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Abstract
A 2-interval is the union of two disjoint intervals on the real line. Two 2-intervals D1 and D2 are
disjoint if their intersection is empty (i.e., no interval of D1 intersects any interval of D2). There can
be three different relations between two disjoint 2-intervals; namely, preceding (<), nested (@) and
crossing (G). Two 2-intervals D1 and D2 are called R-comparable for some R ∈ {<,@, G}, if either
D1RD2 or D2RD1. A set D of disjoint 2-intervals is R-comparable, for some R ⊆ {<,@, G} and
R 6= ∅, if every pair of 2-intervals in R are R-comparable for some R ∈ R. Given a set of 2-intervals
and some R ⊆ {<,@, G}, the objective of the 2-interval pattern problem is to find a largest subset of
2-intervals that is R-comparable.

The 2-interval pattern problem is known to be W[1]-hard when |R| = 3 and NP-hard when
|R| = 2 (except for R = {<,@}, which is solvable in quadratic time). In this paper, we fully settle
the parameterized complexity of the problem by showing that it is W[1]-hard for both R = {@, G}
and R = {<, G} (when parameterized by the size of an optimal solution). This answers the open
question posed by Vialette [Encyclopedia of Algorithms, 2008].
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1 Introduction

Interval graphs and their generalizations are often used to study problems in resource
allocation, scheduling, and DNA mapping. In 2002, Vialette [13] proposed a geometric
description of RNA helices in an attempt to improve the understanding of the computational
complexity for finding structured patterns in RNA sequences. In particular, Vialette modeled
the RNA secondary structure using a set of 2-intervals, which inspired subsequent research
(e.g., see [15]) on examining the properties of the geometric graphs arising from such
representations. Vialette [14] introduced the 2-interval pattern problem, which is now a
widely-studied problem and the main topic of this paper.

A 2-interval is the union of two disjoint intervals on the real line. Two 2-intervals D1
and D2 are disjoint if their intersection is empty; that is, no interval of D1 intersects any
interval of D2. We can define three different relations between two disjoint 2-intervals: one
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Figure 1 (a) An example for showing the three possible relations between a pair of 2-intervals;
here, the same-colour intervals form a 2-interval. Then, (a, a′) < (d, d′), (d, d′) @ (b, b′) and
(c, c′) G (d, d′). (b) An instance of 2-interval pattern problem with R = {<, G} and the 2-intervals are
{(u, w), (q, s), (r, u), (p, t)}. The 2-intervals {(p, t), (r, u)} form a largest subset that is R-comparable.

2-interval lies entirely to the left of the other one (called preceding and denoted by <), one
2-interval is nested within the other one (called nested and denoted by @), and the intervals
of the two 2-intervals alternate on the real line (called crossing and denoted by G). See
Figure 1(a) for an example; a formal definition is given in Section 2. Two 2-intervals D1 and
D2 are R-comparable for some R ∈ {<,@, G} if either D1RD2 or D2RD1. A set D of disjoint
2-intervals is R-comparable, for some R ⊆ {<,@, G} and R 6= ∅, if every pair of 2-intervals
in R are R-comparable for some R ∈ R. In the 2-interval pattern problem, we are given a
set of 2-intervals and a set R ⊆ {<,@, G}, and the objective is to compute a largest subset
of 2-intervals that is R-comparable. Figure 1(b) illustrates such an example.

The 2-interval pattern problem can model various scenarios in the context of RNA
structure prediction. While looking for certain RNA structures, some common approaches
to cope with intractability are either to restrict the class of pseudoknots [11] or to apply
heuristics [4, 10, 12]. Vialette [14] proposed that one can obtain a relevant set of 2-intervals
from an RNA sequence by selecting stable stems, e.g., using a simplified thermodynamic model
without accounting for loop energy [12, 14, 16]. Then, the prediction of the RNA structure
is equivalent to finding a maximum subset of non-conflicting (i.e., disjoint) 2-intervals.

