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Abstract
We study the complexity of clustering curves under k-median and k-center objectives in the metric
space of the Fréchet distance and related distance measures. Building upon recent hardness results
for the minimum-enclosing-ball problem under the Fréchet distance, we show that also the 1-median
problem is NP-hard. Furthermore, we show that the 1-median problem is W[1]-hard with the number
of curves as parameter. We show this under the discrete and continuous Fréchet and Dynamic Time
Warping (DTW) distance. This yields an independent proof of an earlier result by Bulteau et al.
from 2018 for a variant of DTW that uses squared distances, where the new proof is both simpler
and more general. On the positive side, we give approximation algorithms for problem variants
where the center curve may have complexity at most ` under the discrete Fréchet distance. In
particular, for fixed k, ` and ε, we give (1 + ε)-approximation algorithms for the (k, `)-median and
(k, `)-center objectives and a polynomial-time exact algorithm for the (k, `)-center objective.
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1 Introduction

Clustering is an important tool in data analysis, used to split data into groups of similar objects.
Their dissimilarity is often based on distance between points in Euclidean space. However,
the dissimilarity of polygonal curves is more accurately measured by specialised measures:
Dynamic Time Warping (DTW) [23], continuous and discrete Fréchet distance [1, 13].

We focus on centroid-based clustering, where each cluster has a center curve and the
quality of the clustering is based on the similarity between the center and the elements inside
the cluster. In particular, given a distance measure δ, we consider the following problems:

I Problem 1 (k-median for curves with distance δ). Given a set G = {g1, . . . , gm} of
polygonal curves, find a set C = {c1, . . . ck} of polygonal curves with at most n vertices each
that minimizes

∑
g∈G

minki=1 δ(ci, g).

I Problem 2 (k-center for curves with distance δ). Given a set G = {g1, . . . , gm} of
polygonal curves, find a set C = {c1, . . . ck} of polygonal curves with at most n vertices each
that minimizes max

g∈G
minki=1 δ(ci, g).

For points in Euclidean space, the most widely-used centroid-based clustering problem
is k-means, in which the distance measure δ is the squared Euclidean distance. But also
for general metric spaces the k-median problem is well studied, often in the context of the
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19:2 On the Hardness of Computing an Average Curve

closely related facility location problem [20]. In general metric spaces usually, the discrete
k-median problem is studied, where the centers must be selected from a finite set F , and are
called facilities.

For clustering curves, limiting the possible centers to a finite set of “facilities” is unneces-
sarily restrictive. In this paper, we are therefore interested in the unconstrained k-median
problem, where a center can be any element of the metric space (as in the case of k-means).
Often, we will simply write k-median problem to denote the unconstrained version. In this
paper, we are in particular interested in the complexity of the 1-median problem, which we
refer to as average curve problem.

Hardness of the average curve problem

While clustering on points for general k in the plane or higher dimension is often NP-hard [22],
many point clustering problems can be solved efficiently when k = 1 in low dimension. For
instance, the 1-center problem in the plane can be solved in linear time [21], and there
are practical algorithms for higher dimensional Euclidean space [15]. In contrast, the 1-
center problem (i.e., the minimum enclosing ball problem) for curves under the discrete
and continuous Fréchet distance is already NP-hard in 1D [6]. In this paper, we show that
also the average curve problem, i.e. the 1-median problem, is NP-hard. We show this for
the discrete and for the continuous Fréchet distance, and for the dynamic time-warping
(DTW) distance. Variants of the DTW distance differ in the norm used for comparing pairs
of points, and how that norm is used, see Section 1.1 for details. Our results apply to a
large class of variants of DTW. For the frequently used variant of DTW using the squared
Euclidean distance, Bulteau et al. [8] recently showed that the average curve problem is
NP-hard and even W[1]-hard when parametrized in the number of input curves m and there
exists no f(m) · no(m)-time algorithm unless the Exponential Time Hypothesis (ETH) fails1.
Because of its importance in time series clustering, there are many heuristics for the average
curve problem under DTW [18, 23]. Brill et al. [4] showed that dynamic programming yields
an exponential-time exact algorithm and additionally show the problem can be solved in
polynomial time when both the input curves and center curve use only vertices from {0, 1}.

Approximation algorithms

Since both the k-center and the k-median problem for curves are already NP-hard for
k = 1 in 1D, we further study efficient approximation algorithms for these problems. For
approximation in metric spaces, the discrete and unconstrained k-median (likewise for
k-center) are closely related: any set of curves that realises an α-approximation for the
discrete k-median problem realises an 2α-approximation for the unconstrained k-median
problem. There is an elegant O(kn) time 2-approximation algorithm for the k-center problem
in metric spaces [17]. This approximation factor is tight for clustering curves under the
discrete Fréchet distance [6]. Finding approximate solutions for k-median is more challenging:
the best known polynomial-time approximation algorithm for discrete k-median in general
metric space achieves a factor of 3 + ε for any ε > 0 [2] and it is NP-hard to achieve an
approximation factor of 1 + 2/e [19]. Unconstrained clustering of curves may result in centers
of high complexity. To avoid overfitting and to obtain a compact representation of the
data, we look at a variant of the clustering problems with center curves of at most a fixed
complexity, denoted by `. More formally, the (k, `)-center problem is to find a set of curves

1 See e.g. [11] for background on parametrized complexity
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Figure 1 (k, `)-center clustering of pigeon flight paths computed by the algorithm of [7].

C = {c1, . . . ck}, each of complexity at most `, that minimizes maxg∈G minki=1 δ(ci, g). The
(k, `)-median problem is defined analogously. Although the general case for this variant is
still NP-hard, we can find efficient algorithms when k and ` are fixed. The (k, `)-center and
(k, `)-median problems were introduced by Driemel et al. [12], who obtained an Õ(mn)-time
(1 + ε)-approximation algorithm for the (k, `)-center and (k, `)-median problem under the
Fréchet distance for curves in 1D, assuming k, `, ε are constant. In [6], Buchin et al. gave
polynomial-time constant-factor approximation algorithms for the (k, `)-center problem
under the discrete and continuous Fréchet distance for curves in arbitrary dimension. These
approximation algorithms have lead to efficient implementations of heuristics for the center
version showing that the considered clustering formulations are useful in practice [7]. See
Figure 1 for an example of a computed clustering. This encourages further study of the
median variants of the problem.

1.1 Definitions of distance measures

Let x be a polygonal curve, defined by a sequence of vertices x1, . . . , xn from Rd where
consecutive vertices are connected by straight line segments. We call the number of vertices of
x the complexity, denoted by |x|. Given a pair of polygonal curves x, y, a warping path between
them is a sequenceW = 〈w1, . . . , wL〉 of index pairs wl = (il, jl) from {1, . . . , |x|}×{1, . . . , |y|}
such that w1 = (1, 1), wL = (|x|, |y|), and (il+1 − il, jl+1 − jl) ∈ {(0, 1), (1, 0), (1, 1)} for all
1 ≤ l < L. We say two vertices xi, yi are matched if (i, j) ∈W .

