
GPU-Accelerated Computation of Vietoris-Rips
Persistence Barcodes
Simon Zhang
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
zhang.680@osu.edu

Mengbai Xiao
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
xiao.736@osu.edu

Hao Wang
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
wang.2721@osu.edu

Abstract

The computation of Vietoris-Rips persistence barcodes is both execution-intensive and memory-
intensive. In this paper, we study the computational structure of Vietoris-Rips persistence barcodes,
and identify several unique mathematical properties and algorithmic opportunities with connections
to the GPU. Mathematically and empirically, we look into the properties of apparent pairs, which
are independently identifiable persistence pairs comprising up to 99% of persistence pairs. We give
theoretical upper and lower bounds of the apparent pair rate and model the average case. We also
design massively parallel algorithms to take advantage of the very large number of simplices that
can be processed independently of each other. Having identified these opportunities, we develop a
GPU-accelerated software for computing Vietoris-Rips persistence barcodes, called Ripser++. The
software achieves up to 30x speedup over the total execution time of the original Ripser and also
reduces CPU-memory usage by up to 2.0x. We believe our GPU-acceleration based efforts open a
new chapter for the advancement of topological data analysis in the post-Moore’s Law era.

2012 ACM Subject Classification Theory of computation→ Massively parallel algorithms; Software
and its engineering → Massively parallel systems; Theory of computation → Randomness, geometry
and discrete structures

Keywords and phrases Parallel Algorithms, Topological Data Analysis, Vietoris-Rips, Persistent
Homology, Apparent Pairs, High Performance Computing, GPU, Random Graphs

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.70

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.07989.

Supplementary Material Open Source Software: https://www.github.com/simonzhang00/ripser-
plusplus

Funding This work has been partially supported by the National Science Foundation under grants
CCF-1513944, CCF-1629403, CCF-1718450, and an IBM Fellowship.

Acknowledgements We would like to thank Ulrich Bauer for technical discussions on Ripser and
Greg Henselman for discussions on Eirene. We also thank Greg Henselman, Matthew Kahle, and
Cheng Xin on discussions about probability and apparent pairs. We acknowledge Birkan Gokbag
for his help in developing Python bindings for Ripser++. We appreciate the constructive comments
and suggestions of the anonymous reviewers. Finally, we are grateful for the insights and expert
judgement in many discussions with Tamal Dey.

© Simon Zhang, Mengbai Xiao, and Hao Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 70; pp. 70:1–70:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zhang.680@osu.edu
mailto:xiao.736@osu.edu
mailto:wang.2721@osu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.70
https://arxiv.org/abs/2003.07989
https://www.github.com/simonzhang00/ripser-plusplus
https://www.github.com/simonzhang00/ripser-plusplus
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Ripser++

1 Introduction

Topological data analysis (TDA) [12] is an emerging field in the era of big data, which has a
strong mathematical foundation. As a subfield of TDA, persistent homology seeks to find
topological or qualitative features of data (usually represented by a finite metric space). It has
many applications, such as in neural networks [25], sensor networks [15], bioinformatics [14],
deep learning [28], manifold learning [36], and neuroscience [32]. One of the most popular and
useful topological signatures persistent homology can compute are Vietoris-Rips barcodes.
There are two challenges to Vietoris-Rips barcode computation. The first one is its highly
computing- and memory-intensive nature in part due to the exponentially growing number
of simplices it must process. The second one is its irregular computation patterns with high
dependencies such as its matrix reduction step [47]. Therefore, sequential computation is still
the norm in computing persistent homology. There are several CPU-based software packages
in sequential mode for computing persistent homology [8, 9, 27, 33, 5]. Ripser [5, 46] is
a representative and computationally efficient software specifically designed to compute
Vietoris-Rips barcodes, achieving state of the art performance [6, 37] by using effective and
mathematically based algorithmic optimizations.

The usage of hardware accelerators like GPU is inevitable for computation in many
areas. To continue advancing the computational geometry field, we must include hardware-
aware algorithmic efforts. The ending of Moore’s law [45] and the termination of Dennard
scaling [19] technically limits the performance improvement of general-purpose CPUs [23].
The computing ecosystem is rapidly evolving from conventional CPU computing to a new
disruptive accelerated computing environment where hardware accelerators such as GPUs
play the main roles of computation for performance improvement.

Our goal in this work is to develop GPU-accelerated computation for Vietoris-Rips
barcodes, not to only significantly improve the performance, but also to lead a new direction
in computing for topological data analysis. We have looked into the two major computational
components of Vietoris-Rips barcodes, namely filtration construction with clearing and matrix
reduction, and identified hidden parallelisms and data locality. Having laid mathematical
foundations, we develop parallel algorithms for each component.

Our contributions explained in this paper are as follows:

1. We introduce and prove the Apparent Pairs Lemma for Vietoris-Rips barcode computation.
It has a natural algorithmic connection to the GPU. We furthermore prove theoretical
bounds on the number of so-called “apparent pairs”.

2. We design and implement hardware-aware massively parallel algorithms that accelerate the
two major computation components of Vietoris-Rips barcodes as well as a data structure
for persistence pairs for matrix reduction.

3. We perform extensive experiments justifying our algorithms’ computational effectiveness
as well as dissecting the nature of Vietoris-Rips barcode computation.

4. We achieve up to 30x speedup over the original Ripser software and, surprisingly, up to
2.0x CPU memory efficiency and requires, at best, 60% of the CPU memory used by
Ripser on the GPU device memory.

5. Ripser++ is an open source software in the public domain to serve the TDA community
and relevant application areas.

S. Zhang, M. Xiao, and H. Wang 70:3

2 Preliminaries

2.1 Persistent Homology
Computing Vietoris Rips barcodes involves the measurement of “birth” and “death” [4, 8, 21]
of topological features as we grow combinatorial objects on top of the data with respect to
some real-valued time parameter. We call the pairs of birth and death times with respect to
the combinatorial objects “persistence barcodes.” Persistence barcodes give a topological
signature of the original data (finite metric space) and have many further applications with
statistical meaning in TDA [1, 11, 24, 39].

2.2 Vietoris-Rips Filtrations
When computing persistent homology, data is usually represented by a finite metric space
X, a finite set of points with real-valued distances determined by an underlying metric d

between each pair of points. X is defined by its distance matrix D, which is defined as
D[i, j]= d(point i, point j) with D[i, i] = 0.

