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Abstract
We study the problem of preclustering a set B of imprecise points in Rd: we wish to cluster the
regions specifying the potential locations of the points such that, no matter where the points are
located within their regions, the resulting clustering approximates the optimal clustering for those
locations. We consider k-center, k-median, and k-means clustering, and obtain the following results.

Let B := {b1, . . . , bn} be a collection of disjoint balls in Rd, where each ball bi specifies the
possible locations of an input point pi. A partition C of B into subsets is called an (f(k), α)-
preclustering (with respect to the specific k-clustering variant under consideration) if (i) C consists
of f(k) preclusters, and (ii) for any realization P of the points pi inside their respective balls, the
cost of the clustering on P induced by C is at most α times the cost of an optimal k-clustering on P .
We call f(k) the size of the preclustering and we call α its approximation ratio. We prove that, even
in R1, one may need at least 3k− 3 preclusters to obtain a bounded approximation ratio – this holds
for the k-center, the k-median, and the k-means problem – and we present a (3k, 1) preclustering
for the k-center problem in R1. We also present various preclusterings for balls in Rd with d > 2,
including a (3k, α)-preclustering with α ≈ 13.9 for the k-center and the k-median problem, and
α ≈ 254.7 for the k-means problem.
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1 Introduction

Clustering is one of the most important and widely studied problems in unsupervised learning.
It comes in many different flavors, depending on the type of data to be clustered, the measure
used to assess the quality of a clustering, and so on. In this paper we are interested in
geometric clustering, where the data are points in Rd, and we consider three well-known
centroid-based clustering methods, namely k-center, k-median, and k-means, on so-called
imprecise points.
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3:2 Preclustering Algorithms for Imprecise Points

In (the geometric version of) centroid-based clustering one is given a set P of n points
in Rd, where d is a fixed constant, and an integer k. The goal is to partition P into k subsets
P1, . . . , Pk and assign a centroid qi to each cluster Pi such that the cost of the resulting
clustering is minimized. In the k-center problem the cost of the clustering is defined as
max16i6k maxp∈Pi

|pqi|, where |pq| denotes the Euclidean distance between two points p
and q. In the k-median problem the cost of a clustering is defined as

∑
16i6k

∑
p∈Pi
|pqi|, and

in the k-means problem it is defined as
∑

16i6k

∑
p∈Pi
|pqi|2. Given a collection of centroids

it is always optimal to define the clusters by assigning each point in P to its nearest centroid.
Thus an equivalent definition of the k-center problem, for instance, is to find a collection of
{q1, . . . , qk} as centroids that minimizes maxp∈P min16i6k |pqi|. In other words, we want to
find k congruent balls of minimum radius that together cover all points in P .

The k-center problem in Rd is NP-hard for d > 2 when k is part of the input. For the
Euclidean k-center problem a PTAS exists, as shown by Agarwal and Procopiuc [1]. (For
the k-center problem in general metric spaces, a PTAS does not exists; for this case an r-
approximation algorithm with r < 2 is not possible unless P=NP, and several 2-approximation
algorithms are known [5, 14].) The k-median and k-means problems are also NP-hard for
d > 2, and they admit a PTAS as well [2, 4, 6, 8].

In the traditional setting the locations of the input points are known exactly. In practice
this may not always be the case: typically locations are measured using GPS or other devices
that are not completely accurate, or the points may move around inside a given region.
This leads to the study of geometric algorithms on so-called imprecise points. Here, instead
of specifying the exact coordinates of each input point, we specify a region for each point
where it may be located. For points in the plane the regions are typically disks or squares.
Over the past decade, many problems have been studied for imprecise points, including
convex hulls (compute the smallest (or largest) possible convex hull of a set of imprecise
points [7, 11]), Delaunay triangulations (preprocess a set of imprecise points such that for
any given instantiation of the points in the given regions we can compute the Delaunay
triangulation quickly [3]), separability problems [13], and more [9, 10, 12].

Problem statement and notation. In this paper we study the k-center, k-median, and
k-means problem for imprecise points. The input is a set B := {b1, . . . , bn} of (closed) balls
in Rd, each representing the possible locations of an input point. Our goal is to compute a
preclustering of the imprecise points, that is, a partition of B into a collection C of subsets
called preclusters that gives a good clustering for any possible realization of the points inside
the input balls. Next we define this more formally.

For a (precise) point set P , let Opt∞(P, k) denote the cost of an optimal k-center
clustering on P , that is,

Opt∞(P, k) := min
q1,...,qk∈Rd

max
p∈P

min
16i6k

|pqi|.

