
Sea-Rise Flooding on Massive Dynamic Terrains
Lars Arge
MADALGO, Aarhus University, Denmark
large@cs.au.dk

Mathias Rav
SCALGO, Aarhus, Denmark
mathias@scalgo.com

Morten Revsbæk
SCALGO, Aarhus, Denmark
morten@scalgo.com

Yujin Shin
MADALGO, Aarhus University, Denmark
yujinshin@cs.au.dk

Jungwoo Yang
SCALGO, Aarhus, Denmark
jungwoo@scalgo.com

Abstract
Predicting floods caused by storm surges is a crucial task. Since the rise of ocean water can create
floods that extend far onto land, the flood damage can be severe. By developing efficient flood
prediction algorithms that use very detailed terrain models and accurate sea-level forecasts, users can
plan mitigations such as flood walls and gates to minimize the damage from storm surge flooding.

In this paper we present a data structure for predicting floods from dynamic sea-level forecast
data on dynamic massive terrains. The forecast data is dynamic in the sense that new forecasts are
released several times per day; the terrain is dynamic in the sense that the terrain model may be
updated to plan flood mitigations.

Since accurate flood risk computations require using very detailed terrain models, and such
terrain models can easily exceed the size of the main memory in a regular computer, our data
structure is I/O-efficient, that is, it minimizes the number of I/Os (i.e. block transfers) between
main memory and disk. For a terrain represented as a raster of N cells, it can be constructed using
O(N

B
log M

B

N
B

) I/Os, it can compute the flood risk in a given small region using O(logB N) I/Os, and
it can handle updating the terrain elevation in a given small region using O(log2

B N) I/Os, where B
is the block size and M is the capacity of main memory.

2012 ACM Subject Classification Information systems → Geographic information systems

Keywords and phrases Computational geometry, I/O-algorithms, merge tree, dynamic terrain

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.6

Funding The work in this paper was supported in part by the Danish National Research Foundation
and Innovation Fond Denmark.

1 Introduction

Predicting floods caused by storm surges is a crucial task. Since the rise of ocean water
can create floods that extend far onto land, the flood damage can be severe. By developing
efficient flood prediction algorithms, we hope to minimize the damage from storm surge
flooding by allowing users to plan mitigations such as flood walls and gates, or evacuation of
affected areas.

© Lars Arge, Mathias Rav, Morten Revsbæk, Yujin Shin, and Jungwoo Yang;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:large@cs.au.dk
mailto:mathias@scalgo.com
mailto:morten@scalgo.com
mailto:yujinshin@cs.au.dk
mailto:jungwoo@scalgo.com
https://doi.org/10.4230/LIPIcs.SWAT.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Sea-Rise Flooding on Massive Dynamic Terrains

Due to the advancement of remote sensing technology and meteorology, nowadays very
detailed terrain models and accurate sea-level forecasts can be obtained, and these datasets
can be used for designing accurate flood prediction algorithms. For example, the publicly
available detailed raster terrain model of Denmark [13] (where each cell represents a 0.4 by
0.4 meter region) contains 267 billion cells. Furthermore, the Danish Meteorological Institute
releases a sea-level forecast of the Danish territorial waters every 6 hours, containing 81
thousand values (each value corresponding to the forecasted sea-level in a 1 km2 region).

Designing an efficient flood prediction algorithm is a challenging task. The algorithm
must be fast enough that the computation can finish before the actual disastrous event
happens or a new forecast appears, while to guarantee the accuracy of the prediction it is
required to use very detailed data that is larger than the main memory in a typical computer.
For example, with the terrain model and sea-level forecast datasets mentioned above, the
algorithm must process the terabyte-sized terrain model and complete well within 6 hours
before a new sea-level forecast is released. Existing flood prediction algorithms process the
entire terrain model to compute the flood risk when a new forecast is released. Moreover, if
a user modifies the terrain model to e.g. examine the effect of planned mitigations, the entire
terrain model must be processed again. This is critical in practice since even a simple scan
of a detailed terrain model such as the model of Denmark easily takes a few hours. However,
users examine flood risk and plan flood mitigations not for the entire terrain but only for
small regions of the terrain. Therefore, supporting efficient computations for a small region
in the terrain would make flood prediction algorithms more practically relevant.

In this paper, we consider the problem of predicting floods from dynamic sea-level forecast
data on dynamic massive terrains. The forecast data is dynamic in the sense that new
forecasts can appear; the terrain is dynamic in the sense that the terrain model may be
updated locally, to e.g. incorporate planned flood mitigations. We present a data structure
that allows updating respectively the forecast and the terrain, and a query algorithm to
report the flood height in a given query window (i.e. a small region of the terrain examined
by the user). The data structure is I/O-efficient, meaning it can efficiently handle terrain
models much larger than main memory.

The dynamic sea-level flooding problem. We use the I/O-model by Aggarwal and Vitter [4]
to design and analyze our algorithms. In this model, the computer is equipped with a two-
level memory hierarchy consisting of an internal memory and a (disk-based) external memory.
The internal memory is capable of holding M data items, while the external memory is of
conceptually unlimited size. All computation has to happen on data in internal memory.
Data is transferred between internal and external memory in blocks of B consecutive data
items. Such a transfer is referred to as an I/O-operation or I/O. The cost of an algorithm is
the number of I/Os it performs.

A terrain is typically represented using a digital elevation model (DEM) as a two-
dimensional array with N cells (a raster). Note that by storing a raster of N cells in O(N

B)
tiles of size

√
B×
√
B, for any s ≥ B a

√
s-by-

√
s square of the raster can be read or written

in O(s
B) I/Os. Each cell in a raster terrain T is either a terrain cell, meaning that the

corresponding location is on land, or an ocean cell. We denote the elevation of cell u in T by
hT (u); the height of an ocean cell is undefined. For two cells u and v, we say that u and v are
adjacent (or that v is a neighbor of u) if u and v share at least one point on their boundary.
A terrain cell is a coastal cell if it is adjacent to an ocean cell. Since the resolution of terrain
models is typically much greater than the resolution of forecasts, we partition the coastal
cells into a set C of connected coastal regions, each region corresponding to the coastal cells

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:3

associated with a single cell of the forecast. We denote the region containing a coastal cell u
by C(u). A sea-level forecast is a function F : C → R that assigns a sea-level elevation value
to each coastal region. We denote the sea-level elevation of a region R ∈ C by F (R), and
define a function hF (v) = F (C(v)) that assigns a forecast value to each coastal cell v.

A terrain cell u is flooded through a coastal cell v if there exists a path p = u v of
adjacent terrain cells such that each cell x in p has hT (x) < hF (v). We call p a flood path
of u with respect to v. Let Su be the set of coastal cells that have flood paths to u. For a
flooded cell u, we define its flood height as f(u) = maxv∈Su(hF (v)−hT (u)). The flood source
of u is the region R containing the coastal cell v ∈ Su that has the highest sea-level value,
that is, f(u) = hF (v)− hT (u); for simplicity, we assume that the flood source is unique.

The dynamic sea-level flooding problem we consider in this paper consists of constructing
an I/O-efficient data structure on a raster terrain T , a partition C of the coastal cells and a
forecast F , and supporting the following operations I/O-efficiently, where QB and U is a
query and an update of

√
B ×

√
B cells, respectively:

Flood-Height(QB): Return the flood height f(u) of each terrain cell u in QB .
Forecast-Update(F): Update the data structure with the new forecast F .
Height-Update(QB , U): Set the heights of terrain cells in QB to the values given by U .