Define an (abstract) simplicial complex K as a collection of simplices closed under the
subset relation, where a simplex s is defined as a subset of X. We call a “filtration” as
a totally ordered sequence of growing simplicial complexes. A particularly popular and
useful [3] filtration is a Vietoris-Rips filtration. See Figure 1 for an illustration. Let

Ripst(X) = {∅ 6= s ⊂ X | diam(s) ≤ t}, (1)

where t ∈ R and diam(s) is the maximum distance between pairs of points in s as determined
by D. The Vietoris-Rips filtration is defined as the sequence: (Ripst(X))t, indexed by
growing t ∈ R where Ripst(X) strictly increases in cardinality for growing t.

0 1

2 3

diam. = 2
0 1

2 3

0 1

2 3

diam. = 1

Dimension 1 Vietoris-Rips
Persistent Homology Barcodes

⊆ ⊆

0=diam. 1=diam. 2=diam.

An Increasing Sequence of 1-
Skeletons of a Vietoris-Rips
Filtration.

Figure 1 A filtration on an example finite metric space of four points of a square in the plane.
The 1-skeleton at each diameter value where “birth” or “death” occurs is shown. The 1 dimensional
Vietoris-Rips barcode is below it: a 1-cycle is “born” at diameter 1 and “dies” at diameter

√
2.

2.2.1 The Simplex-wise Refinement of the Vietoris-Rips Filtration
For computation (see Section 2.4) of Vietoris-Rips persistence barcodes, it is necessary to
construct a simplex-wise refinement S of a given filtration F . F is equivalent to a partial
order on the simplices of K, where K is the largest simplicial complex of F . To construct S,

SoCG 2020

70:4 Ripser++

we assign a total order on the simplices {si}i=1..|K| of K, extending the partial order induced
by F so that the increasing sequence of subcomplexes S = (

⋃
i≤j {si})j=1..|K| ordered by

inclusion grows subcomplexes by one simplex at a time. There are many ways to order a
simplex-wise refinement S of F [32]; in the case of Ripser and Ripser++, we use the following
simplex-wise filtration ordering criterion on simplices:

1. by increasing diameter: denoted by diam(s),
2. by increasing dimension: denoted by dim(s), and
3. by decreasing combinatorial index: denoted by cidx(s) (equivalently, by decreasing

lexicographical order on the decreasing sequence of vertex indices) [41, 31, 38].

Every simplex in the simplex-wise refinement will correspond to a “column” in a uniquely
associated (co-)boundary matrix for persistence computation. Thus we will use the terms
“column” and “simplex” interchangeably to explain our algorithms.

Define persistence pairs as a pair of “birth” and “death” simplices from K [22].

2.3 The Combinatorial Number System
We use the combinatorial number system to encode simplices. The combinatorial number
system is simply a bijection between ordered fixed-length N-tuples and N. It provides a
minimal representation of simplices and an easy extraction of simplex facets (see Algorithm
3), cofacets, and vertices. When not mentioned, we assume that all simplices are encoded by
their combinatorial index. The bijection is stated as follows:

Nd+1 3 (vd...v0) ⇐⇒
(

vd

d + 1

)
+ ... +

(
v0

1

)
∈ N, vd > ... > v0 ≥ 0. (2)

For a proof of this bijection see [41, 31, 38].

2.4 Computation
The general computation of persistent barcodes involves two inter-relatable stages. One stage
is to construct a simplex-wise refinement [9] of the given filtration. The other stage is to
“reduce” the corresponding boundary matrix by a “standard algorithm” [21]. In Algorithm 1,
let lowR(j) be the maximum nonzero row of column j, -1 if column j is zero for a given
matrix R. For fully reduced R, (lowR(j), j) over all j are in bijection with persistence pairs.

Algorithm 1 Standard Persistent Homology Computation.

Require: filtered simplicial complex KKK

Ensure: PPP persistence barcodes
1: FFF ← FFFKKK . let FFF be the filtration of KKK

2: SSS ←simplex-wise-refinement(FFF) . FFF = SSS ◦ r where r is injective
3: R← ∂(SSS)
4: for every column j in R do . begin the standard matrix reduction algorithm
5: while ∃ k < j s.t. lowR(j)=lowR(k) do
6: column j ← column k + column j

7: if lowR(j) 6= −1 then
8: PPP ← PPP ∪ r−1([low(j), j)) . we call the pair (low(j), j) a pivot in the matrix R.

The construction stage can be optimized [6, 29, 33, 44, 48]. Furthermore, all persistent
homology software are based on the standard algorithm [2, 6, 8, 9, 26, 33, 35, 47].

S. Zhang, M. Xiao, and H. Wang 70:5

2.4.1 The Coboundary Matrix
We compute cohomology [17, 16, 20] in Ripser++, like in Ripser, for performance reasons
specific to Rips filtrations mentioned in [6]. Thus we introduce the coboundary matrix of a
simplex-wise filtration. This is defined as the matrix of coboundaries (each column is made
up of the cofacets of the corresponding simplex) where the columns/simplices are ordered in
reverse to the order given in Section 2.2.1 (see [16]). If certain columns can be zeroed/cleared
[13] in the coboundary matrix, we will still denote the cleared matrix as a coboundary matrix
since the matrix reduction does nothing on zero columns (see Algorithm 1).

(diam., simplex) (2, (21)) (2, (30)) (1, (10)) (1, (20)) (1, (31)) (1, (32))

(2, (210)) 1 1 1

(2, (310)) 1 1 1

(2, (320)) 1 1 1

(2, (321)) 1 1 1

0 1

2 3

diam. = 1

diam. = 2

Vertices 0,1,2,3 Form a Length

1 Square in the Plane

Dim 1 Coboundary Matrix

older

older

Figure 2 The full 1-skeleton for the point cloud of Figure 1. Its 1-dimensional coboundary matrix
is shown on the right. Let (e, (ad...a0)) be a d-dimensional simplex with vertices ad...a0 and diameter
e ∈ R+. For example, simplex (1,(10)) has vertices 1 and 0 with diameter 1. The order of the
columns/simplices is the reverse of the simplex-wise refinement of the Vietoris-Rips filtration.