Related work. Vialette [14] observed that if |R| = 1, then the 2-interval pattern problem is
polynomial-time solvable by reductions to the maximum independent set problem on interval
graphs, or to the maximum clique problem on comparability graphs. The running time of
these algorithms have been improved since then, and expressed in terms of the number of
input 2-intervals and various interval-related parameters such as their lengths or overlap [3].
For the case when |R| = 2, the problem is solvable in polynomial time when R = {<,@} [14].
However, the problem is known to be NP-hard if R = {<, G} or R = {@, G}, even if the
intervals of every 2-interval have unit length [14, 2]. If |R| = 3 (i.e., R = {<,@, G}), then
the problem is APX-hard [1].

The approximability of the NP-hard models of the 2-interval pattern problem was studied
by Crochemore et al. [5]. They gave polynomial-time algorithms for the problem with
approximation factors 4 when R = {<,@, G} or R = {@, G}, and 6 when R = {<,@}. They
also showed that the results hold for the weighted case; i.e., when each 2-interval is associated
with a weight and the goal is to find a maximum weight subset. For the weighted version and
when R = {<,@, G}, a 2-approximation algorithm was given by Bar-Yehuda et al. [1]. These
factors are improved to 3 when the intervals of every input 2-interval have unit length [5],
where they also considered the case when the 2-intervals are weighted. For R = {<, G}
(and arbitrary input 2-intervals), Jiang [7] improved the approximation factor to 2 and
subsequently to 1 + ε for any ε > 0 [8].
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The problem is W[1]-hard when R = {<,@, G}, because in this case, the problem is
equivalent to computing a maximum independent set on 2-interval graphs, and the latter is
known to be W[1]-hard [6]; see Section 3 for more details. For |R| = 2, to the best of our
knowledge, the only parameterized algorithm is the work of Blin et al. [2] who proved that
the problem is fixed-parameter tractable, but only when R = {@, G}, the input intervals all
have unit length and the tractability is with respect to the forward crossing number : the
maximum number of 2-intervals that cross a 2-interval “from the right”.

Our results. In this paper, we answer a question of Vialette [15] by proving that the
2-interval pattern problem is W[1]-hard for R = {@, G} and R = {<, G} when parameterized
by the size of an optimal solution. Our W[1]-hardness result is inspired by the reduction
of the k-independent set problem used by Fellows et al. [6]. Their reduction requires all
three relations (i.e., they prove the W[1]-hardness of the 2-interval pattern problem when
R = {<, G,@}). Prior to our work, it was known that the complexity of the problem is
polynomial when R = {<,@} [3], but it was unknown whether the problem is fixed-parameter
tractable (when parameterized by the size of an optimal solution) or it is W[1]-hard for
R = {@, G} and R = {<, G}. Hence, our W[1]-hardness result fully settles the parameterized
complexity of the 2-interval pattern problem problem.

2 Preliminaries

In this section, we give some definitions and notation that will be used throughout the paper.
A 2-interval D is the union of two disjoint intervals on the real line; that is, D = (A,B)

and the interval A lies to the left of the interval B. For a pair of disjoint intervals I, J ,
we write I < J when I is to the left of J . Two 2-intervals Di and Dj are disjoint if
(Ii ∪ Ji) ∩ (Ij ∪ Jj) = ∅. Moreover, for two disjoint 2-intervals Di and Dj , we say that Di

is preceding (resp., nested in, crossing) Dj if Ii < Ji < Ij < Jj (resp., Ij < Ii < Ji < Jj ,
Ii < Ij < Ji < Jj . We write Di < Dj (resp., Di @ Dj , Di G Dj) when Di is preceding (resp.,
nested in, crossing) Dj .

We say that two 2-intervals Di and Dj are R-comparable, for some R ∈ {<,@, G}, if (i) Di

and Dj are disjoint and (ii) either DiRDj or DjRDi. Let S be a set of n 2-intervals on the
real line, and let R ⊆ {<,@, G} such that R 6= ∅. Then, a set D ⊆ S is called R-comparable
if every pair of 2-intervals in D are R-comparable for some R ∈ R. Given S and some
R ∈ {<,@, G}, the objective of the 2-interval pattern problem is to compute a largest subset
D ⊆ S such that D is R-comparable.

Given a graph G and a parameter k, the k-independent set problem asks whether there
is an independent set of size k in G. Fellows et al. [6] proved that the k-independent set
problem is W[1]-hard on 2-interval graphs when R = {<, G,@}. A 2-interval graph is the
intersection graph of a set of 2-intervals on the real line. Our W[1]-hardness results are also
based on showing reductions from the k-Multicoloured Clique Problem, which is known to be
W[1]-hard [6]. The problem is defined as follows.