Previous work. Previously, a large number of results on I/O-efficient algorithms have
been obtained. Aggarwal and Vitter [4] showed that reading and sorting N items require
Θ(Scan(N)) = Θ(N

B) and Θ(Sort(N)) = Θ(N
B logM/B

N
B) I/Os, respectively. A set of N

items can be maintained in an O(N
B)-block search tree such that updates and queries can be

performed in O(logB N) I/Os. Refer e.g. to the surveys [6, 20].
I/O-efficient algorithms for modeling flooding on terrains have been studied extensively

(e.g. [2, 5, 9, 12, 7, 10, 8, 11, 14]). A number of results have also been obtained for flooding
from sea-level rise. However, to our knowledge, the problem of computing flood heights while
I/O-efficiently supporting updates of sea-level forecasts and the heights of terrain cells has
not been studied before.

When the sea level rises uniformly with the same amount hr, that is, all coastal cells
belong to the same region R and F (R) = hr, then it is easy to see that there is a threshold
`u for each terrain cell u so that u is flooded with flood height hr − hT (u) if and only if
hr ≥ `u. The thresholds `u for all cells u in the terrain can be computed in O(Sort(N))
I/Os [7], after which the flood heights in any square of B cells can be easily reported for an
arbitrary hr in O(1) I/Os.

Arge et al. [11] introduced an O(Sort(N))-I/O algorithm for computing flood heights
when the sea-level rises non-uniformly. Their algorithm relies on the so-called merge tree
that captures the nesting topology of depressions in T [14, 15]. Their algorithm has been
incorporated into a real-time storm surge flood warning system in a pilot project between
Danish Meteorological Institute (DMI) and the research spin-out company SCALGO. This
system maps the extent of any flood risk resulting from the current sea-level forecast for
the Danish territorial waters (updated by DMI every six hours) in full resolution on the
0.4-meter terrain model of Denmark. As part of the pilot project, the algorithm has been
engineered to support efficient recomputation when a new forecast is released. However, it is
unable to handle updates to the terrain without incurring O(Sort(N)) I/Os, which is the
main motivation for the work in the present paper.

In addition to rasters, TINs are commonly used to represent terrain models. A TIN
T4 consists of a planar triangulation of N vertices in the plane, each vertex v having an
associated height hT4(v). The height of a point interior to a face is a linear interpolation

SWAT 2020

6:4 Sea-Rise Flooding on Massive Dynamic Terrains

of the face vertices, so that hT4 is a continuous piecewise linear function. Since a raster
can be triangulated into a TIN, algorithms for TIN representations can be applied to raster
representations as well, but the converse is not true. However, GIS applications typically
implement algorithms for rasters directly, as rasters are often easier to process with simple
algorithms. Furthermore, often data, such as the terrain data that we consider, is available
as rasters.

To maintain dynamic terrains, Agarwal et al. [3] presented an internal-memory so-called
kinetic data structure for maintaining the so-called contour tree of a TIN terrain T4 with a
time-varying height function. Whereas the merge tree represents how the depressions of T
are nested, the contour tree represents the nested topology of the contours defined by T4.
This result was extended to an I/O-efficient data structure by Yang [21]. He showed that for
a TIN terrain with N vertices, the contour tree can be constructed in O(Sort(N)) I/Os and
the elevation of a TIN vertex can be updated in O(log2

B N) I/Os.

Our results. In this paper we introduce the first data structure for the dynamic sea-level
flooding problem. Our data structure can be constructed in O(Sort(N)) I/Os and uses O(N

B)
blocks, where N is the number of cells in T . Flood-Height(QB) can be performed in
O(logB N) I/Os, Forecast-Update(F) in O(Scan(F)) I/Os, and Height-Update(QB , U)
in O(log2

B N) I/Os. Note that the number of I/Os needed to update a forecast does not
depend on N , and that the terrain update bound matches the update bound of Yang [21].

Our result assumes that the size of partition set C is smaller than M (which implies that
the forecast F is smaller than M), and that the number of local minima and maxima in
the terrain T is also smaller than M . As the number of local minima and maxima in the
terrain data for Denmark (after removing all depressions and hills with volume less than
1 m3, which is customary in flood computations) is 60 million, and the sea-level forecast
contains 81 thousand values, both of the assumptions hold for the data for Denmark that we
described above. It also requires the so-called confluence assumption [17] on the flow network
that models how water flows on a raster terrain T . In such a network, a flow direction is
assigned to each terrain cell u, which is a lower neighbor of u that water will flow to, and the
confluence assumption intuitively says that flowing water quickly combines to larger flows at
all scales. Formally, the confluence parameter γ is defined as follows: Let Qs be a square
of
√
s ×
√
s cells and Q3

s be the square of 3
√
s × 3

√
s cells that has Qs in the center. Let

γ(Qs) be the number of cells on the boundary of Q3
s reached from the boundary of Qs when

following flow directions without leaving Q3
s. Refer to Figure 1. The confluence parameter is

γ = maxs>0 maxQs
γ(Qs) where the maximum is taken over all squares Qs of all sizes. The

confluence assumption then states that γ is a constant independent of the size and resolution
of the terrain model.

Our work is inspired by the work of Arge et al. [11] and Yang [21]. As described previously,
Arge et al. [11] compute the flood risk by using the topological features of T encoded in the
merge tree. However, this structure does not support efficient terrain updates. On the other
hand, Yang [21] presented an I/O-efficient data structure for maintaining the contour tree of a
dynamic TIN terrain. In Section 2 we show how a raster terrain T can be transformed into a
TIN T4 while maintaining the topology pertaining to the dynamic sea-level flooding problem.
In Section 3 we then show how the merge tree of T , which is needed when computing flood
risk using the approach of Arge et al. [11], can be constructed from the contour tree of
T4, which can be maintained under terrain updates using the data structure of Yang [21].
Note that standard techniques for triangulating a raster terrain have several issues, because
they do not necessarily preserve flood paths and they do not allow the merge tree to be

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:5

Q3
s

Qs

Figure 1 Confluence parameter. Hillshaded terrain shown in greyscale. Blue lines show the flow
directions of the terrain. The thicker, lighter blue lines are flow directions reachable from Q3

s. There
are only 5 cells on the boundary of Q3

s that are reached from Qs (red crosses), which implies that
γ(Qs) = 5 in this example.

constructed from the contour tree. Thus we believe that our transformation algorithm is of
independent interest. In Section 4 we then describe the sea-level flooding data structure and
show how the three operations are performed efficiently using the confluence assumption and
the assumption on C and the number of minima and maxima.

2 Reducing raster problem to TIN

Problem definition for TINs. As mentioned, a TIN consists of a planar triangulation of a
set of N vertices in the plane along with a continuous height function hT4 that is linear on
each face of the triangulation. We assume that the boundary of the triangulation is a simple
polygon, with the interior corresponding to land and the exterior corresponding to ocean. A
subset of the vertices are coastal vertices, and like for raster terrains, the coastal vertices are
partitioned into a set C of connected coastal regions. For two vertices u, v in T4, we say u
and v are adjacent (or u is a neighbor of v) when there exists an edge in T4 that connects u
and v. We define flood path, flood height and flood source on TINs as for raster terrains.

