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Abstract
We analyze a reduction rule for computing kernels for the hitting set problem: In a hypergraph, the
link of a set c of vertices consists of all edges that are supersets of c. We call such a set critical if
its link has certain easy-to-check size properties. The rule states that the link of a critical c can
be replaced by c. It is known that a simple linear-time algorithm for computing hitting set kernels
(number of edges) at most kd (k is the hitting set size, d is the maximum edge size) can be derived
from this rule. We parallelize this algorithm and obtain the first AC0 kernel algorithm that outputs
polynomial-size kernels. Previously, such algorithms were not even known for artificial problems. An
interesting application of our methods lies in traditional, non-parameterized approximation theory:
Our results imply that uniform AC0-circuits can compute a hitting set whose size is polynomial in
the size of an optimal hitting set.
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1 Introduction

In the theory of fixed-parameter tractability, kernelization algorithms play an important
role. They shrink input instances to membership-equivalent instances (called kernels) whose
size depend only on the input’s parameters. A rich theory has been developed around this
idea, with results ranging from highly efficient kernel algorithms to lower bounds showing
that some problems do not have polynomial-size kernels unless complexity class collapses
occur [8]. Another recent direction is the question of how quickly kernels can be computed in
parallel, and which trade-offs regarding kernel size are incurred by parallelisation [5, 6, 11].

In the present paper we are interested in computing kernels for the hitting set problem
both, sequentially and in parallel. We study the following version of the problem on d-
hypergraphs, which are pairs (V,E) consisting of a set V of vertices and a set E of hyperedges
(which we will call just edges) such that for all edges e ∈ E we have e ⊆ V and |e| ≤ d:

I Problem 1.1 (pk-d-hitting-set for fixed d ∈ N).
Instances: A d-hypergraph H = (V,E) and a parameter k ∈ N.
Question: Is there a size-k hitting set X ⊆ V , that is, |X| ≤ k and X ∩ e 6= ∅ for all e ∈ E?
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9:2 Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time

When d is not fixed, but part of the input, the resulting problem pk-hitting-set is
complete for W[2] and, thus, no kernelization is possible unless W[2] = FPT [13]. In contrast,
pk-d-hitting-set can be kernelized in polynomial time for every d. A standard way of doing
so is based on the following reduction rule, where a sunflower is a set S ⊆ E such that any
two elements of S have the same intersection cS , called the core of the sunflower:

I Rule 1.2. Find a sunflower S of size |S| ≥ k + 1 and replace E by (E \ S) ∪ {cS}.

It is easy to see that this rule is safe and not-so-easy to see that it results in a kernel with
at most d!kd edges (this follows from the Sunflower Lemma [15], by which a sunflower of
size k + 1 always exists as long as |E| > d!kd). However, finding sunflowers is a difficult
problem in itself, requiring either expensive methods like color coding [3] or approximate
solutions [18]. Therefore, the current state-of-the-art algorithm due to Fafianie and Kratsch
uses the simpler and yet more powerful critical core rule [16]:

I Rule 1.3. Find a critical core c ⊆ e ∈ E and replace E by (E \ Lc) ∪ {c}.

The rule hinges on how we setup the definition of “critical” cores. This will depend on the
computational model; in the simplest setup (see Definition 3.2 for the general case), a core c
is critical if (1) for all supersets c′ ) c we have |Lc′ | ≤ kd−|c′| and (2) we have |Lc| > kd−|c|.
Checking this for a given core c is relatively easy, making the rule fairly easy to implement.
While a bit of effort is needed to show that the rule is safe, it clearly yields a kernel with kd
edges1: When it is no longer applicable, the empty set is no longer critical and by (2) we
have |E| = |L∅| ≤ kd−0.

Less is known in the parallel setting. Only for d = 2 (the vertex cover problem) do we know
anything concerning the parallel computation of polynomial-size kernels: TC0-circuits can
compute quadratic kernels [14]. A complex argument shows that AC0-circuits can compute
exponential-size kernels for the hitting set problem [6]. However, AC0-circuits were not
known to be able to compute polynomial-size kernels for the vertex cover problem (nor, for
that matter, for any other problem). For d > 2, the best parallel kernelization is the logspace
algorithm due to Fafiane and Kratsch [16].

Our Contributions. We rephrase the kernelization algorithm from Fafianie and Kratsch [16]
in a terminology that is more suited for changing the computational model on which the
algorithm is implemented. As by-product, we obtain a slightly tighter bound on the kernel
size: While the original paper achieves a kernel size of (k + 1)d edges, we obtain a kernel
of size kd. Furthermore, we can construct a kernel of size

∑d
i=0 k

i that has the desirable
property that it is a subsets of the original edge set. However, the main objective of this
paper is a parallel constant-time implementation of the critical core rule:

Contribution I: First Polynomial-Size Constant-Time Kernels. By adjusting the setup
when a core is considered critical, we are able to derive the first polynomial-size kernel that
can be computed by AC0-circuits. It was previously known that exponential-size kernels
for the hitting set problem can be computed by AC0-circuits, but no problem (not even an
artificial one) was known for which AC0-circuits can compute a polynomial-size kernel.

There is more to the construction than just adjusting some thresholds: Any natural
implementation of the critical core rule internally needs threshold gates, leading to TC0-
circuits. To get down to AC0, we use fuzzy threshold gates, which behave like a normal
threshold gate only when the number of input 1-bits is below the threshold or “well above”
it. We show that the “fuzziness” of the gates is not a problem when computing kernels.

1 In this paper, we are only interested in minimizing the number of edges and call it the kernel size.
Reducing the number of vertices is also of interest, but not addressed by us. The set V is immutable.
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Contribution II: Constant-Time Approximations. There are known connections between
kernelization and approximation algorithms [1, 17, 21]. These connections carry over to
AC0 and we can derive an approximation algorithm for the hitting set problem that works
in constant time: There is a family of AC0-circuits that on input of any d-hypergraph
H = (V,E) outputs a hitting set X of H such that if X∗ is a minimum hitting set of H,
then |X| ∈ O(|X∗|d). While clearly worse than the best approximation ratio (namely d)
achieved sequentially, observe that AC0-circuits can only reliably “count up to polylogarithmic
numbers,” but we must still compute an approximate hitting set when |X∗| = nε.

Related Work. The “classical” way of computing kernels for pk-d-hitting-set, due to
Flum and Grohe [18, Section 9.1], is based on Erdős and Rado’s [15] Sunflower Lemma.
Variations of this algorithm where proposed by van Bevern [24] and by Damaschke [12].

