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Abstract
The sparse regression problem, also known as best subset selection problem, can be cast as follows:
Given a set S of n points in Rd, a point y ∈ Rd, and an integer 2 ≤ k ≤ d, find an affine combination
of at most k points of S that is nearest to y. We describe a O(nk−1 logd−k+2 n)-time randomized
(1 + ε)-approximation algorithm for this problem with d and ε constant. This is the first algorithm
for this problem running in time o(nk). Its running time is similar to the query time of a data
structure recently proposed by Har-Peled, Indyk, and Mahabadi (ICALP’18), while not requiring
any preprocessing. Up to polylogarithmic factors, it matches a conditional lower bound relying on
a conjecture about affine degeneracy testing. In the special case where k = d = O(1), we provide
a simple Oδ(nd−1+δ)-time deterministic exact algorithm, for any δ > 0. Finally, we show how to
adapt the approximation algorithm for the sparse linear regression and sparse convex regression
problems with the same running time, up to polylogarithmic factors.
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1 Introduction

Searching for a point in a set that is the closest to a given query point is certainly among the
most fundamental problems in computational geometry. It motivated the study of crucial
concepts such as multidimensional search data structures, Voronoi diagrams, dimensionality
reduction, and has immediate applications in the fields of databases and machine learning. A
natural generalization of this problem is to search not only for a single nearest neighbor, but
rather for the nearest em combination of a bounded number of points. More precisely, given
an integer k and a query point y, we may wish to find an affine combination of k points of
the set that is the nearest to y, among all possible such combinations. This problem has
a natural interpretation in terms of sparse approximate solutions to linear systems, and
is known as the sparse regression, or sparse approximation problem in the statistics and
machine learning literature. Sparsity is defined here in terms of the `0 pseudonorm ‖.‖0, the
number of nonzero components. The sparse affine regression problem can be cast as follows:
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20:2 Sparse Regression via Range Counting

I Problem 1 (Sparse affine regression). Given a matrix A ∈ Rd×n, a vector y ∈ Rd, and
an integer 2 ≤ k ≤ d, find x ∈ Rn minimizing ‖Ax− y‖2, and such that ‖x‖0 ≤ k,
and

∑n
i=1 xi = 1.

By interpreting the columns of A as a set of n points in Rd, the problem can be
reformulated in geometric terms as the nearest induced flat problem.

I Problem 2 (Nearest induced flat). Given a set S of n points in Rd, an additional point y ∈
Rd, and an integer k such that 2 ≤ k ≤ d, find k points of S such that the distance from y to
their affine hull is the smallest.

Here the distance from a point to a flat is the distance to the closest point on the flat. Note
that if we allow k = 1 in the definition above, we have the nearest neighbor problem as a
special case. We consider the setting in which the dimension d of the ambient space as well
as the number k of points in the sought combination are constant, and study the asymptotic
complexity of the problem with respect to n. As observed recently by Har-Peled, Indyk,
and Mahabadi [25], the problem is closely related to the classical affine degeneracy testing
problem, defined as follows.

I Problem 3 (Affine degeneracy testing). Given a set S of n points in Rd, decide whether
there exist d+ 1 distinct points of S lying on an affine hyperplane.

The latter can be cast as deciding whether a point set is in so-called general position, as is
often assumed in computational geometry problems. In the special case d = 2, the problem
is known to be 3SUM-hard [24, 9]. In general, it is not known whether it can be solved
in time O(nd−δ) for some positive δ [21, 3], even for randomized algorithms. Supposing
it cannot, we directly obtain a conditional lower bound on the complexity of the nearest
induced flat problem. This holds even for approximation algorithms, which return an induced
flat whose distance is within some bounded factor of the distance of the actual nearest flat.

I Lemma 1 (Har-Peled, Indyk, and Mahabadi [25]). If the nearest induced flat problem can
be approximated within any multiplicative factor in time O(nk−1−δ) for some positive δ, then
affine degeneracy testing can be solved in time O(nd−δ).

Proof. Suppose we have an approximation algorithm for the nearest induced flat problem.
Then given an instance of affine degeneracy testing, we can go through every point y ∈ S
and run this algorithm on an instance composed of the set S \ {y}, the point y, and k = d.
The answer to the degeneracy testing instance is positive if and only if for at least one of
these instances, the distance to the approximate nearest flat is zero. The running time
is O(nd−δ). J

Motivations and previous works
Sparse regression is a cornerstone computational task in statistics and machine learning, and
comes in a number of flavors. It is also referred to as best subset selection or, more generally,
as feature selection problems [31, 11]. In practice, it is often useful to allow for the sparsity
constraint by including a penalty term in the objective function, hence writing the problem
in a Lagrangian form. If the `1 norm is used instead of the `0 norm, this method is known
as the LASSO method [32], to which a tremendous amount of research has been dedicated in
the past twenty years. In the celebrated k-SVD algorithm for sparse dictionaries design [2],
the sparse coding stage consists of a number of sparse regression steps. In this context, they
are typically carried out using greedy methods such as the matching pursuit algorithm [29].
Efficient sparse regression is also at the heart of compressed sensing techniques [13, 18].
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Aiming at an exhaustive survey of the variants and applications of sparse regression is
futile; instead, we refer to Hastie, Tibshirani, and Friedman [26] (Chapter 3), Miller [30], and
references therein. We also point to Bertsimas, Pauphilet, and Van Parys [12] for a recent
survey on practical aspects of sparse regression methods.

