A` be the partition of A′ by the neighborhoods in C(P).
5: Let ai = |Ai| for i ∈ [`].
6: Construct P ′ = (X ′,≺′).
7: Compute N = LE(P ′) using (1).
8: return

∏
i∈[`] (ai!) ·N .

Algorithm 3 Algorithm JN.

Input: Poset P = (X,≺), where |X| = n.
Output: The minimum jump number of a linear extension of P.

1: Find a maximum matching M of C(P) with vertex set W .
2: Let A = X \W .
3: Find T as described, and let A′ be the unmatched part of A.
4: Let β = |T |.
5: Compute B = bump(P) by (2), using downsets of P with at most βn vertices from A′.
6: return n− 1−B.

References
1 P. D. Amer, C. Chassot, T. J. Connolly, M. Diaz, and P. Conrad. Partial-order transport

service for multimedia and other applications. IEEE/ACM Transactions on Networking,
2(5):440–456, October 1994. doi:10.1109/90.336326.

2 KA Baker, Peter C Fishburn, and Fred S Roberts. Partial orders of dimension 2, interval
orders, and interval graphs, 1970.

3 Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.
Assoc. Comput. Mach., 9:61–63, 1962.

4 G. R. Brightwell, S. Felsner, and W. T. Trotter. Balancing pairs and the cross product
conjecture. Order, 12(4):327–349, December 1995. doi:10.1007/BF01110378.

5 Graham Brightwell. Balanced pairs in partial orders. Discrete Mathematics, 201(1):25–52,
1999. doi:10.1016/S0012-365X(98)00311-2.

6 Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8(3):225–242,
September 1991. doi:10.1007/BF00383444.

7 Russ Bubley and Martin Dyer. Faster random generation of linear extensions. Discrete
Mathematics, 201(1):81–88, 1999. doi:10.1016/S0012-365X(98)00333-1.

8 Stéphan Ceroi. A weighted version of the jump number problem on two-dimensional orders is
np-complete. Order, 20(1):1–11, 2003.

9 T.M. Cover and J.A. Thomas. Elements of Information Theory. A Wiley-Interscience
publication. Wiley, 2006.

10 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as cnf-sat.
ACM Trans. Algorithms, 12(3):41:1–41:24, May 2016. doi:10.1145/2925416.

11 Karel De Loof, Hans De Meyer, and Bernard De Baets. Exploiting the lattice of ideals
representation of a poset. Fundam. Inf., 71(2,3):309–321, February 2006.

SWAT 2020

https://doi.org/10.1109/90.336326
https://doi.org/10.1007/BF01110378
https://doi.org/10.1016/S0012-365X(98)00311-2
https://doi.org/10.1007/BF00383444
https://doi.org/10.1016/S0012-365X(98)00333-1
https://doi.org/10.1145/2925416

30:14 Exact Exponential Algorithms for Two Poset Problems

12 Samuel Dittmer and Igor Pak. Counting linear extensions of restricted posets, 2018. arXiv:
1802.06312.

13 Ben Dushnik and E. W. Miller. Partially ordered sets. American Journal of Mathematics,
63(3):600–610, 1941.

14 Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1–17, January 1991. doi:
10.1145/102782.102783.

15 E. Eiben, R. Ganian, K. Kangas, and S. Ordyniak. Counting linear extensions: Para-
meterizations by treewidth. Algorithmica, 81(4):1657–1683, April 2019. doi:10.1007/
s00453-018-0496-4.

16 Stefan Felsner and Thibault Manneville. Linear extensions of n-free orders. Order, 32(2):147–
155, 2015. doi:10.1007/s11083-014-9321-0.

17 Stefan Felsner and Lorenz Wernisch. Markov chains for linear extensions, the two-dimensional
case. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
5-7 January 1997, New Orleans, Louisiana, USA., pages 239–247, 1997. URL: http://dl.
acm.org/citation.cfm?id=314161.314262.

18 Peter C. Fishburn and William V. Gehrlein. A comparative analysis of methods for constructing
weak orders from partial orders. The Journal of Mathematical Sociology, 4(1):93–102, 1975.
doi:10.1080/0022250X.1975.9989846.

19 R. L. Graham, M. Grötschel, and L. Lovász, editors. Handbook of Combinatorics (Vol. 1).
MIT Press, Cambridge, MA, USA, 1995.

20 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
J. Soc. Indust. Appl. Math., 10:196–210, 1962.

21 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, December 2001. doi:10.1006/
jcss.2001.1774.

22 Gwenaël Joret, Piotr Micek, and Veit Wiechert. Sparsity and dimension. Combinatorica,
38(5):1129–1148, October 2018. doi:10.1007/s00493-017-3638-4.

23 Jeff Kahn and Michael Saks. Balancing poset extensions. Order, 1(2):113–126, June 1984.
doi:10.1007/BF00565647.

24 Kustaa Kangas, Teemu Hankala, Teppo Mikael Niinimäki, and Mikko Koivisto. Counting
linear extensions of sparse posets. In IJCAI 2016, pages 603–609, 2016. URL: http://www.
ijcai.org/Abstract/16/092.