Attempts to parallelise parameterized algorithms date back to the late 1990s [9, 10]. A
structural study of parameterized circuit complexity was started around 2015 by Elberfeld et
al. [14]. The parameterized circuit model we use within this paper was introduced in [4]. It
is known that a decidable problem is in para-ACi if, and only if, it has a kernel function in
ACi [6]. A first AC0 kernelization for pk-d-hitting-set was presented by Chen, Flum, and
Huang [11], which was later improved to a AC0 kernelization for pk,d-hitting-set (here, d
is parameter and not a fixed constant) [5]. All of these kernels have exponential size.

Approximation algorithms based on kernelizations where studied by Abu-Khzam et al. [1],
by Fellow et al. [17] as “fidelity kernels,” and by Lokshtanov et al. [21] as “lossy kernels.”

Structure of this Article. This article has four main sections: In Section 2 we explore the
properties of “fuzzy” threshold gates. In Section 3 we review the critical core reduction rule
and use it to compute polynomial-size kernels in linear or constant parallel time. In Section 4,
we show how our results allow us to develop constant-depth approximation algorithms. We
close the article with a look at the set packing problem in Section 5.

2 Technical Tools

On a technical level, we need a few standard notions, briefly reviewed in the following. The
technical tool of fuzzy threshold gates is presented in more detail.

Circuits. We use standard notions of Boolean circuits: AC-circuits have n input gates and
m output gates as well as and-, or-, and not-gates. The and-gates and or-gates may have
unbounded fan-in. A TC-circuit may additionally have unbounded fan-in threshold>t≤t-
gates, which output 0 if at most t of its inputs are set to 1 and which outputs 1 otherwise.
For a circuit C and a bitstring x ∈ {0, 1}n we write C(x) for the length-m bitstring that is
output by the circuit on input x.

A problem L ⊆ {0, 1}∗ is in AC0 if there is a family (Cn)n∈N of AC-circuits, where each
Cn has n inputs and only one output, such that (1) we have x ∈ L if, and only if, C|x|(x) = 1
and (2) depth(Cn) ≤ c and size(Cn) ≤ nc for some constant c. (Here, the size and depth
functions for circuits can be defined in any sensible way.) We also require that the families
are dlogtime-uniform, which is the strongest form of uniformity commonly required [7].
The definition of the class TC0 is analogue. In slight abuse of notation, we also use AC0 and
TC0 to denote the functional classes (more correctly known as FAC0 and FTC0) containing
functions f : {0, 1}∗ → {0, 1}∗ by allowing that the Cn have more than one output gate.

SWAT 2020



9:4 Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time

Parameterized Problems. A parameterized problem is a set Q ⊆ Σ∗×N. It lies in the class
FPT (also known as para-P), if on input (x, k) we can decide whether (x, k) ∈? Q holds in
time f(k) · |x|c for some computable function f and some constant c. The problem lies in
the class para-AC0 if there is a family (Cn,k)n,k∈N such that (1) we have (x, k) ∈ Q if, and
only if, C|x|,k(x) = 1 and (2) we have depth(Cn,k) ≤ c and size(Cn,k) ≤ f(k) · nc. We also
require a dlogtime-uniformity condition, which in this context means that the ith bit of a
suitable encoding of Cn,k can be computed by a deterministic Turing machine that obtains i,
n, and k encoded as binary numbers as input and that runs in time f(k) +O(logn+ log i).
The class para-TC0 is defined in the same way by additionally allowing threshold gates.

Kernels. A kernel function for a parameterized problem Q is a mapping K : Σ∗×N→ Σ∗×N
such that forK(x, k) =: (x′, k′) we have (x, k) ∈ Q⇔ (x′, k′) ∈ Q, |x′| ≤ s(k), and |k′| ≤ ρ(k)
for two computable functions s and ρ. The function s is called the size (function) of the
kernel and we are particularly interested in the case that s is a polynomial.2 The function ρ
is less important and will always be the identity in this paper. It is well-known that for
decidable problems Q we have Q ∈ para-P if, and only if, Q has a kernel function K ∈ FP
(that is, computable in polynomial time) [18]; we have Q ∈ para-AC0 if, and only if, Q has a
kernel function K in the function class AC0 (where (x, k) ∈ Σ∗ × N is suitably encoded as a
bitstring) [6]; and that an analogous result holds for para-TC0.

Most kernel algorithms are based on reduction rules: They take an input (x, k) ∈ Σ∗ ×N
and are either not applicable or output some (x′, k′) with |x′| < |x| and k′ ≤ k. A rule is
called safe for a problem Q if we always have (x, k) ∈ Q ⇐⇒ (x′, k′) ∈ Q. A set of such
rules yields a kernel if for any input (x, k) at least one rule is still applicable as long as
|x′| > s(k), that is, as long as the input has not yet shrunk to a kernel.

Kernel functions can map inputs (x, k) to some (x′, k′) that have “very little to do
with the original (x, k)” except for being membership-equivalent, while it is often desirable
that kernels should preserve some of the properties of the input. When x is a hypergraph
H = (V,E) and the objective is to find a set X ⊆ V with certain properties, we say that a
kernel function K preserves solutions if (x, k) and K(x, k) always have the same solutions,
and it preserves edges if the edges in K(x, k) constitute a subset of E. The full kernels of
Damaschke [12] preserve minimal solutions in our sense and the explanatory kernels of van
Bevern [24] are edge-preserving kernels in our sense. An edge-preserving kernel does not
need to be solution-preserving, but this will always be the case in the present paper.

Fuzzy Thresholds. It is well-known [23] that threshold>t≤t-gates can be simulated by AC0-
circuits for polylogarithmic t, that is, for each exponent c we have {1t0b | t ∈ N, b ∈ {0, 1}∗,∑|b|
i=1 b[i] ≤ t ≤ logc2 |b|} ∈ AC0 and TC0-families using only polylogarithmic thresholds

can be replaced by equivalent AC0-families. However, majority ∈ TC0 \ AC0 shows that
for t = bn/2c an AC0-circuit simulating a threshold>t≤t-gate would need superpolynomial
size [19]. To step beyond the “polylogarithmic boundary” we use fuzzy threshold gates: They
behave the same way as ordinary threshold gates when the number of 1-bits in the input is
below a threshold t1 or above a larger threshold t2 > t1, but no guarantee is made about their
behavior in between. Clearly, such gates are less useful than normal threshold gates – the
majority problem demonstrates the importance of precisely distinguishing between bn/2c
and bn/2c+ 1 many 1-bits – but they turn out to be sufficient for the computation of certain
kernels. Crucially, fuzzy threshold gates can be simulated by AC0-circuits for superlogarithmic
thresholds, allowing us to turn such “fuzzy TC0 algorithms” into AC0-circuits.