Problem: k-Multicoloured Clique.
Input: A graph G, and a vertex-colouring c : V (G)→ {1, 2, . . . , k} for G.
Question: Is there a clique of size k in G such that, for each c ∈ {1, 2, . . . , k}, there is
exactly one vertex in the clique that has colour c?

SWAT 2020
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3 W[1]-Hardness

In this section, we prove that the 2-interval pattern problem is W[1]-hard when R = {@, G}
and R = {<, G}. Our reduction is inspired by that of Fellows et al. [6]. Let (G, c, k) be an
instance of the k-multicoloured clique problem (we assume w.l.o.g. for our purposes that c is
a proper colouring1). We construct a set F of 2-intervals such that G has a multicoloured
clique of size k if and only if F contains a set of k′ = 2k + 4

(
k
2
)
disjoint 2-intervals that

are pairwise comparable in one of the relations in R; the value of k′ will be clear from our
construction. We first describe an outline of the construction and the corresponding gadgets.
Then, we give the details on how to organize the gadgets on the real line specific to each
of the sets R = {@, G} and R = {<, G}. For a colour i ∈ {1, 2, . . . , k}, let Vi(G) denote the
set of vertices of G that have colour i. Moreover, for every distinct pair of colours i, j, let
E(i,j)(G) denote the set of edges (u, v) of G such that {c(u), c(v)} = {i, j}. That is, E(i,j)(G)
consists of all the edges whose end vertices are coloured with two distinct colours i and j.

Outline. The construction consists of two main types of gadgets: selection and validation.
By selection gadgets, we ensure that 2-intervals representing k vertices with distinct colours
and

(
k
2
)
edges with distinct pairs of colours are selected. By validation gadgets, we ensure that

the selected set of 2-intervals are valid in the sense that the k selected vertices are actually
adjacent in the graph and the selected edges are indeed over the selected set of vertices. We
group the 2-intervals corresponding to vertices of the same colour together in a vertex-selection
gadget in such a way that any feasible solution for the 2-interval pattern problem will have
2-intervals corresponding to one vertex per vertex-selection gadget. Similarly, we group the
2-intervals corresponding to edges with the same pairs of distinct colours {i, j} together in a
edge-selection gadget such that any feasible solution for the 2-interval pattern problem will
have 2-intervals corresponding to one edge (u, v) with {c(u), c(v)} = {i, j}. We will then
organize the gadgets on the real line in such a way that any feasible solution will contain
2-intervals that are R-comparable.

Given (G, c, k), we associate one 2-interval Iv for each vertex v ∈ V (G). Moreover, we
associate four 2-intervals for each edge (u, v) ∈ E(G): two 2-intervals I(u,v) and I(v,u) for
each “direction” of the edge and two 2-intervals I{u,v} and I ′

{u,v} that are undirected. The
2-intervals for “directed” edges will be used for validation, and we will show below how they
are constructed. Therefore, the number of 2-intervals of the constructed instance will be
|V (G)|+ 4|E(G)|. We next give the details of each type of gadgets.

Vertex-selection gadget. For each colour c ∈ {1, 2, . . . , k}, we construct a vertex-selection
gadget. The gadget has two components, which we denote by I1(c) and I2(c); see Figure 2
for an illustration. The component I1(c) has |Vc(G)| “rows” of intervals, each of which has
(k + 1) “columns”; each row corresponds to a vertex of G with colour c. The intervals in the
same column pairwise intersect. Moreover, for the intervals in a fixed column j, we assign an
offset such that each interval in row i > 1 intersects the interval that is in column j + 1 and
row i− 1; see Figure 2. The component I2(c) consists of two columns of intervals, and each
column has |Vc(G)| rows. Here, we assign an offset such that the interval in the first column
and row i intersects the interval in the second column and row i+ 1 (see Figure 2).

For each vertex v ∈ Vc(G), we associate two 2-intervals Iv and I ′
v as follows. The first

(resp., second) 2-interval Iv (resp., I ′
v) is composed of the interval in the first (resp., last)

column of I1(c) that corresponds to v and the interval in the first (resp., second) column of

1 Otherwise, one can remove the edges whose end vertices are coloured with the same color.
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I1(c) I2(c)

v

k + 1 columns 2 columns

|Vc(G)|

Figure 2 A vertex-selection gadget and the two 2-intervals Iv and I ′
v corresponding to a vertex v.