Denote the set of all warping paths between curves x and y by Wx,y. For any integers
p, q ≥ 1, we define the Dynamic Time Warping Distance between x and y as

DTWq
p(x, y) :=

 min
W∈Wx,y

∑
(i,j)∈W

‖xi − yj‖p
q/p

,

where ‖ · ‖ denotes the Euclidean norm. In text, we refer to DTWq
p also as (p, q)-DTW.

Similarly, define the discrete Fréchet distance between x, y as

ddF (x, y) := min
W∈Wx,y

max
(i,j)∈W

‖xi − yj‖.

The continuous Fréchet distance is defined with a reparametrization f : [0, 1] → [0, 1],
which is a continuous injective function with f(0) = 0 and f(1) = 1. We say two points on
x and y are matched if f(i) = j. Denote the set of all reparametrizations by F , then the
continuous Fréchet distance is given by

dF (x, y) := inf
f∈F

max
α∈[0,1]

‖x(f(α))− y(α)‖.

SWAT 2020
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Table 1 Overview of results. In these tables, n denotes the length of the input curves, m denotes
the number of input curves and d denotes the ambient dimension of the curves.

(a) Results on exact computation.

Problem Result Restrictions Reference

1-median, DTWq
p

O(n2m+12mm) d = 1 Brill et al. [4]
O(mn1.87) Binary Schaar et al. [28]
NP-hard

p = q = 2 Bulteau et al. [8]
W[1]-hard in m

NP-hard
p, q ∈ N Theorem 7

W[1]-hard in m

1-median, Fréchet NP-hard Theorem 4
W[1]-hard in m

1-center,
discrete Fréchet NP-hard Buchin et al. [6]

(k, `)-center,
discrete Fréchet O((mn)2k`+1k` log(mn)) d ≤ 2 Theorem 13

(b) Approximation algorithms. (In stating the running times we assume k, `, and ε are constants
independent of n and m.)

Problem Result Approx factor Restrictions Reference

(k, `)-median,
continuous Fréchet Õ(nm) (1 + ε) d = 1 Driemel et al. [12]

(k, `)-median,
discrete Fréchet

Õ(nm) 65 Driemel et al. [12]
Õ(m2(m+ n)) 12 Theorem 10

Õ(nm) (1 + ε) k = 1 Theorem 12
Õ(nmdk`+1) (1 + ε) k > 1 Theorem 12

(k, `)-center,
discrete Fréchet

Õ(nm) 3 Buchin et al. [6]
Õ(nm) (1 + ε) Theorem 9

1.2 Results

We show that the average curve problem for discrete and continuous Fréchet distance in
1D is NP-complete, W[1]-hard when parametrized in the number of curves m, and admits
no f(m) · no(m)-time algorithm unless ETH fails. In addition, we prove the same hardness
results of the average curve problem for the (p, q)-DTW distance for any p, q ∈ N.

This is an independent proof that is simpler and more general than the result by
Bulteau et al. [8]. Their hardness result holds for the case of the (2, 2)-DTW distance,
which is widely-used. Other common variants, covered by our proof, are (1, 1)-DTW, i.e.,
(non-squared) Euclidean distance and Manhattan distance in 1D [16], (2, 1)-DTW, and
more generally (p, 1)-DTW [26, 27]. Note that, while we define (p, 1)-DTW in terms of the
pth power of the Euclidean norm, our hardness results also apply to the pth power of the
Lp-norm, since these norms are equal in 1D. Another difference is that hardness construction
by Bulteau et al. [8] uses binary input curves and a center curve that is not restricted to a
bounded set of vertices, while in our construction both the input curves and the center curve
use only vertices from {−1, 0, 1}. This means we answer a question by Brill et al. [4], who
asked whether their result can be extended to obtain a polynomial time algorithm when all
curves are restricted to sets of 3 vertices, in the negative.
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Since our and other hardness results exclude efficient algorithms for the (k, `)-center
or -median clustering without further assumptions, we investigate other approaches with
provable guarantees. In particular, we give a (1 + ε)-approximation algorithm that runs in
Õ(mn) time and a polynomial-time exact algorithm to solve the (k, `)-center problem for the
discrete Fréchet distance, when k, `, and ε are fixed. For the (k, `)-median problem under
the discrete Fréchet distance, we give a polynomial time 12-approximation algorithm, and
an (1 + ε)-approximation algorithm that runs in polynomial time when k, `, and ε are fixed.
Table 1 gives an overview of our results.

2 Hardness of the average curve problem for discrete and continuous
Fréchet

In this section, we will show that the 1-median problem (or average curve problem) is
NP-hard for the discrete and continuous Fréchet distance. The average curve problem for the
discrete Fréchet distance is as follows: given a set of curves G and an integer r, determine
whether there exists a center curve c such that

∑
g∈G ddF (c, g) ≤ r. We will show that this

problem is NP-hard. To find a reasonable algorithm, we can look at a parametrized version
of the problem. A natural parameter is the number of input curves, which we will denote by
m. However, we will show that this parametrized problem is W[1]-hard, which rules out any
f(m) · nO(1)-time algorithm, unless FPT = W[1]. To achieve these reductions, we create a
reduction from a variant of the shortest common supersequence (SCS) problem.

2.1 The FCCS problem
To show the hardness of the average curve problem for the Fréchet and DTW distance, we
reduce from a variant of the Shortest Common Supersequence (SCS) problem, which we will
call the Fixed Character Common Supersequence (FCCS) problem. If s is a string and x is a
character, #x(s) denotes the number of occurrences of x in s.

I Problem 3 (Shortest Common Supersequence (SCS)). Given a set S of m strings with
length at most n over the alphabet Σ and an integer t, does there exist a string s∗ of length t
that is a supersequence of each string s ∈ S?

I Problem 4 (Fixed Character Common Supersequence (FCCS)). Given a set S of m
strings with length at most n over the alphabet Σ = {A,B} and i, j ∈ N, does there exist a
string s∗ with #A(s∗) = i and #B(s∗) = j that is a supersequence of each string s ∈ S?

The SCS problem with a binary alphabet is known to be NP-hard [25] and W [1]-hard [24].
The same holds for FCCS:

I Lemma 1. The FCCS problem is NP-hard. The FCCS problem with m as parameter is
W[1]-hard. There exists no f(m) · no(m) time algorithm for FCCS unless ETH fails.

Proof. We reduce from SCS with the binary alphabet {A,B} to FCCS. Given an instance
(S, t) of SCS, construct S′ = {s + AB2tA + c(s) | s ∈ S}, where c(s) denotes the string
constructed by replacing all A characters in s by B and vice versa, and + denotes string
concatenation. We reduce to the instance (S′, t+ 2, 3t) of FCCS and claim that (S, t) is a
true instance of SCS if and only if (S′, t+ 2, 3t) is a true instance of FCCS.