The computational complexity of sparse regression problems is also well-studied [31,
17, 23, 22]. In general, when a solution x is sought that minimizes the number of nonzero
components while being at bounded distance from y, the problem is known to be NP-hard [31].
However, the complexity of the sparse regression problem when the sparsity constraint k is
taken as a fixed parameter has not been thoroughly characterized. In particular, no algorithm
with running time o(nk) is known.

Recently, Har-Peled, Indyk, and Mahabadi [25] showed how to use approximate nearest
neighbor data structures for finding approximate solutions to the sparse affine regression
problem. They mostly consider the online version of the problem, in which we allow some
preprocessing time, given the input point set S, to construct a data structure, which is
then used to answer queries with input y. They also restrict to approximate solutions, in
the sense that the returned solution has distance at most (1 + ε) times larger than the
true nearest neighbor distance for any fixed constant ε. They show that if there exists
a (1 + ε)-approximate nearest neighbor data structure with preprocessing time S(n, d, ε)
and query time Q(n, d, ε), then we can preprocess the set S in time nk−1S(n, d, ε) and
answer regression queries in time nk−1Q(n, d, ε). Plugging in state of the art results on
approximate nearest neighbor searching in fixed dimension [8], we obtain a preprocessing
time of O(nk logn) with query time O(nk−1 logn) for fixed constants d and ε.

They also consider the sparse convex regression problem, in which the coefficients of the
combination are not only required to sum to one, but must also be nonnegative. In geometric
terms, this is equivalent to searching for the nearest induced simplex. They describe a data
structure for the sparse convex regression problem having the same performance as in the
affine case, up to a O(logk n) factor. For k = 2, they also give a (2 + ε)-approximation
subquadratic-time offline algorithm. When d = O(1), the running time of this algorithm can
be made close to linear.

A closely related problem is that of searching for the nearest flat in a set [27, 10, 28].
This was also studied recently by Agarwal, Rubin, and Sharir [1], who resort to polyhedral
approximations of the Euclidean distance to design data structures for finding an approximate
nearest flat in a set. They prove that given a collection of n (k − 1)-dimensional flats in Rd,
they can construct a data structure in time O(nk polylog(n)) time and space that can be
used to answer (1 + ε)-approximate nearest flat queries in time O(polylog(n)). They also
consider the achievable space-time tradeoffs. Clearly, such a data structure can be used for
online sparse affine regression: We build the structure with all possible

(
n
k

)
flats induced by

the points of S. This solution has a very large space requirement and does not help in the
offline version stated as Problem 2.

In this paper, we give an efficient algorithm for Problem 2, and bridge the gap between
the trivial upper bound of O(nk) and the lower bound given by the affine degeneracy testing
problem, without requiring any preprocessing.

Our results
Nearest induced line, flat, or hyperplane

We prove that the nearest induced flat problem (Problem 2), can be solved within a (1 + ε)
approximation factor for constant d and ε in time O(nk−1 logd−k+2 n), which matches the
conditional lower bound on affine degeneracy testing, up to polylogarithmic factors. Har-

SWAT 2020
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Peled, Indyk, and Mahabadi [25] gave a data structure to preprocess a set of data points to
allow solving the nearest induced flat problem on this set for any query point. Their data
structure requires Õ(nk) preprocessing and Õ(nk−1) query time. We propose an algorithm
that gets rid of the preprocessing for single queries: the overall running time of our algorithm
is equal to the query time of their data structure, up to polylogarithmic factors. To the best
of our knowledge, this is a near-linear improvement on all previous methods for this special
case.

The two main tools that are used in our algorithms are on the one hand the approximation
of the Euclidean distance by a polyhedral distance, as is done in Agarwal, Rubin, and Sharir [1],
and on the other hand a reduction of the decision version of the problem to orthogonal range
queries. Note that orthogonal range searching data structures are also used in [25], albeit in
a significantly distinct fashion.

In §2, as warm-up, we focus on the special case of Problem 2 in which d = 3 and k = 2.

I Problem 4 (Nearest induced line in R3). Given a set S of n points in R3, and an additional
point y, find two points a, b ∈ S such that the distance from y to the line going through a
and b is the smallest.

Our algorithm for this special case already uses all the tools that are subsequently generalized
for arbitrary values of k and d. The general algorithm for the nearest induced flat problem is
described in §3.

In §4, we consider the special case of Problem 2 in which k = d, which can be cast as the
nearest induced hyperplane problem.

I Problem 5 (Nearest induced hyperplane). Given a set S of n points in Rd, and an additional
point y, find d points of S such that the distance from y to the affine hyperplane spanned by
the d points is the smallest.

For this case, we design an exact algorithm with running time O(nd−1+δ), for any δ > 0.
The solution solely relies on classical computational geometry tools, namely point-hyperplane
duality and cuttings [16, 15].

Our algorithms can be adapted to perform sparse linear regression, instead of sparse
affine regression. In the former, we drop the condition that the sum of the coefficients must
be equal to one. This is equivalent to the nearest linear induced k-flat problem. It can be
solved in the same time as in the affine case. To see this, realize that the problem is similar
to the nearest induced flat problem where the first vertex is always the origin. The obtained
complexity is the same as the one for the nearest induced flat problem.