2 As remarked earlier, in this paper “only the edge sets” of hypergraphs will be kernelized since we insisted
that the vertex set is immutable; |x′| should in this case be read as |E′|.
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In detail, just as for the standard class TC0, we consider dlogtime-uniform circuit families
(Cn)n∈N of constant depth and polynomial size. However, instead of threshold>t≤t-gates,
the circuits now contain the following gates (in addition to and-, or-, and not-gates):

I Definition 2.1. On input b ∈ {0, 1}l, a (“fuzzy”) threshold>t2≤t1 gate g with l inputs
outputs one bit g(b) ∈ {0, 1} such that for s =

∑l
i=1 b[i] we have:

1. If s ≤ t1, then g(b) = 0.
2. If s > t2, then g(b) = 1.
In all other cases, when s exceeds the threshold only “slightly” (t1 < s ≤ t2), no guarantees
are made about g(b): it can be 0 or 1.

A fuzzy threshold circuit Cn with m output gates may produce as output any string from
a set Cpossible

n (b) ⊆ {0, 1}m of possible outputs, depending on how the fuzzy gates happen to
behave. The objective is, of course, that no matter how the fuzzy gates actually behave and
no matter which z ∈ Cpossible

n (b) we actually get, it will be a valid “solution” for the given
input b. A bit more formally, we define a solution relation as a relation S ⊆ {0, 1}∗ × {0, 1}∗
such that for each possible input b ∈ {0, 1}∗ the set S(b) := { s | (b, s) ∈ S } of (“allowed” or
“permissible”) solutions is a subset of {0, 1}p(|b|) for some fixed polynomial p. As an example,
consider the task of finding quadratic kernels for the vertex cover problem. We model this
by an S containing all pairs (b, s) where b is (the encoding of) a graph G and a number k
and s is (the encoding of) a graph K of size at most k2 such that G has a size-k vertex cover
if, and only if, K does.

I Definition 2.2. Let S be a solution relation. We say that a family (Cn)n∈N of fuzzy
threshold circuits computes solutions for S if Cpossible

|b| (b) ⊆ S(b) holds for all b ∈ {0, 1}∗.

We derive rather tight fuzzy threshold gates from an result of Ajtai about approximate
counting with first-order formulas over arithmetic structures [2]:

I Fact 2.3 (Theorem 2.1 in [2]). For each positive integer i there exists an FO[+,×] formula
ϕ(x,X) with free variable x and free unary set variable X such that we have for each relational
structure S over size-n universe U , each threshold t ∈ U , and each set A ⊆ U :

|A| ≤
(
1− (logn)−i

)
· t =⇒ S |= ¬ϕ(t, A),

|A| ≥
(
1 + (logn)−i

)
· t =⇒ S |= ϕ(t, A).

I Corollary 2.4. Let t be a threshold and ε > 0 be a small error term. There is a constant c
such that for each n-input circuit C with threshold>(1+ε)t

≤t gates there is a circuit C ′ without
such gates (a normal AC-circuit) with
1. depth(C ′) = depth(C) · c and size(C ′) = size(C)c such that
2. for all b ∈ {0, 1}n we have C ′(b) ∈ Cpossible(b).

Proof. Let C be an n-input circuit with an ñ-input threshold>(1+ε)t
≤t gate g. We construct

a circuit C ′ by replacing g with an AC0-subcircuit. By Fact 2.3 and the well-known relation
that the set of decision problems definable in FO[+,×] is exactly dlogtime-uniform AC0 [20],
we know that for every i ∈ N and every a ∈ N there is an AC0-circuit C̃ such that for all
w ∈ {0, 1}ñ we have:∑|w|

i=1
wi ≤

(
1− (log ñ)−i

)
· a =⇒ C̃|w|(w) = 0,∑|w|

i=1
wi ≥

(
1 + (log ñ)−i

)
· a =⇒ C̃|w|(w) = 1.

SWAT 2020



9:6 Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time

In order to replace the gate g with an AC0-circuit, observe that there is a constant n0 > 0
such that 1− (logn)−1 ≥ (1+ε/2)−1 and (1+ε) · (1+ε/2)−1 ≥ 1+(logn)−1 for all n ≥ n0. If
the number of inputs ñ of g is smaller than n0, we can replace g by a hard-wired constant-size
AC0-circuit. For ñ ≥ n0, we set a = (1 + ε/2) · t and replace g by the circuit from above. Let
x :=

∑|w|
i=1 wi and observe that x ≤ t implies x ≤ t = (1 + ε/2)−1 · a ≤

(
1 − (logn)−1) · a

and x > (1 + ε)t = (1 + ε) · (1 + ε/2)−1 · a implies x ≥
(
1 + (logn)−1) · a. J

I Corollary 2.5. Let S be a solution relation and let (Cn)n∈N be a family of fuzzy threshold
circuits that compute solutions for S. Let depth(Cn) ∈ O(1) and size(Cn) ∈ nO(1). Then
there is a function f ∈ AC0 that maps every b ∈ {0, 1}∗ to a solution f(b) ∈ S(b).

3 Three Ways of Implementing the Critical Core Rule

Recall the “classical” sunflower reduction rule, Rule 1.2, which asks us to find and then
replace a sunflower S of size k + 1 by its core. The reason this rule is safe is that there is no
way of hitting all p ∈ S with k vertices without hitting the core, as all p ∈ S are disjoint
outside the core. In other words, the hypergraph with edge set S 	 c := { p \ c | p ∈ S } has
no hitting set of size k. The key insight behind the critical core rule is that there are other
hypergraphs that also do not have hitting sets of size k, but are easier to find: A hypergraph
with |E| > k ·∆, where ∆ is the maximum vertex degree, cannot have a hitting set of size k.
Naturally, the maximum degree ∆ of an arbitrary hypergraph is unbounded a priori, but we
can still turn this observation into a safe reduction rule, namely Rule 1.3.

In the introduction, we left open the details of the central definition of a critical core,
which we remedy presently. First, it will be useful to call the number i(c) := d − |c| the
index i of a core c. Our algorithms will typically process cores in increasing order of index,
which means in decreasing order of size. Next, a setup is a system of bounds – tailored to a
specific computational model – that determines which cores are critical. In detail:

I Definition 3.1 (Setup, Factor). A setup (w, u, l) consists of three monotone sequences of
positive integers: the weight sequence w = (wi)i∈N, prescribing a weight for cores of index i,
the uncritical bound sequence u = (ui)i∈N, and the light bound sequence l = (li)i∈N. These
sequences must satisfy w0 = u0 = l0 = 1 and wi, ui ∈ {1, . . . , li}. The factor of a setup is the
largest number f such that ui+1 ≥ f · li holds for all i ∈ N.

