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Abstract
A dynamic dictionary is a data structure that maintains sets of cardinality at most n from a
given universe and supports insertions, deletions, and membership queries. A filter approximates
membership queries with a one-sided error that occurs with probability at most ε. The goal is to
obtain dynamic filters that are space-efficient (the space is 1 + o(1) times the information-theoretic
lower bound) and support all operations in constant time with high probability. One approach to
designing filters is to reduce to the retrieval problem. When the size of the universe is polynomial
in n, this approach yields a space-efficient dynamic filter as long as the error parameter ε satisfies
log(1/ε) = ω(log log n). For the case that log(1/ε) = O(log log n), we present the first space-efficient
dynamic filter with constant time operations in the worst case (whp). In contrast, the space-efficient
dynamic filter of Pagh et al. [29] supports insertions and deletions in amortized expected constant
time. Our approach employs the classic reduction of Carter et al. [9] on a new type of dictionary
construction that supports random multisets.
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1 Introduction

We consider the problem of maintaining datasets subject to insert, delete, and membership
query operations. Given a set D of n elements from a universe Û , a membership query asks
if the queried element x ∈ Û belongs to the set D. When exact answers are required, the
associated data structure is called a dictionary. When one-sided errors are allowed, the
associated data structure is called a filter. Formally, given an error parameter ε > 0, a filter
always answers “yes” when x ∈ D, and when x /∈ D, it makes a mistake with probability at
most ε. We refer to such an error as a false positive event1.

1 The probability is taken over the random choices that the filter makes.
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11:2 A Dynamic Space-Efficient Filter with Constant Time Operations

When false positives can be tolerated, the main advantage of using a filter instead
of a dictionary is that the filter requires much less space than a dictionary [9, 25]. Let
û ,

∣∣∣Û∣∣∣ be the size of the universe and n denote an upper bound on the size of the set at
all points in time. The information theoretic lower bound for the space of dictionaries is
dlog2

(
û
n

)
e = n log(û/n) + Θ(n) bits.23 On the other hand, the lower bound for the space of

filters is n log(1/ε) bits [9]. In light of these lower bounds, we call a dictionary space-efficient
when it requires (1 + o(1)) · n log(û/n)) + Θ(n) bits, where the term o(1) converges to zero
as n tends to infinity. Similarly, a space-efficient filter requires (1 + o(1)) · n log(1/ε) +O(n)
bits.4

When the set D is fixed, we say that the data structure is static. When the data structure
also supports insertions, we say that it is incremental. Data structures that handle both
deletions and insertions are called dynamic.

The goal is to design dynamic dictionaries and filters that achieve “the best of both
worlds” [2]: they are space-efficient and perform operations in constant time in the worst
case with high probability.5

The Dynamic Setting. One approach for designing dynamic filters was suggested by Pagh et
al. [29], outlined as follows. Static (resp., incremental) filters can be obtained from static
(resp., incremental) dictionaries for sets by a reduction of Carter et al. [9]. This reduction
simply hashes the universe to a set of cardinality n/ε. Due to collisions, this reduction does
not directly lead to dynamic filters. Indeed, if two elements x and y in the dataset collide,
and x is deleted, how is y kept in the filter? To overcome the problem with deletions, an
extension of the reduction to the dynamic setting was proposed by Pagh et al. [29]. This
proposal is based on employing a dictionary that maintains multisets rather than sets (i.e.,
elements in multisets have arbitrary multiplicities). This extension combined with a dynamic
dictionary for multisets yields a dynamic filter [29]. In fact, Pagh et al. obtain a dynamic
filter that is space-efficient but performs insertions and deletions in amortized constant time
(but not in the worst case). Until recently, the design of a dynamic dictionary on multisets
that is space-efficient and performs operations in constant time in the worst case whp was
open [2]. In this paper, we avoid the need for supporting arbitrary multisets by observing
that it suffices to support random multisets (see Sec. 3).6

Another approach for designing filters employs retrieval data structures. In the retrieval
problem, we are given a function f : D → {0, 1}k, where f(x) is called the satellite data
associated with x ∈ D. When an element x ∈ Û is queried, the output y must satisfy y = f(x)
if x ∈ D (if x /∈ D, any output is allowed). By storing as satellite data a random fingerprint
of length log(1/ε), a retrieval data structure can be employed as a filter at no additional cost
in space and with an O(1) increase in time per operation [14, 35] (the increase in time is for
computing the fingerprint). This reduction was employed in the static case and it also holds
in the dynamic case (see Sec. 6).

2 All logarithms are base 2 unless otherwise stated. ln x is used to denote the natural logarithm.
3 This equality holds when û is significantly larger than n.
4 An asymptotic expression that mixes big-O and small-o calls for elaboration. If ε = o(1), then the

asymptotic expression does not require the O(n) addend. If ε is constant, the O(n) addend only
emphasizes the fact that the constant that multiplies n is, in fact, the sum of two constants: one is
almost log(1/ε), and the other does not depend on ε. Indeed, the lower bound in [25] excludes space
(1 + o(1)) · n log(1/ε) in the dynamic setting for constant values of ε.

5 By with high probability (whp), we mean with probability at least 1− 1/nΩ(1). The constant in the
exponent can be controlled by the designer and only affects the o(1) term in the space of the dictionary
or the filter.