Transforming the raster terrain. The incidence graph GT of a raster terrain T is a graph
on the terrain cells of T , where two vertices u4 and v4 are connected in GT if u and v are
adjacent in T . If u and v are connected diagonally we call u4 a diagonal neighbor of v4,
otherwise a cardinal neighbor of v4. Note that the natural planar embedding of GT , where
the vertex u4 corresponding to a cell u is placed at the center of u, is almost a triangulation,
except for the intersecting edges corresponding to diagonal neighbors. We turn GT into a

a b

d c

a b

d c

e1
e2

triangulation T4 by assigning u4 in T4 the same height as u in T , that is, hT4(u4) = hT (u),
and by removing a diagonal edge in T4 corresponding to each two-by-two square of terrain
cells in T as follows: For each two-by-two square of cells a, b, c, d in clockwise order, there

SWAT 2020

6:6 Sea-Rise Flooding on Massive Dynamic Terrains

5 5 5 4 4 4 5 5 5 5

6 4 4 6 5 5 4 3 4 3

4 4 3 3 4 4 3 3

4 4 4 5 3 2 5 5 5

5 6 3 3 5 2 2 5

5 4 3 5 2 3 4

4 2 3 5 2 4 2 1 3

3 5 2 2 1 1 1 1 1

5 2 3 3 4 5 2 0

5 3 5 4 4 2 1 2 4 4

2 1 1 0 5 5 0 5 1 0

3

3

2

1

6

5

4

5 5

3

2

1

Figure 2 Example of flood path preservation. On the triangulated terrain T4, each missing
diagonal (dotted blue) is replaced by two cardinal edges (red).

are two intersecting incidence edges e1 = {a, c} and e2 = {b, d} in GT . We triangulate the
square by removing whichever edge has the higher midpoint, where the midpoint height of
an edge e = {u, v} is s(e) = 1

2 (hT (u) + hT (v)). If s(e1) = s(e2), then we pick an arbitrary
edge to remove.

I Theorem 1. u is flooded through v in T if and only if u4 is flooded through v4 in T4.

Proof. First, if u4 is flooded through v4 in T4, that is, there exists a flood path p4 : u4
v4, then there is a flood path p : u v in T corresponding to p4, since each edge in T4
has a corresponding edge in GT . Thus u is flooded through v in T .

Next, we show that if p : u v is a flood path in T , then there is a corresponding flood
path p4 : u4 v4 in T4. If no edge in GT corresponding to adjacent cells in p was removed
by the TIN construction, then we are done; p4 is the sequence of vertices that correspond
to the cells in p. Otherwise, we show how to obtain p4 by replacing each edge e in GT

corresponding to adjacent cells in p that is not in T4 as follows: Since the TIN construction
only removes diagonal edges, e is a diagonal edge connecting two raster cells a and c. Recall
that the definition of flood path means that max{hT (a), hT (c)} ≤ hF (u). Let e′ be the
diagonal edge connecting cells b and d such that e and e′ intersect and e′ is included in
T4. Then s(e′) ≤ s(e), which implies that min{hT (b), hT (d)} ≤ max{hT (a), hT (c)} ≤ hF (u).
Without loss of generality assume hT (b) ≤ hT (d), in which case we replace the edge e with
the two edges {a, b} and {b, c}. These edges are both non-diagonal edges and thus were not
discarded when we triangulated T into T4, that is, we replace the adjacent cells a and c in p
with cells abc. Refer to Figure 2 for an example. Since hT (b) ≤ hF (u), p is still a flood path
after adding b. After handling all relevant edges this way, we have obtained a flood path p
such that p4 is the sequence of vertices that correspond to the cells in p. J

3 Connecting topology of T and T4

3.1 Local topology and depressions
Flow directions, sinks, peaks, upper and lower sequences, and depressions. As mentioned
previously, water flow on a raster terrain T can be modeled by assigning a flow direction on
each terrain cell u in T , which is a lower neighbor of u that water will flow to from u.

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:7

maximal depressionelementary
depression

depression β

α
v1

v2

v3

Figure 3 An example terrain seen from the side, showing cells v1-v3 along with depressions
defined by the cells. The cell v2 defines an elementary depression α. The cell v3 defines a maximal,
but not elementary, depression β.

When a cell u does not have any lower neighbors, then u is not assigned a flow direction
and we call it a sink. Similarly, a cell u is a peak if there is no neighbor of u that has higher
elevation than u. We assume that no pair of adjacent cells have the same height. That is,
a flow direction can be assigned to all terrain cells except sinks. The assumption can be
removed using standard techniques [7].

As we traverse the neighbors of a cell u in T that is not a sink or peak in clockwise order,
there are sequences of cells that are lower or higher than u. Each continuous sequence of
lower (resp. higher) neighbors of u is called a lower sequence (resp. upper sequence) of u.

A raster terrain cell u defines a depression that is the maximal connected component
of terrain cells containing u such that all cells v in the depression have h(v) ≤ h(u) [8].
Note that each depression contains at least one sink. A depression β1 is maximal if every
depression β2 ⊃ β1 contains strictly more sinks than β1. If a maximal depression β contains
exactly one sink, then we call β an elementary depression. Refer to Figure 3.

TIN construction preserves lower sequences, sinks, and depressions. On TINs, flow
direction, sink, peak, lower/upper sequence, and (maximal/elementary) depression are defined
as for rasters, but with the vertex adjacency defined by edges of the triangulation T4 rather
than the incidence graph GT . The following lemmas show that lower sequences, sinks, and
depressions in T are preserved by our raster to TIN transformation. Note that the lemmas
say nothing about peaks or upper sequences, as it is easy to verify that they are not preserved
by the transformation. Refer to Figure 4 for an example.

I Lemma 2. For any lower sequence J of any cell u in T , u has a neighbor v in J such that
u4 and v4 are connected in T4.

x v4

u4 y

e
e′

Proof. Pick any v ∈ J . If the edge e = (u4, v4) is in T4, then we are done. Otherwise, e is
removed by our TIN construction, so v must be a diagonal neighbor of u in T . Let e′ = (x, y)
be the edge that was chosen to remain instead of e in the TIN construction. Then we have
that x and y are the common neighbors of u and v and s(e′) ≤ s(e), which implies that
min{hT (x), hT (y)} ≤ hT (u). Without loss of generality assume hT (x) ≤ hT (y). Then x is a
lower neighbor of u in J , and since x is a cardinal neighbor of u, T4 contains {u4, x4}. J

I Corollary 3. A cell u has a lower neighbor in T if and only if u4 has a lower neighbor
in T4.

SWAT 2020

6:8 Sea-Rise Flooding on Massive Dynamic Terrains

1

2

3

4689

1211

10

7

21 22 24 25

23

1913

17 18

15

16

20

5

14

(a) Raster terrain. (b) Triangulated terrain.

Figure 4 Example showing that upper sequences and peaks are not necessarily preserved by our
TIN construction. In (a) the raster terrain cell with height 14 has two upper sequences (red), but in
the TIN terrain, the corresponding vertex (marked with a circle in (b)) has only one upper sequence.
The raster terrain has only a single peak, the cell with height 25 (blue), but in the TIN terrain the
vertex corresponding to the cell with height 18 is also a peak (blue).

I Lemma 4. For any cell u in T , the cells in the depression β defined by u in T are in
one-to-one correspondence with the vertices in the depression β4 defined by u4 in T4.

Proof. First, we show that for each v4 ∈ β4, v is in β: As v4 ∈ β4, there is a path
p : u4 v4 in T4 of vertices with height below hT4(u). This path corresponds to a path
in T (since the TIN construction only removes edges) and therefore v ∈ β.