For a core c and a setup (w, u, l), the three numbers we will be particularly interested in are
wi(c), ui(c), and li(c); and we will write w(c), u(c), and l(c) for them, respectively.

I Definition 3.2 (Critical Cores). Let (w, u, l) be a setup and let c be a core. The weight
of Lc is w(Lc) =

∑
e∈Lc

w(e). The core is light if w(Lc) ≤ l(c), otherwise it is heavy. The
core is critical if Lc \ {c} is not empty, all c′ ) c are light, and w(Lc) > u(c).

We spell out what these definitions mean for an exemplary setup: wi = 1 and ui = li = ki.
The factor is k since ui+1 = ki+1 = k ·ki = kli holds. The weight w(Lc) of a link Lc is simply
|Lc| since all weights are 1. A core c is light if |Lc| ≤ ki(c) = kd−|c|, and it is critical if for all
c′ ) c we have |Lc′ | ≤ kd−|c′|, but |Lc| > kd−|c| (Lc \ {c} 6= ∅ then holds automatically).

I Lemma 3.3. For a factor-k setup, let c be critical. Then Lc 	 c has no size-k hitting set.

Proof. Let i be the index of c. Suppose Lc 	 c had a hitting set X ⊆ V \ c of size k.
Then Lc =

⋃
v∈X Lc∪{v} and, therefore, also w(Lc) ≤

∑
v∈X w(Lc∪{v}). As c is critical by

assumption, we have w(Lc) > ui and w(Lc∪{v}) ≤ li−1 since c ∪ {v} ) c. However, this
yields ui < w(Lc) ≤

∑
v∈X w(Lc∪{v}) ≤

∑
v∈X li−1 = kli−1, contradicting ui ≥ kli−1, which

we assumed (the setup has factor k). J
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I Corollary 3.4. For any factor-k setup, any size-k hitting set must hit all critical cores. In
particular, Rule 1.3 is a safe kernel rule for the hitting set problem.

A simple, but crucial property of the critical core rule is that it removes all heavy links:

I Lemma 3.5. Exhaustively applying the critical core reduction rule to a d-hypergraph H
yields an edge set K without heavy cores. In particular, the empty set will be a light core and
|K| = |L∅| ≤ ld.

Proof. If there is a core that is heavy for K, then there is also a heavy core c of minimal
index i – meaning that all c′ ) c are light. By definition of c being heavy, w(Lc) > li. But
li ≥ ui and all c′ ) c are light. Thus, c is critical contrary to the assumption. J

The following algorithm and theorem summarizes the above findings.

Algorithm 1 The critical core reduction algorithm, which we run on an hypergraph H = (V,E)
for some fixed setup.

1 while there is a critical core c ⊆ e ∈ E do
2 E ← (E \ Lc) ∪ {c}
3 return E

I Theorem 3.6. For every factor-k setup, Algorithm 1 outputs an edge set K of size |K| ≤ ld
that is solution-preserving for the hitting set problem.

Clearly, the smaller ld, the smaller our kernels. Since by Definition 3.1 we need to ensure
li+1 ≥ ui+1 ≥ kli, the smallest ld is obtained when we set ui = li = ki. Interestingly, the
weights wi are not relevant yet (we will need them later on) and can be chosen arbitrarily
between 1 and li = ki.

3.1 Computing Kernels in Linear Time
In this section we discuss a linear time implementation of Algorithm 1, similar to the
one provided by Fafianie and Kratsch [16]. However, we differ in two regards: First, the
cited implementation directly computes an edge-preserving kernel of size (k + 1)d, while we
compute a solution-preserving kernel of size kd. Secondly, we introduce another rule – the
critical core expansion rule – that allows us to transform the previous computed kernel to
an edge-preserving kernel of size (k + 1)d. This approach turns out to be slightly more
complicated than the implementation of Fafianie and Kratsch, but it allows a straight forward
parallelization, which we discuss in the following sections.

It is not too hard to implement a single application of the critical core rule in time
|E| · 2d poly(d): Iterate over all e ∈ E and for each c ⊆ e increase a counter n[c] by the edge’s
weight. Determine a maximal c with w(Lc) = n[c] > ui in a second loop (i is the index of c)
and then apply the rule. Since each application of the rule reduces the number of edges by
at least 1, we get a total runtime of |E|2 · 2d poly(d) to compute the kernel.

To improve the runtime to |E| · 2d poly(d), we need a new definition: For a d-hypergraph
H = (V,E), let us call a set K of subsets of V light if in the hypergraph (V,K) all edges are
light, and we say that K can be obtained from E if there is a sequence E0, E1, . . . , Eq with
E0 = E and Eq = K such that each Ej+1 is obtained from Ej through one of two actions:
1. We can set Ej+1 = Ej ∪ {c} if c is critical in (V,Ej).
2. We can set Ej+1 = Ej \ {e} if there is a c ( e with c ∈ Ej .

SWAT 2020



9:8 Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time

The critical core rule is now the special case where we always do the first action for some
critical c, immediately followed by doing the second action for all e ) c, that is, of all of Lc
(except for c itself, of course).

I Theorem 3.7. For any factor-k setup, there is a |E| · 2d poly(d) time algorithm that, on
input of a d-hypergraph H = (V,E), obtains a size-ld solution-preserving kernel K for the
hitting set problem. In particular, for li = ki, a kernel of size kd can be computed in time
|E| · 2d poly(d).

Proof. The algorithm iterates over all indices i ← 1, . . . , d in d rounds. At the start of
round i, all cores c of index i′ < i will be light and the objective is to ensure that at the end
of the round there is no heavy core c of index i. Towards this aim, we wish to modify E
(compute Ej+1 from the current Ej , but let us just write that we “modify E”) by
1. removing all edges in R := {e ∈ E | e ) c for some critical set c of index i},
2. adding all edges in a set A0 ⊆ A := {c | c is critical and has index i} such that
3. A0 has the properties |A0| ≤ |R| and R = {e ∈ E | ∃c ∈ A0 : e ) c}.
Suppose we could find A0 and R efficiently. Then we can, indeed, add all of A0 and then
remove all of R in accordance with the two rules: All c ∈ A0 are initially critical and stay
this way when we add other c′ ∈ A0 of the same size to E; and we can then safely remove
all of R as all e ∈ R are proper supersets of some c ∈ A0 that we have just added. Finally
note that after we have added A0 and removed R, there are no heavy c of size |c| = r for the
resulting set E: If c with |c| = r were still heavy in j, then c would also have been heavy in
the original E prior to the modifications and, thus, also critical. But, then, e ∈ R would have
been true for all e in c’s link in E and, thus, all these e would have been removed. Putting it
all together, we see that we can, indeed, use the updated E for the next round.