6 We recently resolved the problem of supporting arbitrary multisets in [6] (thus the dictionary in [6] can
support arbitrary multisets vs. the dictionary presented here that only supports random multisets).
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Using the dynamic retrieval data structure of Demaine et al. [12], one can obtain a
filter that requires (1 + o(1)) · n log(1/ε) + Θ(n log log(û/n)) bits and performs operations in
constant time in the worst case whp. When the size of the universe satisfies û = poly(n),
this reduction yields a space-efficient filter when the false positive probability ε satisfies
log(1/ε) = ω(log logn) (which we call the sparse case).7 This approach is inherently limited
to the sparse case since dynamic retrieval data structures have a space lower bound of
Θ(n log log(û/n)) regardless of the time each operation takes and even when storing two bits
of satellite data [28].

Thus, the only case in which a space-efficient dynamic filter with constant time operations
is not known is when log(1/ε) = O(log logn). We refer to this case as the dense case. The
dense case occurs, for example, in applications in which n is large and ε is a constant (say
ε = 1%).

1.1 Our Contributions
In this paper, we present the first dynamic space-efficient filter for the dense case with
constant time operations in the worst case whp. In the following theorem, we assume that
the size of the universe Û is polynomial in n.8 We allow ε to be as small as n/|Û | (below
this threshold, simply use a dictionary). Memory accesses are in the RAM model in which
every memory access reads/writes a word of Θ(logn) contiguous bits. All computations we
perform over one word take constant time (see Sec. 4.1). Overflow refers to the event that
the space allocated for the filter does not suffice.

I Theorem 1. There exists a dynamic filter that maintains a set of at most n elements
from a universe Û = [û], where û = poly(n) with the following guarantees: (1) For every
polynomial in n sequence of insert, delete, and query operations, the filter does not overflow
whp. (2) If the filter does not overflow, then every operation (query, insert, and delete) can
be completed in constant time. (3) The required space is (1 + o(1)) · n log(1/ε) +O(n) bits.
(4) For every query, the probability of a false positive event is bounded by ε.

Our result is based on the observation that it suffices to use the reduction of Carter et al. [9]
on dictionaries that support random multisets rather than arbitrary multisets. A random
multiset is a uniform random sample (with replacements) of the universe. In Sec. 3, we prove
that the reduction of Carter et al. [9] can be applied in this new setting. We then design a
dynamic space-efficient dictionary that works on random multisets from a universe U = [u]
with log(u/n) = O(log logn) (Sec. 4). The dictionary supports operations in constant time
in the worst case whp. Applying the reduction of Carter et al. [9] to this new dictionary
yields our dynamic filter in the dense case. Together with the filter construction for the
sparse case (included, for completeness, in Sec. 6), we obtain Theorem 1.

1.2 Our Model
Memory Access Model. We assume that the data structures are implemented in the RAM
model in which the basic unit of one memory access is a word. Let w denote the memory
word length in bits. We assume that w = Θ(logn). See Sec. 4.1 for a discussion of how
computations over words are implemented in constant time.

7 The terms “sparse” and “dense” stem from the fact that the reduction of Carter et al. [9] is employed.
Thus, the filter is implemented by a dictionary that stores n elements from a universe of cardinality n/ε.

8 This is justified by mapping Û to [poly(n)] using 2-independent hash functions [12].
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11:4 A Dynamic Space-Efficient Filter with Constant Time Operations

Success Probability. We prove that overflow occurs with probability at most 1/ poly(n)
and that one can control the degree of the polynomial (the degree of the polynomial only
affects the o(1) term in the size bound). In the case of random multisets, the probability of
an overflow is a joint probability distribution over the random choices of the dictionary and
the distribution over the realizations of the multiset. In the case of sets, the probability of
an overflow depends only on the random choices that the filter makes.

Hash Functions. The filter for the dense case employs pairwise independent hash functions
and invertible permutations of the universe that can be evaluated in constant time and that
have a small space representation (i.e., the one-round Feistel permutations of Arbitman et
al. [2] or the quotient hash functions of Demaine et al. [12]). For simplicity, we first analyze
the filter construction assuming fully random hash functions (Sec. 4.5). In Sec. 5, we prove
that the same arguments hold when we use succinct hash functions.

Worst Case vs. Amortized. An interesting application that emphasizes the importance
of worst-case performance is that of handling search engine queries. Such queries are sent
in parallel to multiple servers, whose responses are then accumulated to generate the final
output. The latency of this final output is determined by the slowest response, thus reducing
the average latency of the final response to the worst latency among the servers. See [1,2,7,23]
for further discussion on the shortcomings of expected or amortized performance in practical
scenarios.

The Extendable Setting. This paper deals with the non-extendable setting in which the
bound n on the cardinality of the dataset is known in advance. The filter is allocated space
that is efficient with respect to the lower bound on the space of a filter with parameters
u, n, ε. The extendable scenario in which space must adapt to the current cardinality of the
dataset is addressed in Pagh et al. [31]. In fact, they prove that extendible filters require an
extra Ω(log logn) bits per element.

1.3 Related Work
The topic of dictionary and filter design is a fundamental theme in the theory and practice
of data structures. We restrict our focus to the results that are closest to our setting (i.e.,
are space-efficient, take constant time per operation, support dynamic sets).