To show that the cells in β correspond to a subset of the vertices in β4, it suffices to
show that the vertices corresponding to cells in β are connected in T4, since β4 is a maximal
connected component of vertices with height ≤ hT4(u4) (and each vertex in T4 has the
same height as it has in T). To show this we proceed by induction in the list of cells u in
T ordered by height hT (u). Suppose that for any cell u′ in T with hT (u′) < hT (u), the
depression defined by u′ is connected in T4. If u is a sink, then β = {u} which is trivially
connected in T4. Otherwise, we consider the set L = β \ {u} and make the following two
observations for each connected component β′ of L.

Since β′ is a depression in T defined by the highest cell in β′, it follows by induction that
β′ is connected in T4.
It is easy to see that β′ contains a lower neighbor v of u and thus contains all cells in the
lower sequence J containing v; by Lemma 2, it follows that u4 is adjacent in T4 to a
vertex that corresponds to a cell in J .

From this it follows that u4 is connected to all of β′ in T4, so β is connected in T4. J

I Corollary 5. A depression β is a maximal (resp. elementary) depression in T if and only
if β4 is a maximal (resp. elementary) depression in T4.

3.2 Merge trees and contour trees
Merge tree of raster T . As mentioned, the merge treeM of a raster terrain T is a rooted
tree that represents the nested topology of the maximal depressions [14]. Each node inM
represents a maximal depression in T , and we refer to the maximal depression represented
by a merge tree node x as βx. Each elementary depression is represented by a leaf node, and
a node y is the parent of a node x when βx ⊂ βy and there exists no maximal depression βz

such that βx ⊂ βz ⊂ βy.
Now consider sweeping the raster terrain with a plane of height ` from −∞ to ∞ while

maintaining the set of depressions that consist of cells with elevation less than or equal to
`. If the number of depressions decreases when the sweeping plane crosses a cell u, then u
is called a negative saddle; it is easy to see that a negative saddle u has at least two lower

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:9

α1 β1

α2 β2

α3 β3

(a)

u
v

w

α2 β2
β3β1 α3

α1 u
v

w

(b)

Figure 5 An example terrain with negative saddle cells u, v and w. (a) Terrain seen from above.
Sinks are marked with a square and saddles are marked with a cross. The maximal depressions α1,
β1, α3, and β3 are elementary. (b) Terrain seen from the side along with the merge tree M.

sequences. Then note that for any two maximal depressions βx and βy whose corresponding
nodes x and y inM share the same parent, there exists a negative saddle where βx and βy

are merged. Using this we associate a terrain cell to each merge tree node as follows: To
a leaf node x we associate the sink in the elementary depression βx; to an internal node x
we associate the negative saddle where the maximal depressions of its children are merged.
Refer to Figure 5.

Contour tree of TIN T4. For ` ∈ R, the `-level set of T4 is defined to consist of points
x ∈ R2 with hT4(x) = `. A contour of T4 is a connected component of a level set of
T4 [3]. We define a down-contour of u4 as any contour with elevation hT4(u) − ε, for a
value ε smaller than the height difference between any pair of vertices, such that the contour
intersects an edge incident to u4 [3]. Similarly, we define an up-contour as a contour with
elevation hT4(u) + ε that intersects an edge incident to u4.

Traversing the neighbors of a vertex u4 in clockwise order, we say that u4 is a saddle in
T4 if there are multiple sequences of lower neighbors of u4 disconnected by higher neighbors
of u4 [3]. For simplicity we assume that every saddle has exactly two such sequences of
lower neighbors. This assumption can be removed [16]. We say that a vertex u4 is critical if
u4 is a peak, sink, or saddle. If a saddle u4 has one up-contour (down-contour) and two
down-contours (up-contours) then u4 is called a negative (positive) saddle. For any two
contours C1 and C2 with level `1 and `2, respectively, we say C1 and C2 are equivalent if
they belong to the same connected component of Γ = {x ∈ R2 | `1 ≤ hT4(x) ≤ `2} that
does not contain any critical vertex. When sweeping T4 with a plane from −∞ to ∞, an
equivalence class of contours starts and ends at critical vertices. That is, the contours deform
continuously as the sweeping plane changes its height, but the number of contours does not
change as long as the plane varies between two critical vertices. A contour appears and
disappears at a sink and a peak, respectively. Two contours merge into one at a negative
saddle, and a contour splits into two at a positive saddle.

The contour tree A of a TIN T4 is a tree on the critical vertices in T4 that encodes the
topological changes of the contours [3, 21]. Two critical vertices u4, v4 are connected in A
if and only if an equivalence class of contours starts at u4 and ends at v4. That is, an edge
(u4, v4) in A represents the equivalence class of contour that appears at u4 and disappears
at v4. Refer to Figure 6. Note that the contour tree is not a rooted tree; an internal node
has two lower (higher) neighbors and one higher (lower) neighbor if it corresponds to a
negative (positive) saddle.

9

126

3

8 4 7

5

SWAT 2020

6:10 Sea-Rise Flooding on Massive Dynamic Terrains

36

39

19

30

29

31 19 2

13

18

33

19

33

20

32

12

19

23

31

4144

33

32

39

44
4

11

34

14

42

44

45

424627

21

43

32

20

29

26

31

42

(a) From above. (b) In perspective.

29

4 2

12
18 19

23

33

41

46

44

36

27

45

(c) Merge tree.

2
4

19

33

41

12

29

18

23

(d) Depression structure.

Figure 6 Example TIN terrain. Sinks are marked with squares, peaks with circles, and saddles
with crosses. (a, b) Everything below ` = 23 is marked as blue. Contours defined by saddle vertices
are marked with red lines. (b) Edges of the contour tree A are shown as arcs pointing downwards
in height. (c) Merge tree derived from the contour tree (dashed), representing how the maximal
depressions in (d) are nested.

TIN construction preserves negative saddles. Note that for raster terrains we have only
defined negative saddles, and not saddles or positive saddles. The reason is, as shown in the
example in Figure 6, that a cell in T with multiple lower and upper sequences can become a
regular vertex in T4 after our transformation. However, we can show that negative saddles
are preserved by the transformation. To do so we need the following lemma.

I Lemma 6. For any negative saddle u in a raster terrain T that merges two depressions β1
and β2, let J1 and J2 be the two higher sequences of u that separate β1 and β2 in a clockwise
traversal of the neighbors of u. Then J1 and J2 each contain a cardinal neighbor of u.

u

J1β1

β2

Proof. Assume for contradiction that a higher sequence separating β1 and β2 does not
contain a cardinal neighbor of u, that is, that it consists of a single diagonal neighbor. This
implies that a cell in β1 has a diagonal neighbor in β2, which violates the definition of
depressions as maximal connected components. J

Using Lemma 6 we can prove the following.

I Lemma 7. A cell u is a negative saddle in T if and only if u4 is a negative saddle in T4.

Proof. First, we show that if u is a negative saddle in T , then u4 is a negative saddle in
T4. Let β1 and β2 be the two depressions that merge at u. By Lemma 2, u4 is connected
in T4 to a lower neighbor u1

4 in β1 and a lower neighbor u2
4 in β2. By Lemma 6, u has

two higher cardinal neighbors v1 and v2 separating u1 and u2 in a clockwise traversal of the
neighbors of u. Since the construction of T4 only removes diagonal edges, u4 is connected
to both v1

4 and v2
4 in T4. Thus u4 has four alternating lower and higher neighbors

u1
4, v

1
4, u

2
4, v

2
4 in clockwise order, so u4 is a saddle in T4. By Lemma 4, β1 and β2

are preserved in T4. Thus the down-contour of u4 intersecting u1
4 is distinct from the

down-contour intersecting u2
4, so u4 is a negative saddle.