2.5 Computation in Ripser
The sequential computation in Ripser follows the two stages given in Algorithm 1, however
with four key optimizations [6]. We use and build on top of all of these four optimizations.

1. The clearing lemma [7, 13, 47],
2. Computing cohomology [16, 20], with a low complexity 0-dim. persistence algorithm,
3. Implicit matrix reduction [6], and
4. The emergent pairs lemma [6].

3 Mathematical and Algorithmic Foundations in GPU Acceleration

3.1 Overview of GPU-Accelerated Computation
Figure 3(a) shows a high-level structure of Ripser, which processes simplices dimension by
dimension. In each dimension starting at dimension 1, the filtration is constructed and the
clearing lemma is applied followed by a sort operation. The simplices to reduce are further
processed in the matrix reduction stage, where the cofacets of each simplex are enumerated
to form coboundaries and the column addition is applied iteratively.

Running Ripser intensively on many datasets, we have observed its inefficiency on CPU.
There are two major performance issues. First, in each dimension, the matrix reduction of
Ripser uses an enumeration-and-column-addition style to process each simplex. Although
the computation is highly dependent among columns, a large percentage of columns (see
Table 1 in Section 5) do NOT need the column addition. Only the cofacet enumeration
and a possible persistence pair insertion (into the hashmap of Ripser) are needed on these
columns. In Ripser, a subset of these columns are identified by the “emergent pair” lemma [6]
as columns containing “shortcut pairs”. Ripser follows the serial framework of Figure 3(a) to
process these columns one by one, where rich parallelisms are hidden. Second, in the filtration

SoCG 2020

70:6 Ripser++

Finding

Apparent

Pairs

Submatrix

Reduction

Filtration

Construction

+ Clearing

GPU

Simplices of

Dimension d

d + 1

Filtration

Construction

+ Clearing

Matrix

Reduction

Simplices of

Dimension d

d + 1

Columns to Reduce

(a) Ripser (b) Ripser++

Matrix Reduction

Figure 3 A High-level computation framework comparison of Ripser and Ripser++ starting
at dimension d ≥ 1. Ripser follows the two stage standard persistence computation of sequential
Algorithm 1 with optimizations. In contrast, Ripser++ finds the hidden parallelism inside Vietoris-
Rips barcode computation, extracts “Finding Apparent Pairs” out from Matrix Reduction, and
parallelizes “Filtration Construction with Clearing” on GPU. These two steps are designed and
implemented with new parallel algorithms on GPU, as shown in (b) with the dashed rectangle.

construction with clearing stage, applying the clearing lemma and predefined threshold is
independent among simplices. Furthermore, on GPU the performance of sorting for filtration
construction with clearing can be further improved due to the massive parallelism and the
high memory bandwidth of GPU [40, 42].

We aim to turn these hidden parallelisms and data localities into reality for accelerated
computation by GPU for high performance. Utilizing SIMT (single instruction, multiple
threads) parallelism and achieving coalesced device memory accesses are our major inten-
tions because they are unique advantages of GPU architecture. Our efforts are based on
mathematical foundation, algorithms development, and effective implementations interacting
with GPU hardware. Figure 3(b) gives the high-level structure of Ripser++, showing the
components of Vietoris-Rips barcode computation offloaded to GPU. We will elaborate on
the computation mathematically and algorithmically in this section.

3.2 Matrix Reduction
Matrix reduction is a fundamental component of computing Rips barcodes. Its computation
can be highly skewed [47], involving very few columns for column additions. We prove
and present the Apparent Pairs Lemma and a GPU algorithm to find apparent pairs in
an implicitly represented coboundary matrix. We then design and implement a 2-layer
data structure that optimizes the performance of the hashmap storing persistence pairs
for subsequent matrix reduction on the non-apparent columns, which we term “submatrix
reduction”.

3.2.1 The Apparent Pairs Lemma
I Definition 1. A pair of simplices (s, t) is an apparent pair iff:
1. s is the youngest facet of t and
2. t is the oldest cofacet of s.

We will use the simplex-wise order of Section 2.2.1 for Definition 1. In a (co-)boundary
matrix, a nonzero entry having all zeros to its left and below is equivalent to an apparent
pair. We call a column containing such a nonzero entry as an apparent column. An example
of an apparent pair geometrically and computationally is shown in Figure 4. Furthermore,
apparent pairs have zero persistence in Rips filtrations by property 1 of Definition 1.

S. Zhang, M. Xiao, and H. Wang 70:7

s

…

…

t 0 … 0 1 … …

0

…

0

Column Dim is d

Simplex

Cofacet
diam. = 3diam. = 4

v

s (diam. = 5)

t (diam. = 5)

v

u w

(a) (b)

Coboundary Matrix of Dim d

Row Dim is d+1

older

older

Figure 4 (a) A dimension 1 0-persistence apparent pair (s, t) on a single 2-dimensional simplex.
s is an edge of diameter 5 and t is a cofacet of s with diameter 5. The light arrow denotes the
pairing between s and t. (b) In the dimension d coboundary matrix, (s, t) is an apparent pair iff
entry (t, s) has all zeros to its left and below. See Figure 2 for an example coboundary matrix.

In the explicit matrix reduction, where every column is stored in memory, it is easy to
determine apparent pairs by checking the positions of s and t in the (co-)boundary matrix.
However, in the implicit matrix reduction used in Ripser and Ripser++, we need to enumerate
cofacets t from s and facets s from t at runtime. We first notice a property of the facets of a
cofacet t of simplex s where diam(s) = diam(t).

I Proposition 2. Let t be the cofacet of simplex s with diam(s) = diam(t).
s′ is a strictly younger facet of t than s iff

1. diam(s′) = diam(s) = diam(t) and
2. cidx(s′) < cidx(s). (s′ is strictly lexicographically smaller than s)

Proof. (=⇒) s′ as a facet of t implies that diam(s′) ≤ diam(t) = diam(s). If s′ is strictly
younger than s, then diam(s′) ≥ diam(s). Thus 1. diam(s′) = diam(s) = diam(t).
Furthermore, if s′ is strictly younger than s and diam(s′) = diam(s), then the only way for
s′ to be younger than s is if 2. cidx(s′) < cidx(s).