Dictionaries. The dictionary of Arbitman et al. [2] is the only space-efficient dynamic
dictionary for sets that performs all operations in constant time in the worst case with
high probability. They leave it as an open question whether one can design a dictionary on
multisets with similar guarantees. Indeed, their construction does not seem to extend even
to the case of random multisets. The main reason is that the second level of their dictionary
(the backyard), implemented as a de-amortized cuckoo hash table, does not support duplicate
elements. Moreover, the upper bound on the number of elements that the backyard stores
is Ω

(
log logn

(logn)1/3 · n
)
. As such, it cannot accommodate storing naive fixed-length counters of

elements (which would require Θ(logn) bits per element) without rendering the dictionary
space-inefficient.

The space-efficient dynamic dictionary for multisets of Pagh et al. [29] supports queries
in constant time, and insertions/deletions in amortized expected constant time. For diction-
aries on sets, several dynamic constructions support operations in constant time with high
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probability but are not space-efficient [1, 11–13]. On the other hand, some dictionaries are
space-efficient but do not have constant time guarantees with high probability for all of their
operations [16, 21, 33, 36]. For the static case, several space-efficient constructions exist that
perform queries in constant time [8, 30,34,39].

Filters. The filters of Pagh et al. [29] and Arbitman et al. [2] follow from their respective
dictionaries by employing the reduction of Carter et al. [9]. Specifically, the dynamic filter of
Pagh et al. [29] supports queries in constant time and insertions and deletions in amortized
expected constant time. The incremental filter of Arbitman et al. [2] performs queries in
constant time and insertions in constant time with high probability. It does not support
deletions.

The construction of Bender et al. [4] describes a dynamic adaptive filter that assumes
access to fully random hash functions. 9 The adaptive filter works in conjunction with an
external memory dictionary (on the set of elements) and supports operations in constant
time with high probability (however, an insert or query operation may require accessing the
external memory dictionary). The space of the external memory dictionary is not counted
in the space of their filter. The (in-memory) filter they employ is a variant of the dynamic
quotient filter [5, 10, 29, 32]. The space-efficient quotient filter employs linear probing and
performs operations only in expected constant time for large values of ε [29]. The filter in [4]
tries to avoid a large running time per insert operation by bounding the displacement of the
inserted element. Hence, if (Robin Hood) linear probing does not succeed after a constant
number of words, then the element is inserted in a secondary structure (see Sec. 5.3 in [3]).
There is a gap in [3] regarding the question of whether bounded displacements guarantee
constant time operations in the worst case. Specifically, searching for an element requires
finding the beginning of the “cluster” that contains the “run” associated with that particular
element. No description or proof is provided in [3] that the beginning of the cluster is a
constant number of words away from the “quotient” in the worst case.

Other filters of interest include the dynamic filter of Pagh et al. [31] that adjusts its
space on the fly to the cardinality of the dataset (hence, works without knowing the size
of the dataset in advance) and performs operations in constant time. Pagh et al. [31]
also prove a lower bound that forces a penalty of O(log logn) per element for such “self-
adjusting” dynamic filters. Another filter is the cuckoo filter, whose performance depends
on the number of elements currently stored in the filter but that has been reported to
work well in practice [18, 19]. Space-efficient filters for the static case have been studied
extensively [14,16,26,35].

1.4 Paper Organization

Preliminaries are in Sec. 2. The proof that the reduction of Carter et al. [9] can be employed
to construct dynamic filters from dynamic dictionaries on random multisets can be found in
Sec. 3. The filter for the dense case is described and analyzed in Sec. 4. Section 5 includes a
discussion on how to remove the assumption of access to fully random hash functions from
Sec. 4.5. Section 6 reviews the construction of a filter in the sparse case based on a retrieval
data structure. Theorem 1 is proved in Sec. 7.

9 Loosely speaking, an adaptive filter is one that fixes false positives after they occur [4, 27].

SWAT 2020
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2 Preliminaries

Notation. The indicator function of a set S is the function 1S : S → {0, 1} defined by

1S(x) ,
{

1 if x ∈ S,
0 if x 6∈ S .

For any positive k, let [k] denote the set {0, . . . , dke − 1}. For a string a ∈ {0, 1}∗, let |a|
denote the length of a in bits.

We define the range of a hash function h to be a set of natural numbers [k] and also treat
the image h(x) as a binary string, i.e., the binary representation of h(x) using dlog2 ke bits.

2.1 Filter and Dictionary Definitions
Let Û denote the universe of all possible elements.

Operations. We consider three types of operations:
insert(xt) - insert xt ∈ Û to the dataset.
delete(xt) - delete xt ∈ Û from the dataset.
query(xt) - is xt ∈ Û in the dataset?

Dynamic Sets and Random Multisets. Every sequence of operations R = {opt}
T
t=1 defines

a dynamic set D(t) over Û as follows.10

D(t) ,


∅ if t = 0
D(t− 1) ∪ {xt} if opt = insert(xt)
D(t− 1) \ {xt} if opt = delete(xt)
D(t− 1) if t > 0 and opt = query(xt).

(1)

I Definition 2. A multisetM over Û is a functionM : Û → N. We refer toM(x) as the
multiplicity of x. IfM(x) = 0, we say that x is not in the multiset. We refer to

∑
x∈ÛM(x)

as the cardinality of the multiset and denote it by |M|.

The support of the multiset is the set {x | M(x) 6= 0}. The maximum multiplicity of a
multiset is maxx∈ÛM(x).

A dynamic multiset {Mt}t is specified by a sequence of insert and delete operations. Let
Mt denote the multiset after t operations.11

Mt(x) ,


0 if t = 0
Mt−1(x) + 1 if opt = insert(x)
Mt−1(x)− 1 if opt = delete(x)
Mt−1(x) otherwise.