Nearest induced simplex

Adapting our algorithm to sparse convex regression, which differs from sparse affine regression
by requiring x to be positive, is a bit more involved.

Har-Peled, Indyk, and Mahabadi [25] augment their data structure for the nearest induced
flat with orthogonal range searching data structures in (k + 1)-dimensional space to solve
this problem with an extra O(logk n) factor in both the preprocessing and query time. We
show we can perform a similar modification.

The sparse convex regression problem can be cast as the problem of finding the nearest
simplex induced by k points of S.

I Problem 6 (Nearest induced simplex). Given a set S of n points in Rd, an additional
point y, and an integer k such that 2 ≤ k ≤ d, find k points of S such that the distance
from y to their convex hull is the smallest.



J. Cardinal and A. Ooms 20:5

Table 1 Results. For the approximation algorithms, the dependency on ε in the running time is
of the order of ε(1−d)/2.

Problem Details Approximation Running Time
Problem 4: Nearest induced line in R3 §2 1 + ε Oε(n log3 n)
Problem 2: Nearest induced flat §3 1 + ε Od,ε(nk−1 logd−k+2 n)
Problem 5: Nearest induced hyperplane §4 1 Od,δ(nd−1+δ), ∀δ > 0
Problem 6: Nearest induced simplex §5 1 + ε Od,ε(nk−1 logd n)

We prove that this problem can also be approximated within a (1 + ε) approximation factor
for constant d and ε in time O(nk−1 logd n), hence with an extra O(logk−2 n) factor in the
running time compared to the affine case. This is described in §5.

Our results and the corresponding sections are summarized in Table 1.

2 A (1 + ε)-approximation algorithm for the nearest induced line
problem in R3

We first consider the nearest induced line problem (Problem 4). We describe a near-linear
time algorithm that returns a (1 + ε)-approximation to the nearest induced line in R3, that
is, a line at distance at most (1 + ε) times larger than the distance to the nearest line.

I Theorem 2. For any constant ε > 0, there is a randomized (1+ε)-approximation algorithm
for the nearest induced line problem in R3 running in time Oε(n log3 n) with high probability.

The sketch of our algorithm is as follows: First, reduce the problem of minimizing
the Euclidean distance to that of minimizing the polyhedral distance for some well-chosen
polyhedron depending on ε. Second, reduce the problem of minimizing the polyhedral
distance to that of edge-shooting. Third, reduce the problem of edge-shooting to that of
deciding whether an edge shot at a certain distance would hit any induced line through some
sort of binary search. Fourth, efficiently solve this decision problem using orthogonal range
counting data structures.

(1 + ε)-approximation via polyhedral distances

The polyhedral distance dQ(y, v) between two points y and v with respect to a polyhedron Q
centered on the origin is the smallest λ such that the dilation λQ of Q centered on y contains v,
hence such that v ∈ y + λQ. Our proof uses the following result, of which a weaker variant
due to Dudley [19] is a major ingredient in the design of the data structure described by
Agarwal, Rubin, and Sharir [1].

I Lemma 3 (Arya, Arya, da Fonseca, Mount [4]). For any positive integer d and positive
real ε, there exists a d-dimensional polyhedron Q with O(1/ε(d−1)/2) faces such that for
every y, v ∈ Rd:

‖y − v‖2 ≤ dQ(y, v) ≤ (1 + ε) · ‖y − v‖2 .

This bound is asymptotically optimal. See [5, 7, 6] for more details.
Next, we reduce Problem 4 to a counting problem in two steps.

SWAT 2020
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a

b

∆

Ca

Figure 1 The cone Ca.

Edge-shooting

We use Lemma 3 for d = 3. We give an exact algorithm for computing the nearest induced
line with respect to a polyhedral distance dQ, where Q is defined from ε as in Lemma 3. Given
a polyhedron Q, one can turn it into a simplicial polyhedron by triangulating it. Therefore,
for constant values of ε, this reduces the problem to a constant number of instances of the
edge-shooting problem, defined as follows: Given an edge e of Q, find the smallest value λ
such that y + λe intersects a line through two points of S. We iterate this for all edges of Q,
and pick the minimum value. This is exactly the polyhedral distance from y to its nearest
induced line.

Binary search

Using a randomized binary search procedure, we reduce the edge-shooting problem to a
counting problem, defined as follows: given the triangle ∆ defined as the convex hull of y
and y + λe, count how many pairs of points a, b ∈ S are such that the line `(a, b) through
them intersects ∆. Suppose there exists a procedure for solving this problem. We can use
this procedure to solve the edge-shooting problem efficiently as follows.

First initialize λ to some upper bound on the distance (for instance, initialize λ to
the distance to the closest data point p ∈ S: λ = minp∈S ‖p− y‖2). Then count how
many lines `(a, b) intersect ∆, using the procedure. If there is only one, then return its
(polyhedral) distance to y. Otherwise, pick one such line uniformly at random and compute
the value λ′ such that this line intersects y+λ′e. Then iterate the previous steps with λ← λ′,
unless λ′ = 0 in which case we return 0. Since we picked the line at random, and since there
are O(n2) such lines at the beginning of the search, the number of iterations of this binary
search is O(logn) with high probability.