(⇐=) If diam(s′) = diam(s) = diam(t) and cidx(s′) < cidx(s) then certainly s′ is a
strictly younger facet of t than s is as a facet of t. J

We propose the following lemma to find apparent pairs:

I Lemma 3 (The Apparent Pairs Lemma). Given simplex s and its cofacet t,
1. t is the lexicographically greatest cofacet of s with diam(s) = diam(t) and
2. no facet s′ of t is strictly lexicographically smaller than s with diam(s′) = diam(s),
iff (s, t) is an apparent pair.

Proof. (=⇒) Since diam(t) ≥ diam(s) for all cofacets t, Condition 1 is equivalent to having
chosen the cofacet t of s of minimal diameter at the largest combinatorial index, by the
filtration ordering we have defined in Section 2.2.1; this implies t is the oldest cofacet of s.

Assuming condition 1, by the negation of the iff in Proposition 2, there are no simplices
s′ with diam(s′) = diam(s) = diam(t) and cidx(s′) < cidx(s) iff s is the youngest facet of t.

(⇐=) If diam(t) > diam(s) then there exists a younger s′ with same cofacet t and thus
s is not the youngest facet of t. Thus (s, t) being an apparent pair implies Condition 1.
Furthermore, (s, t) being apparent with Condition 1 implies Condition 2 by Proposition 2.

Thus (Conditions 1 and 2) is equivalent to Definition 1. J

SoCG 2020

70:8 Ripser++

I Corollary 4. The Apparent Pairs Lemma can be applied for massively parallel operations
on every column s of the coboundary matrix.

Proof. Notice we may generate the cofacets of simplex s and facets of cofacet t of s indepen-
dently with other simplices s′ 6= s. J

I Remark 5. The effectiveness of the Apparent Pairs Lemma hinges on an important empirical
fact and common dataset property: namely that there are a lot of apparent pairs [47, 6]. By
Table 1 in Section 5, in many datasets up to 99% of persistence pairs are apparent pairs.
Further theoretical results are in Section 3.2.3 and more results are illustrated by Figure 10.

3.2.2 Finding Apparent Pairs in Parallel on GPU
Based on Lemma 3, finding apparent pairs from a cleared coboundary matrix without explicit
coboundaries becomes feasible. There is no dependency for identifying an apparent pair as
Corollary 4 states, giving us a unique opportunity to develop an efficient GPU algorithm by
exploiting the massive parallelism.

Algorithm 2 Finding Apparent Pairs on GPU.

Require: CCC: the simplices to reduce; vertices(·): the vertices of a simplex; diam(·): the
diameter of a simplex; cidx(·): the combinatorial index of a simplex; dist(·): the distance
between two vertices; enumerate-facets(·): enumerates facets of a simplex. . global to
all threads
tid: the thread id. . local to each thread

Ensure: AAA: the apparent pair set from the coboundary matrix of dimension dim.
1: s← CCC[tid] . each thread fetches a distinct simplex from the set of simplices
2: VVV ← vertices(s) . this only depends on the combinatorial index of s
3: for each cofacet t of s in lexicographically decreasing order do
4: for v′ in VVV do . t and s differ by one vertex v

5: diam(t)← max(dist(v′, v), diam(s)) . calculate the diameter of t

6: if diam(t) = diam(s) then . t is the oldest cofacet of s

7: SSS ← ∅
8: enumerate-facets(t, SSS) . SSS are facets of t in lexicographical increasing order
9: for s′ in SSS do

10: if diam(s′) = diam(s) then
11: if cidx(s′) = cidx(s) then . s is the youngest facet of t

12: AAA← AAA ∪ {(s, t)}
13: return . exit if (s, t) is apparent or if s′ is strictly younger than s

Algorithm 2 shows how a GPU kernel finds all apparent pairs in a massively parallel
manner. A GPU thread fetches a distinct simplex from an ordered array of simplices in
GPU device memory, and checks if this simplex and one of its cofacets can form an apparent
pair. Lastly, it inserts into a data structure containing all apparent pairs in the GPU device
memory. The complexity of one GPU thread is O(log(n) · (d+1)+(n-d-1) · (d+1)), in which
n is the number of points and d is the dimension of the simplex s. The first term represents
a binary search for d+1 simplex vertices from a combinatorial index, and the second term
says the algorithm checks at most d+1 facets of all n-d-1 cofacets of the simplex s.

S. Zhang, M. Xiao, and H. Wang 70:9

Enumerating cofacets/facets in a lexicographically decreasing/increasing order is substan-
tial to our algorithm. Algorithm 3 shows how to enumerate facets of a simplex. A facet of a
simplex is enumerated by removing one of its vertices. Due to properties of the combinatorial
number system, if the removed vertex index follows a decreasing order, the combinatorial
indices of the generated facets will lexicographically increase.

Algorithm 3 Enumerating Facets of a Simplex.

Require: XXX = {0..n − 1}: n points of a finite metric space; s: a simplex with vertices in
XXX; vertices(·): the vertices of a simplex; cidx(·): the combinatorial index of a simplex;
last(·): the last simplex of a sequence.

Ensure: SSS: the facets of s in lexicographically increasing order.
1: procedure enumerate-facets(s, SSS)
2: VVV ← vertices(s)
3: prev ← ∅; k ← |VVV |
4: for v ∈ VVV ⊂XXX in decreasing order do
5: if prev 6= ∅ then
6: cidx(s′)← cidx(last(SSS))−

(
v
k

)
+
([prev]

k

)
. [x] is the only element of singleton x

7: else
8: cidx(s′)← cidx(last(SSS))−

(
v
k

)
append(SSS, s′) . append s’ to the end of SSS

9: prev ← {v}; k ← k − 1

3.2.3 Theoretical Bounds on the Number of Apparent Pairs
Besides the existence of a large number of apparent pairs empirically (see Section 5), we
show theoretically that there are tight upper and lower bounds to the number of apparent
pairs. The proof of Theorem 6 is in this paper’s full version.

I Theorem 6 (Bounds on the Number of Apparent Pairs). The ratio of the number of d-
dimensional apparent pairs to the number of d-dimensional simplices for a full Rips-filtration
on a n point (d + 1)-skeleton where all d-dimensional simplices s′ containing maximum vertex
n− 1 have diam(s′) ≤ diam(s) for all d-dimensional simplices s not containing vertex n− 1:

theoretical upper bound: (n− d− 1)/n; (tight for all n ≥ d + 1 and d ≥ 1).
theoretical lower bound: 1/(d + 2); (tight for d ≥ 1).