25 Kustaa Kangas, Mikko Koivisto, and Sami Salonen. A faster tree-decomposition based
algorithm for counting linear extensions. In IPEC 2018, pages 5:1–5:13, 2018. doi:10.4230/
LIPIcs.IPEC.2018.5.

26 Donald E. Knuth and Jayme Luiz Szwarcfiter. A structured program to generate all topological
sorting arrangements. Inf. Process. Lett., 2(6):153–157, 1974. doi:10.1016/0020-0190(74)
90001-5.

27 Dieter Kratsch and Stefan Kratsch. The jump number problem: Exact and parameterized. In
IPEC 2013, pages 230–242, 2013. doi:10.1007/978-3-319-03898-8_20.

28 Nathan Linial. Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic
Discrete Methods, 7(2):331–335, April 1986. doi:10.1137/0607036.

29 L. Lovász. An Algorithmic Theory of Numbers, Graphs, and Convexity. CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, 1986.

30 Thomas Lukasiewicz, Maria Vanina Martinez, and Gerardo I. Simari. Probabilistic preference
logic networks. In ECAI 2014, pages 561–566, 2014. doi:10.3233/978-1-61499-419-0-561.

31 Heikki Mannila and Christopher Meek. Global partial orders from sequential data. In ACM
SIGKDD 2000, pages 161–168, 2000. doi:10.1145/347090.347122.

32 Jason Morton, Lior Pachter, Anne Shiu, Bernd Sturmfels, and Oliver Wienand. Convex rank
tests and semigraphoids. SIAM J. Discrete Math., 23(3):1117–1134, 2009. doi:10.1137/
080715822.

http://arxiv.org/abs/1802.06312
http://arxiv.org/abs/1802.06312
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/102782.102783
https://doi.org/10.1007/s00453-018-0496-4
https://doi.org/10.1007/s00453-018-0496-4
https://doi.org/10.1007/s11083-014-9321-0
http://dl.acm.org/citation.cfm?id=314161.314262
http://dl.acm.org/citation.cfm?id=314161.314262
https://doi.org/10.1080/0022250X.1975.9989846
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/s00493-017-3638-4
https://doi.org/10.1007/BF00565647
http://www.ijcai.org/Abstract/16/092
http://www.ijcai.org/Abstract/16/092
https://doi.org/10.4230/LIPIcs.IPEC.2018.5
https://doi.org/10.4230/LIPIcs.IPEC.2018.5
https://doi.org/10.1016/0020-0190(74)90001-5
https://doi.org/10.1016/0020-0190(74)90001-5
https://doi.org/10.1007/978-3-319-03898-8_20
https://doi.org/10.1137/0607036
https://doi.org/10.3233/978-1-61499-419-0-561
https://doi.org/10.1145/347090.347122
https://doi.org/10.1137/080715822
https://doi.org/10.1137/080715822

L. Kozma 30:15

33 Rolf Möhring. Computationally Tractable Classes of Ordered Sets, pages 105–193. Springer,
January 1989. doi:10.1007/978-94-009-2639-4_4.

34 Teppo Mikael Niinimäki and Mikko Koivisto. Annealed importance sampling for structure
learning in bayesian networks. In IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 1579–1585, 2013.
URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6885.

35 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing
the probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983. doi:
10.1137/0212053.

36 William R Pulleyblank. On minimizing setups in precedence constrained scheduling. Universität
Bonn. Institut für Ökonometrie und Operations Research, 1981.

37 I. Rival. Ordered Sets: Proceedings of the NATO Advanced Study Institute held at Banff,
Canada, August 28 to September 12, 1981. Nato Science Series C:. Springer Netherlands, 2012.

38 Alex Scott and David R. Wood. Better bounds for poset dimension and boxicity. CoRR,
abs/1804.03271, 2018. arXiv:1804.03271.

39 Richard P Stanley. Two poset polytopes. Discrete & Computational Geometry, 1(1):9–23,
1986.

40 R.P. Stanley. Enumerative Combinatorics:. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1997.

41 George Steiner. On estimating the number of order ideals in partial orders, with some
applications. Journal of statistical planning and inference, 34(2):281–290, 1993.

42 George Steiner and Lorna K Stewart. A linear time algorithm to find the jump number of
2-dimensional bipartite partial orders. Order, 3(4):359–367, 1987.

43 R.E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Conference
Series in Applied Mathematics. Society for Industrial and Applied Mathematics, 1983.

44 W.T. Trotter. Combinatorics and partially ordered sets: dimension theory. Johns Hopkins
Series in the Mathematical Sciences. J. Hopkins University Press, 1992.

45 Chris S. Wallace, Kevin B. Korb, and Honghua Dai. Causal discovery via mml. In ICML
1996, pages 516–524, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

46 P. Winkler. Average height in a partially ordered set. Discrete Mathematics, 39(3):337–341,
1982. doi:10.1016/0012-365X(82)90157-1.

SWAT 2020

https://doi.org/10.1007/978-94-009-2639-4_4
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6885
https://doi.org/10.1137/0212053
https://doi.org/10.1137/0212053
http://arxiv.org/abs/1804.03271
https://doi.org/10.1016/0012-365X(82)90157-1

	Introduction
	Counting linear extensions in two-dimensional posets
	A first improvement
	A faster algorithm

	The jump number problem
	Discussion