I2(c) that corresponds to v. These 2-intervals are illustrated with dashed lines in Figure 2.
Each of the remaining k columns in I1(c) corresponds to a colour in {1, 2, . . . , k} \ {c}. These
|Vc(G)| × (k − 1) intervals are later paired with intervals from edge-selection gadgets to
form 2-intervals that correspond to “directed” edges. Notice that the intervals of the first
column of I1(c) pairwise intersect, ensuring that at most one 2-interval corresponding to a
vertex with colour c can appear in any feasible solution. Similarly, for the |Vc(G)| × (k − 1)
intermediate intervals of I1(c) (i.e., the intervals of I1(c) excluding those in the first and last
column), it means that all the edges of a k-multicoloured clique with at least one endpoint
with colour c are incident to the same vertex in Vc(G).

I Lemma 1. Let S be feasible a solution for the 2-interval pattern problem, and consider
the vertex-selection gadget T corresponding to colour c. Moreover, let M ⊆ S be the set of
2-intervals such that each 2-interval in M has at least one interval in T . If |M | ≥ k + 1,
then all the intervals in M ∩ T are selected from the same row of T .

Proof. Since there are (k+1) columns in the component I1(c) of T ,M cannot have more than
(k + 1) 2-intervals, where each containing at least one interval from T . Hence, |M | = k + 1,
This means that M must contain exactly one interval from every column of I1(c) and hence,
one from every column of I2(c). Consider the interval in the first column of I1(c) (that is
in M) and assume that this interval is in row i, for some 1 ≤ i ≤ |Vc(G)|; it corresponds to
a vertex v ∈ Vc(G). We now show that every other interval in M ∩ T must also be in row
i. Since M ⊆ S and S is a feasible solution, then the interval in the first column of I2(c)
and row i must also be in M because these two intervals form one of the two 2-intervals
corresponding to v. Now, suppose that the interval in M that is from the second column
of I2(c) is in row i′. Clearly, i′ ≤ i (i.e., i′ lies below i) because otherwise the interval of
M that is in the first column of I2(c) would intersect this interval due to the offset. Since
M ⊆ S and S is a feasible solution, M must contain the interval in the last column of I1(c)
that is in row i′ (as only these two would form a valid 2-interval while considering I2(c)). If
i′ < i, then it is not possible to have exactly one interval from column j of I1(c) in M for all
j = 2, 3, . . . , k because the offset would imply that at least two intervals must intersect in
M . Therefore, i′ = i. In the same way, we can show that the subsequent intervals of M ∩ T
must also be in row i. J

Observe that the assignment of two 2-intervals for each vertex v ∈ Vc(G) and placement of
their second intervals in I2(c) with an offset allowed us to argue that the remaining intervals
are also selected from the same row of the vertex-selection gadget. We will use a similar
construction to argue the same for edge-selection gadgets. Before we continue, one might

SWAT 2020
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C1(i, j) C2(i, j)

(u, v)

(a) (b)

4 columns 2 columns

|E(i,j)(G)|

Figure 3 An illustration of the two components of an edge-selection gadget; namely, (a) C1(i, j)
and (b) C2(i, j). The two 2-intervals I{u,v} and I ′

{u,v} corresponding to the edge (u, v) ∈ E(G) are
shown dashed-dotted red.

wonder why we needed I2(c) and why could not we have only I1(c) with one 2-interval for
each vertex. Although this would force the selection of remaining intervals from the same row,
it is impossible to place such a gadget on the real line while maintaining R-comparability.
To ensure R-comparability, we will need to place I1(c) and I2(c) on different parts of the
real line, possibly far apart from each other.