2

011 0

2

3

01

2 3

4

(a) (b) (c)

Figure 5 Geometric interpretation of the theoretical upper bound in Theorem 6. Edge distances
are not to scale. (a),(b),(c) (constructed in this order) show the apparent pairs for d = 1 on the
planar cone graph centered around the newest apex point: n− 1 for n = 3, 4, 5 points. The yellow
arrows denote the apparent pairs: blue edges paired with purple or navy triangles. The dashed (not
dotted) blue edges denote apparent edges from the previous n− 1 point subcomplex.

SoCG 2020

70:10 Ripser++

4 GPU and System Kernel Development for Ripser++

4.1 Core System Optimizations

… ………

… <

Submatrix of
Nonapparent Columns

Coboundary Matrix of Columns/Simplices

< <

<

A Nonapparent Column An Apparent Column The Oldest Cofacet of A Column/Simplex

… …

… …

Array of Apparent Pairs

Figure 6 After finding apparent pairs, we partition the coboundary matrix columns into apparent
and nonapparent columns. The apparent columns are sorted by the coboundary matrix row (the
oldest cofacet of an apparent column) and stored in an array of pairs; while the nonapparent columns
are collected and sorted by coboundary matrix order in another array for submatrix reduction.

The expected performance gain of finding apparent pairs on GPU comes from not only
the parallel computation on thousands of cores but also the concurrent memory accesses at
a high bandwidth, where the apparent pairs can be efficiently aggregated. In a sequential
context, an apparent pair (a row index and a column index) of the coboundary matrix may
be kept in a hashmap as a key-value pair with the complexity of O(1). However building a
hashmap is not as fast as constructing a sorted continuous array [30] in parallel. So in our
implementation, the apparent pairs are represented by a key-value pair (t, s) where t is the
oldest cofacet of simplex s and stored in an aligned continuous array of pairs. This slightly
lowers the read performance because we need a binary search to locate a desired apparent
pair. But this is cost-effective since the number of insertions of apparent pairs are actually
three orders of magnitude higher than that of reads (See Table 3 in Section 5) after finding
apparent pairs. Figure 6 presents how we collect apparent pairs on GPU, where each thread
works on a column of coboundary matrix and writes to the output array in parallel.

Key

(cofacet)

Value

(column index)

… …

t s

… …

… ………

First layer of “small” hash table for persistence pairs found

by the submatrix reduction on nonapparent columns

Second layer of “large” sorted array (by cofacet) of

apparent pairs

… ………

First layer miss

< <

Figure 7 Two-layer data structure for persistence pairs. Apparent pair insertion to the second
layer of the data structure is illustrated in Figure 6, followed by persistence pair insertion to a small
hashmap during the submatrix reduction on CPU. A key-value read during submatrix reduction
involves atmost two steps: first, check the hashmap; second, if the key is not found in the hashmap,
use a binary search over the sorted array to locate the key-value pair (see the arrow in the figure).

S. Zhang, M. Xiao, and H. Wang 70:11

We add a hashmap as one more layer to store persistence pairs discovered during the
submatrix reduction. Figure 7 explains such a design in details.

4.2 Filtration Construction with Clearing

… ………

… …< <

Generated Simplices (diam(s),cidx(s)) for Simplex s

Filtering and Sorting

Coboundary Matrix Columns to Reduce (After Filtering Simplices: Clearing and Threshold Condition)

Filtered Out Simplices (Cleared or not

Satisfying Threshold Condition Simplices)
Simplices that Form the Coboundary Matrix Columns

Figure 8 The Filtration Construction with Clearing Algorithm for Full Rips Filtrations.

Before entering the matrix reduction phase, the input simplex-wise filtration must be
constructed and simplified to form coboundary matrix columns. We call this Filtration
Construction with Clearing. This requires two steps: filtering and sorting. Both of which
can be done in parallel. Filtering removes simplices that we don’t need to reduce as they
are equivalent to zeroed columns. As presented in Algorithm 4, the simplices having higher
diameters than the threshold and paired simplices (the clearing lemma [13]) are filtered out.

Algorithm 4 Filtering the Columns on GPU.

Require: PPP : the persistence pairs in the form (cofacet,simplex) discovered in the previous
dimension; threshold: the max diameter allowed for a simplex; diam(·): the diameter of
a simplex; cidx(·): the combinatorial index of a simplex. . global to all threads
tid: the thread id. . local to each thread

Ensure: CCC: an array of simplices, in which an element is represented as a diameter paired
with a combinatorial index; flagarray: an array of flags marking which columns are
kept (filtered in).

1: procedure filter-columns-kernel(CCC, PPP , threshold, flagarray)
2: cidx(s)← tid

3: if @t s.t. (t, s) ∈ PPP AND diam(s) ≤ threshold then
4: diam(CCC[tid])← diam(s); cidx(CCC[tid])← cidx(s); flagarray[tid] ← 1;
5: else
6: diam(CCC[tid])← −∞; cidx(CCC[tid])← +∞; flagarray[tid] ← 0;

Sorting in the reverse of the order given in Section 2.2.1 is then conducted over the
remaining simplices. This is the order for the columns of a coboundary matrix. The resulting
sequence of simplices is then the columns to reduce for the following matrix reduction
phase. Algorithm 5 presents how we construct the full Rips filtration with clearing. Our
GPU-based algorithms leverage the massive parallelism of GPU threads and high bandwidth
data processing in GPU device memory.

SoCG 2020

70:12 Ripser++

Algorithm 5 Use GPU for Full Rips Filtration Construction with Clearing.

Require: PPP , threshold, flagarray: same as in Algorithm 4; n: the number of points; d: the
current dimension for simplices to construct. len: the number of simplices selected.

Ensure: CCC same as in Algorithm 4.
1: CCC ← ∅
2: flagarray ← {0, ..., 0}
3: filter-columns-kernel(CCC,PPP , threshold, flagarray) .

(
n

d+1
)
threads launched

4: len← GPU -reduction(flagarray)
5: GPU -sort(CCC) . sort entries of CCC in coboundary filtration order: decreasing diameters,

increasing combinatorial indices; restrict CCC to indices 0 to len− 1 afterwards.