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:11

Next, we show that if u is not a negative saddle in T , then u4 is not a negative saddle
in T4. If the number of lower sequences of u is less than 2, then it is easy to see that u4
is not a saddle in T4. If the number of lower sequences of u is at least 2, then these lower
sequences must be from the same depression β. By Lemma 4, β is connected in T4 and thus
u4 is not a negative saddle. J

Constructing merge tree M of T from contour tree A of T4. We now show how the
merge tree M of T can be constructed from the contour tree A of the TIN T4 obtained
after applying our TIN construction to T . From Corollary 3 and Lemma 7 it follows that
the nodes ofM, which correspond to the sinks and negative saddles of T , are encoded in A.
In Appendix A.1 we show (Lemma 12) that if v is the highest node on the path between u
and v in A, then there is a path between u and v in T4 where v is the highest vertex. The
following lemma is then the key to constructing the edges ofM from A.

I Lemma 8. For two distinct nodes u4 and v4 in the contour tree A of T4 that correspond
to negative saddles or sinks, βu4 ⊂ βv4 if and only if there is a path pA : u4 v4 in A
such that all vertices in pA have height less than or equal to the height of v4.

Proof. Suppose βu4 ⊂ βv4 . Then there is a path p4 : u4 v4 in T4 such that all vertices
in p4 have height less than or equal to hT4(v4). The edges and vertices in A corresponding
to all contours through points on p4 in T4 form a connected subtree of A. Thus there is a
path pA : u4 v4 in A with height less than or equal to the height of v4.

Now, suppose pA is a path in A from u4 to v4 such that v4 is the highest vertex in pA.
By Lemma 12 there is a path p4 : v4 u4 in T4 such that the highest vertex on p4 is v4.
This implies that u4 is contained in the depression defined by v4, so βu4 ⊆ βv4 . J

I Theorem 9. The merge treeM of T can be constructed from the contour tree A of T4.

Proof. For each negative saddle u4 in A we define a key descendant of u4 for each child v4
of u4 as follows: If v4 is a sink or a negative saddle, then v4 is the key descendant of u4.
Otherwise, it is a positive saddle, and the key descendant is found by following a downward
path from v4 in A until reaching a negative saddle or sink; since a vertex in A that is not a
negative saddle or sink has exactly one lower neighbor, this downward path following lower
neighbors until encountering a negative saddle or sink is unique. Since u4 has exactly two
children, it has two key descendants.

To constructM we start with a forest containing all the sinks of A (leaves ofM), and
we maintain a union-find data structure that maps each vertex u ofM to the root of u in
the forestM constructed so far. Next, we insert the negative saddles of A (internal nodes)
intoM in increasing order of height using the union-find data structure as follows: When
processing a negative saddle u4 with key descendants v1

4 and v2
4, we query the union-find

data structure to obtain v1 = Find(v1
4) and v2 = Find(v2

4). From Lemma 8, v1 and v2 are
the children of u inM, so we insert u intoM with children v1 and v2. We then update the
union-find structure using Union(v1, v2). When we have processed all negative saddles in
this way, we have constructedM. J

4 Sea-level flooding data structure

We are now ready to describe our sea-level flooding data structure. Intuitively, our structure
maintains the result of a flood computation for a forecast F on a terrain T by a flood instance
IF , which stores for each sink cell u of T the flood source of u. When answering a query

SWAT 2020

6:12 Sea-Rise Flooding on Massive Dynamic Terrains

the flood height of any cell can then be computed from IF using the observation that if a
non-sink cell v is flooded by F , then the flood source of v is the same as the flood source of
any sink cell u in the depression defined by v, and it is easy to compute the flood height of v
from such a sink u [11]. Furthermore, we maintain the contour tree A of T4 using the data
structure of Yang [21]. As required by this data structure, our data structure also maintains
a so-called descent tree Π↓ and a so-called ascent tree Π↑ that store descending and ascending
connectivity on T4, respectively. More precisely, the descent (ascent) tree is an I/O-efficient
data structure that maintains a forest on the vertices in T4, where each vertex is connected
to one of its lower (upper) neighbors in T4, and where each root in the forest corresponds to
a sink (peak). The descent (ascent) tree Π↓ (Π↑) supports finding for a cell u, a sink (peak)
that can be reached from u by a decreasing (increasing) path in O(logB N) I/Os. Thus, Π↓
can be queried to find a sink in the depression defined by v in O(logB N) I/Os. The ascent
and descent trees also support the following operations in O(log2

B N) I/Os: Disconnect the
subtree rooted at u from its parent, and link a root u to a vertex v. For details we refer
to [21].

While Yang described how to maintain A, Π↓ and Π↑ when updating the height of a
single vertex in O(log2

B N) I/Os [21], we need to update heights in a square QB of B cells in
the same bound. Yang classifies the possible changes to A as a result of changing the height
of a vertex of T4 as either adding a sink or peak (birth event), removing a sink or peak
(death event), or reordering saddles (interchange event). When updating a number of vertices
in a region QB of

√
B by

√
B cells, birth and death events are conceptually simple to handle,

as the involved sink or peak is either in QB or adjacent to a vertex in QB. On the other
hand, an interchange event involves a saddle u in QB and a saddle v adjacent to u in A, but
not necessarily in the vicinity of QB in T4. Yang [21] handles such an interchange event by
querying Π↓ and Π↑ with the neighbors of u and v in T4. However, this is a problem for
our data structure, as updating the heights of B vertices in QB can cause Θ(B) interchange
events and thus Θ(B) queries to Π↓ and Π↑, which would require Θ(B logB N) I/Os. In
Appendix A.2 we describe (Lemma 13) how to answer the queries to Π↓ and Π↑ without
I/Os, by maintaining in addition a set L of vertices of Π↓ and Π↑ in main memory. In this
way, A can be updated without using I/Os (since we have assumed that the critical vertices,
and thus A, fits in memory).

Yang also showed how to augment his data structure such that all vertices in T4 are
represented in A [21]. Intuitively, a vertex v is added to the edge representing the contour
through v. The augmented data structure can be maintained in the same bounds as described
above [21]. In our sea-level flooding data structure, we similarly augment the contour tree of
T4 with the so-called coastal minima of T4 that are the coastal vertices u with no lower
neighbors inside their coastal region, that is, a coastal vertex u is a coastal minimum if there
is no vertex v ∈ C(u) adjacent to u that is lower than u. We denote by A+ this augmented
contour tree extended to represent the coastal minima. In Appendix A.3 (Lemma 14) we
show that A+ contains enough information to determine which sinks are flooded by a forecast
F . More precisely, we show that if a coastal vertex u in coastal region R floods a terrain
vertex v, then there is a coastal minimum w in R that also floods v. Furthermore, we show
that the number of coastal minima is bounded by the number of coastal regions |R| and the
number of critical vertices in T4.

In summary, our sea-level flooding data structure consists of the following components:

Contour tree A+ containing the sinks, peaks, saddles and coastal minima of T4;

Descent tree Π↓ and ascent tree Π↑ on T4, as well as a set L of vertices of Π↓ and Π↑;

Terrain T , forecast F and flood instance IF .