Edge-selection gadget. For each distinct pair of colours (i, j), we construct an edge-selection
gadget. The gadget has two main components, which we denote by C1(i, j) and C2(i, j).
The component C1(i, j) has |E(i,j)| rows of intervals each of which corresponds to an edge
(u, v) of G such that {c(u), c(v)} = {i, j}; see Figure 3(a). Each row has four columns of
intervals; the intervals in the same column pairwise intersect. Moreover, there is an offset
such that an interval in column t intersects the interval in column t+ 1 that is in the row
immediately above it. The component C2(i, j) has |E(i,j)| rows and only two columns. There
is also an offset between the intervals similar to the offset defined for the intervals in C1(i, j);
see Figure 3(b). The row r in C1(i, j) corresponds to an edge (u, v) ∈ E(G) if and only if
the row r in C2(i, j) corresponds to the edge (u, v) ∈ E(G).

Recall that for each edge in E(G), we associate four 2-intervals; we next describe the
construction of these 2-intervals. Let (u, v) ∈ E(G) such that c(u) = i, c(v) = j and i < j.
Then, the 2-interval I{u,v} (resp., I ′

{u,v}) is composed of the interval in the first column (resp.,
last column) of the row corresponding to (u, v) in C1(i, j) and the first interval (resp., second
interval) of the row corresponding to (u, v) in C2(i, j). See Figure 3 for an illustration. The
2-interval I(u,v) (associated with the “directed” edge (u, v)) is composed of the interval in
the second column of C1(i, j) and the interval in the vertex-selection gadget of i that is in
the row corresponding to vertex u and the column for colour j. The 2-interval corresponding
to the “directed” edge (v, u) is constructed in a similar way: it consists of the interval in the
third column of C1(i, j) and the interval in the vertex-selection gadget of j that is in the row
corresponding to vertex v and the column for colour i. Figure 4 illustrates an example for
constructing the two 2-intervals corresponding to such “directed” edges. Note that the latter
two 2-intervals that correspond to “directed” edges are used for validation: they ensure that
if the 2-intervals of a vertex u with colour i is selected, then all the selected edges with an
endpoint of colour i are incident to u.
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(1, 2)
(2, 1)

C1(k − 1, k)

1 2

C1(1, 2) C1(1, 3)I1(1) I1(2) I1(k)

2 1

Figure 4 An illustration of the two 2-intervals corresponding to the “directed” edges (u, v) and
(v, u), assuming c(u) = 1 and c(v) = 2. The dashed (red) rectangles shown in gadgets I1(·) indicate
the first and last columns of intervals in the gadget.

I Lemma 2. Let S be a feasible solution for the 2-interval pattern problem, and consider an
edge-selection gadget T . If there are four 2-intervals in S such that each of them has at least
one interval in T , then all such four 2-intervals must have intervals from the same row of T .

Proof. The proof uses an argument similar to the one we used in the proof of Lemma 1.
Suppose that T corresponds to edges with colours i and j, where i < j. Now, consider the
gadget C1(i, j). Clearly, S can have at most one interval from each column of C1(i, j). Since
S has four 2-intervals that have at least one interval in T , the set S contains exactly one
interval from each column of T . Suppose that the interval of the first column of C1(i, j)
(that is in S) is at row t for some 1 ≤ t ≤ |E(i,j)|. Notice that this interval forms a 2-interval
with the first interval in row t of C2(i, j) and so that interval must also be in S (these two
intervals form a valid 2-interval and S is a feasible solution). We now show that the interval
of the last column of C1(i, j) (that is in S) must also be at row t. Suppose for the sake of
contradiction that it is at a row t′ 6= t. First, by construction, this interval forms a 2-interval
with the second interval in row t′ of C2(i, j) and so that interval must also be in S. If t′ > t,
then the second interval in row t′ of C2(i, j) intersects with the first interval in row t of
C2(i, j) by the construction and so they cannot both be in S – a contradiction. Moreover, if
t′ < t, then S cannot contain an interval from both the second and third columns of C1(i, j)
because at least one of them intersects the interval of S that is in either the first or the last
column of C1(i, j) – a contradiction. Therefore, t′ = t and so the two intervals in S that are
in C2(i, j) are also from the same row t. Finally, the fact that t′ = t forces the intervals in
the second and third columns of C1(i, j) (that are in S) to be also from the row t. J

By the above constructions, we obtain the set F of 2-intervals as

F = {Iv, I
′
v|v ∈ V (G)} ∪ {I{u,v}, I

′
{u,v}, I(u,v), I(v,u)|(u, v) ∈ E(G)}.