5 Experiments

All experiments are performed on a powerful computing server. It consists of an NVIDIA
Tesla V100 GPU that has 5120 FP32 cores and 2560 FP64 cores for single- and double-
precision floating-point computation. The GPU device memory is 32 GB High Bandwidth
Memory 2 (HBM2) that can provide up to 900 GB/s memory access bandwidth. The node
also has two 14 core Intel XEON E5-2680 v4 CPUs (28 cores in total) running at 2.4 GHz
with a total of 100 GB of DRAM. The datasets are taken from the original Ripser repository
on Github [5] and the repository of benchmark datasets from [37].

5.1 The Empirical Relationship amongst Apparent Pairs, Emergent
Pairs, and Shortcut Pairs

There exists three kinds of persistence pairs of the Vietoris-Rips filtration, in fact for any
filtration with a simplex-wise refinement. Using the terminology of [6], these are apparent
(Definition 1) [18, 27, 6, 34], shortcut [6], and emergent pairs [6, 47]. By definition, they are
known to form a tower of sets ordered by inclusion (expressed by Equation (3)). We will
show a further empirical relationship amongst these pairs involving their cardinalities.

the difference in cardinalities is “small”︷ ︸︸ ︷
apparent pairs︸ ︷︷ ︸
large cardinality

⊂ shortcut pairs ⊂ emergent pairs ⊂ persistence pairs (3)

The cardinality difference amongst all of the sets of pairs is very small compared to the
number of pairs, assuming Ripser’s framework of computing cohomology and using the
simplex-wise filtration ordering in Section 2.2.1. Thus there are a very large number of
apparent pairs to be found.

Table 1 shows the percentage of apparent pairs up to dimension d is extremely high,
around 99%. Since the number of columns of a cleared coboundary matrix equals to the
number of persistence pairs, the number of nonapparent columns for submatrix reduction is
a tiny fraction of the original number of columns in Ripser’s matrix reduction phase.

5.2 Execution Time and Memory Usage
We perform extensive experiments that demonstrate the execution time and memory usage of
Ripser++. We further look into the performance of both the apparent pairs search algorithm
and the management of persistence pairs in the two layer data structure after finding apparent
pairs. Variables n and d for each dataset are the same for all experiments.

S. Zhang, M. Xiao, and H. Wang 70:13

Table 1 Empirical Results on Apparent, Shortcut, Emergent Pairs.

apparent shortcut emergent all percentage of
Datasets n d pairs pairs pairs pairs apparent pairs

celegans 297 3 317,664,839 317,723,916 317,723,974 317,735,650 99.9777139%
dragon1000 1000 2 166,132,946 166,160,587 166,160,665 166,167,000 99.9795062%
HIV 1088 2 214,000,996 214,030,431 214,040,521 214,060,736 99.9720920%
o3 (sparse: t = 1.4) 4096 3 43,480,968 43,940,030 43,940,686 44,081,360 98.6379912%
sphere_3_192 192 3 54,779,316 54,871,199 54,871,214 54,888,625 99.8008531%
Vicsek300_of_300 300 3 330,724,672 330,818,491 330,818,507 330,835,726 99.9664323%

Table 2 Total Execution Time and CPU/GPU Memory Usage.

R.++ R. R.++ GPU R.++ CPU R. CPU
Datasets n d time time mem. mem. mem. Speedup

celegans 297 3 7.30 s 228.56 s 16.84 GB 10.53 GB 23.84 GB 31.33x
dragon1000 1000 2 5.79 s 48.98 s 8.81 GB 3.75 GB 5.79 GB 8.46x
HIV 1088 2 7.11 s 147.18 s 11.36 GB 6.68 GB 14.59 GB 20.69x
o3 (sparse: t = 1.4) 4096 3 11.62 s 64.18 s 18.76 GB 2.77 GB 3.86 GB 5.52x
sphere_3_192 192 3 2.43 s 36.96 s 2.92 GB 2.03 GB 4.32 GB 15.21x
Vicsek300_of_300 300 3 9.98 s 248.72 s 17.53 GB 11.46 GB 27.78 GB 24.92x

Table 2 shows the comparisons of execution time and memory usage for computation up
to dimension d between Ripser++ and Ripser with six datasets, where R. stands for Ripser
and R.++ stands for Ripser++. Memory usage on CPU and total execution time were
measured with the /usr/time -v command on Linux. GPU memory usage was counted by
the total displacement of free memory over program execution.

Table 2 shows Ripser++ can achieve 5.52x - 31.33x speedups of total execution time
over Ripser in the evaluated datasets. The performance improvement mainly comes from
massive parallel operations of finding apparent pairs on GPU, and from the fast filtration
construction with clearing by GPU using filtering and sorting. We also notice that the
speedups of execution time varies in different datasets. That is because the percentages of
execution time in the submatrix reduction are different among datasets.

It is well known that the memory usage of full Vietoris-Rips filtration grows exponentially
in the number of simplices with respect to the dimension of persistence computation. For
example, 2000 points at dimension 4 computation may require

(2000
4+1
)
×8 bytes = 2 million

GB memory. Algorithmically, we avoid allocating memory in the cofacet dimension and
keep the memory requirement of Ripser++ asymptotically same as Ripser. Table 2 also
shows the memory usage of Ripser++ on CPU and GPU. Ripser++ can actually lower the
memory usage on CPU. This is mostly because Ripser++ offloads the process of finding
apparent pairs to GPU and the following matrix reduction only works on much fewer columns
than that of Ripser (as the submatrix reduction). Table 2 also shows that the GPU device
memory usage is usually lower than the total memory usage of Ripser. However, in the
sparse computation case (dataset o3) the algorithm must change; Ripser++ thus allocates
memory depending on the hardware instead of the input sizes.

SoCG 2020

70:14 Ripser++

 0

 1x107

 2x107

 3x107

 4x107

 5x107

 6x107

 7x107

 8x107

 9x107

 1x108

celegans dragon1000 HIV o3_4096 sphere_3_192 Vicsek300

T
hr

ou
gh

pu
t

 (
nu

m
be

r
of

 c
ol

um
ns

/ti
m

e
(s

ec
.)

 to
 fi

nd
 th

em
)

GPU apparent pair discovery throughput
CPU shortcut pairs discovery throughput

Figure 9 A comparison of column discovery throughput of apparent pair discovery with Ripser++
vs. Ripser’s shortcut pair discovery. The corresponding time is greatly reduced due to Algorithm 2.