If (S, t) is a true instance of SCS, then there exists a string q of length t that is a
supersequence of each string in S. Therefore, the string q′ = q + AB2tA + c(q) is a
supersequence of all strings in S′. Since #A(q′) = 2 + #A(q + c(q)) = 2 + t and #B(q′) =
2t+ #B(q + c(q)) = 3t, (S′, t+ 2, 3t) is a true instance of FCCS.

SWAT 2020



19:6 On the Hardness of Computing an Average Curve

If (S′, t + 2, 3t) is a true instance of FCCS, there is string q′ with #A(q′) = t + 2 and
#B(q′) = 3t that is a supersequence of each string s′ ∈ S′. Consider a pair of strings
s′1 = s1 +AB2tA+ c(s1) and s′2 = s2 +AB2tA+ c(s2) from S′. If there is no matching such
that the first character of the AB2tA substring in s′1 is matched to the same character of
q′ as the first character of that substring in s′1, then q′ is a supersequence of AB2tAB2tA

and so #B(q′) > 3t, a contradiction. By symmetry, the same holds for the last character
of the substring AB2tA and therefore q = q1 + q2 + q3, where q1 is a supersequence of
S, q2 is a supersequence of AB2tA and q3 is a supersequence of {c(s) | s ∈ S}. Note
that c(q3) is a supersequence of S. Also, #A(q1) + #A(c(q3)) = #A(q) −#A(q2) ≤ t and
#B(q1) + #B(c(q3)) = #B(q)−#B(q2) ≤ t. So, |q1|+ |c(q3)| ≤ 2t, which means that |q1| ≤ t
or |c(q3)| ≤ t and thus (S, t) is a true instance of SCS.

Note that this reduction is both a polynomial-time reduction and a parametrized reduction
in the parameter m. Since the SCS problem over the binary alphabet {A,B} is NP-hard [25]
and W[1]-hard when parametrized with the number of strings m [24], the first two parts of
the claim follow. The final part of the claim follows from the fact that this reduction

Together with the reduction from [24], we have a parametrized reduction from Clique
with a linear bound on the parameter, so the final part of the claim follows [11, Obs. 14.22]. J

2.2 Complexity of the average curve problem under the discrete and
continuous Fréchet distance

We will show the hardness of finding the average curve under the discrete and continuous
Fréchet distance via the following reduction from FCCS. Given an instance (S, i, j) of FCCS,
we construct a set of curves using the following vertices in R: ga = −1, gb = 1, gA = −3,
and gB = 3. For each string s ∈ S, we map each character to a subcurve in R:

A→ (gagb)i+jgA(gbga)i+j B → (gbga)i+jgB(gagb)i+j .

The curve γ(s) is constructed by concatenating the subcurves resulting from this mapping,
G = {γ(s) | s ∈ S} denotes the set of these curves. Additionally, we use the curves

Ai = gb(gAgb)i Bj = ga(gBga)j .

We will call subcurves containing only gA or gB vertices letter gadgets and subcurves
containing only ga or gb vertices buffer gadgets. Let Ri,j = {Ai, Bj}. We reduce to the
instance (G ∪ Ri,j , r) of the average curve problem, where r = |S| + 2. We use the same
construction for the discrete and continuous case. We call the interval of points p on a
subcurve gbgAgb with p < −1 an A-peak, and the interval of points p on a subcurve gagBga
with p > 1 a B-peak. A curve γ(s) has exactly one peak for every letter in s.

For an example of this construction, take S = {ABB,BBA,ABA}, i = 2, j = 2. Then
ABBA is a supersequence of S with the correct number of characters. Note that the curve
with vertices 0gA0gB0gB0gA0 has a (discrete) Fréchet distance of at most 1 to the curves in
G ∪Ri,j , see Figure 2, so the sum of those distances is at most |S|+ 2 = r.

I Lemma 2. If (S, i, j) is a true instance of FCCS, then (G ∪Ri,j , r) is a true instance of
the average curve problem for discrete and continuous Fréchet.

Proof. We will show the proof for the discrete Fréchet distance. Since the discrete Fréchet
distance is an upper bound of the continuous version, this proves the continuous case as well.
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Figure 2 Five curves from G ∪Ri,j in the reduction for the Fréchet average curve problem and a
center curve constructed from ABBA (purple) as in Lemma 2. Matchings are indicated by dotted
lines. Note that each of these matchings achieves a (discrete) Fréchet distance of 1.

0

1

−1

0

1

−1

0

1
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0

1

−1

0

1

−1

γ(ABB)

γ(BBA)

γ(ABA)

A2

B2

A B B A

Figure 3 Five curves from G ∪ Ri,j in the reduction for the DTW average curve problem and
a center curve constructed from the string ABBA (purple) as in Lemma 5. Fat horizontal lines
indicate β consecutive vertices. Vertices that match at distance 0 touch, vertices that match at
distance 1 are indicated by dotted lines. The center has 1 mismatch with the first 3 curves and 2
with the final two, so the total cost here is 3 · (1p)q/p + 2α · (2 · 1p)q/p = 3 + 2α · 2q.
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Since (S, i, j) is a true instance of FCCS, there exists a common supersequence s∗ of S
with #A(s∗) = i and #B(s∗) = j. Construct the curve c of complexity 2|s∗|+ 1, given by

cl =


0 if l is odd
−2 if l is even and s∗l/2 = A

2 if l is even and s∗l/2 = B

,

for each l ∈ {1, . . . , 2|s∗|+ 1}. Let s ∈ S, then note that the sequence of letter gadgets in
γ(s) is a subsequence of the letter gadgets in c, because s is a subsequence of s∗. So, all
letter gadgets in γ(s) can be matched with a letter gadget in c, the remaining letter gadgets
in c with a buffer gadget in γ(s) and all remaining buffer gadgets with another buffer gadget,
such that ddF (c, γ(s)) ≤ 1. For the matching with Ai, note that c has exactly i gA vertices,
so these can be matched with the i gA vertices in Ai. All other vertices in c have distance 1
to the remaining buffer gadgets in Ai, so ddF (c, Ai) ≤ 1. Analogously, ddF (c,Bj) ≤ 1. So,
we get

∑
g∈G∪Ri,j

ddF (c, g) =
∑
s∈S ddF (c, γ(s)) + ddF (c, Ai) + ddF (c,Bj) ≤ |S|+ 2 = r, and

(G ∪Ri,j , r) is a true instance of average curve for discrete Fréchet. J

I Lemma 3. If (G∪Ri,j , r) is a true instance of the average curve problem for discrete and
continuous Fréchet, then (S, i, j) is a true instance of FCCS.

We give a sketch of the proof, see Appendix A for the full proof. Since (G ∪Ri,j , r) is a true
instance of the average curve problem for continuous Fréchet, there exists a curve c∗ such
that

∑
g∈G∪Ri,j

dF (c∗, g) ≤ r = |S|+ 2α. We show ddF (c, g) = 1 for all g ∈ G∪Ri,j and any
center curve c that exhibits this bound. It remains to show that such a center curve encodes
a solution to the initial FCCS instance. Note that such a center curve is also a solution
to the 1-center problem for this set of curves. We can now apply the proof of Lemma 33
from [5, 6], where the same gadgets were used in the reduction to the 1-center problem. J

I Theorem 4. The average curve problem for discrete and continuous Fréchet distance is
NP-hard. When parametrized in the number of input curves m, this problem is W[1]-hard.
There exists no f(m) · no(m) time algorithm for this problem unless ETH fails.