We therefore reduced the nearest induced line problem to O(ε−1 logn) instances of the
counting problem.

Orthogonal range counting queries

Data structures for orthogonal range counting queries store a set of points in Rg in such a
way that the number of points in a given g-rectangle (cartesian product of g intervals) can
be returned quickly. Known data structures for orthogonal range counting queries in Rg
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a

∆

f

Figure 2 The order of the points defined by the planes containing an edge f of ∆.

require O(n logg−1 n) preprocessing time and can answer queries in O(logg−1 n) time [34, 14].
Note that the actual coordinates of the points do not matter: We only need to know the
order of their projections on each axis. We now show how to solve the counting problem
using a data structure for orthogonal range queries in R3.

Let us fix the triangle ∆ and a point a ∈ R3, and consider the locus of points b ∈ R3

such that the line `(a, b) intersects ∆. This is a double simplicial cone with apex a and
whose boundary contains the boundary of ∆. This double cone is bounded by three planes,
one for each edge of ∆. In fact, we will only consider one of the two cones, because `(a, b)
intersects ∆ if and only if either b is contained in the cone of apex a, or a is contained in the
cone of apex b. Let us call Ca the cone of apex a. This is illustrated on Figure 1.

Let us consider one edge f of ∆ and all the planes containing f . These planes induce a
circular order on the points of S, which is the order in which they are met by a plane rotating
around the supporting line of f . This is illustrated on Figure 2. Now let us denote by Hf

the plane containing a and f and by H+
f the halfspace bounded by Hf and containing ∆.

The set of points of S contained in H+
f is an interval in the circular order mentioned above.

Hence the set of points contained in Ca is the intersection of three intervals in the three
circular orders defined by the three edges of ∆.

Proof of Theorem 2. Let Q be some polyhedron in R3, λ ∈ R, S ⊂ R3, y ∈ R3, and e an
edge of Q. We use an orthogonal range counting data structure for storing the points of S
with coordinates corresponding to their ranks in each of the three permutations induced by
the three edges of ∆ = conv({ y, y + λe }). We get those rank-coordinates by sorting S three
times, once for each induced permutation, in time O(n logn), then construct the orthogonal
range counting data structure with those coordinates in time O(n log2 n). Then for each of
the n points a ∈ S, we count the number of points b in the cone Ca by querying the data
structure in O(log2 n) time. Hence overall, the counting problem is solved in time O(n log2 n).
Note that the circularity of the order can be easily handled by doubling every point.

This can be combined with the previous reductions provided we can choose a line
intersecting ∆ uniformly at random within that time bound. This is achieved by first
choosing a with probability proportional to the number of points b such that `(a, b) ∩∆ 6= ∅.
Then we can pick a point b uniformly at random in this set in linear time.

Combining with the previous reductions, we obtain an approximation algorithm running
in time Oε(n log3 n) for the nearest induced line problem in R3. J

SWAT 2020
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3 A (1 + ε)-approximation algorithm for the nearest induced flat
problem

This section is dedicated to proving our main result in full generality. We provide an efficient
approximation algorithm for the nearest induced flat problem (Problem 2).

We use the following notations: aff(X) denotes the affine hull of the set X and conv(X)
denotes its convex hull. The set { 1, 2, . . . , n } is denoted by [n].

I Theorem 4. For any constant positive real ε > 0 and constant positive integers d and k,
there is a randomized (1 + ε)-approximation algorithm for the nearest induced flat problem
in Rd running in time Oε(nk−1 logd−k+2 n) with high probability.

Proof. The algorithm is a generalization of the one in the previous section, in which the
point a is replaced by a set composed of k− 1 points a1, a2, . . . , ak−1, and the edge e is now a
(simplicial) (d− k)-face of Q. Given a k − 1-tuple of points a1, a2, . . . , ak−1, we characterize
the locus of points ak such that the affine hull of the points a1, a2, . . . , ak intersects the
convex hull of y and y + λe. These hyperplanes are again such that counting all such points
can be done using orthogonal range queries. More precisely, we perform the following steps.

(1 + ε)-approximation and binary search

From Lemma 3, there exists a polyhedron with O(1/ε(d−1)/2) faces such that the induced
polyhedral distance dQ(., .) is a (1 + ε)-approximation of the Euclidean distance. We know
that the distance dQ from the point y to the nearest induced flat is attained at a point
lying on a (d− k)-face of y + λQ. We can therefore perform the same procedure as in the
previous case, except that we now shoot a (d − k)-face e of Q, instead of an edge, in the
same way as is done in Agarwal, Rubin, Sharir [1]. ∆ still denotes the convex hull of y
and y+λe, which generalizes to a (d−k+1)-simplex. The binary search procedure generalizes
easily: start with a large enough λ, if there is more than one flat aff({ a1, a2, . . . , ak })
intersecting ∆ = conv({ y, y + λe }), pick one such flat uniformly at random, and compute
the value λ such that this flat intersects ∆. There are only O(nk) such flats at the beginning
of the search, hence a search takes O(logn) steps with high probability. We can therefore
reduce the problem to O(ε(1−d)/2 logn) instances of the following counting problem: given
a (d − k + 1)-simplex ∆, count the number of k-tuples of points a1, a2, . . . , ak ∈ S whose
affine hull aff(a1, a2, . . . , ak) intersects ∆.