The cost of an optimal solution for the k-median and k-means problem on a set P are
denoted by Opt1(P, k) and Opt2(P, k), respectively.1 Now consider an imprecise point set
specified by a set B = {b1, . . . , bn} of balls. A point set P := {p1, . . . , pn} such that pi ∈ bi

for all 1 6 i 6 n is called a B-instance. A preclustering C of the set B into preclusters Bi

1 The subscript ∞ in Opt∞ refers to the fact that if di denotes the distance of point pi ∈ P to its nearest
center, then we are minimizing the norm of the vector 〈d1, . . . , dn〉 in the `∞-metric. For k-median and
k-means we are minimizing the norm in the `1-metric and in the squared `2-metric, respectively.
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induces a clustering on any B-instance P in a natural manner, namely by creating a cluster
Pi := {p ∈ P : p ∈ Bi} for every precluster Bi ∈ C. The cost of the preclustering C on P ,
denoted by C-Cost∞(P ) for the k-center problem, is defined as the cost of the induced
clustering on P if we choose the centroid of each cluster Pi optimally, namely by solving the
1-clustering problem on Pi. So for the k-center problem we have

C-Cost∞(P ) := max
Bi∈C

min
q∈Rd

max
p∈Pi

|pq|.

The preclustering costs for the k-median and k-means problem are denoted by C-Cost1(P )
and C-Cost2(P ), respectively, and they are defined similarly. To quantify the quality of
a preclustering C on B (with respect to the k-clustering problem under consideration) we
define C to be a (f(k), α)-preclustering if
C consists of f(k) preclusters,
C-Cost(P ) 6 α ·Opt(P, k) for any B-instance P .

We call f(k) the size of the preclustering and we call α its approximation ratio. Ideally, we
would like to have a (k, 1)-preclustering, but this is not always possible. If the balls in B
have a non-empty common intersection, then any preclustering with fewer than n preclusters
may have an arbitrarily bad approximation ratio, even for the 2-center problem. Hence, we
assume (as is often done in papers on imprecise points) that the balls in B are disjoint.

Our results. As mentioned, obtaining a (k, 1)-preclustering is not always possible. This
leads to the question: what is the smallest value for f(k) such that we can always obtain an
(f(k), 1)-preclustering? More generally, which trade-offs are possible between the size f(k) of
the preclustering and its approximation ratio α?

In Section 2 we study this problem in R1. We show that there are input sets B that
require at least 3k − 3 preclusters to get a bounded approximation ratio; this holds for the
k-center problem, the k-median problem, as well as the k-means problem. We complement
this result by proving that any set B of intervals in R1 admits a (3k, 1)-preclustering for the
k-center problem. This preclustering can be computed in polynomial time.

In Section 3 we consider the d-dimensional version of the problem for d > 2. We give an
example showing that here a (3k, 1)-preclustering does not always exist, and we present a
(3k, α)-preclustering with α ≈ 13.9 for the k-center and k-median problem, and α ≈ 254.7 for
the k-means problem. A different parameterization of the strategy gives a (6k, 3)-preclustering
for k-center and k-median, and a (6k, 10)-preclustering for k-means in R2.

Finally, in Section 4 we obtain tight asymptotic bounds on the size of the preclustering
needed to obtain any given approximation ratio ε > 0 for the k-center problem. In particular,
we prove that Θ(d1/εde · k) preclusters are always sufficient and sometimes necessary to
obtain approximation ratio ε.

2 The 1-dimensional problem

We begin by proving that even in R1 – here the input balls are disjoint intervals on the line –
preclusterings with only k preclusters cannot always guarantee a good approximation ratio.
In fact, we sometimes need as much as 3k − 3 preclusters in any preclustering with bounded
approximation ratio.

I Theorem 1. For any integer k > 2 and any given α, there is a set B of disjoint intervals
in R1 that does not admit a (k′, α)-preclustering with k′ < 3k − 3. This holds for k-center,
k-median, as well as k-means clustering.

SWAT 2020



3:4 Preclustering Algorithms for Imprecise Points

ε1 1 bibj

Figure 1 Illustration of the lower-bound construction for k = 5: a collection of k − 1 groups of
three intervals (in grey), each group consisting of a left and right interval of length 1 separated by a
gap of length ε, and a middle interval in inside this gap. The points in the B-instance used in the
proof are shown slightly above intervals for clarity.