It remains to show how R and A0 can be found. First, we iterate over all e ∈ E and all
c ⊆ e with |c| = i and for each such c increment a counter n[c] by wd−|e|. Note that at the
end of the first loop we have n[c] = w(Lc) for all such c. Second, we once more iterate over
all e ∈ E and for each of them we now check whether there is a c ( e of index i such that
n[c] > ui−1. If so, we add e to R and we mark one such c as to belonging to A0. Clearly, at
the end of the second loop we will have correctly computed R and a set A0 of critical edges
with |A0| ≤ |R| and R = {e ∈ E | ∃c ∈ A0 : e ) c}.

The runtime of the algorithm is |E| · 2d poly(d), assuming an efficient implementation
of the array of counters n[c]: In the round for core size r, we iterate twice over at most |E|
edges e and each time consider at most

(
d
i

)
subsets c ( e. Removing R and adding A0 takes

time linear in their sizes. Finally, |A0| ≤ |R| ensures that |E| can only shrink in each round,
yielding a total runtime of at most

∑d−1
i=0

(
d
i

)
|E| · poly(d) = |E| · 2d poly(d) as claimed. J

While we can now compute solution-preserving kernels K in time |E| · 2d poly(d), the
kernels are not yet edge-preserving: many e ∈ K will not be elements of the original edge
set E. In the following we present an expansion rule that can be used to turn K into an
edge-preserving kernel. Recall that the critical core reduction rule replaces E by (E \Lc)∪{c}
for a critical c. The “reverse” version replaces K by (K \ {c}) ∪ L′c, where L′c ⊆ Lc is a
subset large enough to ensure that c becomes critical.

I Rule 3.8 (Critical Core Expansion Rule). In a d-hypergraph H = (V,E), let c /∈ E be critical
and let E′ = (E \ Lc) ∪ {c}. Determine an L′ ⊆ Lc with l(c) ≥ w(L′) > u(c) and replace E′
by E′′ := (E′ \ {c}) ∪ L′.

(If c ∈ E is critical, the critical core reduction rule just removes all supersets of c from E. In
this case we also consider the expansion rule to be applicable and set E′′ = E′.)
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I Lemma 3.9. For every setup with wi = li, if we apply the critical core expansion rule
to E′ for some c, then w(E′′) ≤ w(E′) will hold.

Proof. w(E′′) = w(E′)− w(c) + w(L′) and w(c) = l(c) ≥ w(L′). J

I Lemma 3.10. For every factor-k setup with wi−1 + ui ≤ li, if c /∈ E is critical for E,
then there is a set L′ such that the critical core expansion rule is applicable to the set
E′ = (E \ Lc) ∪ {c} and E′′ will have the same size-k hitting sets as E (and E′).

Proof. Let c be critical for E and have index i. The set L′ can be obtained from Lc by
iteratively adding elements of Lc to L′ until we have w(L′) > u(c) for the first time (at the
latest when all of Lc has been added). Let e ) c be the last element added to L′. Then
w(L′ \ {e}) ≤ u(c) = ui and w(L′) = w(L′ \ {e}) + w(e) ≤ ui + wi−1 ≤ li. To see that E′
and E′′ have the same size-k hitting sets, observe that each hitting set of E′ must hit c ∈ E′
and is thus also a hitting set of E′′. For the other direction note that c is critical in E′′: No
c′ ⊇ c can be heavy in E′′ since no such c′ was heavy in E ⊇ E′′. With c being critical in
E′′, any size-k hitting set of E′′ must hit c and, thus, all of E′ and thus also all of E. J

I Theorem 3.11. For every factor-k setup with wi = li and wi−1 + ui ≤ li, there is an
algorithm running in time |E| · 2d poly(d) that on input of a d-hypergraph H = (V,E) outputs
a kernel K of size ld that is edge- and solution-preserving for the hitting set problem.

Proof of Theorem 3.11. By the conditions we impose on the weights, the two lemmas tell
us that any application of the critical core reduction rule can be reversed by expansion
(Rule 3.8). In particular, an algorithm can use the rule to “undo” the replacement of E by
E′ := (E \R) ∪A0 by finding a set L′ for each c ∈ A0. Observe that we can remove all of
A0 from E′ (except for those c ∈ A0 that were already present in E) and add an appropriate
L′ for each such c ∈ A0 to, still, ensure that all c ∈ A0 are still critical. J

The smallest setup that satisfies the conditions of the theorem is wi = li = (k + 1)i and
ui = k(k + 1)i−1 for i ≥ 1. Thus, the theorem tells us that we can compute edge-preserving
kernels of size (k + 1)d for the hitting set problem in linear time.

We point out that there is a much simpler way of implementing the critical core rule
sequentially in order to compute an edge-preserving kernel. Algorithm 2 is essentially the
algorithm of Fafianie and Kratsch [16] in our terminology.

Algorithm 2 The critical core filter algorithm. When started on H = (V,E), it will output a
kernel K ⊆ E of size at most ld – provided that the setup satisfies ui + wi ≤ li, see Theorem 3.12.

1 K ← ∅
2 for e ∈ E do
3 if there is no c ⊆ e that is critical with respect to K then
4 K ← K ∪ {e}
5 return K

It is easy implement the algorithm so that it runs in time |E| · 2d poly(d) by keeping track
of the weights of all links in K. Unfortunately, the algorithm does not seem to be suitable
for parallelisation. However, analyzing the algorithm with our proposed setups still allows us
to bound to kernel size slightly better than it was done by Fafianie and Kratsch [16]:

I Theorem 3.12. For every factor-k setup with ui + wi ≤ li, the output of Algorithm 2 is
an edge-preserving hitting set kernel for H of size at most ld.
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Proof. By construction, we have K ⊆ E. We have |K| ≤ ld, since c = ∅ is light in K. To
see that K is a kernel, consider an e ∈ E that we do not add to K. Then there must be a
core c ⊆ e such that for the link Lc of c in K we have w(LKc ) + w(e) > l(c) (otherwise we
would have added e to K). For i = i(c), we then have li < w(LKc ) + wi and, by assumption,
ui ≤ li − wi < w(LKc ). This means that c was critical in K and, hence, every size-k hitting
set of K also hits c and, thus, in particular also e ⊇ c and there is no need to add e to K. J

The slowest growing setup with factor k satisfying ui + wi ≤ li is given by wi = 1 and
ui =

∑i
j=1 k

j = k + k2 + · · ·+ ki and li = ui + 1 =
∑i
j=0 k

j = 1 + k + k2 + · · ·+ ki. Thus,
a kernel with

∑i
j=0 k

j edges can be achieved, which is slightly better than the previously
known bound of (k + 1)d.