Table 3 Hashmap Access Throughput, Counts, and Times Comparisons.

R.++ write R. write Num. of Num. of R.++ R.

throuput throughput R.++ reads R. reads read read

Datasets (pairs/s) (pairs/s) to data struct. to hashmap time (s) time (s)

celegans 7.21× 108 6.98× 107 3.22× 104 5.81× 108 0.00100 11.43

dragon1000 7.62× 108 6.29× 107 1.19× 105 1.12× 108 0.00460 1.28

HIV 7.06× 108 8.85× 107 1.57× 105 3.10× 108 0.00130 5.52

o3 (sparse: t = 1.4) 4.78× 108 6.88× 107 1.65× 106 8.85× 107 0.01500 0.56

sphere_3_192 7.32× 108 9.41× 107 2.71× 105 9.37× 107 0.00068 0.30

Vicsek300_of_300 6.80× 108 8.82× 107 2.12× 105 5.67× 108 0.00053 10.81

5.3 Throughput of Apparent Pairs Discovery with Ripser++ vs.
Throughput of Shortcut Pairs Discovery in Ripser

Discovering shortcut pairs in Ripser and discovering apparent pairs in Ripser++ account for
a significant part of the computation. Let the throughput be calculated as the number of a
specific type of pair divided by the time to find and store them. We can find in Figure 9
that for all datasets, our GPU-based solution outperforms the CPU-based algorithm used in
Ripser by 4.2x-12.3x. Since the two types of pairs’ counts are almost the same (see Table 1),
such throughput improvement can lead to a significant saving in computation time.

5.4 Two-layer Data Structure for Memory Access Optimizations

Table 3 first presents the write throughput of persistence pairs in pairs/s. In Ripser, we
use the measured time of writing pairs to the hashmap to divide the total persistence pair
number; while in Ripser++, the time includes writing to the two-layer data structure and
sorting the array on GPU. The results show that Ripser++ consistently has one order of
magnitude higher write throughput than that of Ripser.

Table 3 also gives the number of reads as well as the time consumed in the read operations
(in seconds). The number of reads in Ripser means the number of reads to its hashmap, while
Ripser++ counts the number of reads to the data structure. The reported results confirm
that Ripser++ can reduce at least two orders of magnitude memory reads over Ripser. A
similar performance improvement can also be observed in the measured read time.

S. Zhang, M. Xiao, and H. Wang 70:15

5.5 The Apparent Fraction Depending on the Number of Points
Figure 10 shows 3 curves for the apparent fraction depending on the number of points.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000

di
m

en
si

on
 1

 a
pp

ar
en

t f
ra

ct
io

n

number of points for a 2-skeleton

theoretical upper bound apparent fraction
true experimental apparent fraction

random model's apparent estimated fraction

Figure 10 Three different curves of the apparent fraction: (num. apparent pairs
num. d-simplices) for d = 1 as a

function of the number of points. The theoretical upper bounding curve for the case of all equivalent
edge diameters is shown as well as the true experimental curve. The dotted curve is the piecewise
linear interpolated curve of a uniform random mathematical model that matches the shape of the
empirical and theoretical curve. (See the paper’s full version for more explanations.)

6 Conclusion

Ripser++ can achieve significant speedup (up to 20x-30x) on representative datasets in our
work and thus opens up unprecedented opportunities in many application areas. For example,
fast streaming applications [43] or point clouds from neuroscience [10] that spent minutes
can now be computed in seconds, significatly advancing the domain fields.

We identify specific properties of Vietoris-Rips filtrations such as the simplicity of
diameter computations by individual threads on GPU for Ripser++. Related discussions,
both theoretical and empirical, suggest that our approach be applicable to other filtration
types such as cubical [8], flag [32], and alpha shapes [44]. We strongly believe that our
acceleration methods are widely applicable beyond computing Rips persistence barcodes.

We have described the mathematical, algorithmic, and experimental-based foundations of
Ripser++. We hope our efforts open a new chapter for the advancement of TDA.

References
1 Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,

Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images:
A stable vector representation of persistent homology. The Journal of Machine Learning
Research, 18(1):218–252, 2017.

2 Henry Adams and Andrew Tausz. Javaplex tutorial. Google Scholar, 2011.
3 Mehmet E Aktas, Esra Akbas, and Ahmed El Fatmaoui. Persistence homology of networks:

methods and applications. Applied Network Science, 4(1):61, 2019.
4 Sergey Barannikov. The framed morse complex and its invariants, 1994.
5 Ulrich Bauer. Ripser: efficient computation of vietoris–rips persistence barcodes, 2018. URL:

https://github.com/Ripser/ripser.
6 Ulrich Bauer. Ripser: efficient computation of vietoris-rips persistence barcodes. arXiv preprint,

2019. arXiv:1908.02518.
7 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing persistent

homology in chunks. In Topological methods in data analysis and visualization III, pages
103–117. Springer, 2014.

SoCG 2020

https://github.com/Ripser/ripser
http://arxiv.org/abs/1908.02518

70:16 Ripser++

8 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Distributed computation of persistent
homology. In 2014 proceedings of the sixteenth workshop on algorithm engineering and
experiments (ALENEX), pages 31–38. SIAM, 2014.

9 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat–persistent homology
algorithms toolbox. Journal of symbolic computation, 78:76–90, 2017.

10 Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent
homology analysis of brain artery trees. The annals of applied statistics, 10(1):198, 2016.

11 Peter Bubenik. Statistical topological data analysis using persistence landscapes. The Journal
of Machine Learning Research, 16(1):77–102, 2015.

12 Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46(2):255–308, 2009.

13 Chao Chen and Michael Kerber. Persistent homology computation with a twist. In Proceedings
27th European Workshop on Computational Geometry, volume 11, 2011.

14 Yuri Dabaghian, Facundo Mémoli, Loren Frank, and Gunnar Carlsson. A topological paradigm
for hippocampal spatial map formation using persistent homology. PLoS computational biology,
8(8):e1002581, 2012.