Proof. Let B be a collection of 3k − 3 disjoint intervals in R1 consisting of k − 1 groups
of three intervals each. The left and right interval in each group have length 1 and are at
distance ε from each other, where ε is a sufficiently small number that will be specified later.
The middle interval from the group lies in the gap between the left and right interval with its
center at the center of the gap; see Fig. 1. Now consider a preclustering C = {B1, . . . , Bk′}. If
k′ < 3k − 3, then there is at least one precluster containing two intervals, bi and bj . Assume
without loss of generality that length(bi) > length(bj), and consider the B-instance in which
each point pt is placed in its interval bt ∈ B as follows.

If t = i or bt is a middle interval, then pt lies at the center of bt.
If t 6= i and bt is a left interval, then pt lies at the right endpoint of bt.
If t 6= i and bt is a right interval, then pt lies at the left endpoint of bt.

Note that with this placement we have |pipj | > 1/2. We will argue that by choosing ε
appropriately we get the desired result.

First consider the k-center problem. Note that Opt∞(P, k) 6 ε/2. Indeed, by putting a
centroid at the center of each of the k − 1 gaps and one centroid at pi, all points in P are
at distance at most ε/2 from a centroid. On the other hand, C-Cost∞(P ) > 1/4 since the
centroid for the cluster containing pi and pj is at distance at least 1/4 from pi or pj . Hence,

C-Cost∞(P )
Opt∞(P, k) >

1/4
ε/2 = 1

2ε .

For ε < 1/(2α) we thus enforce an approximation ratio greater than α.
The argument for k-median and k-means is similar. For k-median we have Opt1(P, k) 6

2(k − 1)(ε/2) and C-Cost1(P ) > 1/2, so ε < 1/(2(k − 1)α) enforces an approximation ratio
greater than α, while for k-means we have Opt2(P, k) 6 2(k − 1)(ε/2)2 and C-Cost2(P ) >
2(1/4)2, so ε <

√
1/(4(k − 1)α) suffices. J

I Remark 2. The construction in the proof of Theorem 1 uses an input set B of size 3k − 3.
We can easily generate an input set with the same behavior for any n > 3k − 3, by adding
another n− 3k + 3 tiny intervals inside one of the gaps between a left and a right interval
from the same group.

Theorem 1 states that for some problem instances any preclustering with fewer than
3k − 3 preclusters has arbitrarily large approximation ratio. We now show how to obtain a
1-approximation with only 3k preclusters for the k-center problem. We assume from now on
that n > 3k, otherwise we can trivially create a zero-cost solution with at most 3k preclusters.

Before we describe our preclustering strategy, we first generalize the k-center problem in
R1 from points to intervals. In this generalization the input is a collection B of n intervals,
and the goal is to find a collection I := {I1, . . . , Ik} of intervals that together cover all
intervals in B and such that the maximum radius of the intervals in I is minimized. (The
radius of an interval is half its length.) We denote the value of an optimal solution I to the
k-center problem on B by Opt∞(B, k), so Opt∞(B, k) := maxIi∈I radius(Ii).

Our preclustering algorithm is now as follows.
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PreClustering-1D(B, k)
1. Sort the intervals in B by radius, such that radius(b1) > · · · > radius(bn).
2. For each k′ ∈ {0, . . . , 2k} do the following.

a. Let {B1, . . . , B(3k−k′)} be an optimal (3k − k′)-center clustering on {bk′+1, . . . , bn},
and let Opt∞({bk′+1, . . . , bn}, 3k − k′) be its cost.

b. Let C(k′) be the preclustering {{b1}, . . . , {bk′}, B1, . . . , B(3k−k′)}.
3. Of all preclusterings C(0), . . . , C(2k) found in Step 2, let C(k′) be the one that minimizes

Opt∞({bk′+1, . . . , bn}, 3k − k′). Let C := C(k′) and return C.

I Theorem 3. Any set B of disjoint intervals in R1 admits a (3k, 1)-preclustering for the
k-center problem and this algorithm can be executed in polynomial time.