Proof. By Lemmas 2 and 3, we have a valid reduction from FCCS to the average curve
problem. Since this reduction runs in polynomial time and FCCS is NP-hard (Lemma 1),
the average curve problem for discrete and continuous Fréchet is NP-hard. Note that the
number of curves in the reduced average curve instance is k + 2, where k is the number
of input sequences of the FCCS instance. So, together with the reduction from Lemma 1,
this reduction is also a parametrized reduction from Clique with a linear bound on the
parameter to the average curve problem for discrete and continuous Fréchet with the number
of curves as a parameter, which implies the remainder of the theorem [11, Obs. 14.22]. J

3 Hardness of the average curve problem for (p, q)-DTW

We will show that the average curve problem under the (p, q)-DTW distance is NP-hard
for all p, q ∈ N. This generalises the result of [8], who use different methods to achieve the
same hardness results for the (2, 2)-DTW average curve problem only. We again reduce from
FCCS instance (S, i, j). Given a string s ∈ S over the binary alphabet {A,B}, we map each
character to a subcurve in R:

A→ gβ0 g
β
ag

β
0 B → gβ0 g

β
b g

β
0 ,
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where g0 = 0, ga = −1, gb = 1 as before and β is a large constant that will be determined later.
The curve γ(s) is constructed by concatenating these subcurves and G = {γ(s) | s ∈ S}. We
additionally use the curves

Ai = gβ0 (gβag
β
0 )i Bj = gβ0 (gβb g

β
0 )j .

Call any subcurve consisting of ga or gb vertices a letter gadget and any subcurve consisting
of g0 a buffer gadget. Let Ri,j contain curves Ai and Bj , both with multiplicity α. We reduce
to the instance (G ∪Ri,j , r) of (p, q)-DTW average curve, where r =

∑
s∈S(i+ j − |s|)q/p +

α(iq/p + jq/p), β = dr/εqe+ 1, α = |S| and ε = 1− (1−minx∈{i,j} (x+1)q/p−xq/p

4(i+j)q/p )1/q.2 See
Figure 3 for an example of this construction with S = {ABB,BBA,ABA} and i = j = 2.

The following definitions are used to prove Lemma 6. Take a vertex p on some center
curve c∗. If |p− ga| < ε, we call p an A-signal vertex. If |p− gb| < ε we call p an B-signal
vertex. If p is not a signal vertex, then we call p a buffer vertex. Note that ε is chosen
small enough such that no vertex is both an A- and B-signal vertex. We will show that the
sequence of signal vertices in the curve satisfying (G ∪Ri,j , r) is a supersequence satisfying
(S, i, j).

I Lemma 5. If (S, i, j) is a true instance of FCCS, then (G ∪Ri,j , r) is a true instance of
(p, q)-DTW average curve.

Proof. If (S, i, j) is a true instance of FCCS, then there exists a string s∗ that is a su-
persequence of S, with #A(s∗) = i and #B(s∗) = j. Construct the curve c of length
2(i+ j) + 1:

cl =


0 if l is odd
ga if l is even and s∗l/2 = A

gb if l is even and s∗l/2 = B

,

for each l ∈ {1, . . . , 2(i+ j) + 1}. Analogously to Lemma 2, we can match the letter gadgets
from γ(s) to gA or gB in c as s∗ is a supersequence of s, the letter gadgets of Ai, Bj to gA, gB
in c as the number of curves match, and g0 vertices to buffer gadgets. This gives a matching
such that

∑
g∈G∪Ri,j

DTWq
p(c, g) ≤ r. J

I Lemma 6. If (G ∪Ri,j , r) is a true instance of (p, q)-DTW average curve, then (S, i, j) is
a true instance of FCCS.

We give a sketch of the proof, for the full proof, see Appendix A. Let c∗ be a center curve
such that

∑
g∈G∪Ri,j

DTWq
p(c∗, g) ≤ r. Since εq · β > r, each letter gadget must be matched

to a signal vertex. Additionally, each signal vertex can only be matched to at most one letter
gadget, because matching the buffer separating two gadgets costs at least (1− ε)q · β > r.
This means that the sequence of letter gadgets in γ(s) is a subsequence of the sequence of
signal vertices in c∗, so the sequence of signal vertices in c∗ induces a supersequence s′ of S.
What remains to be proven is that s′ doesn’t use too many characters, i.e. that there are no

2 Computing the values r, β, ε requires computing higher order roots. For simplicity, we assume that
we can compute the exact values in polynomial time. However, this assumption is not necessary,
as the construction also works if we use corresponding approximate values r̃, ε̃, β̃, as long as r̃ ∈
[r, r+ 1

4 minx∈{i,j}(x+ 1)q/p − xq/p), ε̃ ≤ ε, and β̃ ≥ β. So, we are allowed to make an error of at least
Ω((i+ j)−1) = Ω(n−1), which we can do in polynomial time.
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2∆

Figure 4 Given an approximate (1, `)-center curve (red) for a set of curves (dashed), the vertices
of the optimal center curve (black) will be close to the hypercube grids around the vertices of the
approximate center.

more than i A-signal vertices and j B-signal vertices on c∗. We prove this by deriving an
upper bound on DTWq

p(c∗, Ai) + DTWq
p(c∗, Bj) that cannot be achieved if c∗ has too many

signal vertices. J

I Theorem 7. The average curve problem for the (p, q)-DTW distance is NP-hard, for any
p, q ∈ N. When parametrized in the number of input curves m, this problem is W[1]-hard.
There exists no f(m) · no(m) time algorithm for this problem unless ETH fails.

Proof. By Lemmas 5 and 6, we have a valid reduction from FCCS to the average curve
problem. Since this reduction runs in polynomial time and FCCS is NP-hard (Lemma 1), the
average curve problem for discrete and continuous Fréchet is NP-hard. Since the reduction
runs in polynomial time (note that 1/ε can be bounded by a polynomial function in n, since
p, q are constants, so β can be polynomially bounded) and the number of input curves is
bounded by a linear function in |S|, the claim follows. J

4 Algorithms for (k, `)-center and -median curve clustering

4.1 (1 + ε)-approximation for (k, `)-center clustering for discrete
Frechét distance in Rd

In this section, we develop a (1 + ε)-approximation algorithm for the (k, `)-center problem
under the discrete Fréchet distance that runs in O(mn log(n)) time for fixed k, `, ε. In this
algorithm, we use hypercube grids Lv(a, b) around a vertex v of width a and resolution
b: take the axis-parallel d-dimensional hypercube centered at v of side-length a. Divide
this hypercube into smaller hypercubes of side-length at most b. The grid Lv(a, b) is the
set of all vertices of the smaller hypercubes that intersect the ball of diameter a around
v. See Figure 4 for an example. The algorithm is as follows: First, we compute a set of
curves C = {c1, . . . , ck} that forms a 3-approximation for the (k, `)-center problem, using the
algorithm by Buchin et al. [6]. Let ∆ be the cost of C. Let V be the union of the hypercube
grids Lv(4∆, 2∆ε

3
√
d
) over all vertices v of curves in C. For every set of k center curves with

complexity ` using only vertices from V , compute the clustering and cost as centers for G,
and return the set with minimal cost.