3.2 Computing Kernels by Constant-Depth Threshold Circuits
The algorithm from Theorem 3.7 allows an efficient parallel implementation:

I Theorem 3.13. For each d, the hitting set kernels from Theorems 3.7 and 3.11 can
be computed by TC0-circuits. In particular, TC0-circuits can compute solution-preserving
kernels of size kd and edge-preserving kernels of size (k + 1)d for the hitting set problem for
d-hypergraphs.

Proof. Just observe that a TC0-circuit can determine whether n[c] > u(c) holds for a given c
without iterating over all e ∈ E sequentially, but by using a single threshold gate. In
particular, we can compute R in parallel and thus also A0. This yields a circuit whose depth
in linear in d (a constant) and whose size is polynomial in |E| · 2d and thus polynomial in
the input length for constant d. We can also implement the reverse critical link rule using
threshold gates since to identify the sets L′ from the rule, we just need threshold gates to
find the first edge e ∈ Lc for which the sum of the weights of all edges in Lc prior to this
edge together with w(e) exceeds ui. J

We point out that for solution-preserving kernels, the above theorem was already known
for d = 2 [6], while only the logspace kernelization from Fafiane and Kratsch [16] were known
for d > 2.

3.3 Computing Kernels by Constant-Depth Fuzzy Threshold Circuits
Our final goal is an implementation of our kernelization using AC0-circuits. As pointed out
earlier, previously it was not known how kernels of polynomial size can be computed by
AC0-circuits for any problem. The difficulty in computing polynomial-size kernels using
AC0-circuits lies in the inability of such circuits to count precisely when the parameter k is
no longer polylogarithmic. We overcome this problem by using fuzzy threshold gates.

Critcial Core Reduction by Fuzzy Thresholds. We wish to replace the TC0-circuit family
from Theorem 3.13 by a fuzzy one, and then we wish to apply Corollary 2.5 to turn it into
an AC0-circuit family. The threshold circuits from Theorem 3.13 really need to be precise: If
we naively replace all threshold gates by fuzzy ones, it can happen that a critical c is not
detected, but a smaller one is – resulting in a incorrect application of the rule. The other
way round, it may also happen that the rule is not applied when it actually should.

We solve these problems by using a setup with worse (but still polynomial) bounds. The
jump from one bound to the next is so big that the fuzziness is no longer a problem:
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I Theorem 3.14. For any δ > 1, factor-k setup with li ≥ δ · ui and d ∈ N, there is a
constant-depth, polynomial-size family (Cn)n∈N of fuzzy threshold circuits that, on input of
a hypergraph H = (V,E) and a number k, outputs a solution-preserving size-ld hitting set
kernel K. In particular, a kernel of size δd−1kd can be computed using ui = δi−1ki and
li = δiki.

Proof. Let us first reiterate the steps from the proof of Theorem 3.13, but now with a closer
look at where and how threshold gates are needed (and with which thresholds).

The idea behind the kernelization was that at the beginning of a round for some index
i ∈ {1, . . . , d}, all cores of smaller index are light and the objective is to ensure that at the
end of the round this is also true for all cores of index i. To ensure this, we identified all c of
index i that were critical: For each possible c ⊆ e ∈ E (of which there can be at most

(
d
i

)
|E|

many), a normal TC0-circuit would use a single threshold gate at this point to determine
whether w(LEc ) exceeds the threshold ui. If so, c gets marked and then included in the
process by which A0 and R are determined, but this process does not include any use of
threshold gates – it is only the test whether w(LEc ) > ui where we need threshold gates.

In the fuzzy setting, we will need to use a fuzzy threshold>δt≤t -gate to implement the
test w(Lc) > ui using, of course, t = ui. This has the following effects:
1. If w(LEc ) ≤ ui = t holds, then we safely and correctly identify c as noncritical as the test

will always yield 0.
2. If w(LEc ) > δt = δui, then c is safely and correctly identified as critical as the test will

always yield 1.
3. If w(LEc ) is in the fuzzy range, then c is guaranteed to be critical, but not heavy (since

δui ≤ li).
The important observation is that in the third item, it is correct to apply the critical link
rule to c (which we do if the fuzzy threshold outputs 1), but it is not necessary to do so since
c is light. In particular, after the round for i is done, there will be no heavy c of index i in E,
which was exactly our objective. J

I Corollary 3.15. For every d and any ε > 0, there is a function in AC0 that maps every
d-hypergraph and number k to a solution-preserving hitting set kernel of size at most (1+ε)kd.

Critcial Core Expansion by Fuzzy Thresholds. Like the critical core reduction rule, the
critical core expansion rule can be implemented by fuzzy threshold circuits. Recall that
Rule 3.8 allowed us to safely replace a set E′ of edges, which had been obtained by setting
E′ = (E \Lc)∪ {c}, by the set E′′ = (E′ \ {c})∪L′ for any set L′ ⊆ Lc of appropriate size –
namely for l(c) ≥ w(L′) > u(c). As we did earlier, using a setup with more “slack” will allow
us to replace threshold gates by fuzzy threshold gates here.

I Theorem 3.16. For any δ > 1, factor-k setup with wi = li and wi−1 + δui ≤ li and
d ∈ N, there is a constant-depth, polynomial-size family (Cn)n∈N of fuzzy threshold circuits
that, on input of a d-hypergraph H = (V,E) and a number k, outputs a size-ld hitting set
kernel K that is edge- and solution-preserving. In particular, a kernel of size δd(k + 1)d can
be computed using the setup with wi = li = δi(k + 1)i and ui = δi−1k(k + 1)i−1.

Proof. We once more need to look more closely at how threshold gates are used in The-
orem 3.13 to obtain L′ ⊆ Lc: For Lc = {e1, e2, . . . , e|Lc|} we use |Lc| threshold gates in
parallel, each of which tests for some number j ∈ {1, . . . , |Lc|} whether w({e1, . . . , ej}) > u(c)
holds – and the smallest j for which is the case determines L′ = {e1, . . . , ej}. Then,
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clearly, w(L′) > u(c) and also w(L′) ≤ ui + wi−1, which will be less than li by as-
sumption. Now, in the fuzzy setting, we use fuzzy gates for tests, which will still ensure
that w(L′) = w({e1, . . . , ej}) > u(c) holds; but for the upper bound we can only ensure
w(L′) ≤ δui + wi−1 since as long as w({e1, . . . , ej}) ≤ δui holds, the fuzzy threshold gates
might still output 0, making us (incorrectly) believe that {e1, . . . , ej} is not yet heavy enough.
Thus, in order for the critical core expansion rule to work, we need δui + wi−1 ≤ li, which is
exactly our assumption.