Proof. Obviously PreClustering-1D(B, k) gives a preclustering C with 3k preclusters.
It remains to prove that C has approximation ratio 1. Let P be a B-instance, and let
Q ∈ {q1, . . . , qk} be an optimal set of centroids for the k-center problem on P . Thus by
placing an interval of radius Opt∞(P, k) centered at each centroid qi ∈ Q, we cover all points
in P . By assigning each point in P to its nearest centroid in Q, with ties broken arbitrarily,
we obtain a partition of P into k clusters. This partition induces a preclustering C∗ of size
k on B. We use C∗ to define two types of intervals: outer intervals, which are the leftmost
or rightmost interval in any of the preclusters Bi ∈ C∗, and inner intervals, which are the
remaining intervals. Note that the number of outer intervals is at most 2k. Define k∗ as the
largest k′ such that b1, . . . , bk′ are all outer intervals, where b1, . . . , bn is the sorted set of
intervals obtained in Step 1 of the algorithm. Since bk∗+1 is an inner interval, we have

Opt∞(P, k) > radius(bk∗+1). (1)

The preclustering C := C(k′) returned by our algorithm minimizes Opt∞({bk′+1, . . . , bn}, 3k−
k′). Note that C-Cost∞(P ) 6 Opt∞({bk′+1, . . . , bn}, 3k− k′), since the intervals b1, . . . , bk′

are all in singleton preclusters and an interval covering all intervals in a precluster Bi

obviously covers all points from P in those interval. Hence,

C-Cost∞(P ) 6 Opt∞({bk∗+1, . . . , bn}, 3k − k∗).

It remains to argue that Opt∞(P, k) > Opt∞({bk∗+1, . . . , bn}, 3k − k∗). To this end, we
create a collection I of intervals as follows.

For each outer interval bj with j > k∗ we create an interval equal to bj .
For each precluster Bi ∈ C∗ that has at least one inner interval, we create a minimum-
length interval covering all inner intervals of Bi.

Note that I contains at most 3k − k∗ intervals, and that these intervals together cover all
intervals in {bk∗+1, . . . , bn}. Hence,

max
I∈I

radius(I) > Opt∞({bk∗+1, . . . , bn}, 3k − k∗).

Moreover, Opt∞(P, k) > radius(I) for any I ∈ I. Indeed, if I is equal to an outer interval bj

with j > k∗ then Opt∞(P, k) > radius(bj) by Inequality (1), and otherwise I is the minimum-
length interval covering all inner intervals of some precluster Bi. (In the latter case we also
have Opt∞(P, k) > radius(I) because in any B-instance the cluster of BI includes a point
in both outer intervals) We conclude that

Opt∞(P, k) > max
I∈I

radius(I) > Opt∞({bk∗+1, . . . , bn}, 3k − k∗).

SWAT 2020



3:6 Preclustering Algorithms for Imprecise Points

(i) (ii) (iii) (iv)

p3

p4

p1

p2

b3

b4

Figure 2 The seven balls shown in the figure do not admit a (3k, 1)-preclustering for k = 2.

It remains to argue that PreClustering-1D(B, k) can be implemented to run in polynomial
time. The most time-consuming step is Step 2a, which can be implemented to run in O(n2k)
time using dynamic programming in a straightforward manner. J

Theorem 3 only holds for the k-center problem. In the next section we present a more general
algorithm, which not only works in higher dimensions but also for k-median and k-means.
The approximation ratio will not be as good as the one provided by Theorem 2, however.

3 The d-dimensional problem

In the previous section we saw that for some problem instances any preclustering with fewer
than 3k − 3 preclusters has an arbitrarily large approximation ratio. The result is stated for
R1 but it also holds in Rd for d > 1: we can use exactly the same construction, replacing
the intervals by d-dimensional balls whose centers lie on the x1-axis. We also presented an
algorithm giving a (3k, 1)-preclustering for intervals in R1, for the k-center problem.

Fig. 2 shows that a (3k, 1)-preclustering is not always possible for the k-center problem
in R2. The figure shows a set B of seven unit balls, with one central ball touching the
other six balls. For k = 2 a preclustering of size 3k would use five singleton preclusters and
one precluster with two balls. There are four combinatorially distinct ways of choosing the
precluster of two balls, indicated by the dark grey balls in parts (i)–(iv) of the figure. For
each case, a B-instance is shown (the black dots), and the optimal solution to the 2-center
problem for the instance is shown (the two black circles). The best preclustering is the one
in part (ii). Here the two points p1, p2 in the dark grey balls are placed at distance 4 from
each other, so C-Cost∞(P ) = 2. The point p3 inside the ball b3 is placed as close to p1 as
possible, while p4 is placed as close to p2 as possible. The other points are placed such that
they are either contained in the ball with diameter p1p3 or in the ball with diameter p2p4.
Hence, Opt∞(P ) = (

√
13 − 1)/2. The balls in this construction are not disjoint, but we

can scale them by a factor (1− ε) to obtain an instance where any (3k, α)-preclustering has
α > 2/((

√
13− 1)/2) = 4/(

√
13− 1) ≈ 1.54.