In order to show this algorithm gives an (1 + ε)-approximation, we use the following
lemma to show that there is a set of k center curves that is close enough to the optimal
solution:
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I Lemma 8. Let k, ` ∈ N, δ ∈ R and X > 0. Suppose there are two sets C = {c1, . . . , ck}
and C∗ = {c∗1, . . . , c∗k}, both containing k curves in Rd of complexity `. Additionally, suppose
that for all curves c∗ ∈ C∗, there exists a curve c ∈ C such that ddF (c, c∗) ≤ δ. Let V =
{Lv(2δ, 2 X√

d
) | v is a vertex of a curve in C}. Then there is a set of curves C̃ = {c̃1, . . . , c̃k},

using only vertices from V , such that ddF (c∗i , c̃i) ≤ X, |c̃i| = `, for all 1 ≤ i ≤ k.

Proof. Let v be a vertex of a curve in C, and let p be a point such that ‖p− v‖ ≤ δ. Then p
lies inside one of the small hypercubes and so there is a vertex p′ ∈ Lv(2δ, 2 X√

d
) (a vertex

of that small hypercube) such that ‖p − p′‖ ≤
√
d

2 ·
2X√
d

= X. Let c∗ ∈ C∗. There exists a
curve c ∈ C with ddF (c, c∗) ≤ δ, which means that each vertex u of c∗ has distance at most
δ to some vertex v of c. So, there exists a vertex v′ ∈ Lv(2δ, 2 X√

d
) such that ‖u− v′‖ ≤ X.

Construct the curve c̃ by connecting all such vertices v′ by line segments. By construction,
ddF (c̃, c∗) ≤ δ, |c̃| = `, and all vertices of c̃ are in V . So, we can take C̃ = {c̃ | c∗ ∈ C∗}. J

By the triangle inequality, curves of distance at most ε∆/3 to an optimal solution are
an (1 + ε)-approximation. We use Lemma 8 that show there is such a set of curves in the
hypercube grids our algorithm searches, leading to the following theorem:

I Theorem 9. Given m input curves in Rd, each of complexity at most n, and positive
integers k, ` and some 0 < ε ≤ 1, we can compute an (1+ε)-approximation to the (k, `)-center
problem for the discrete Fréchet distance in O

(
((Ck`)k` + log(`+ n)) · k` ·mn

)
time, with

C =
(

6
√
d
ε + 1

)d
.

Proof. We first show that the algorithm above achieves this approximation ratio. Let C∗ be
an optimal optimal solution for the (k, `)-center problem, and O its cost. Let c∗ ∈ C∗, then
there is a curve g ∈ G such that that ddF (c∗, g) ≤ O (assuming without loss of generality
that its cluster is non-empty). Since the solution C has cost ∆, there is a c ∈ C such that
ddF (c, g) ≤ ∆. So, ddF (c, c∗) ≤ ddF (c, g) + ddF (g, c∗) ≤ 2∆, and by Lemma 8 with δ = 2∆
and X = ε · ∆/3 ≤ εO, there is a solution C̃ with the properties in the Lemma. Since
for any g ∈ G, there is a curve c∗ ∈ C∗ such that ddF (g, c∗) ≤ O, there is a c̃ ∈ C̃ such
that ddF (g, c̃) ≤ ddF (g, c∗) + ddF (c̃, c∗) ≤ (1 + ε)O. Since the algorithm returns the best
solution using only from V , it returns a solution of cost at most that of C̃, and is therefore
an 1 + ε-approximation.

For the running time, computing the 3-approximation C takes O(k`mn log(`+n)) time [6].
A grid Lv(a, b) has at most (dab e+ 1)d vertices and the curves in C have at most k` vertices,
so |V | ≤ k`(d 6

√
d
ε e+ 1)d. There are O(|V |k`) solutions using only vertices from V , and we

can test each solution in O(k`mn) time: computing the discrete Fréchet distance between
an input curve and a center curve takes O(`n) time using dynamic programming, which
we do for all km pairs of input and center curves. In total, we get a running time of
O
(
(|V |k` + log(`+ n)) · k`mn

)
. J

Note that we can use any α-approximation algorithm instead of the 3-approximation
algorithm by Buchin et al. [6], if we scale the grids accordingly. This changes the value of C

to
(

2α
√
d

ε + 1
)d

. If ε is very small, we can use this to get a smaller C constant by running
our algorithm twice, first computing a 1.01-approximation, and using that approximation to
compute the (1 + ε)-approximation.

When ε and d are fixed constants, the algorithm from Theorem 9 yields fixed parameter
tractability for the parameter k + `. There is no (1 + ε)-approximation algorithm that is
fixed parameter tractable in either k or ` separately (the problem is not even in XP, in fact),
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unless P = NP. If we do not fix `, then achieving an approximation factor strictly better
than 2 is already NP-hard when k = 1 and d = 1 [6]. If we do not fix k and if ` = 1, the
(k, `)-center problem for discrete Fréchet is equivalent to the Euclidean k-center problem,
which is NP-hard to approximate within a factor of 1.82 for d ≥ 2 [14].

4.2 Approximation algorithms for (k, `)-median clustering for the
discrete Fréchet distance in Rd

We construct an (1 + ε)-approximation for the (k, `)-median problem for the discrete Fréchet
distance with a similar approach as above: first compute an constant factor approximation,
and then search in hypercube grids around the vertices of that approximation. The algorithm
for the constant factor approximation is essentially the same as the approximation algorithm
from [12] for 1D curves, except we use different subroutines and derive a tighter approximation
bound. We first introduce some techniques we will use to get a 12-approximation. Given a
polygonal curve γ, a simplification is a polygonal curve that is similar to γ, but has only
a few vertices. Specifically, a minimum error `-simplification γ̄ of a curve γ is a curve of
complexity at most ` that has a minimum distance to γ among all curves with complexity
at most `. We can compute a minimum error `-simplification under the discrete Fréchet
distance for a curve γ of complexity n in O(n` logn log(n/`) time [3].

The 12-approximation algorithms goes as follows: First, compute a minimum error
`-simplification ḡ for each input curve g and let G be the set of all simplified curves. Then,
compute a 4-approximation for the k-median problem with F = G and C = G, using the
algorithm by Jain et al. [19]. This yields a 12-approximation:

I Theorem 10. Given m input curves in Rd, each of complexity at most n, and positive
integers k, `, we can compute a 12-approximation to the (k, `)-median problem for the discrete
Fréchet distance in O(m3 +mn`(m+ logn log(n/`))) time.