15 Vin De Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algebraic
& Geometric Topology, 7(1):339–358, 2007.

16 Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent (co)
homology. Inverse Problems, 27(12):124003, 2011.

17 Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent cohomology and
circular coordinates. Discrete & Computational Geometry, 45(4):737–759, 2011.

18 Olaf Delgado-Friedrichs, Vanessa Robins, and Adrian Sheppard. Skeletonization and partition-
ing of digital images using discrete morse theory. IEEE transactions on pattern analysis and
machine intelligence, 37(3):654–666, 2014.

19 Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9(5):256–268, 1974.

20 Tamal K Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simplicial
maps. In Proceedings of the thirtieth annual symposium on Computational geometry, page 345.
ACM, 2014.

21 Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

22 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st annual symposium on foundations of computer science,
pages 454–463. IEEE, 2000.

23 Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. IEEE Micro, 32(3):122–134, 2012.

24 Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman
Balakrishnan, Aarti Singh, et al. Confidence sets for persistence diagrams. The Annals of
Statistics, 42(6):2301–2339, 2014.

25 William H Guss and Ruslan Salakhutdinov. On characterizing the capacity of neural networks
using algebraic topology. arXiv preprint, 2018. arXiv:1802.04443.

26 G Henselman. Eirene: a platform for computational homological algebra, 2016.
27 Gregory Henselman and Robert Ghrist. Matroid filtrations and computational persistent

homology. arXiv preprint, 2016. arXiv:1606.00199.
28 Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with

topological signatures. In Advances in Neural Information Processing Systems, pages 1634–1644,
2017.

29 Alan Hylton, Janche Sang, Greg Henselman-Petrusek, and Robert Short. Performance
enhancement of a computational persistent homology package. In 2017 IEEE 36th International
Performance Computing and Communications Conference (IPCCC), pages 1–8. IEEE, 2017.

http://arxiv.org/abs/1802.04443
http://arxiv.org/abs/1606.00199

S. Zhang, M. Xiao, and H. Wang 70:17

30 Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen, Nadathur
Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort vs. hash revisited: Fast
join implementation on modern multi-core cpus. Proc. VLDB Endow., 2(2):1378–1389, August
2009. doi:10.14778/1687553.1687564.

31 Donald Ervin Knuth. The art of computer programming, volume 3. Pearson Education, 1997.
32 Daniel Luetgehetmann, Dejan Govc, Jason Smith, and Ran Levi. Computing persistent

homology of directed flag complexes. arXiv preprint, 2019. arXiv:1906.10458.
33 Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library:

Simplicial complexes and persistent homology. In International Congress on Mathematical
Software, pages 167–174. Springer, 2014.

34 Rodrigo Mendoza-Smith and Jared Tanner. Parallel multi-scale reduction of persistent
homology filtrations. arXiv preprint, 2017. arXiv:1708.04710.

35 Dmitriy Morozov. Dionysus software, 2017. URL: http://www.mrzv.org/software/
dionysus/.

36 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–
441, 2008.

37 Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6(1):17, 2017.

38 Ernesto Pascal. Sopra una formula numerica, 1887.
39 Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel

for topological machine learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4741–4748, 2015.

40 Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algorithms
for manycore gpus. In Proceedings of the 2009 IEEE International Symposium on Par-
allel&Distributed Processing, IPDPS ’09, pages 1–10, Washington, DC, USA, 2009. IEEE
Computer Society. doi:10.1109/IPDPS.2009.5161005.

41 Abu Bakar Siddique, Saadia Farid, and Muhammad Tahir. Proof of bijection for combinatorial
number system. arXiv preprint, 2016. arXiv:1601.05794.

42 Erik Sintorn and Ulf Assarsson. Fast parallel gpu-sorting using a hybrid algorithm. J. Parallel
Distrib. Comput., 68(10):1381–1388, October 2008. doi:10.1016/j.jpdc.2008.05.012.

43 Meirman Syzdykbayev and Hassan A Karimi. Persistent homology for detection of objects from
mobile lidar point cloud data in autonomous vehicles. In Science and Information Conference,
pages 458–472. Springer, 2019.

44 The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
URL: http://gudhi.gforge.inria.fr/doc/latest/.

45 Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new beginning for
information technology. Computing in Science & Engineering, 19(2):41, 2017.

46 Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser. py: A lean persistent homology
library for python. J. Open Source Software, 3(29):925, 2018.

47 Simon Zhang, Mengbai Xiao, Chengxin Guo, Liang Geng, Hao Wang, and Xiaodong Zhang.
Hypha: a framework based on separation of parallelisms to accelerate persistent homology
matrix reduction. In Proceedings of the ACM International Conference on Supercomputing,
pages 69–81. ACM, 2019.

48 Afra Zomorodian. Fast construction of the vietoris-rips complex. Computers & Graphics,
34(3):263–271, 2010.

SoCG 2020

https://doi.org/10.14778/1687553.1687564
http://arxiv.org/abs/1906.10458
http://arxiv.org/abs/1708.04710
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
https://doi.org/10.1109/IPDPS.2009.5161005
http://arxiv.org/abs/1601.05794
https://doi.org/10.1016/j.jpdc.2008.05.012
http://gudhi.gforge.inria.fr/doc/latest/

	Introduction
	Preliminaries
	Persistent Homology
	Vietoris-Rips Filtrations
	The Simplex-wise Refinement of the Vietoris-Rips Filtration

	The Combinatorial Number System
	Computation
	The Coboundary Matrix

	Computation in Ripser

	Mathematical and Algorithmic Foundations in GPU Acceleration
	Overview of GPU-Accelerated Computation
	Matrix Reduction
	The Apparent Pairs Lemma
	Finding Apparent Pairs in Parallel on GPU
	Theoretical Bounds on the Number of Apparent Pairs

	GPU and System Kernel Development for Ripser++
	Core System Optimizations
	Filtration Construction with Clearing

	Experiments
	The Empirical Relationship amongst Apparent Pairs, Emergent Pairs, and Shortcut Pairs
	Execution Time and Memory Usage
	Throughput of Apparent Pairs Discovery with Ripser++ vs. Throughput of Shortcut Pairs Discovery in Ripser
	Two-layer Data Structure for Memory Access Optimizations
	The Apparent Fraction Depending on the Number of Points

	Conclusion