We now present a preclustering strategy that works for k-center, k-means and k-median
in any dimension. It is similar to, and actually somewhat simpler than, the preclustering
algorithm we presented for the 1-dimensional k-center problem.

PreClustering-dD(B, k)
1. Sort the balls in B by radius, such that radius(b1) > · · · > radius(bn).
2. Define Bsmall := {b2k+1, . . . , bn}; we call the balls in Bsmall small. Let {P1, . . . , Pk} be an

optimal k-center (or k-median, or k-means) clustering on the point set centers(Bsmall) :=
{cj : 2k + 1 6 j 6 n}, where cj is the center of the ball bj . Let {B1, . . . , Bk} be the
preclustering on Bsmall induced by it.

3. Return the preclustering C := {{b1}, . . . , {b2k}, B1, . . . , Bk}.
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Before we analyze the algorithm’s approximation ratio, we note that, depending on the
dimension d and the value of k, we may not be able to implement Step 2 efficiently. However,
instead of computing an optimal k-clustering on the centers of the small balls, we can also
compute a (1 + ε′)-approximation of the optimal clustering. For an appropriate ε′ = O(ε)
this increases the approximation ratio by only a factor 1 + ε, as explained later.

Obviously PreClustering-dD(B, k) gives a preclustering of size 3k. To analyze the
approximation ratio, we use the following lemma.

I Lemma 4. For any B-instance P the preclustering C := {{b1}, . . . , {b2k}, B1, . . . , Bk}
computed by the algorithm satisfies:
(i) C-Cost∞(P ) 6 Opt∞(P, k) + 2 · radius(b2k+1)
(ii) C-Cost1(P ) 6 Opt1(P, k) + 2

∑n
j=2k+1 radius(bj)

(iii) C-Cost2(P ) 6 4 ·Opt2(P, k) + 6
∑n

j=2k+1 radius(bj)2.

Proof. We first prove part (i) of the lemma. Let P be any B-instance, let pj ∈ P denote
the point inside bj , and let cj be the center of bj . Recall that Pi ⊂ P is the subset of points
in the instance corresponding to the precluster Bi. Define Psmall := {p2k+1, . . . , pn} to be
the set of points from P in the small balls, and define Csmall := {c2k+1, . . . , cn}. Note that
Psmall = P1 ∪ · · · ∪ Pk and that

|pjcj | 6 radius(bj) 6 radius(b2k+1) (2)

for all pj ∈ Psmall. We define the following sets of centroids:
Let Q := {q1, . . . , qk} be the set of centroids in an optimal k-center solution for the entire
point set P . We have

max
pj∈Psmall

min
qi∈Q

|pjqi| 6 max
pj∈P

min
qi∈Q

|pjqi| = Opt∞(P, k). (3)

Let Q′ := {q′1, . . . , q′k} be the set of centroids in the optimal k-center clustering on Csmall
used in Step 2 of the algorithm. Thus

max
ci∈Csmall

min
q′

j
∈Q′
|ciq
′
j | = Opt∞(Csmall, k) 6 max

ci∈Csmall
min
qj∈Q

|ciq
′
j |. (4)

Let Q′′ := {q′′1 , . . . , q′′k}, where q′′i is the optimal centroid for Pi. Note that for all Pi we
have

max
pj∈Pi

|pjq
′′
j | 6 max

pj∈Pi

|pjq
′
j |. (5)

Since the total cost of the singleton preclusters is trivially zero, we have

C-Cost∞(P )
= max16i6k maxpj∈Pi

|pjq
′′
i |

6 max16i6k maxpj∈Pi
|pjq

′
i| (Inequality (5))

6 max16i6k maxpj∈Pi

(
|pjcj |+ |cjq

′
i|
)

(triangle inequality)
6 radius(b2k+1) + max16i6k maxpj∈Pi |cjq

′
i| (Inequality (2))

6 radius(b2k+1) + maxcj∈Csmall minq′
i
∈Q′ |cjq

′
i| (definition of Csmall)

6 radius(b2k+1) + maxcj∈Csmall minqi∈Q |cjqi| (Inequality (4))
6 radius(b2k+1) + maxpj∈Psmall minqi∈Q

(
|cjpj |+ |pjqi|

)
(triangle inequality)

6 2 · radius(b2k+1) + maxpj∈Psmall minqi∈Q |pjqi| (Inequality (2))
6 2 · radius(b2k+1) + Opt∞(P, k) (Inequality (3))

SWAT 2020



3:8 Preclustering Algorithms for Imprecise Points

To prove part (ii) of the lemma, which deals with the k-median problem, note that In-
equality (2) still holds while Inequalities (3)–(5) hold if we replace the max-operator by a
summation. Part (ii) can thus be derived using a similar derivation as for part (i).