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:13

Space. Recall that we assume that the number of sinks, peaks and saddles in T4, as well
as the number of coastal regions, is smaller than M . Thus A+ and L fit in main memory. As
IF stores a coastal region for each sink of T4, it also fits in main memory. By assumption,
F fits in main memory. Finally, T and the descent and ascent trees are stored in external
memory where they use O(N/B) blocks of space [21]. It is easy to see that our data structure
can be constructed in O(Sort(N)) I/Os [21].

Flood-Height(QB) query. To compute the flood height for all cells in QB , we first associate
each cell v ∈ QB with a sink in the depression defined by v as follows: Let Q3

B be the square
of 3
√
B × 3

√
B cells that has QB in the center. For each v ∈ QB , we follow flow directions

from v until reaching either the boundary of Q3
B or a sink u. By assumption, the number of

times we reach a cell on the boundary of Q3
B is constant. For each such cell w, we query Π↓

to find a sink u in the depression defined by w, and we associate u with the cell v ∈ QB that
reached w when following flow directions. After this way having associated each v ∈ QB

with a sink u in the depression defined by v, the flood source of each v ∈ QB can be found
using IF as discussed above.

Following flow directions can be done by loading the query cells of T in Q3
B into main

memory and computing the flow directions in O(1) I/Os. Making the O(1) queries to Π↓
requires O(logB N) I/Os [21]. Then, the flood sources can be found using IF without using
any I/Os, since IF is stored in memory. Thus, Flood-Height(QB) requires O(logB N) I/Os
in total.

Forecast-Update(F). To update the flood instance IF given a new forecast F , we first
construct M from A+ using Theorem 9. Then for each coastal minimum v in a coastal
region R, we compute h = hF (v)−hT (v). If h > 0, it means that v is flooded by the forecast
value F (R) = hF (v). Note that this also means that all sinks in the depression defined by v
are flooded. As A+ contains the coastal minimum v, we can then use A+ to find one of these
sinks u by following a decreasing path in A+ from v until reaching a sink as follows: At a
negative saddle w, we pick an arbitrary lower neighbor of w, and at a vertex w that is not a
negative saddle or sink (i.e. a peak, positive saddle, or coastal minimum), w has a unique
lower neighbor in A+. Eventually we reach a sink u and since we have followed a strictly
decreasing path from v to u in A+ it follows by Lemma 8 that u is in the depression defined
by v. Note that u is also a node inM, and that in any instance of the sea-level flooding
problem in which u is flooded with forecast value F (R), the other sinks in the depression
defined by v will also be flooded. After having found at most one flooded sink for each
coastal minimum in this way, we can identify the remaining flooded sinks in the terrain using
the algorithm by Arge et al. [11] that takes as input a list of forecast values for sinks in a
merge treeM of T and computes the flood source and flood height for all sinks inM. This
in turn gives us the new flood instance IF .

After the forecast F is read into memory using O(Scan(F)) I/Os, no further I/Os are
required for Forecast-Update, since A+,M and IF fit in main memory.

Height-Update(QB, U). To update the heights of the cells in QB we need to update Π↓,
Π↑, A+ and IF .

Intuitively, we update Π↓ and Π↑ by removing subtrees containing the vertices whose
heights were updated, reconstructing a new forest corresponding to the new descending or
ascending connectivity after the update, and then linking the forest into the structure. More
precisely, let Q3

B and Q5
B be the squares of 3

√
B × 3

√
B and 5

√
B × 5

√
B cells, respectively,

SWAT 2020

6:14 Sea-Rise Flooding on Massive Dynamic Terrains

such that Q3
B and Q5

B both have QB in the center. We describe how the descent tree Π↓ is
updated; the ascent tree can be updated in an analogous way. First, we will disconnect a
number of edges on the boundary of Q3

B to ensure that no tree in Π↓ contains both a vertex
inside QB and a vertex outside Q5

B. In other words, we isolate a set of vertices V in Π↓
such that QB ⊂ V ⊂ Q5

B, as follows: First we disconnect edges so that no vertex in QB is
connected to a vertex on the boundary of Q3

B by following edges of Π↓ from each vertex in QB

until reaching either a sink inside Q3
B or a vertex on the boundary of Q3

B . By the confluence
assumption, the number of times we reach a vertex on the boundary of Q3

B is constant. For
each such vertex w, we disconnect w from its parent in Π↓. Next, we disconnect edges so
that no vertex outside Q5

B is connected to a vertex on the boundary of Q3
B by following

edges of Π↓ from all cells on the boundary of Q5
B towards Q3

B until we reach a sink or the
boundary of Q3

B . It is easy to show that the number of times we reach the boundary of Q3
B

is a constant, by covering each of the four sides of Q5
B with five translated copies of QB , and

bounding the number of times each copy can reach the boundary of Q3
B using the confluence

parameter. As previously, we disconnect each vertex w reached on the boundary of Q3
B from

its parent in Π↓. Let u in QB and v outside Q5
B be vertices that were in the same tree of

Π↓ before we disconnected edges on the boundary of Q3
B , and let w be the lowest common

ancestor of u and v in Π↓ at that time. If w is outside Q3
B , then u is no longer connected to

w as we disconnected the first edge on the path from u to w that is on the boundary of Q3
B .

If w is inside Q3
B, a similar argument shows that v is no longer connected to w. Thus we

have isolated a set V of O(B) vertices in Π↓ such that QB ⊆ V ⊆ Q5
B . We can then simply

reconstruct new subtrees for V in Π↓ according to the new descending connectivity resulting
from the height updates in QB and link back the disconnected edges on the boundary of Q3

B

into Π↓.
After updating Π↓/Π↑ we update A+ with the new topology of the terrain using the

update algorithm in [21], and we use Forecast-Update(F) to update the flood instance IF .
As we disconnect and reconnect O(1) edges of Π↓ and Π↑, updating the heights of cells

in QB can be done using O(log2
B N) I/Os [21]. Updating A+ requires querying Π↓ and

Π↑ with neighbors of saddle vertices; as discussed previously (Lemma 13), this part can
be handled without I/Os since A+ and L fit in memory, where L contains the vertices of
Π↓ and Π↑ required to perform the update of A+. Since F is already in main memory,
Forecast-Update does not require any I/Os. Thus, Height-Update(QB , U) requires
O(log2

B N) I/Os in total.

I Theorem 10. Given a terrain of N cells, a partition of the coastal cells of the terrain into
a set of coastal regions C, and a forecast F : C → R, for which the following assumptions
hold:

the confluence parameter γ is constant,
the number of local minima and maxima is smaller than M ,
|C| is smaller than M ,

a data structure for the dynamic sea-level flooding problem can be constructed in O(Sort(N))
I/Os using O(N

B) blocks of space, such that
Flood-Height(QB) can be performed in O(logB N) I/Os,
Forecast-Update(F) can be performed in O(Scan(F)) I/Os, and
Height-Update(QB , U) can be performed in O(log2

B N) I/Os.

References
1 Pankaj K. Agarwal, Lars Arge, Gerth Stølting Brodal, and Jeffrey S. Vitter. I/O-efficient

Dynamic Point Location in Monotone Planar Subdivisions. In Proc. 10th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 11–20, 1999.

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:15

2 Pankaj K Agarwal, Lars Arge, and Ke Yi. I/O-efficient batched union-find and its applications
to terrain analysis. ACM Trans. Algorithms, 7(1):11, 2010.