Proof. We first show the approximation ratio. Let C∗ be the optimal solution to the
(k, `)-median problem with cost O, and let C be the solution computed by our algorithm
above. Each center curve c∗i has a set G∗i ⊆ G as its cluster. Let c′i be the minimum
error `-simplification of a curve ci from G∗i that has minimum distance to c∗i . The
curves C′ = {c′1, . . . , c′k} are a 3-approximation to the (k, `)-median problem: we have∑
g∈G minki=1 ddF (g, c′i) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c′i) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c∗i ) + ddF (c∗i , ci) +

ddF (ci, c′i) ≤ 3
∑k
i=1
∑
g∈G∗

i
ddF (g, c∗i ) = 3O, where ddF (c′i, ci) ≤ ddF (c∗i , ci) because |c∗i | = `

and c′i is a minimum error `-simplification of ci, and ddF (ci, c∗i ) ≤ ddF (g, c∗i ) for all g ∈ G∗i
by definition of ci. C′ is some solution to the k-median problem with F = G and C = G

of cost at most 3O, so the optimal solution to this problem has cost at most 3O. Since we
compute a 4-approximation for that problem, the result has cost at most 12O.

For the running time, note that computing the simplification of all curves in G takes
O(mn` logn log(n/`)) time. Then, we can compute the discrete Fréchet distances between
pairs from G × G in O(m2 · `n) time, and run the algorithm by Jain et al. [19] in O(m3)
time. J

We can modify the algorithm above to run in Õ(mn) time when k, ` are constant: Compute
G as before, but now use the algorithm by Chen [10] to compute a 10.5-approximation to
the k-median problem with F = C = G. This gives a 42-approximation.

I Lemma 11. Given m input curves in Rd, each of complexity at most n, and positive
integers k, `, we can compute a 42-approximation to the (k, `)-median problem for the discrete
Fréchet distance in O(mn` logn log(n/`) + `2(mk + k7 log5m)) time.
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Proof. The proof is similar to Theorem 10, but now simplifications are clustered instead
of the original curves. We first show the approximation ratio. Given a cluster G∗i ⊂ G

from the optimal clustering with center c∗i , let c̄i be the simplification of a curve g in this
cluster such that ddF (c̄i, c∗i ) is minimal. The curves C = {c̄1, . . . , c̄′k} are a 4-approximation
to the (k, `)-median problem: we have

∑
g∈G minki=1 ddF (ḡ, c̄i) ≤

∑k
i=1
∑
g∈G∗

i
ddF (ḡ, c̄i) ≤∑k

i=1
∑
g∈G∗

i
ddF (ḡ, c∗i )+ddF (c∗i , c̄i) ≤

∑k
i=1
∑
g∈G∗

i
2 ddF (ḡ, c∗i ) ≤ 2

∑k
i=1
∑
g∈G∗

i
ddF (ḡ, g)+

ddF (g, c∗i ) ≤ 2
∑k
i=1
∑
g∈G∗

i
2 ddF (g, c∗i ) = 4O, where ddF (c̄i, c∗i ) ≤ ddF (ḡ, c∗i ) by definition

of c̄i and ddF (ḡ, g) ≤ ddF (g, c∗i ) because |c∗i | = ` and ḡ is a minimum error `-simplification
of g. Since we compute a 10.5-approximation to the problem for which C is a solution, the
approximation ratio 10.5 · 4 = 42.

Computing the simplification of all curves in G takes O(mn` logn log(n/`)) time. The
algorithm by Chen [10] takes O(mk + k7 log5m) time, so it uses at most that number of
distance computations between curves in G, which take O(`2) time each. J

We use the 42-approximation algorithm to compute an (1 + ε)-approximation C for the
(k, `)-median problem similar to section 4.1. Let C = {c1, . . . , ck} be the solution given by
the 42-approximation algorithm above, and ∆ its cost. If k = 1, let V be the union of the
hypercube grids Lv(4∆/m, ε∆

21m
√
d
) over all vertices v of curves in C. If k > 1, let V be the

union of the grids Lv(4∆, ε∆
21m
√
d
) over the same vertices, instead. For every set of k center

curves with complexity ` using only vertices from V , compute the clustering and cost (using
the median objective) as centers for G, and return the set with minimal cost.

I Theorem 12. Given m input curves in Rd, each of complexity at most n, and positive
integers k, ` and some 0 < ε ≤ 1, we can compute an (1+ε)-approximation to the (k, `)-center
problem for the discrete Fréchet distance in O

(
mn`((C`)` + logn log(n/`))

)
time when k = 1

with C =
(

84
√
d

ε

)d
. When k > 1, we require

O
(
(Ck`)k` · k` ·mdk`+1n+mn` logn log(n/`) + `2(mk + k7 log5m)

)
time.

Proof. We first show the approximation ratio. Let C∗ = {c∗1, . . . , c∗k} be an optimal solution
for the (k, `)-median problem, G∗i ⊂ G the cluster induced by the center c∗i , and O the
total cost of this solution. Let C̃ = {c̃1, . . . , c̃k} be a set of curves with complexity at most
` such that for all 1 ≤ i ≤ k, there is a curve c̃j ∈ C̃ with ddF (c∗i , c̃j) ≤ εO/m. Since∑
g∈G minkj=1 ddF (g, c̃j) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c̃j) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c∗i ) + ddF (c∗i , c̃i) ≤∑

g∈G minki=1 ddF (g, c∗i ) + εO/m = (1 + ε)O, the set C̃ is an (1 + ε)-approximation. We will
show that there is such a set that uses only vertices of V .

If k = 1, then ddF (c1, c∗1) = 1
m

∑
g∈G ddF (c1, c∗1) ≤ 1

m

∑
g∈G ddF (c1, g) + ddF (g, c∗1) ≤

(∆ + O)/m ≤ 2∆/m. Applying Lemma 8 with δ = 2∆/m and X = ε∆/(42m) ≤ εO/m,
there is a (1 + ε)-approximation using only vertices of V .

Otherwise, if k > 1, then for each c∗i there is a cj such that the clusters of these centers
share some curve g ∈ G. So, ddF (c∗i , cj) ≤ ddF (c∗i , g) + ddF (g, cj) ≤ O + ∆ ≤ 2∆. Applying
Lemma 8 with δ = 2∆ and X = ε∆/(42m) ≤ εO/m, there is a (1 + ε)-approximation using
only vertices of V .

For the running time, we have |V | ≤ k`(dab e+ 1)d when we use grids with width a and
resolution b. If k = 1, ab = 4∆/m

ε∆/(21m
√
d) = 84

√
d

ε . If k > 1, ab = 84m
√
d

ε . The rest of the analysis
is similar to that in Theorem 9. J

SWAT 2020



19:14 On the Hardness of Computing an Average Curve

f1

f2

f3

f4

f5

f6

f7

f8
f9

v

f10

f11

Figure 5 An example configuration of G = (V,E). Crosses indicate the vertices from the curves
in G, dots indicate vertices from V and all bounded faces are numbered. The maximal intersection
regions are the faces f1 and f9 and the vertex v (in red). Note that while all arcs on the boundary
of f2 are convex for that face, f2 is not maximal, since its boundary intersects the boundary of f3

only at vertex v.