To prove part (iii), which deals with the k-means problem, we need to work with squared
distances. Note that Inequality (2) still holds, while Inequalities (3)–(5) hold if we replace
the max-operator with a summation and all distance values with their squared values. For
squared distances the triangle inequality does not hold. Instead we use the Cauchy-Schwarz
inequality, which implies that if a, b, c are positive reals with a 6 b+ c, then a2 6 2b2 + 2c2.
A similar computation as above can now be used to prove part (iii), we have

C-Cost2(P )
=
∑k

i=1

∑
pj∈Pi

|pjq
′′
i |2

6
∑k

i=1

∑
pj∈Pi

|pjq
′
i|2 (Inequality (5))

6
∑k

i=1

∑
pj∈Pi

(
2|pjcj |2 + 2|cjq

′
i|2
)

(Cauchy-Schwarz)
6 2
∑n

j=2k+1 radius(bj)2 + 2
∑k

i=1

∑
pj∈Pi

|cjq
′
i|2 (Inequality (2))

6 2
∑n

j=2k+1 radius(bj)2 + 2
∑

cj∈Csmall
minq′

i
∈Q′ |cjq

′
i|2 (definition of Csmall)

6 2
∑n

j=2k+1 radius(bj)2 + 2
∑

cj∈Csmall
minqi∈Q |cjqi|2 (Inequality (4))

6 2
∑n

j=2k+1 radius(bj)2 + 2
∑

pj∈Psmall
minqi∈Q

(
2|cjpj |2 + 2|pjqi|2

)
(Cauchy-Schwarz)

6 6
∑n

j=2k+1 radius(bj)2 + 4
∑

pj∈Psmall
minqi∈Q |pjqi|2 (Inequality (2))

6 6
∑n

j=2k+1 radius(bj)2 + 4 ·Opt2(P, k) (Inequality (3))

J

The lemma above shows that our preclustering gives an additive error that depends on
the radii of the small balls. The following two lemmas will be used to turn this into a
multiplicative error. Let r∗d be the smallest possible radius of any ball that intersects three
disjoint unit balls in Rd.

I Lemma 5. We have
(i) Opt∞(P, k) > r∗d · radius(b2k+1)
(ii) Opt1(P, k) > r∗d ·

∑n
j=2k+1 radius(bj)

(iii) Opt2(P, k) > (r∗d)2 ·
∑n

j=2k+1 radius(bj)2

Proof. For part (i) notice that by the Pigeonhole Principle an optimal clustering must have a
cluster containing at least three points from {p1, . . . , p2k+1}. The cost of this cluster is lower
bounded by the radius of the smallest ball intersecting three balls of radius at least b2k+1,
which is in turn lower bounded by r∗d · radius(b2k+1).

For part (ii) let P1, P2, . . . , Pk be the clusters in an optimal k-median clustering on P ,
and let qi be the centroid of Pi in this clustering. Let Bi be the set of balls corresponding
the points in Pi. We claim that∑
pj∈Pi

|pjqi| > r∗d ·
(( ∑

bj∈Bi

radius(bj)
)
− sum of the radii of the two largest balls in Bi

)
. (6)

To show this, let b(qi, r) be the ball of radius r centered at qi, let Pi(r) := {pj ∈ Pi :
bj ∩ b(qi, r) 6= ∅} be the set of points in Pi whose associated ball intersects b(qi, r), and let
Bi(r) be the corresponding set of balls. Since for sufficiently large r we have Pi = Pi(r), it
suffices to show that for all r > 0 we have∑

pj∈Pi(r)

|pjqi| > r∗d ·
(( ∑

pj∈Bi(r)

radius(bj)
)
− sum of the radii of the two largest balls in Bi(r)

)
.
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Figure 3 The figure shows the smallest possible ball intersecting three disjoint unit balls in 2D.
The larger balls are the unit balls and the radius of the small ball is r∗2 = 2√

3 − 1.