Since we associate each vertex with two 2-intervals and each edge with four 2-intervals, we
have |F| = 2|V (G)|+ 4|E(G)|. The construction of our gadgets can all be done in FPT-time.
In the following, we show the arrangement of the gadgets on the real line specific to each of
R = {@, G} and R = {<, G}. Then, we show that any k-multicoloured clique in G corresponds
to 2k + 4

(
k
2
)
pairwise disjoint 2-intervals of F . For brevity, let k′ = 2k + 4

(
k
2
)
for the rest of

this section.

3.1 Hardness for R = {@, G}
We now show how to arrange the gadgets on the real line when R = {@, G}. To this end,
consider the ordering {1, 2, . . . , k} of colours. We place the gadgets on disjoint regions of
the real line from left to right as follows. First, for each pair of distinct colours i and j,
1 ≤ i < j ≤ k, we place the gadget C2(i, j) on the line in lexicographic order; that is, we first
place the gadgets C2(1, j) for all j = 2, . . . , k, then the gadgets C2(2, j) for all j = 3, . . . , k

SWAT 2020
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2112

(u,w)

(u, v) (v, u)
(u,w)

C1(k, k − 1)C2(k, k − 1) I1(1) I1(2) I1(k)
C1(1, 2) C1(1, 3) I2(1) I2(2) I2(k)

C2(1, 2) C2(1, 3)

Figure 5 The arrangement of gadgets for R = {@, G}.

and so on. Then, we place the gadgets I1(c) (1 ≤ c ≤ k) from left to right in the increasing
order of c. Next, we place the gadgets C1(i, j), 1 ≤ i < j ≤ k in the same order as we placed
their corresponding gadgets C2(i, j). Finally, we place the gadgets I2(c) (1 ≤ c ≤ k) in the
same order as we placed their corresponding gadgets I1(c). See Figure 5 for an example.
This forms our instance (F ,R, k′) of the 2-interval pattern problem, where R = {@, G} and
k′ = 2k+ 4

(
k
2
)
. Clearly, this arrangement can be done in FPT-time. Moreover, one can verify

that any two 2-intervals in this instance are R-comparable, where R = {@, G}.

I Lemma 3. Graph G has a k-multicoloured clique if and only if the 2-interval pattern
problem on F has a feasible solution of size k′ with respect to R = {@, G}.

Proof. (⇒) Suppose that G has a k-multicoloured clique. For each colour c, let vc be the
vertex in the clique with colour c. Then, for every colour c, we select the two 2-intervals
Ivc and I ′

vc
from the vertex-selection gadget corresponding to c. Moreover, for every pair

of colours i and j with i < j, let (ui, uj) be the edge in the clique such that c(ui) = i and
c(uj) = j. Then, we select the four 2-intervals I{ui,uj}, I

′
{ui,uj}, I(ui,uj) and I(uj ,ui). In this

way, we have selected k′ 2-intervals in total. Moreover, by the arrangement of gadgets on the
real line, one can verify that this set of k′ 2-intervals is R-comparable.

(⇐) Consider a set S of k′ 2-intervals that is a feasible solution for the 2-interval pattern
problem with respect to R = {@, G}. First, observe that S can have at most one interval
from the first column of every vertex-selection gadget. We now show that it must contain at
least one such interval from the first column of every vertex-selection gadget. Let S1 ⊆ S

(resp., S2 ⊆ S) be the set of 2-intervals such that each 2-interval in S1 has at least one
interval in a vertex-selection gadget (resp., an edge-selection gadget). Moreover, let S3 ⊆ S
(resp., S4 ⊆ S) be the set of 2-intervals such that each 2-interval in S3 (resp., S4) has exactly
two intervals from the same vertex-selection gadget (resp., the same edge-selection gadget).
Observe that |S2| ≤ 4

(
k
2
)
because the component C1(·) of an edge-selection gadget has four

columns and no two intervals in S can come from the same column of any given C1(·). This
means that |S3| ≥ 2k. But, there are exactly k vertex-selection gadgets and at most two
2-intervals of S3 can be from the same vertex-selection gadget. Hence, |S3| = 2k and so
|S2| = 4

(
k
2
)
. Since there are exactly

(
k
2
)
edge-selection gadgets, it follows that we have exactly

four 2-intervals in S that come from the same edge-selection gadget. By Lemma 2, all the
2-intervals coming form the same edge-selection gadget lie in the same row of the gadget.