4.3 Exact algorithm for (k, `)-center under discrete Fréchet in R2

For the (k, `)-center problem under the discrete Fréchet distance in R2, we can give a
polynomial time algorithm if k and ` are fixed.

I Theorem 13. Given a set of m curves G in the plane with at most n vertices each,
we can find a solution to the (k, `)-center problem for the discrete Fréchet distance in
O((mn)2k`+1k` log(mn)) time.

Proof. We first give an algorithm for the decision version of the problem: Given a set of m
curves G in the plane with at most n vertices each and a positive real number r, does there
exist a set of k center curves C with at most ` vertices each such that minc∈C ddF (c, g) ≤ r
for all g ∈ G?

For a solution C of cost r, consider the planar subdivision formed by the circles of radius
r centred at the vertices of the input curves. Observe that we can move the vertices of curves
in C to different positions within the same region of the subdivision without changing the
cost. So, we select a single vertex per region and exhaustively test all sets with k curves of
` vertices that can be constructed by using only the selected vertices to determine if there
exists a set of curves C such that minc∈C ddF (c, g) ≤ r for all g ∈ G.

To find all maximal intersection regions, we first compute the planar graph G = (V,E),
where V is the set of all intersection points between boundaries of disks centred around a
vertex from our input curves with radius r and E is the set of arcs on the boundary of those
disks ending at two intersection points. This graph has O((nm)2) vertices and arcs and can
be computed in O((nm)2) time [9], see Figure 5 for an example.

By traversing the intersection points and arcs on the boundary, we can find the at most
O((nm)2) maximal intersection regions. So, we test O((mn)2k`) sets of center curves, for
which we can test whether a single input curve has discrete Fréchet distance less than r to a
single curve among the k center curves in O(n`). This means the algorithm for the decision
version takes O((mn)2k`+1k`) time.
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To find a minimum r such that a (k, `)-center exists, note that we only have to consider
the decision problem for those r where the topology of the intersection regions in G is different.
If we start with r = 0 and gradually increase it, the topology of G changes only when a new
maximal intersection is created, which then consists of exactly one point p. This means that
there is a subset of our disks such that point p is the earliest point where all disks have a
non-empty intersection. So, p must be the center of the minimum enclosing disk for this
subset of disks. Since a minimum enclosing disk is determined by at most 3 points, there
can be at most one unique point for every triple in set of vertices of the input curves which
give at most O((mn)3) distinct values of r where the topology of G changes. By performing
a binary search on these values, we can find the optimal value in O(log(mn)) calls to the
algorithm for the decision. J

5 Conclusion

In this paper, we have shown that the 1-median problem is computationally hard under the
discrete Fréchet, continuous Fréchet, and DTW distance. A natural question is whether
this problem is hard to approximate. Efficient constant factor approximation algorithms
are known for the Fréchet distance (see Section 4.2), but not for DTW. If we extend our
analysis in Lemma 3 to a solution c∗ with cost (1 + ε)r for some ε > 0, we can show
ddF (c∗, g) ≤ 1 +O(εm) for all input curves g (where the constant is independent of other
input parameters). Together with the approximation lower bound of 2 for 1-center under
continuous Fréchet distance [29], this implies a lower bound of 1+Ω( 1

m ) on the approximation
factor for 1-median. If we do the same for Lemma 6, we get that it is hard to approximate
1-median under (p, q)-DTW for any factor < 1 + 2((1 + 1

min(i,j) )q/p − 1). So, it remains an
open problem to find a constant lower bound for approximating 1-median for these distance
measures.

We have shown that computing a center curve for (p, q)-DTW is NP-hard even when
both the center and input curves are ternary. Bulteau et al. [8] have shown that this problem
is hard for (2, 2)-DTW when the input is binary, but the center curve is unrestricted. Can
this hardness result for binary inputs be extended to (p, q)-DTW? If both the center and
input are binary, a center curve for (2, 2)-DTW can be computed in polynomial time [28].
Can this be done for (p, q)-DTW? Can a mean be found in polynomial time if the input is
binary, but the center restricted to be ternary?

On the positive side, we have given (1 + ε)-approximation algorithms for (k, `)-center and
(k, `)-median problems under discrete Fréchet in Euclidean space and an exact algorithm
for the (k, `)-center problem under discrete Fréchet in 2D that all run in polynomial time
for fixed k, `, ε. It would be interesting to see if these algorithms can be adapted to the
DTW or continuous Fréchet settings. Our approximation algorithms rely on the fact that
good approximations have small distance to some optimal solution and that we can search a
bounded space (the set of balls surrounding the vertices) for better approximations. The
first property does not hold for DTW, since it is non-metric and the second property does
not hold for continuous Fréchet, since the vertices of a curve with small continuous Fréchet
distance do not have to be near the vertices of the other curve. The latter property is also
crucial for the exact algorithm.
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A Appendix

A.1 Proof of Lemma 3
I Lemma. If (G ∪Ri,j , r) is a true instance of the average curve problem for discrete and
continuous Fréchet, then (S, i, j) is a true instance of FCCS.

Proof. We will show the proof for the continuous Fréchet distance. Since the continuous
Fréchet distance is a lower bound of the discrete version, this proves the discrete case as well.

Since (G ∪Ri,j , r) is a true instance of the average curve problem for continuous Fréchet,
there exists a curve c∗ such that

∑
g∈G∪Ri,j

dF (c∗, g) ≤ r = |S|+ 2. We start by deriving
bounds for the distance between c∗ and the individual curves in G ∪Ri,j .

B Claim. dF (γ(s), γ(s′)) ≥ 2 for all s, s′ ∈ S such that s 6= s′.

Proof. If a letter vertex p on γ(s) is matched with a point p′ that does not lie on a peak of
the same letter in γ(s′), then |p− p′| ≥ 2 and so dF (γ(s), γ(s′)) ≥ 2. By symmetry, the same
holds if we exchange s and s′.

Otherwise, each letter vertex can be matched only with points on a peak of the same
letter. Let k be the first index such that s[k] 6= s′[k]. Then, the k-th letter vertex of γ(s)
cannot be matched to any point on the k-th peak of γ(s′) and must be matched to a point on
another peak; the same holds with s and s′ exchanged. It is not possible that on both curves
the k-th letter vertex is matched with a peak of index larger than k, since the matching is
monotone. So, one of the curves has its k-th letter vertex matched with a point on a peak of
index smaller than k, we assume w.l.o.g. that this curve is s.