3 Pankaj K. Agarwal, Thomas Mølhave, Morten Revsbæk, Issam Safa, Yusu Wang, and Jungwoo
Yang. Maintaining Contour Trees of Dynamic Terrains. In 31st International Symposium on
Computational Geometry, volume 34, pages 796–811, 2015.

4 Alok Aggarwal and Jeffrey Vitter. The Input/output Complexity of Sorting and Related
Problems. Communications of the ACM, 31(9):1116–1127, 1988.

5 Cici Alexander, Lars Arge, Peder Klith Bøcher, Morten Revsbæk, Brody Sandel, Jens-Christian
Svenning, Constantinos Tsirogiannis, and Jungwoo Yang. Computing River Floods Using
Massive Terrain Data. In Geographic Information Science, pages 3–17. Springer International
Publishing, 2016.

6 Lars Arge. External memory data structures. In Handbook of massive data sets, pages 313–357.
2002.

7 Lars Arge, Jeffrey S Chase, Patrick Halpin, Laura Toma, Jeffrey S Vitter, Dean Urban,
and Rajiv Wickremesinghe. Efficient Flow Computation on Massive Grid Terrain Datasets.
GeoInformatica, 7(4):283–313, 2003.

8 Lars Arge, Mathias Rav, Sarfraz Raza, and Morten Revsbæk. I/O-Efficient Event Based
Depression Flood Risk. In Proc. 9th Workshop on Algorithm Engineering and Experiments,
pages 259–269. SIAM, 2017.

9 Lars Arge and Morten Revsbæk. I/O-efficient contour tree simplification. In International
Symposium on Algorithms and Computation, pages 1155–1165. Springer, 2009.

10 Lars Arge, Morten Revsbæk, and Norbert Zeh. I/O-efficient computation of water flow across
a terrain. In Proceedings of the 26th annual Symposium on Computational Geometry, pages
403–412. ACM, 2010.

11 Lars Arge, Yujin Shin, and Constantinos Tsirogiannis. Computing Floods Caused by Non-
Uniform Sea-Level Rise. In Proc. 20th Workshop on Algorithm Engineering and Experiments,
pages 97–108. SIAM, 2018.

12 Lars Arge, Laura Toma, and Jeffrey Scott Vitter. I/O-efficient Algorithms for Problems on
Grid-based Terrains. Journal of Experimental Algorithmics, 6:1, 2001.

13 Danish Geodata Agency. Elevation Model of Denmark:Terræn (0.4 meter grid).
http://eng.gst.dk, 2015.

14 Andrew Danner. I/O Efficient Algorithms and Applications in Geographic Information Systems.
PhD thesis, Department of Computer Science, Duke University, 2006.

15 Andrew Danner, Thomas Mølhave, Ke Yi, Pankaj K Agarwal, Lars Arge, and Helena Mitásová.
TerraStream: from Elevation Data to Watershed Hierarchies. In Proc. 15th Annual ACM
International Symposium on Advances in Geographic Information Systems, page 28. ACM,
2007.

16 Herbert Edelsbrunner, John Harer, and Afra Zomorodian. Hierarchical morse-smale complexes
for piecewise linear 2-manifolds. Discrete and computational Geometry, 30(1):87–107, 2003.

17 Herman J. Haverkort and Jeffrey Janssen. Simple I/O-efficient Flow Accumulation on Grid
Terrains. CoRR, abs/1211.1857, 2012. URL: http://arxiv.org/abs/1211.1857.

18 Robert E Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM Journal
on Computing, 14(4):862–874, 1985.

19 Robert Endre Tarjan and Uzi Vishkin. Finding biconnected componemts and computing
tree functions in logarithmic parallel time. In 25th Annual Symposium on Foundations of
Computer Science, pages 12–20. IEEE, 1984.

20 Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foundations and
Trends® in Theoretical Computer Science, 2(4):305–474, 2008.

21 Jungwoo Yang. Efficient Algorithms for Handling Massive Terrains. PhD thesis, Department
of Computer Science, University of Aarhus, 2015.

SWAT 2020

http://arxiv.org/abs/1211.1857

6:16 Sea-Rise Flooding on Massive Dynamic Terrains

A Appendices

A.1 Connecting paths in T4 and A
In this section we show an important relation between paths along the edges of a TIN T4
and paths along the edges of the contour tree A of T4. Recall that we have defined a flood
path from a coastal vertex u to a vertex v as a path p : u v along the edges of T4 such
that no vertex in v has height greater than hF (u). Thus, one way of showing that flood
paths are preserved is by showing the more general statement that paths that stay below
some height level ` are preserved. The following lemmas show that a path in A that stays
below ` corresponds to a path along the edges of T4 that stays below `, and vice versa.

I Lemma 11. For any critical vertex v4 ∈ T4, sink u4 ∈ T4 and strictly decreasing path
p4 : v4 u4 along the edges of T4, there is a corresponding path p : v4 u4 in A that
is strictly decreasing in height.

Proof. Consider lowering a plane from ` = hT4(v4) to hT4(u4). Since p4 is strictly
decreasing in height, the plane intersects p4 at a single point x(`) for all `. The path p

consists of edges of A corresponding to the contours containing x(`) for all `. J

I Lemma 12. For any pair of nodes v, w ∈ A such that v is the highest vertex on the path
p : v w in A, there exists a path p4 : v w along the edges of T4 such that the highest
vertex on p4 is v.

Proof. First, we observe that for each vertex v ∈ A and down-contour c of v, there exists a
strictly decreasing path π4(v, c) in T4 from v through c to a sink u. By applying Lemma 11,
we obtain a path πA(v, c) : v u in A. We show how to find a path in T4 between any pair
v, w ∈ A using the paths π4, as follows: We proceed by induction in the list of contour tree
nodes sorted in increasing height order. Fix v ∈ A and suppose that, for all pairs v′, w ∈ A
such that hT4(v′) < hT4(v) and v′ is the highest vertex on the path from v′ to w in A, there
exists a path from v′ to w in T4 having v′ as the highest vertex. We have to show that for
any w ∈ A and path p : v w where v is the highest vertex on p, there is a corresponding
path along the edges of T4 having v as the highest vertex. Let c be the down-contour
represented by the edge of p incident to v, and let u be the sink such that π(v, c) connects v
to u in T4. By induction, u is connected to w in T4 by a path p4 such that w is the highest
vertex. By concatenating π4(v, c) : u w and the reverse of p4 : w u, we obtain a path
from v to w such that v is the highest vertex on the path. J

A.2 Updating A without using I/Os
In this section we describe how updates to A in Height-Update can be handled without
I/Os. First we give a brief description of how the data structure of Yang [21] handles updates
to A. Then we describe how our sea-level flooding data structure avoids I/Os when the
contour tree is updated.

Yang describes the dynamic forest data structure that is an I/O-efficient data structure
used to store the descent tree Π↓ and ascent tree Π↑. The data structure represents a forest of
rooted trees, and for a forest of N vertices the following operations are supported: Returning
the root of a vertex u in O(logB N) I/Os and linking a root u to a vertex v or disconnecting
a non-root u from its parent in O(log2

B N) I/Os. The dynamic forest is represented by its
Euler tour [19, 18], using the observation that cutting or linking an edge corresponds to
a constant number of splits and merges in the Euler tour. The Euler tour is stored in a

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:17

level-balanced B-tree [1] that supports split and merge in O(log2
B N) I/Os. Each vertex in

the forest stores a pointer to its first and last occurrences in the Euler tour, which allows
cutting or linking an edge in O(log2

B N) I/Os.
It is straightforward to augment the level-balanced B-tree to support the rank oper-

ation, which returns the number of elements before a given element in the sequence in
O(logB N) I/Os. The ranks of Euler tour occurrences can be used to answer subtree queries:
Given vertices u and v, u is in the subtree rooted at v if and only if the rank of the first occur-
rence of u is contained in the interval spanned by the ranks of the first and last occurrences
of v.