An intersection condition

We first make a simple observation that characterizes such k-tuples. Let A be a set of k
points {a1, a2, . . . , ak}, and let B = {b1, b2, . . . , bd−k+2} be the set of vertices of ∆. We
assume without loss of generality that the points of A together with the vertices of ∆ are in
general position. We define d− k + 2 hyperplanes Hi = aff(A ∪B \ { bi, ak }), i ∈ [d− k + 2].
We then let H+

i be the halfspace supported by Hi that contains bi, and H−i the halfspace
that does not contain bi.

I Lemma 5.

aff(A) ∩∆ 6= ∅ ⇐⇒ ak ∈

((
d−k+2⋂
i=1

H+
i

)
∪

(
d−k+2⋂
i=1

H−i

))
.
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a1 a2

∆

b1

b2

H2

H1

Figure 3 Illustration of Lemma 5 in the case k = d = 3. The plane through a1, a2, a3 intersects
the line segment ∆ if and only if a3 is located either above or below the two planes H1, H2.

Proof. (⇒) Suppose that ak 6∈ (
⋂
iH

+
i ) ∪ (

⋂
iH
−
i ). Hence there exists i ∈ [d− k + 2] such

that ak ∈ H−i , and j ∈ [d− k + 2] such that ak ∈ H+
j . We show that aff(A) ∩∆ = ∅. Let

us consider the intersection of the two halfspaces H−i and H+
j with the (k − 1)-dimensional

subspace aff(A). In this subspace, both halfspaces have the points a1, a2, . . . , ak−1 on their
boundary, and contain ak. Hence it must be that H−i ∩ aff(A) = H+

j ∩ aff(A). Therefore,
every point p ∈ aff(A) either lies in H−i , or in H−j . In both cases, it is separated from ∆ by
a hyperplane, and p 6∈ ∆.

(⇐) Suppose that aff(A) ∩∆ = ∅. We now show that there exists i ∈ [d− k + 2] such
that ak ∈ H−i , and j ∈ [d− k + 2] such that ak ∈ H+

j . Since both aff(A) and ∆ are convex
sets, if aff(A) ∩∆ = ∅ then there exists a hyperplane H containing aff(A) and having ∆
on one side. Since the points of A are affinely independent, H can be rotated to contain
all points of A except ak, and separate ak from ∆. After this rotation, H has d − (k − 1)
degrees of freedom left, and can be further rotated to contain a whole (d − k)-face of ∆,
while still separating ∆ from ak. For some i ∈ [d − k + 2], this is now the hyperplane Hi

that separates some vertex bi from ak, and ak ∈ H−i .
Similarly, the same hyperplane H can instead be rotated in order to contain all points

of A except ak, and have ak and ∆ this time on the same side. It can then be further
rotated to contain a (d− k)-face of ∆, while still having ∆ and ak on the same side. Now for
some j ∈ [d − k + 2], this is now the hyperplane Hj that has bj and ak on the same side,
and ak ∈ H+

j . J

Note that for the case k = 2 and d = 3 the set (
⋂
iH

+
i ) ∪ (

⋂
iH
−
i ) is the double cone of

apex a; the lower part (
⋂
iH

+
i ) is the cone Ca in Figure 1. The case where k = 3 and d = 3

is illustrated on Figure 3.

Reduction to orthogonal range queries

We now show that in perfect analogy with the previous section, we can solve the counting
problem efficiently using an orthogonal range counting data structure.

Consider a vertex bi of ∆ and a (k − 2)-subset T of points of S, denoted by T =
{a1, a2, . . . , ak−2}. Let us denote by f the facet of ∆ that is induced by the vertices bj such
that j 6= i. Now consider the hyperplane containing f together with T , and one additional
point p of S. These hyperplanes all contain aff(f ∪ T ), which is a (d − 2)-flat. Let us
consider the unit normal vectors to these hyperplanes centered on some point contained in

SWAT 2020
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this (d− 2)-flat. These vectors lie in the orthogonal flat of dimension d− (d− 2) = 2, hence
in a plane. Therefore, they induce a circular order on the points of S. Hence for a fixed set
of k − 2 points of S and a fixed facet f of ∆, we can assign a rank to each other point of S.
These will play the role of the coordinates of the points in the range counting data structure.

We now observe that counting the number of k-tuples whose affine hull intersects ∆
amounts to orthogonal range counting with respect to these coordinates. Indeed, fix the
first (k − 2)-subset of points T = {a1, a2, . . . , ak−2}, and compute the rank of each other
point of S with respect to the circular order of the hyperplanes defined above, around each
facet f of ∆. Now consider a (k − 1)th point ak−1. From Lemma 5, all points ak contained
in the range (

⋂
iH

+
i )∪ (

⋂
iH
−
i ) are such that aff(a1, a2, . . . , ak) intersects ∆. But this range

is the union of two (d− k + 2)-rectangles in the space of coordinates that we defined. The
coordinates of these two (d−k+2)-rectangles are defined by the coordinates of ak−1. We can
therefore set up a new orthogonal range counting data structure for each (k − 2)-subset T ,
and perform 2n queries in it, two for each additional point ak−1 ∈ S.