We say that a dynamic multiset {Mt}t has cardinality at most n if |Mt| ≤ n, for every t.

I Definition 3. A dynamic multiset M over Û is a random multiset if for every t, the
multisetMt is the outcome of independent uniform samples (with replacements) from Û .

10The definition of state in Equation 1 does not rule out a deletion of x /∈ D(t− 1). However, we assume
that opt = delete(xt) only if xt ∈ D(t− 1).

11As in the case of dynamic sets, we require that opt = delete(xt) only ifMt−1(xt) > 0.
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Dynamic Filters. A dynamic filter is a data structure that maintains a dynamic set D(t) ⊆ Û
and is parameterized by an error parameter ε ∈ (0, 1). Consider an input sequence that
specifies a dynamic set D(t), for every t. The filter outputs a bit for every query operation.
We denote the output that corresponds to query(xt) by outt ∈ {0, 1}. We require that the
output satisfy the following condition:

opt = query(xt)⇒ outt ≥ 1D(t)(xt) . (2)

The output outt is an approximation of 1D(t)(xt) with a one-sided error. Namely, if xt ∈ D(t),
then bt must equal 1.

I Definition 4 (false positive event). Let FPt denote the event that opt = query(xt), outt = 1
and xt /∈ D(t).

The error parameter ε ∈ (0, 1) is used to bound the probability of a false positive error.

I Definition 5. We say that the false positive probability in a filter is bounded by ε if it
satisfies the following property. For every sequence R of operations and every t,

Pr [FPt] ≤ ε .

The probability space in a filter is induced only by the random choices (i.e., choice of
hash functions) that the filter makes. Note also that if opt = opt′ = query(x), where
x 6∈ D(t) ∪ D(t′), then the events FPt and FPt′ may not be independent (see [4, 27] for a
discussion of repeated false positive events and adaptivity).

Dynamic Dictionaries. A dynamic dictionary with parameter n is a dynamic filter with
parameters n and ε = 0. In the case of multisets, the response outt of a dynamic dictionary
to a query(xt) operation must satisfy outt = 1 iffMt(xt) > 0.12

When we say that a filter or a dictionary has parameter n, we mean that the cardinality
of the input set/multiset is at most n at all points in time.

Success Probability and Probability Space. We say that a dictionary (filter) works for
sets and random multisets if the probability that the dictionary does not overflow is high
(i.e., it is ≥ 1− 1/ poly(n)). The probability in the case of random multisets is taken over
both the random choices of the dictionary and the distribution of the random multisets. In
the case of sets, the success probability depends only on the random choices of the dictionary.

Dense vs. Sparse. We differentiate between two cases in the design of filters, depending
on 1/ε.

I Definition 6. The dense case occurs when log(1/ε) = O(log logn). The sparse case occurs
when log(1/ε) = ω(log logn).

3 Reduction: Filters Based on Dictionaries

In this section, we employ the reduction of Carter et al. [9] to construct dynamic filters out
of dynamic dictionaries for random multisets. Our reduction can be seen as a relaxation
of the reduction of Pagh et al. [29]. Instead of requiring that the underlying dictionary
support multisets, we require that it only supports random multisets. We say that a function
h : A→ B is fully random if h is sampled u.a.r. from the set of all functions from A to B.

12One may also define outt =Mt(xt).

SWAT 2020



11:8 A Dynamic Space-Efficient Filter with Constant Time Operations

B Claim 7. Consider a fully random hash function h : Û →
[
n
ε

]
and let D ⊆ Û . Then h(D)

is a random multiset of cardinality |D|.

Consider a dynamic set D(t) specified by a sequence of insert and delete operations. Since
h is random, an “adversary” that generates the sequence of insertions and deletions for D(t)
becomes an oblivious adversary with respect to h(D(t)) in the following sense. Insertion
of x translates to an insertion of h(x) which is a random element (note that h(x) may be
a duplicate of a previously inserted element13). When deleting at time t, the adversary
specifies a previous time t′ < t in which an insertion took place, and requests to delete the
element that was inserted at time t′.

Let Dict denote a dynamic dictionary for random multisets of cardinality at most n from
the universe

[
n
ε

]
.

I Lemma 8. For every dynamic set D(t) of cardinality at most n, the dictionary Dict with
respect to the random multiset h(D(t)) and universe

[
n
ε

]
is a dynamic filter for D(t) with

parameters n and ε.

Proof Sketch. The Dict records the multiplicity of h(xt) in the multiset h(D(t)) and so
deletions are performed correctly. The filter outputs 1 if and only if the multiplicity of h(xt)
is positive. False positive events are caused by collisions in h. Therefore, the probability of a
false positive is bounded by ε because of the cardinality of the range of h. J

4 Fully Dynamic Filter (Dense Case)

In this section, we present a fully dynamic filter for the dense case, i.e., log(1/ε) = O(log logn).
The reduction in Lemma 8 implies that it suffices to construct a dynamic dictionary for
random multisets. We refer to this dictionary as the RMS-Dictionary (RMS - Random
Multi-Set).

The RMS-Dictionary is a dynamic space-efficient dictionary for random multisets of
cardinality at most n from a universe U = [u], where u = n/ε. The dense case implies that
log(u/n) = O(log logn).