By monotonicity, the first k letter vertices of s are matched to the first k − 1 peaks of s′,
so there are two letter vertices on s that are both matched with a point on the same peak
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on s′. The interval between those two points on this peak on s′ must be matched with the
interval between the letter vertices on s, so all points in the buffer gadget between the letter
vertices on s are matched to some point on the peak on s′. But then there is either a point
on an A-peak matched to gb or a point on a B-peak matched to ga, which in both cases has
distance a least 2, so dF (γ(s), γ(s′)) ≥ 2. C

B Claim. dF (c∗, Ai) + dF (c∗, Bj) ≤ 2

Proof. Using the previous claim and the triangle inequality, we have

dF (c∗, γ(sk)) + dF (c∗, γ(sk+1)) ≥ dF (γ(sk), γ(sk+1) ≥ 2

for all k ∈ {1, . . . ,m− 1} and dF (c, γ(sm)) + dF (c, γ(s1)) ≥ 2. The summation of these m
inequalities has each sk exactly twice on the lefthand side, so

∑m
k=1 2dF (c∗, γ(sk)) >= 2m,

hence
∑m
k=1 dF (c∗, γ(sk)) ≥ m = |S|. So, dF (c∗, Ai)+dF (c∗, Bj) ≤ r−

∑m
k=1 dF (c∗, γ(sk)) ≤

2. C

B Claim. dF (c∗, Ai) ≥ 1 and dF (c∗, Bj) ≥ 1.

Proof. Suppose dF (c∗, Ai) < 1. Then, all points p on c∗ are matched to some point in [−3, 1]
with distance < 1, which means |p− gB | > 1. We can assume that each string in S contains
at least one B character (if there is a string s with only A characters, any supersequence with
i A-characters is a supersequence of s when |s| ≤ i and none when |s| > i, so we can remove
such trivial strings from the instance and check if the instance is trivially false). Therefore,
dF (c∗, γ(s)) > 1 for any s ∈ S.

Since |ga− gb| = 2, we have dF (Ai, Bj) ≥ 2, so dF (c∗, Ai) + dF (c∗, Bj) ≥ dF (Ai, Bj) ≥ 2.
But then r ≥

∑
g∈G∪Ri,j

dF (c∗, g) > |S| + 2 = r, a contradiction, so dF (c∗, Ai) ≥ 1. The
proof of dF (c∗, Bj) ≥ 1 is analogous. C

B Claim. dF (c∗, g) = 1 for all g ∈ G ∪Ri,j .

Proof. The last two claims together imply dF (c∗, Ai) = dF (c∗, Bj) = 1. This means that for
each point p on c∗, |p| ≤ 2 (otherwise, p has distance > 1 to all points on Ai or all points on
Bj), so dF (c∗, γ(s)) ≥ 1 for all s ∈ S, since we can assume s contains at least one A and B
character. Therefore, dF (γ(s), c∗) ≤ r− dF (Ai, c∗)− dF (Bj , c∗)−

∑
s′∈S\{s} dF (γ(s′), c∗) ≤

|S| − (|S| − 1) = 1 for all s ∈ S. C

Now we have shown that any center curve that achieves a cost of |S|+2 for the constructed
k-median instance needs to have Fréchet distance equal to 1 to all curves in this instance. It
remains to show that such a center curve encodes a solution to the initial FCCS instance.
Note that such a center curve is also a solution to the 1-center problem for this set of curves.
We can now apply the proof of Lemma 33 from [6, 5], where the same gadgets were used in
the reduction to the 1-center problem. J

A.2 Proof of Lemma 6
I Lemma. If (G ∪Ri,j , r) is a true instance of (p, q)-DTW average curve, then (S, i, j) is a
true instance of FCCS.

Proof. If (G∪Ri,j , r) is a true instance of (p, q)-DTW average curve, then there exists a curve
c∗ such that

∑
g∈G∪Ri,j

DTWq
p(c∗, g) ≤ r. Take a curve g ∈ G∪Ri,j . First note that there is

at least one signal vertex in c∗ matched to each letter gadget in g: otherwise, matching all β
vertices in the gadget costs at least εq ·β = εq · (r/εq + 1) > r, which contradicts the choice of
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c∗. Similarly, each signal vertex is matched to at most one letter gadget in g, since otherwise
it would have to match a gβ0 subcurve in between the letter gadgets, which would have a cost
of at least (1− ε)q ·β > εq ·β > r. This means that the sequence of letter gadgets in γ(s) is a
subsequence of the sequence of signal vertices in c∗. So, if we construct s′ from the sequence
of signal vertices in c∗ by mapping A-signal vertices to A characters and B-signal vertices to
B characters, we have that s′ is a supersequence of S. What remains to be proven is that
#A(s′) = i and #B(s′) = j, i.e. there are exactly i A-signal vertices and j B-signal vertices.

First, note that the sequence of A letter gadgets in Ai is a subsequence of the sequence
of signal vertices in c∗ (using the same argument as above), so there are at least i A-signal
vertices. Analogously, there are at least j B-signal vertices. Now if we can show that there
are at most i+ j signal vertices, then we are done.

Observe that there is at least one buffer vertex within a distance ε to g0 in between signal
vertices that are matched to letter gadget in Ai or Bj , as such a vertex must cover a gβ0
subcurve between the letter gadgets. We call signal vertices that are matched to the same
letter gadget in either Ai or Bj a group. (Note that by definition, a signal vertex cannot be
matched to letter gadgets in both Ai and Bj) This means that there are at least i groups of
A-signal vertices and at least j groups of B-signal vertices.

When matching c∗ and γ(s) for some s ∈ S, we can only match at most |s| groups of
signal vertices to a ga or gb vertex in a letter gadget in γ(s). So, for the at least i+ j − |s|
remaining groups of signal vertices, we can either match them to a g0 vertex in γ(s), or to a
corresponding ga or gb vertex. In the latter case, the signal vertex is matched to the same
gβa or gβb subcurve in γ(s) as another signal vertex in a different group. This means that the
buffer vertex that separates the two signal vertices is matched to a ga or gb vertex in the
letter gadget. So in all cases, we match two vertices at distance at leasts 1− ε. Since we do
this for at least i+ j − |s| vertices, DTWp(c∗, γ(s)) ≥ (1− ε)(i+ j − |s|)1/p.

Now, we have

α(DTWq
p(c∗, Ai) + DTWq

p(c∗, Bj)) ≤ r −
∑
s∈S

DTWq
p(c∗, γ(s))

≤ r −
∑
s∈S

(1− ε)q(i+ j − |s|)q/p

= α(iq/p + jq/p)

+
∑
s∈S

(1− (1− ε)q)(i+ j − |s|)q/p

≤ α(iq/p + jq/p) + (1− (1− ε)q)|S|(i+ j)q/p,

so that DTWq
p(c∗, Ai) + DTWq

p(c∗, Bj) ≤ iq/p + jq/p + (1 − (1 − ε)q)(i + j)q/p < iq/p +
jq/p + 1

2 minx∈{i,j}(x+ 1)q/p − xq/p. This means that there are at most i+ j signal vertices:
suppose there are at least i + 1 A-signal vertices, then DTWq

p(c∗, Ai) + DTWq
p(c∗, Bj) ≥

(1− ε)q((i+ 1)q/p + jq/p) ≥ iq/p + jq/p + ((i+ 1)q/p − iq/p)/2, a contradiction. Analogously,
at least j + 1 B-signal vertices lead to a contradiction. J
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