To prove this, consider this inequality as r increases from r = 0 to r = ∞. As long as
|Pi(0)| 6 2 the right-hand side is zero and so the inequality is obviously true. As we increase r
further, b(qi, r) starts intersecting more and more balls from Bi. Consider what happens
to the inequality when b(qi, r) starts intersecting another ball b` ∈ Bi. Then p` is added
to Pi(r), so the left-hand side of the inequality increases by |p`qi|, which is at least r. The
right-hand side increases by at most r∗d times the radius of the third-largest ball in Bi. By
definition of r∗d, if three balls intersect a ball of radius r then the smallest has radius at
most r/r∗d. Hence, the right-hand side increases by at most r and the inequality remains
true.

Recall that b1, . . . , b2k are the 2k largest balls in B. Hence, summing Inequality (6) over
all clusters P1, . . . , Pk gives

Opt1(P, k) =
k∑

i=1

∑
pj∈Pi

|pjqi| > r∗d ·
( k∑

i=1

∑
bj∈Bi

radius(bj)−
2k∑

j=1

radius(bj)
)

= r∗d ·
n∑

j=2k+1

radius(bj).

For part (iii) the same proof as (ii) works if we replace all distances with squared distances. J

I Lemma 6. For all d > 2 we have r∗d = 2/
√

3− 1.

Proof. It is easy to see that r∗d 6 r∗2 , since any configuration of three disjoint unit disks in
the plane, with a fourth disk intersecting all three, can be extended to Rd by embedding the
centers of the balls on a 2-dimensional plane in Rd. Next we show that r∗d > r∗2 for all d > 2,
which implies that r∗d = r∗2 .

Let d > 2 and let b, b′, b′′ be three disjoint unit balls in Rd. Let c, c′, c′′ denote the centers
of b, b′, and b′′, respectively, and let h be a 2-dimensional plane containing c, c′, c′′. Let D
be a smallest ball that intersects b, b′, b′′ and whose center is restricted to lie on h. Then
radius(D) > r∗2 . We claim that D is in fact a smallest ball intersecting b, b′, b′′ even if we do
not restrict the center of this ball to be on h. Indeed, if a ball D′ with center q 6∈ h intersects
b, b′, b′′, then the ball of the same radius as D′ and whose center is the orthogonal projection
of q onto h also intersects b, b′, b′′.

It remains to show that r∗2 = 2/
√

3 − 1. The configuration minimizing the radius of
the smallest ball intersecting b, b′, b′′ is where b, b′, b′′ are pairwise touching, resulting in the
claimed bound – see Fig. 3. J

We are now ready to prove the following theorem.

SWAT 2020
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I Theorem 7. Let B be a set of disjoint balls in Rd with d > 2. Then
(i) there exists a (3k, 7 + 4

√
3)-preclustering for the k-center and the k-median problem,

(ii) there exists a (3k, 130 + 72
√

3)-preclustering for the k-means problem.
Moreover, a (3k, 7 + 4

√
3 + ε)-preclustering for the k-center and the k-median problem, and

a (3k, 130 + 72
√

3 + ε)-preclustering for the k-means problem can be computed in polynomial
time.

Proof. Parts (i) and (ii) follow immediately by putting together Lemmas 4–6. It remains
to argue that we can compute a preclustering whose approximation ratio is as claimed in
polynomial time. Recall that each of the three clustering problems admits a PTAS [1, 2, 4, 6, 8],
that is, for any given ε′ > 0 we can compute a (1+ε′)-approximation to an optimal clustering
in polynomial time. To obtain the result, we set ε′ := ε/(1 + 1

r∗
d
) for the k-center and

k-median problem and ε′ := ε/(2 + 2
(r∗

d
)2 ) for the k-means problem. Then in Step 2 of

PreClustering-dD(B, k) we compute a (1 + ε′)-approximation of the optimal clustering.
The resulting algorithm runs in polynomial time. The only change in the analysis will appear
in Inequality (4) of Lemma 4, where we get an extra multiplicative factor 1 + ε′. With the
above choice of ε′ the approximation ratio for the whole algorithm will increase by ε. J

Generalizing the solution. We generalize the above theorem in order to control the number
of preclusters for various approximations. Let rp

d be the minimum possible value for the
radius of a ball being tangent to p disjoint unit balls in Rd for d > 2. Notice that r3

d = r∗d.
We can generalize the above result for appropriate p as follows.

The algorithm here is similar to PreClustering-dD, but in Step 2 we replace b2k+1 by
b(p−1)k+1 and in Step 3 we return the preclustering C := {{b1}, . . . , {b(p−1)k}, B1, . . . , Bk}.
Note that Lemmas 4, 5 still hold if we replace 2k + 1 with (p− 1)k + 1 and r∗d with rp

d.