We can now outline our algorithm for solving the counting problem:
1. For each (k − 2)-subset T of points a1, a2, . . . , ak−2 in

(
S
k−2
)
:

a. For each vertex bi of ∆, compute the rank of each point of S with respect to the
hyperplanes containing f = conv({bj : j 6= i}) and T .

b. Build a (d− k + 2)-dimensional range counting data structure on S using these ranks
as coordinates.

c. For each other point ak−1 ∈ S:
i. Perform two range counting queries using the rectangular ranges corresponding

to
⋂
iH

+
i and

⋂
iH
−
i , respectively.

d. Return the sum of the values returned by the range counting queries.

Note that there are a few additional technicalities which we have to take care of. First,
the orders defined by the hyperplanes are circular, hence we are really performing range
queries on a torus. This can be easily fixed, as mentioned previously, by doubling each point.
Then we have to make sure to avoid double counting, since any permutation of the ai in
the enumeration of k-tuples yields the same set A, and hence, the same flat aff(A). (Note
that in §2 we avoided double counting by observing that only one of a ∈ Cb and b ∈ Ca
can be true.) This only affects the counting problem and is not problematic if we consider
ordered subsets T ; it causes each intersecting flat to be counted exactly k! times.1 The
termination condition for the binary search can be changed to when the range count is k!
and the sampling method for finding a uniform random binary search pivot is unaffected
since each candidate flat is represented an equal number of times.

As for the running time analysis, step 1b costs O(n logd−k+1 n), while step 1(c)i costs
O(logd−k+1 n) and is repeated n − k + 2 times, hence costs O(n logd−k+1 n) overall as
well [34, 14]. These are multiplied by the number of iterations of the main loop, yielding a
complexity of O(nk−1 logd−k+1 n) for the counting procedure.

Finally, this counting procedure can be combined with the binary search procedure
provided we can choose a flat intersecting ∆ uniformly at random within that time bound.
This is achieved by first choosing a set prefix { a1, a2, . . . , ak−1 } ∈

(
S
k−1
)
with probability

proportional to the number of points ak ∈ S such that aff({ a1, a2, . . . , ak })∩∆ 6= ∅. Then we
can pick a point ak uniformly at random in this set in linear time. Multiplying by the number
of edge-shooting problems we have to solve, the counting procedure is invoked O(ε(1−d)/2 logn)
times, yielding the announced running time. J

1 Enumerating each subset T exactly once as (k − 2)-tuples in lexicographic order and only constructing
the orthogonal range searching data structure on the points of S that come after ak−2 reduces this
overcounting to 2 times per flat. In our case, this is unnecessary since k is constant.
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y

Figure 4 The candidate nearest hyperplanes.

4 An exact algorithm for the nearest induced hyperplane problem

In this section we consider the special case k = d, the nearest induced hyperplane problem
(Problem 5). The previous result gives us a randomized (1 + ε)-approximation algorithm run-
ning in time Oε(nd−1 log2 n) for this problem. We describe a simple deterministic O(nd−1+δ)-
time exact algorithm using only standard tools from computational geometry.

I Theorem 6. The nearest induced hyperplane problem can be solved in deterministic
time O(nd−1+δ) for any δ > 0.

The first tool we need is point-hyperplane duality. Let H̄ be the hyperplane arrangement
that is dual to S, in which each point of S is now a hyperplane. Note that every vertex of
this arrangement is the dual of a hyperplane induced by d points of S.

Unfortunately, while some dualities preserve vertical distances, there does not exist a
duality that preserves euclidean distances. To overcome this obstacle, we make a topological
observation. Recall that the zone of a hyperplane h in an arrangement H̄ (not including h)
is the union of the d-cells of H̄ intersected by h. Similarly, we define the refined zone of a
hyperplane h in an arrangement H̄ (not including h) to be the union of the d-simplices of
the bottom-vertex decomposition of H̄ intersected by h.

I Lemma 7. Let H̄ be the hyperplane arrangement that is dual to S, and ȳ the hyperplane
dual to the point y. The induced hyperplane that is nearest to y corresponds to a vertex of
the refined zone of ȳ in the arrangement H̄.

Proof. Consider the arrangement of all
(
n
k

)
hyperplanes induced by subsets of k points in S.

Then clearly, the induced hyperplane nearest to y must be one of the hyperplanes bounding
the cell of this arrangement that contains y (see Figure 4 for an illustration with d = 2).
Consider a rectilinear motion of y towards this nearest hyperplane. In the dual arrangement
H̄, this corresponds to a continuous motion of the hyperplane ȳ that at some point hits a
vertex of the arrangement. Because it is the first vertex that is hit, it must belong to a cell of
the bottom vertex decomposition of H̄ that ȳ intersects, hence to the refined zone of ȳ. J

We refer to chapter 28 of the Handbook of Discrete and Computational Geometry [33] for
background on hyperplane arrangements and their decompositions.

The second tool is an upper bound on the complexity of a zone in an arrangement [20].
The complexity of a zone is the sum of the complexities of its cells, and the complexity of a
cell is the number of faces of the cell (vertices, edges, . . . ). The upper bound is as follows:
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I Theorem 8 (Zone Theorem [20]). The complexity of a zone in an arrangement of n
hyperplanes in Rd is O(nd−1).

In particular, this result gives an upper bound of O(nd−1) vertices for a given zone. Since
the complexity of a refined zone is not more than the complexity of the corresponding zone,
this bound also holds for the complexity of a given refined zone.