The RMS-Dictionary consists of two levels of dictionaries: a set of bin dictionaries (in
which most of the elements are stored) and a spare (which stores ns = O(n/ log3 n) elements).
The number of bin dictionaries is m. Let B , n/m , so, in expectation, each bin stores
(at most) B elements. To accommodate deviations from the expectation, extra capacity is
allocated in the bin dictionaries. Namely, each bin dictionary can store up to (1 + δ) · B
elements.

The universe of the spare dictionary is [u]. However, the universe of each bin dictionary
is [u/m]. The justification for the reduced universe of bin dictionaries is that the index of
the bin contains logm bits of information about the elements in it (this reduction in the
universe size is often called “quotienting” [5, 12,24,29,30]).

4.1 The Bin Dictionary
The bin dictionary is a (deterministic) dynamic dictionary for (small) multisets. Let u′
denote the cardinality of the universe from which elements stored in the bin dictionary are
taken. Let n′ denote an upper bound on the cardinality of the dynamic multiset stored in a

13Duplicates in h(D(t)) are caused by collisions (i.e., h(x) = h(y)) rather than by reinsertions.
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bin dictionary (i.e., n′ includes multiplicities). The bin dictionary must be space-efficient,
namely, it must fit in n′ log(u′/n′) +O(n′) bits, and must support queries, insertions, and
deletions in constant time.

The specification of the bin dictionary is even more demanding than the dictionary we are
trying to construct. The point is that we focus on parametrizations in which the bin dictionary
fits in a constant number of words. Let B , Θ

(
logn

log(u/n)

)
and δ , Θ

(
log logn√

B

)
= o(1). Recall

that the number of bins is m = n/B.

I Observation 9. Let u′ = u/m and n′ = (1 + δ) ·B. The bin dictionary for u′ and n′ fits
in O(logn) bits, and hence fits in a constant number of words.

We propose two implementations of bin dictionaries that meet the specifications; one is
based on lookup tables, and the other on Elias-Fano encoding [17,20]. The space required by
the bin dictionaries that employ global lookup tables meets the information-theoretic lower
bound. The space required by the Elias-Fano encoding is within half a bit per element more
than the information-theoretic lower bound [17].

Global Tables. We follow Arbitman et al. [2] and employ a global lookup table common to
all the bin dictionaries. For the sake of simplicity, we discuss how insertion operations are
supported. An analogous construction works for queries and deletions.

The bin dictionary has s ,
(
u′+n′
n′

)
states. Hence, we need to build a table that encodes

a function f : s × u′ → s, such that given a state i ∈ [s] and an element x ∈ [u′], f(i, x)
encodes the state of the bin dictionary after x is inserted. The size of the table that stores f
is s · u′ · log s bits.

We choose the following parametrization so that the table size is o(n) (recall that n is the
upper bound on the cardinality of the whole multiset). Set B = 1

2(1+δ) ·
logn

log(1+u/n) (recall
that B is the expected occupancy of a bin). Recall that u′ = u/m and n′ = (1 + δ) · B.
Hence,

s =
(
u′ + n′

n′

)
≤
(
e(u′ + n′)

n′

)n′
≤ poly(logn) ·

(
1 + u′

n′

)n′
≤ poly(logn) ·

(
1 + u

n

)(1+δ)· 1
2(1+δ) ·

logn
log(1+u/n)

≤ poly(logn) ·
√
n .

Since u′ = u/m ≤ poly(logn) and log s = O(logn), we conclude that the space required to
store f is o(n) bits.

Operations are supported in constant time since the table is addressed by the encoding
of the current state and operation.

Elias-Fano Encoding. In this section, we present a bin dictionary implementation that
employs (a version of) the Elias-Fano encoding. We refer to this implementation as the
Pocket Dictionary.

We view each element in the universe [u′] as a pair (q, r), where q ∈ [B] and r ∈ [u′/B] (we
refer to q as the quotient and to r as the remainder). Consider a multiset F , {(qi, ri)}n

′−1
i=0 .

The encoding of F uses two binary strings, denoted by header(F ) and body(F ), as follows.
Let nq , | {i ∈ [f ] | qi = q} | denote the number of elements that share the same quotient q.
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The vector (n0, . . . , nB−1) is stored in header(F ) in unary as the string 1n0 ◦0◦ · · · ◦1nB−1 ◦0.
The length of the header is B+n′. The concatenation of the remainders is stored in body(F )
in nondecreasing lexicographic order of {(qi, ri)}i∈[n′]. The length of the body is n′ · log(u′/B).
The space required is B + n′(1 + log(u′/n) bits, which meets the required space bound since
B = O(n′).

We argue that operations in a Pocket Dictionary can be executed in constant time if
the Pocket Dictionary fits in a single word. Here we propose to extend the classical RAM
model in which instructions such as comparison, addition, and multiplication take constant
time [22].14 These instructions require Boolean circuits of depth logw, where w denotes the
number of bits per word. Moreover, multiplication is implemented using circuits with Θ(w2)
gates (i.e., all the partial products are computed). Hence, we consider an extension of the
RAM model in which instructions over words can be executed in constant time if there exists
a Boolean circuit with constant fan-in that computes the instruction in O(logw) depth using
O(w2) gates.

Indeed, operations over Pocket Dictionaries can be supported by circuits of depth logw
with O(w logw) gates. Consider an insertion operation of an element (q, r). Insertion is
implemented using the following steps (all implemented by circuits):
(i) Locate in the header the positions of qth zero and the zero that proceeds it (this is a

select operation). Let j and i denote these positions within the header. This implies
that

∑
q′<q nq′ = i− (q − 1) and nq = j − i− 1.