For the setup wi = li = δi(k+ 1)i and ui = kli−1 = δi−1k(k+ 1)i−1, observe that it does,
indeed, satisfy all properties needed by the different lemmas on which the correctness of the
rule is based:
1. It satisfies wi ≤ li and ui = δi−1k(k + 1)i−1 ≤ δi(k + 1)i = li (needed by Definition 3.1).
2. It has factor k since ui+1 = δik(k + 1)i = kli (needed by Lemma 3.3).
3. It has δui+wi−1 = δik(k+1)i−1 +δi−1(k+1)i−1 = δi(k+1)i−1(k+1/δ) < δi(k+1)i = li

(needed by this theorem). J

4 Constant-Time Approximation Algorithms for Hitting Set

Approximation algorithms compute solutions for optimization problems that, while perhaps
not optimal, have a size that is at least “close” to the optimum. For a minimization problem
like vertex-cover, the ultimate objective is to output a vertex cover X whose size is at
most (1 + ε)|X∗|, where X∗ denotes some optimal solution. It turns out that unless some
complexity classes collapse, such near-optimal approximations cannot be computed for the
vertex cover problem. The best approximation to date is to compute a maximal matching
and to then take all vertices involved in it. This algorithm delivers solutions of size at most
2|X∗| and can be implemented using NC2-circuits. However, no approximation algorithm
that produces a solution that is at least polynomially bounded in |X∗| was known to be
implementable with circuits below NC2. In this section we present such an algorithm.

Our strategy is based on a simple observation: The set of vertices in any solution-
preserving kernel is already a solution for the original graph and, thus, also an approximation.
However, we still have the problem that we do not know the size of the optimal solution and,
thus, do not know which number k we should use with our kernel algorithms.

I Theorem 4.1. For each d and ε > 0, there are functions f and g that map (the encondings
of) d-hypergraphs H to hitting sets of H, such that (let X∗ be a minimum hitting set of H):
1. f ∈ TC0 and |f(H)| ≤ d|X∗|d;
2. g ∈ AC0 and |g(H)| ≤ (1 + ε) · d|X∗|d.

Proof. The idea is identical for both claims. On input H = (V,E), we run the following
algorithm in parallel for each k ∈ {1, . . . , |V |}: Compute a solution-preserving kernel Kk

for H using the circuits from Theorem 3.13 for TC0 or using those from Corollary 3.15 for
AC0. Then test whether Kk is actually a hitting set of H (this test can easily be done using
AC0-circuits). Output the set

⋃
Kk (the set of all vertices mentioned in any edges e ∈ Kk)

for the smallest k that passes the test, that is, for which Kk is still a hitting set of K.
Trivially, the outputs of the described circuits will be hitting sets. For the size bounds,

observe that all Kk are solution-preserving: They have the same size-k hitting sets as the
original hypergraph H. In particular, for k = |X∗|, the kernel Kk will have X∗ as a hitting
set and

⋃
Kk will contain X∗ and will thus hit all of H. The size bounds now follow from

the size bounds on Kk in Theorem 3.13 and Corollary 3.15. J
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5 Adapting the Approach for the Set Packing Problem

The dual problem of pk-d-hitting-set is the set packing problem, in which we are asked to
find k disjoint edges in a hypergraph:

I Problem 5.1 (pk-d-set-packing for fixed d ∈ N).
Instances: A d-hypergraph H = (V,E) and a parameter k ∈ N.
Question: Is there a set X ⊆ E with |X| ≥ k such that any different e, f ∈ X are disjoint?

Kernelizations based on the critical core rule tend to carry over to the set packing
problem [22]. It is thus not too surprising that our approach also works for set packings,
though there are also some subtleties.

5.1 Computing Set Packing Kernels
Recall that the safety of the critical core rule for the hitting set problem hinged on Lemma 3.3:
For critical c, the set Lc	 c has no size-k hitting set and, thus, for the question of whether H
has a size-k hitting set all the edges in Lc can be represented by c. We show that a similar
situation arises for the set packing problem: For the question of whether H has a size-k set
packing, all edges in Lc can be represented by c, which gives us an analogue of Corollary 3.4:

I Lemma 5.2. For a setup with factor d(k − 1), let c be critical in a d-hypergraph H. Then
for every U ⊆ V of size |U | ≤ d(k − 1) there is a set x ∈ Lc 	 c such that x ∩ U = ∅.

Proof. Let i be the index of c. We may assume that U ∩ c = ∅ holds (otherwise we
can just replace U by U \ c). Now consider the set I =

⋃
v∈U Lc∪{v} ⊆ Lc. As c is

critical by assumption, we have w(Lc) > ui and also w(Lc∪{v}) ≤ li−1. This gives us
w(I) ≤

∑
v∈U w(Lc∪{v}) ≤ |U |li−1 ≤ d(k − 1)li−1 ≤ ui < w(Lc). Hence, there must be an

edge e ∈ Lc \ I, which means e ∩ U = ∅. Then x = e \ c is the desired element of Lc 	 c. J

I Lemma 5.3. For any setup with factor d(k − 1), let c be critical for H = (V,E).
1. If c 6= ∅, then (E \ Lc) ∪ {c} has a set packing of size k if, and only if, E does.
2. If c = ∅, then E has a set packing of size k.

Proof. For the first item, first note that if X ⊆ E is a set packing (of any size), then
(X \Lc)∪{c} ⊆ (E \Lc)∪{c} is a set packing of the same size as X. For the other direction,
X ⊆ (E \ Lc) ∪ {c} is a size-k set packing. Clearly, if c /∈ X, we have X ⊆ E and we are
done, so suppose c ∈ X. Consider the set U :=

⋃
x∈X\{c} x of all vertices mentioned in any

edge of X, except for those in c. Then |U | ≤ d(k − 1) since H is a d-hypergraph and each
of the k − 1 many elements of X \ {c} contributes at most d vertices to U . By Lemma 5.2,
there is a edge x ∈ Lc 	 c that is disjoint from U and trivially also from c. This means that
X ′ = (X \ {c}) ∪ {x ∪ c} is also a set packing of size k and X ′ ⊆ E.