The third tool is Chazelle’s efficient construction of cuttings [15]. A cutting of Rd is a
partition of Rd into disjoint regions. Given a set of hyperplanes H in Rd, a 1

r -cutting for H
is a cutting of Rd such that each region is intersected by no more than |H|r hyperplanes in H.
In particular, we are interested in Chazelle’s construction when r is constant. In that case,
only a single step of his construction is necessary and yields regions that are the simplices of
the bottom-vertex decomposition of some subset of H.

I Theorem 9 (Chazelle [15, Theorem 3.3]). Given a set H of n hyperplanes in Rd, for any
real constant parameter r > 1, we can construct a 1

r -cutting for those hyperplanes consisting
of the O(rd) simplices of the bottom-vertex decomposition of some subset of H in O(n) time.

More details on cuttings can be found in chapters 40 and 44 of the Handbook [33].

I Lemma 10. For any positive constant δ, given a hyperplane h and an arrangement
of hyperplanes H̄ in Rd, the vertices of the refined zone of h in H̄ can be computed in
time O(nd−1+δ).

Proof. Using Theorem 9 with some constant r, we construct, in linear time, a 1
r -cutting

of the arrangement consisting of O(rd) simplicial cells whose vertices are vertices of H̄. To
find the vertices of the refined zone, we only need to look at those cells that are intersected
by ȳ. If such a cell is not intersected by any hyperplane of H̄ then its vertices are part
of the refined zone of ȳ. Otherwise, we recurse on the hyperplanes intersecting that cell.
From Theorem 8, there are at most O(rd−1) such cells. The overall running time for the
construction is therefore:

T (n) ≤ O
(
rd−1)T (n

r

)
+O(n).

For all constant δ > 0, we can choose a sufficiently large constant r, such that T (n) =
O(nd−1+δ), as claimed. J

Proof of Theorem 6. From Lemma 10, we find the vertices of the refined zone of ȳ in the
arrangement H̄ in time O(nd−1+δ). Then we compute the distance from y to each of the
induced hyperplanes corresponding to vertices of the refined zone in time O(nd−1). From
Lemma 7, one of them must be the nearest. J

5 A (1 + ε)-approximation algorithm for the nearest induced simplex
problem

We now consider the nearest induced simplex problem (Problem 6). The algorithm described
in §2 for the case k = 2 and d = 3 can be adapted to work for this problem.

As in §2, consider the computation of the nearest induced segment under some polyhedral
distance dQ approximating the Euclidean distance. The reduction from this computation
to edge-shooting still works with some minor tweak: if we shoot edges to find the nearest
induced segment under dQ, we may miss some of the segments. Fortunately, the points of
these missed segments that are nearest to our query point under dQ must be endpoints of
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those segments. We can take those into account by comparing the nearest segment found
by edge-shooting to the nearest neighbor, found in linear time. As before, edge-shooting is
reduced to a counting problem.

Referring to the proof of Theorem 2 and Figure 1, the analogue of the counting problem
in §2 for the nearest induced segment problem amounts to searching for the points b lying in
the intersection of the cone Ca with the halfspace bounded by aff(∆) that does not contain a.
In dimension d, the affine hull of ∆ is a hyperplane, and we restrict b to lie on one side of
this hyperplane.

We therefore get a (1 + ε)-approximation O(n logd n)-time algorithm for the nearest
induced segment problem in any fixed dimension d. This compares again favorably with
the (2 + ε)-approximation O(n logn)-time algorithm proposed in [25].

We generalize this to arbitrary values of k and prove the following result.

I Theorem 11. For any constant positive real ε > 0 and constant positive integers d and
k, there is a randomized (1 + ε)-approximation algorithm for the nearest induced simplex
problem in Rd running in time O(nk−1 logd n) with high probability.

Again, we compute the nearest induced simplex under some polyhedral distance dQ. As
in the case k = 2, (d− k)-face-shooting can be adapted to take care of missed simplices: for
each 2 ≤ k′ ≤ k, shoot (d− k′)-faces of Q to find the nearest (k′ − 1)-simplex. For k′ = 1,
find the nearest neighbor in linear time. For any (k − 1)-simplex, let 0 ≤ k′ ≤ k be the
smallest natural number such that no (d − k′)-face of Q hits the simplex when shot from
the query point. It is obvious that, for all t < k′, some (d − t)-face of Q hits the simplex,
and that, for all t ≥ k′, no (d− t)-face of Q hits the simplex. For the sake of simplicity, we
hereafter focus on solving the face-shooting problem when k′ = k, thus ignoring the fact a
simplex can be missed. Because the obtained running time will be of the order of Õ(nk′−1),
the running time will be dominated by this case.

In order to reduce face-shooting to range counting queries, we need an analogue of
Lemma 5 for convex combinations. Let A be a set of k points {a1, a2, . . . , ak}, and let ∆ be
a (d− k+ 1)-simplex with vertices in B = {b1, b2, . . . , bd−k+2}. We suppose that these points
are in general position. We define the hyperplanes Hi = aff(A∪B\{ bi, ak }), for i ∈ [d−k+2],
and Gj = aff(A∪B \ { aj , ak }), for j ∈ [k− 1]. We let H+

i be the halfspace supported by Hi

that contains bi, and G−j the halfspace supported by Gj that does not contain aj .