Let L be the set of vertices adjacent to saddle vertices in a TIN T4; the size of L is
at most 8X, where X is the number of critical vertices of T4. Our sea-level flooding data
structure stores, for each vertex v in L, the rank of the first occurrence of v in Π↓ and Π↑,
and it stores for each sink (peak) u the ranks of the first and last occurrences of u in Π↓
(Π↑). As described above, from the ranks of u and v it can be determined whether v is in
the subtree of u in Π↓ or Π↑.

When the data structure of Yang [21] handles an interchange event between saddles u and
v in A, that is, the event that u and v swap height order due to an update to the height of u,
Π↓ (Π↑) is queried with a vertex from each lower (higher) sequence of u and v to determine
the new nesting structure of contours. By answering the queries to Π↓ and Π↑ using the
ranks stored in main memory, the queries require no I/Os; since this is the only case in
which Π↓ or Π↑ is queried by the update algorithm for A, our data structure may update A
without I/Os.

During our update algorithm, Π↓ and Π↑ are updated to reflect the new descending
and ascending connectivity of the vertices in the updated square QB . Whenever an edge is
disconnected or reconnected in Π↓ or Π↑, this operation is translated into a constant number
of splits and merges to the level-balanced B-trees underlying Π↓ and Π↑, and these splits and
merges can cause the ranks of vertices in L to change. By using the rank operation on the
level-balanced B-tree before and after each such split or merge operation, it is straightforward
to update the stored ranks of vertices in L accordingly.

As we assume that X is less than M , L fits in main memory, and thus querying and
updating L incurs no I/Os.

I Lemma 13. For Π↓ (Π↑), the ranks of L and terrain sinks (peaks) can be maintained in
internal memory by the sea-level flooding data structure such that queries to the sink (peak)
reached when following edges in Π↓ (Π↑) from a vertex v ∈ L can be answered without I/Os.

A.3 Analyzing the coastal minima
In this section we show that the contour tree augmented with coastal minima, denoted by
A+, contains enough information to determine which sinks are flooded. Recall that a coastal
minimum is a coastal vertex u such that no other coastal vertex in C(u) is below u. We
define coastal maxima analogously to coastal minima. A coastal minimum (maximum) is
a true coastal minimum (maximum) if it has no lower (higher) neighbor that is a coastal
vertex in any coastal region; otherwise it is a region minimum (maximum).

I Lemma 14. Let X be the number of sinks, saddles and peaks in the terrain, and let |C| be
the number of coastal regions.
(i) If a coastal vertex u in coastal region R floods a terrain vertex v, then there is a coastal

minimum w in R that also floods v.
(ii) The number of coastal minima is O(X + |C|).

SWAT 2020

6:18 Sea-Rise Flooding on Massive Dynamic Terrains

un+1 v

(a) v 6∈ Bn

un+1

v

(b) v ∈ Bn

Figure 7 The two cases when un+1 is added. Open and closed vertices are marked with circles
and disks, respectively.

Proof. First, we show (i). Suppose a coastal vertex u in coastal region R floods a terrain
vertex v; we have to show that there exists a coastal minimum w in R that also floods
v. Let p : u v be a flood path from u to v. Now we construct another flood path
p′ : u w u v that goes through the coastal minimum w in R reached when following
a descending path in R from u until reaching a coastal minimum. Then the path w u v

is a flood path from the coastal minimum w to v.
Next, we show (ii). We define the lowest descent path p from a given vertex u as the path

along the edges of T4 starting in u and ending in a sink, such that for each edge (v, w) in p,
w is the lowest neighbor of v; the highest ascent path is defined analogously. If two lowest
descent paths or two highest ascent paths p, q intersect, then they share a common suffix; as
such, p and q do not cross. From each true coastal minimum, we follow the lowest descent
path to reach a sink, and from each true coastal maximum, we follow the highest ascent
path to reach a peak. Note that an ascending path and a descending path cannot cross, and
if two paths share a common suffix, we can separate them so that all paths form a planar
bipartite graph G = (A ∪B,E), where A is the set of true coastal minima and maxima, and
B is the set of sinks and peaks in the terrain. Let u1, . . . , u|A| be the vertices in A labeled in
the order that they appear as we traverse the coastline. Each vertex ui ∈ A is connected
to exactly one vertex in B by an edge e(ui) ∈ E. Since any two true coastal minima are
separated by a true coastal maximum and vice-versa, we assume without loss of generality
that u1, u3, . . . are minima and

ui

uj

uk

u`

vpvq

u2, u4, . . . are maxima. Observe that for all n ≥ 1, un and un+1 are connected to distinct
vertices in B. Consider three vertices ui, uj , and uk with i < j < k, such that ui and uk

are connected to the same vertex vp and uj is connected to vertex vq. Then vq cannot be
connected to any vertex u` with k < `.

To show that |A| < 2|B|, we consider constructing G incrementally by adding the vertices
of A in the order they appear on the coastline; for each n ≥ 0 let Gn = (An ∪ Bn, En) be
the subgraph of G consisting of An = {u1, . . . , un}, En = {e(u1), . . . , e(un)}, and Bn being
the set of B-vertices connected by En. For each Gn, we call a vertex v ∈ Bn open if it can
be reached from un+1 via a path on the terrain that does not intersect any edge in Gn,
and closed otherwise. Let Cn (On) be the set of closed (open) vertices of Bn. We show by
induction in n that |An| ≤ |On|+ 2|Cn|, from which it follows that |An| < 2|Bn| (since not

L. Arge, M. Rav, M. Revsbæk, Y. Shin, and J. Yang 6:19

all vertices in Bn can be closed). Initially, A1 = {u1}, |O1| = 1 and |C1| = 0. When un+1 is
added with an edge to a vertex v ∈ Bn+1, there are two cases. If v 6∈ Bn (Figure 7a), then
|Cn+1| = |Cn| and |On+1| = |On|+ 1, so

|An+1| = |An|+ 1 ≤ |On|+ 2|Cn|+ 1 = |On+1|+ 2|Cn+1|. J

Otherwise, v ∈ Bn (Figure 7b). The edge from un+1 to v moves k vertices in On to Cn+1,
so |On+1| = |On| − k, |Cn+1| = |Cn| + k. Since both un and un+1 cannot be maxima or
minima, they cannot have the same neighbor and therefore the neighbor of un is open in Gn

and closed in Gn+1, which implies that k ≥ 1. Thus it follows that

|An+1| = |An|+ 1 ≤ |On|+ 2|Cn|+ 1 ≤ (|On| − k) + 2(|Cn|+ k) = |On+1|+ 2|Cn+1|. J

SWAT 2020

	Introduction
	Reducing raster problem to TIN
	Connecting topology of T and {T_triangle}
	Local topology and depressions
	Merge trees and contour trees

	Sea-level flooding data structure
	Appendices
	Connecting paths in {T_triangle} and A
	Updating A without using I/Os
	Analyzing the coastal minima