(ii) Update the header by shifting the suffix starting in position j by one position and
inserting a 1 in position j.

(iii) Read nq remainders in the body, starting from position i− (q − 1). These remainders
are compared in parallel with r, to determine the position p within the body in which
r should be inserted (this is a rank operation over the outcomes of the comparisons).

(iv) Shift the suffix of the body starting with position p by |r| bits, and copy r into the
body starting at position r.

Modern instruction sets support instructions such as rank, select, and SIMD comparisons
(shifts are standard instructions) [3, 32, 37]. Hence, one can implement Pocket Dictionary
operations in constant time using such instruction sets.

4.2 The Spare
The spare is a dynamic dictionary that maintains (arbitrary) multisets of cardinality at most
ns from the universe U with the following guarantees: (1) For every poly(n) sequence of
operations (insert, delete, or query), the spare does not overflow whp. (2) If the spare does
not overflow, then every operation (query, insert, delete) takes O(1) time. (3) The required
space is O(ns log u) bits.15

We propose to implement the spare by using a dynamic dictionary on sets with constant
time operations in which counters are appended to elements. To avoid having to discuss the
details of the interior modifications of the dictionary, we propose a black-box approach that
employs a retrieval data structure in addition to the dictionary.

14 In modern CPUs, addition and comparison take a single clock cycle, multiplication may take 2 cycles.
15 Since ns = o(n/ log n) and log u = O(log n), the space consumed by the spare is o(n).
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IObservation 10. Any dynamic dictionary on sets of cardinality at most ns from the universe
U can be used to implement a dynamic dictionary on arbitrary multisets of cardinality at
most ns from the universe U . This reduction increases the space of the dictionary on sets by
an additional Θ(logns + log log(u/ns)) bits per element and increases the time per operation
by a constant.

Proof. The dictionary on multisets (MS-Dict) can be obtained by employing a dictionary
on sets (Dict) and the dynamic retrieval data structure (Ret) of Demaine et al. [12]. The
dictionary on sets (Dict) stores the support of the input multiset. The retrieval data structure
(Ret) stores as satellite data the multiplicity of each element in the support. The space that
Ret requires is Θ(ns logns + ns log log(u/ns)), since the satellite data occupies logns bits.

On membership queries, the dictionary accesses Dict. When a new element x is inserted,
MS-Dict inserts x in Dict and adds x with satellite value 1 to Ret. In the case of insertions
of duplicates or deletions, Ret is updated to reflect the current multiplicity of the element. If
upon deletion, the multiplicity of the element reaches 0, the element is deleted from Dict and
from Ret. Since the Ret supports operations in constant time, this reduction only adds O(1)
time to the operations on Dict. J

To finish the description of the spare, we set ns , n/(log3 n) and employ Obs. 10 with a
dynamic dictionary on sets that requires O(ns log(u/ns)) bits and performs operations in
constant time whp [1,2,11–13]. Under our definition of ns and since log(u/n) = O(log logn),
the spare then requires o(n) bits. Moreover, the spare does not overflow whp (see Claim 11).

4.3 Hash Functions
We consider three hash functions, the bin index, quotient, and remainder, as follows: 16

(Recall that n = m ·B.)

hb : U → [m] (bin index)
q : U → [B] (quotient)
r : U → [u/n] (remainder)

We consider three settings for the hash functions:
(i) Fully random hash functions.
(ii) In the case that the dataset is a random multiset, the values of the hash functions

are taken simply from the bits of x. Namely hb(x) is the first log(n/B) bits, q(x) is
the next logB bits, and r(x) is the last log(u/n) bits (to be more precise, one needs
to divide x and take remainders). Since x is chosen independently and uniformly at
random, the hash functions are fully random.

(iii) Hash functions sampled from special distributions of hash functions (with small repres-
entation and constant evaluation time).

4.4 Functionality
A query(x) is implemented by searching for (q(x), r(x)) in the bin dictionary of index hb(x).
If the pair is not found, the query is forwarded to the spare. An insert(x) operation first
attempts to insert (q(x), r(x)) in the bin dictionary of index hb(x). If the bin dictionary

16One could define the domain of the quotient function q(x) and the remainder function r(x) to be [u/m]
instead of U .
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is full, it forwards the insertion to the spare. A delete(x) operation searches for the pair
(q(x), r(x)) in the bin dictionary of index hb(x) and deletes it (if found). Otherwise, it
forwards the deletion to the spare.

4.5 Overflow Analysis17

The proposed dictionary consists of two types of dictionaries: many small bin dictionaries
and one spare. The overflow of a bin dictionary is handled by sending the element to the
spare. Hence, for correctness to hold, we need to prove that the spare does not overflow whp.

The first challenge that one needs to address is that the dictionary maintains a dynamic
multiset D(t) (see [12]). Consider the insertion of an element x at time t. If bin hb(x) is full
at time t, then x is inserted in the spare. Now suppose that an element y with hb(y) = hb(x)
is deleted at time t+ 1. Then, bin hb(x) is no longer full, and x cannot “justify” the fact
that it is in the spare at time t+ 1 based on the present dynamic multiset D(t+ 1). Indeed,
x is in the spare due to “historical reasons”.

The second challenge is that the events that elements are sent to the spare are not
independent. Indeed, if x is sent to the spare at time t, then we know that there exists a
full bin. The existence of a full bin is not obvious if the cardinality of D(t) is small. Hence,
we cannot even argue that the indicator variables for elements being sent to the spare are
negatively associated.