I Lemma 12.

conv(A) ∩∆ 6= ∅ ⇐⇒ ak ∈

(d−k+2⋂
i=1

H+
i

)
∩

k−1⋂
j=1

G−j

 .

Proof. (⇐) Suppose that ak ∈ (
⋂
iH

+
i ) ∩ (

⋂
j G
−
j ). We have that conv(A) ∩∆ 6= ∅ if and

only if both aff(A) ∩∆ 6= ∅ and conv(A) ∩ aff(∆) 6= ∅ hold. From Lemma 5, we already
have aff(A) ∩∆ 6= ∅. It therefore remains to show that conv(A) ∩ aff(∆) 6= ∅.

We first prove that (
⋂
j Gj) ∩ conv(A) 6= ∅. We proceed by induction on k. It can

easily be shown to hold for k = 2. Let us suppose it holds for k − 1, and prove it for k.
The hyperplane Gk−1 separates ak−1 from ak. Consider the point a′k−1 of the segment
between ak−1 and ak that lies on Gk−1. Let A′ = {a1, a2, . . . , ak−2, a

′
k−1}. Consider the

intersection G′j of all hyperplanes Gj for j ∈ [k − 2] with the subspace aff(A′). In the
subspace aff(A′), The hyperplanes G′j for j ∈ [k − 2] all separate aj from a′k−1. Hence
we can apply induction on A′ and the hyperplanes G′ in dimension k − 2, and we have
that (∩j∈[k−2]G

′
j) ∩ conv(A′) 6= ∅. Now because a′k−1 ∈ conv({ak−1, ak}), we also have that

(∩j∈[k−1]Gj) ∩ conv(A) 6= ∅.
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a1

a2

∆

G1

H1

b1

H2

b2b3

Figure 5 Illustration of Lemma 12 in the case d = 3 and k = 2. The segment a1a2 intersects ∆
if and only if a2 is located in the colored region below ∆.

Now we also observe that
⋂
j Gj = aff(∆). The fact that aff(∆) ⊆

⋂
j Gj is immediate

since each Gj contains aff(∆). To prove that
⋂
j Gj cannot contain more than aff(∆) it

suffices to show that those flats are of the same dimensions. Since the set A∪B is in general
position, aj (and ak) cannot lie on Gj . Then we claim that the Gj are in general position.
Indeed if they are not, then there must be some 1 ≤ k′ ≤ k− 1 where ∩j≤k′−1Gj = ∩j≤k′Gj .
However, this is not possible since ak′ ∈ ∩j≤k′−1Gj but ak′ 6∈ ∩j≤k′Gj . The dimension of⋂
j Gj is thus d− k + 1, the same as the dimension of aff(∆).
Therefore, conv(A) ∩ aff(∆) 6= ∅, as needed.

(⇒) Suppose that ak 6∈ (
⋂
iH

+
i ) ∩ (

⋂
j G
−
j ). Then one of the halfspace does not contain ak.

It can be of the form H+
i or G−j . In both cases, all points of A are either contained in the

hyperplane Hi or Gj , or lie in H−i or G−j . Hence the hyperplane Hi or Gj separates the
interiors of the convex hulls. From the general position assumption, it also separates the
convex hulls. J

The Lemma is illustrated on Figures 5 and 6 in the cases d = 3, k = 2, and d = k = 3.

Proof of Theorem 11. The algorithm follows the same steps as the algorithm described in
the proof of Theorem 4, except that the ranges used in the orthogonal range counting data
structure are different, and involve a higher-dimensional space.

We reduce the problem to that of counting the number of k-subsets A of S whose convex
hull intersects a given (d − k + 1)-simplex ∆. We already argued that when fixing the
first k − 2 points a1, a2, . . . , ak−2, the hyperplanes Hi induce a circular order on the points
of S. Similarly, when the points a1, a2, . . . , ak−2 are fixed, the hyperplanes Gj all contain
the (d−2)-flat aff(A∪B\{aj , ak−1, ak}), hence also induce a circular order on the points of S.
Thus for each (k − 2)-subset of S, we can assign (d− k + 2) + (k − 1) = d+ 1 coordinates to
each point of S, one for each family of hyperplanes. We then build an orthogonal range query
data structure using these coordinates. For each point ak−1, we query this data structure
and count the number of points ak such that ak ∈ (

⋂
iH

+
i ) ∩ (

⋂
j G
−
j ). From Lemma 12, we

can deduce the number of subsets A whose convex hull intersects ∆.
We can decrease by one the dimensionality of the ranges by realizing that the supporting

hyperplane of G−k−1 is unique as it does not depend on ak−1, only the orientation of G−k−1
does. To only output points ak such that ak ∈ G−k−1 we construct two data structures: one
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a1 a2

∆

H1

b1

b2

G2

Figure 6 Illustration of Lemma 12 in the case k = d = 3. The triangle a1a2a3 intersects ∆ if and
only if a3 is located in the colored region.

with the points above Gk−1 and one with the points below Gk−1. We query the relevant data
structure depending whether ak−1 is above or below Gk−1. This spares a logarithmic factor
and yields an overall running time of O(nk−1 logd−1 n) for the counting problem. Multiplying
by the O(logn) rounds of binary search yields the claimed result. J
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