I Theorem 8. Let B be a set of disjoint balls in Rd with d > 2. Then
(i) there exists a (pk, 1 + 2

rp
d

)-preclusterings for the k-center and the k-median problem.
(ii) there exists a (pk, 4 + 6

(rp
d

)2 )-preclustering for the k-means problem.

Moreover, a (pk, 1 + 2
rp

d

+ ε)-preclustering for the k-center and the k-median problem, and a
(pk, 4 + 6

(rp
d

)2 + ε)-preclustering for the k-means problem can be computed in polynomial time.

For instance, for d = 2 and p = 6 we have r6
2 = 1 – indeed, any ball intersecting six disjoint

unit balls in R2 has at least unit radius itself – leading to the following corollary. (For other
bounds on rp

d, see at [15].)

I Corollary 9. Any set of disjoint balls in R2 admits a (6k, 3)-preclustering for the k-center
and the k-median problem, and a (6k, 10)-preclustering for k-means problem.

4 Asymptotically tight trade-offs for the k-center problem

Next, we explain how to obtain a (Θ(d1/εde · k), ε)-preclustering for the k-center problem,
by adding more steps to the algorithm PreClustering-dD(B, k).

I Lemma 10. For any point set P in Rd, any integer k > 1, and any ε > 0 we have

Opt∞(P, cd(ε) · k) 6 ε ·Opt∞(P, k)

for cd(ε) = d
√
d/εed.
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(a) n unit balls forming a square in 2D. (b) clustering the circles into square-shaped clusters.

Figure 4 Illustration for the proof Theorem 12.

Proof. First consider the case k = 1. Let Q be the optimal centroid for P and let S be the
smallest hypercube centered at Q and containing P . Note that the edge length of S is at
most 2Opt∞(P, k). Partition S into d

√
d/εed smaller hypercubes of edge length at most

2ε ·Opt∞(P, k)/
√
d, and for each such hypercube make a cluster containing all points in it.

Note that each such cluster can be covered by a ball of radius ε ·Opt∞(P, k). Hence,

Opt∞(P, d
√
d/εed · k) 6 ε ·Opt∞(P, k).

For k > 1 we can simply apply the result for k = 1 to each of the k clusters in an optimal
k-center clustering on P . J

With this lemma in hand we can now run algorithm PreClustering-dD(B, k′) with
the appropriate value of k, namely k′ = cd(ε/(7 + 4

√
3)) · k, and then by Theorem 7 we get a

(3k′, ε)-preclustering with k′ = Θ(d1/εed · k).

I Theorem 11. Let B be a set of disjoint balls in Rd with d > 2. Then there exists a
(Θ(d1/εde · k), ε)-preclustering for B for any positive constant ε.

Finally, we show that this number of preclusters is asymptotically the best number we
can achieve.

I Theorem 12. There exists a set B of n disjoint balls in Rd such that in any (f(k), ε)-
preclustering of B for the k-center problem, we have f(k) = Ω(d1/εde · k).

Proof. Observe that it suffices to prove the lower bound for k = 1; for larger k we can
simply copy the construction k times and put the copies sufficiently far from each other.
Now, for k = 1 consider a set B of n1/d × · · · × n1/d unit balls arranged in a grid-like
pattern, as in Fig. 4a. Note that Opt∞(P, 1) 6

√
d(n1/d + 1) for any B-instance P . Now

partition the “grid” into (
√
d/ε)d “subgrids” as in Fig. 4b. For each subgrid, select the

ball with the lexicographically smallest center (shaded in Fig. 4b), and let B∗ ⊂ B be
the set of selected balls. If a preclustering uses fewer than (

√
d/ε)d preclusters, two of

the balls from B∗ will end up in the same precluster. But then there is a B-instance P
where C-Cost∞(P ) > ε ·

√
d · n1/d + 1. Hence, any (f(1), ε)-precluster must have Ω(d1/εde)

preclusters. J
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5 Concluding remarks

In this paper, we introduced the concept of preclustering for imprecise points and studied
it for k-center,k-median and k-means problems. It would be interesting if one can fill the
gap between lower and upper bounds for the number of preclusters needed in order to
approximate the optimum solution. Also one can try to generalize the ideas used in section 4
for the k-median and k-means versions. It would also be interesting to study non-disjoint
balls, and try to obtain preclusterings whose size and approximation ratio depend on the
amount of overlap between the balls.
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