For the second item, we repeat the following instructions k times, starting with U = ∅
and X = ∅: Invoke Lemma 5.2 to obtain x ∈ Lc 	 c = Lc = E with x ∩ U = ∅ and update
X ← X ∪{x} and U ← U ∪x. Note that in invocations of the lemma we have |U | ≤ d(k− 1),
so we always get a fresh x ∈ E that is disjoint from all previous elements of X. J

The lemma states that just as for the hitting set problem, the critical core rule is safe – as
long as c is nonempty; and when c is empty and critical, we actually know that there is a set
packing of size k and can output a trivial kernel. The observations prove the following:
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I Theorem 5.4. For any setup with factor d(k− 1) and input H = (V,E), let K be a kernel
computed by (1) applying the critical core rule for nonempty cores as long as possible and (2)
possibly setting K to a trivial yes-instance if the empty set becomes critical at some point.
Then K has a size-k set packing if, and only if, H has one; and |K| ≤ ld.

The smallest possible setup with factor d(k− 1) is of course ui = li = (d(k− 1))i, leading
to a kernel size of ld = (d(k − 1))d ≤ ddkd. Since this kernelization works with the exact
same reduction rule we used for the hitting set problem – and since the special case of a
critical empty core is easy to take care of – we deduce the following results:

I Corollary 5.5. For each d ∈ N and ε > 0, one can compute on input of a d-hypergraph
H = (V,E) a set packing kernel

in time |E| · 2d poly(d) of size
(
d(k − 1)

)d and an edge-preserving one of size
(
dk
)d,

by TC0-circuits of size
(
d(k − 1)

)d and an edge-preserving one of size
(
dk
)d, and

by AC0-circuits of size (1 + ε)
(
d(k− 1)

)d and an edge-preserving one of size (1 + ε)
(
dk
)d.

5.2 Approximation Algorithms for the Set Packing Problem
When one compares our kernelization results on the hitting set and the set packing problems,
it may seem that these problems behave in identical ways and only the sizes of the outputs
differ slightly. However, in the approximation setting, the situation is quite different: For the
set packing problem, we do not know how we can extract an approximation from a kernel. To
appreciate the underlying difficulties, observe that it is not even clear how one can compute
in AC0 a matching for a graph that is known to be a complete bipartite graph with two given
shores U and W of identical size k.

We do not know whether it is possible to compute approximate matchings, let alone set
packings, using AC0-circuits. It is thus a bit surprising that we can, nevertheless, approximate
the size of optimal matchings and set packings:

I Theorem 5.6. For each d and ε > 0, there are functions f and g that map (the enconding
of) each d-hypergraphs H to a number such that (let X∗ denote a largest set packing of H):
1. f ∈ TC0 and 1

d |X
∗|1/d < f(H) ≤ |X∗|.

2. g ∈ AC0 and 1
(1+ε)d |X

∗|1/d < g(H) ≤ |X∗|.

Proof. On input H = (V,E), we compute in parallel for each k ∈ {1, . . . , |V |} a set packing
kernel Kk for H using the circuits from Corollary 5.5. For each kernel we perform a simple
test: Is Kk the trivial kernel? (Recall that this is the case when c = ∅ because critical during
the computation of the kernel and, then, we have a “witness” that the original hypergraph
has a set packing of size at least k.) We output the largest k that passes this test.

For the upper bounds, note that whatever k we output, we know that there is a set packing
of this size in the output. For the lower bounds, we show that whenever |X∗| > ld, then the
trivial kernel will be output. Assume that this not the case for Kk. We observe that X := X∗

is a set packing of size |X∗| and for any nonempty c, the set (X \Lc)∪{c} is also a set packing
of the same size (see the argument at the beginning of the proof of Lemma 5.3). Thus, the
final Kk, which arose through a series of applications of E ← (E \ Lc) ∪ {c} for different,
nonempty c, contains some set packing of size |X∗|. In particular, |Kk| ≥ |X∗| > ld. But,
then, c = ∅ is critical in Kk, contrary to our assumption. We know that all k pass the test “Is
Kk the trivial kernel?” for which |X∗| > ld holds. For the function f we used ld = (d(k−1))d,
so all k with |X∗|1/d/d > k − 1 pass the test. For g we used ld = ((1 + ε)d(k − 1))d, so now
all k with |X∗|1/d/((1 + ε)d) > k − 1 pass the test. J
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6 Conclusion

We analyzed a simple reduction rule for the hitting set problem in a parallel setting: The
critical core rule states that for any critical set c, we can safely replace the link of c by c.
Whether or not a set is critical depended only on the weights of links and by varying the
thresholds, we got different kernelization algorithms with different properties, see Table 1.

From the perspective of circuit complexity, this paper gives two new insights: First, it is
possible to compute polynomial-size kernels for difficult problems using AC0-circuits; and
second, it is possible to find polynomial-factor approximations for the hitting set problem
using AC0-circuits.

Table 1 Summary of our results concerning kernels and approximations for the hitting set
problem (above) and the set packing problem (below) in d-hypergraphs. The number opt is the size
|X∗| of a smallest hitting set or a largest set packing of the input, respectively.

Hitting Set Kernelization Results

Runtime What is Computed? Size Reference

|E| · 2d poly(d) solution-preserving hitting set kernel kd edges Theorem 3.7
TC0 solution-preserving hitting set kernel kd edges Theorem 3.13
AC0 solution-preserving hitting set kernel (1 + ε)kd edges Corollary 3.15

|E| · 2d poly(d) edge-preserving hitting set kernel
∑d

j=0 k
j edges Theorem 3.12

|E| · 2d poly(d) edge-preserving hitting set kernel (k + 1)d edges Theorem 3.11
TC0 edge-preserving hitting set kernel (k + 1)d edges Theorem 3.13
AC0 edge-preserving hitting set kernel (1 + ε)(k + 1)d edges Corollary 3.15

NC2 a hitting set d · opt vertices folklore
TC0 a hitting set optd vertices Theorem 4.1
AC0 a hitting set (1 + ε)optd vertices Theorem 4.1

Set Packing Kernelization Results

Runtime What is Computed? Size Reference

|E| · 2d poly(d) set packing kernel (d(k − 1))d edges Corollary 5.5
TC0 set packing kernel (d(k − 1))d edges Corollary 5.5
AC0 set packing kernel (1 + ε)(d(k − 1))d edges Corollary 5.5

|E| · 2d poly(d) edge-preserving set packing kernel (dk)d edges Corollary 5.5
TC0 edge-preserving set packing kernel (dk)d edges Corollary 5.5
AC0 edge-preserving set packing kernel (1 + ε)(dk)d edges Corollary 5.5

NC2 number z 1
d

opt ≤ z ≤ opt folklore
TC0 number z 1

d
opt1/d ≤ z ≤ opt Theorem 5.6

AC0 number z 1
(1+ε)dopt1/d ≤ z ≤ opt Theorem 5.6
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