The following claim bounds the number of elements stored in the spare. Using the same
proof, one could show that the number of elements in the spare is bounded by n/(logn)c
whp, for every constant c.

B Claim 11. The number of elements stored in the spare is less than n/ log3 n with high
probability.

Proof. Consider a dynamic multiset D(t) at time t. To simplify notation, let {x1, . . . , xn′}
denote the multiset D(t) (hence, the elements need not be distinct, and n′ ≤ n). Let ti
denote the time in which xi was inserted to D(t). Let Xi denote the random variable that
indicates if xi is stored in the spare (i.e., Xi = 1 iff bin hb(xi) is full at time ti). Our goal is
to prove that the spare at time t does not overflow whp, namely:

Pr

 n′∑
i=1

Xi ≥
n

log3 n

 ≤ n−ω(1) . (3)

The claim follows from Eq. 3 by applying a union bound over the whole sequence of operations.
To prove Eq. 3, we first bound the probability that a bin is full. Let γ , e−δ

2·B/3. Fix a
bin b, by a Chernoff bound, the probability that bin b is full is at most γ. Indeed:
(i) Each element belongs to bin b with probability B/n. Hence, the expected occupancy of

a bin is B.
(ii) The variables

{
hb(xj)

}n′
j=1 are independent.

(iii) A bin is full if at least (1 + δ) ·B elements belong to it.

We overcome the problem that the random variables {Xi}i are not independent as follows.
Let Ft denote the set of full bins at time t. If |Ft| ≤ 6γm, let F̂t denote an arbitrary
superset of Ft that contains 6γm bins. Note that it is unlikely that there exists a t such
that |Ft| > 6γm. Indeed, by linearity of expectation, E [|Ft|] ≤ γm. By a Chernoff bound,
Pr [Ft ≤ 6γm] ≤ 2−6γm.

17The proofs in this section assume that the hash functions are fully random. See Section 5 for a discussion
of special families of hash functions.
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Define X̂i to be the random variable that indicates if hb(xi) ∈ F̂ti . Namely, X̂i = 1 if xi
belongs to a full bin or a bin that was added to F̂ti . Thus, X̂i ≥ Xi. The key observation is

that the random variables
{
X̂i

}n′
i=1

are independent and identically distributed because the
bin indexes

{
hb(xi)

}
i
are independent and uniformly distributed.

The rest of the proof is standard. Recall that B = O(logn) and δ2 = Θ
(

(log logn)2

B

)
.

Let Gt denote the event that Ft ≤ 6γm. Since Pr [Gt] ≤ 2−6γm ≤ 2−
√
n, by a union

bound Pr
[⋃n′

i=1 Gti

]
≤ n · 2−

√
n.

The expectation of X̂i is 6γ (conditioned on the event
⋂n′
i=1 Gti). Since n/ log3 n = ω(γn),

for a sufficiently large n, by Chernoff bound Pr
[∑n′

i=1 X̂i ≥ n
log3 n

∣∣ ⋂n′
i=1 Gti

]
< 2−n/ log3 n.

We conclude that

Pr

 n′∑
i=1

X̂i ≥
n

log3 n

 ≤ Pr

 n′⋃
i=1

Gti

+ Pr

 n′∑
i=1

X̂i ≥
n

log3 n

∣∣ n′⋂
i=1

Gti

 (4)

≤ n · 2−
√
n + 2−n/ log3 n = n−ω(1) , (5)

and Eq. 3 follows. C

5 Succinct Hash Functions

In this section we discuss how to replace the fully random hash functions from Sec. 4 with
succinct hash functions (i.e., representation requires o(n) bits) that have constant evaluation
time in the RAM model. Specifically, we describe how to select hash functions hb(x), r(x), q(x)
for the RMS-dictionary used for constructing the dynamic filter in the dense case.

The construction proceeds in two stages and uses existing succint constructions for highly
independent hash functions [15, 38]. First, we employ a permutation function π to partition
the universe Û into M = n9/10 equal parts. The permutation π can be either the one-round
Feistel permutation from [2] or the quotient permutation from [12]. We think of π as a pair
of functions, i.e., π(x) = (h1(x), h2(x)) with h1(x) ∈ [M ]. This induces a partition of the
dynamic set into M = n9/10 subsets of size at most n1/10 + n3/40 whp. Each subset consists
of the h2(x) values of the elements x ∈ D that share the same h1(x) value.

In the second step, we instantiate the RMS-Dictionary separately for each subset. Each
dictionary instance employs the same k-wise independent hash function f b : [û/M ]→ [m]
with k = n1/10 +n3/40. We define hb(x) = f b(h2(x)) to be the bin of x. From the perspective
of each dictionary instantiation, hb(x) is sampled independently and uniformly at random,
so throughout the sequence of poly(n) operations, the spare does not overflow whp.

We now describe how the quotient q(x) and the remainder r(x) are chosen. We sample
a 2-independent hash function (f, g) : [û/M ] → [B] × [1/ε]. Define q(x) , f(h2(x)) and
r(x) , g(h2(x)).

B Claim 12. Consider a filter based on an RMS-dictionary that employs the hash functions
hb(x), q(x), r(x) described in this section. Then the probability of a false positive event is
bounded by 2ε.