On the other hand, |S1 \S3| ≤ k(k−1) = 2
(

k
2
)
because we have k vertex-selection gadgets,

the component I1(·) of any vertex-selection gadget has k − 1 “internal” intervals, and at
most one of such internal intervals (per column, per vertex-selection gadget) can be in S.
Notice that a 2-interval has exactly one interval in a vertex-selection gadget if and only if
it has exactly one interval in an edge-selection gadget. Therefore, S2 \ S4 = S1 \ S3. Since
{S1, S3, S4} (or, S2, S3, S4) forms a partition of S, we must have |S2 \ S4| = |S1 \ S3| = 2

(
k
2
)
.

That is, there are exactly 2
(

k
2
)
2-intervals that have exactly one interval in a vertex-selection

gadget and the other interval in an edge-selection gadget. Notice that at most k − 1 of
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(v, u)

Figure 6 The arrangement of gadgets for R = {<, G}.

such 2
(

k
2
)
2-intervals can come from the same vertex-selection gadget. Since there are k

vertex-selection gadgets, there are exactly k − 1 of them from each vertex-selection gadget.
This means that, for each vertex-selection gadget, there are k + 1 2-intervals in S that come
from this gadget. By Lemma 1, these k + 1 2-intervals all come from the same row of the
gadget. Hence, we select the k vertices corresponding to these k rows. We now claim that
they are a feasible solution for the k-multicoloured clique. Clearly, each selected vertex has a
unique colour. Moreover, take any colour c and let u be the vertex that we selected with
colour c. Recall that all the intervals of S that come from the vertex-selection gadget c are
in the same row as that of u. There are k − 1 of them (excluding those corresponding to u
itself) and each is paired with an interval in an edge-selection gadget corresponding to the
pair (c, c′) of colours, for all colours c′ 6= c. Therefore, there exists an edge between u and
every other selected vertex and so the k selected vertices are indeed a feasible solution for
the k-multicoloured clique. J

I Theorem 4. The 2-interval pattern problem is W[1]-hard when R = {@, G}.

3.2 Hardness for R = {<, G}
We now show that the 2-interval pattern problem is W[1]-hard even when R = {<, G}. To
this end, we show how to arrange the gadgets on the real line such that any pair of two
2-intervals are {<, G}-comparable. Then, one can prove a result similar to Lemma 3 for
R = {<, G}, concluding that the problem is W[1]-hard even for R = {<, G}. Here, we only
show the arrangement.

Consider the ordering {1, 2, . . . , k} of colours. We place the gadgets on disjoint regions
of the real line from left to right as follows. First, for each pair of distinct colours i and j,
1 ≤ i < j ≤ k, we place the gadget C2(i, j) on the line in this order; that is, we first place
the gadgets C2(1, j) for all j = 2, . . . , k, then the gadgets C2(2, j) for all j = 3, . . . , k and
so on. Then, we place the gadgets C1(i, j), 1 ≤ i < j ≤ k in the same order as we placed
their corresponding gadgets C2(i, j). Next, we place the gadgets I1(c) (1 ≤ c ≤ k) from left
to right in the increasing order of c. Finally, we place the gadgets I2(c) (1 ≤ c ≤ k) in the
same order as we placed their corresponding gadgets I1(c). See Figure 6 for an example.
This forms our instance (F ,R, k′) of the 2-interval pattern problem, where R = {<, G} and
k′ = 2k + 4

(
k
2
)
. Clearly, this arrangement can be done in FPT-time and one can verify that

every of pair of 2-intervals are {<, G}-comparable.

I Theorem 5. The 2-interval pattern problem is W[1]-hard when R = {<, G}.

4 Conclusion

We showed that 2-interval pattern problem is W[1]-hard when R = {@, G} and R = {<, G};
hence, fully settling the parameterized complexity of the problem when parameterized by
the size of an optimal solution. It would be interesting to examine FPT-algorithms with

SWAT 2020
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respect to other parameters such as the maximum number of pairwise intersecting 2-intervals.
Another direction would be to consider the complexity of a variant of the problem in which
every two input intervals are pairwise disjoint; i.e., each interval is a point on the real line [9].
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