Proof. Consider a query y that is not in the dataset D(t) at time t. One cause of failure
is when too many elements of D(t) are mapped to bin hb(y). The probability that more
that (1 + δ)B elements are mapped to bin hb(y) is bounded by 2e−δ2B/3 (see the proof
of Claim 11). Since δ2B = (log logn)2, and since log(1/ε) = O(log logn), this probability
is o(ε).
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Now assume that at most (1 + δ)B elements in D(t) were mapped to bin hb(y). Since h is
bijective and (f, g) are selected from a family of 2-independent hash functions, the probability
of a collision with an element in bin hb(y) is at most (1 + δ)B · εB = (1 + δ) · ε. The claim
follows since δ = o(1). C

6 Dynamic Filter via Retrieval (Sparse Case)

In this section, we present a space-efficient dynamic filter for the case that log
( 1
ε

)
=

ω(log logn) (sparse case). We let n denote an upper bound on the cardinality of a dynamic
set over a poly(n) sequence of insertions and deletions. We let Û denote a universe of
cardinality û that satisfies û = poly(n). The construction is based on a reduction from
dynamic retrieval. The construction relies on the fact that in dynamic retrieval structures
(e.g., [12]), the overhead per element is O(log logn). This overhead is o(log(1/ε)) in the
sparse case.

Dietzfelbinger and Pagh [14] formulate a reduction that uses a static retrieval data
structure storing k bits of satellite data per element to implement a static filter with false
positive probability 2−k. The reduction is based on the assumption that retrieval data
structure is “well behaved” with respect to negative queries. Namely, a query for x ∈ Û \ D
returns either “fail” or the satellite data of an (arbitrary) element y ∈ D. The reduction
incurs no additional cost in space and adds O(1) extra time to the query operations (to
evaluate the fingerprint). We note that the same reduction can be employed in the dynamic
case. Specifically, the following holds:

I Observation 13. Assume access to a family of pairwise independent hash functions
h : Û → [k]. 18 Then any dynamic retrieval data structure that stores h(x) as satellite data
for element x can be used to implement a dynamic filter with false positive probability 2−k.
The space of the resulting filter is the same as the space of the retrieval data structure and
the time per operation increases by a constant (due to the computation of h(x)).

The question of designing a space-efficient dynamic filter now boils down to:
(i) Choose a suitable dynamic retrieval data structure.
(ii) Determine the range of false positive probabilities ε for which the reduction yields a

space-efficient dynamic filter.
We resolve this question by employing the retrieval data structure of Demaine et al. [12] in
the sparse case.

B Claim 14. There exists a dynamic filter in the sparse case that maintains a set of at
most n elements from the universe Û = [û], where û = poly(n) such that, for any ε such that
log(1/ε) = ω(log logn), the following hold: (1) For every sequence of poly(n) opertations (i.e,
insert, delete, or query), the filter does not overflow whp. (2) If the filter does not overflow,
then every operation (query, insert, and delete) takes O(1) time. (3) The required space is
(1 + o(1)) · n log(1/ε) bits. (4) For every query, the probability of a false positive event is
bounded by ε.

Proof. The dynamic retrieval data structure in [12] uses a dynamic perfect hashing data
structure for n elements from the universe U of size u that maps each element to a unique value
in a given range [n+ t], for any t > 0. 19 The space that the perfect hashing data structure

18We note that Dietzfelbinger and Pagh [14] assume access to fully random hash functions. Pairwise
independence suffices, however, as noted by [35].

19We note that one could also use the dynamic perfect hashing scheme proposed in Mortesen et al. [28]
with similar space and performance guarantees.
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occupies is Θ
(
n log log û

n + n log n
t+1

)
. All operations are performed in O(1) time and the

perfect hashing data structure fails with 1/ poly(n) probability over a sequence of poly(n)
operations. A retrieval data structure can be obtained by allocating an array of n+ t entries,
each used to store satellite data of k bits. The satellite data associated with an element x is
stored at the position in the array that corresponds to the hash code associated with x. The
retrieval data structured obtained this way occupies (n+ t) · k + Θ

(
n log log û

n + n log n
t+1

)
bits. It performs every operation in constant time and fails with probability 1/ poly(n) over
a sequence of poly(n) operations.

For the filter construction, we set k , log(1/ε) and t , n/ logn. Since log log(û/n) =
O(log logn) and log(1/ε) = ω(log logn), the filter we obtain occupies (1 + o(1)) · n log(1/ε)
bits. It performs all operations in constant time and does not overflow whp over a sequence
of poly(n) operations. C

7 Proof of Theorem 1

The proof of Thm. 1 deals with the sparse case and dense case separately. The theorem for
the sparse case, in which log(1/ε) = ω(log logn), is proven in Sec. 6.

The proof for the dense case employs the reduction in Lemma 8 with the RMS-Dictionary
construction described in Sec. 4. Let U = [u] where u = n/ε denotes the universe of an
RMS-Dictionary that can store a random multiset of cardinality at most n. In this case, the
assumption that log(1/ε) = O(log logn) translates into log(u/n) = O(log logn).

The time per operation is constant because the RMS-dictionary supports operations in
constant time. The space consumed by the RMS-Dictionary equals the sum of spaces for
the bin dictionaries and the spare. This amounts to m · n′ · log(u′/n′) +m ·O(n′) + o(n) ≤
(1 + δ) · n · log(1/ε) +O(n). Since δ = o(1), the filter is space-efficient, as required. Finally,
by Claim 11, the spare does not overflow whp.
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