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Abstract
We sketch geometric objects J as vectors through the MinDist function, setting the ith coordinate

vi(J) = inf
p∈J
‖p− qi‖

for qi ∈ Q from a point set Q. Building a vector from these coordinate values induces a simple,
effective, and powerful distance: the Euclidean distance between these sketch vectors. This paper
shows how large this set Q needs to be under a variety of shapes and scenarios. For hyperplanes we
provide direct connection to the sensitivity sampling framework, so relative error can be preserved
in d dimensions using |Q| = O(d/ε2). However, for other shapes, we show we need to enforce a
minimum distance parameter ρ, and a domain size L. For d = 2 the sample size Q then can be
Õ((L/ρ) · 1/ε2). For objects (e.g., trajectories) with at most k pieces this can provide stronger for
all approximations with Õ((L/ρ) · k3/ε2) points. Moreover, with similar size bounds and restrictions,
such trajectories can be reconstructed exactly using only these sketch vectors. Cumulatively, these
results demonstrate that these MinDist sketch vectors provide an effective and efficient shape model,
a compact representation, and a precise representation of geometric objects.
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1 Introduction

In this paper we analyze a new sketch for geometric objects, which we introduced in a recent
more empirically-focused paper [23]. For an object J ∈ J, where J ⊂ Rd, this depends
on a set of landmarks Q ⊂ Rd; for now let n = |Q|. These landmarks induce a sketched
representation vQ(J) ∈ Rn where the ith coordinate vi(J) is defined via a MinDist operation

vi(J) = dist(qi, J) = inf
p∈J
‖p− qi‖,

using the ith landmark qi ∈ Q. When the object J is implicit, we simply use vi. The most
useful implication of this sketch is a simple new distance dQ between two objects J1, J2 ∈ J;
the Euclidean distance between the (normalized as v̄Q = 1√

|Q|
vQ) sketched representations

dQ(J1, J2) =
∥∥v̄Q(J1)− v̄Q(J2)

∥∥.
A second implication we will show, is that shapes J can often be recovered exactly from the
sketch vQ(J) – demonstrating the richness of information it captures.
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Our recent paper [23] introduces other variants of this distance (using other norms or using
the arg minp∈J points on each J ∈ J). We focus on this version as it is the simplest, cleanest,
easiest to use, and was the best or competitive with the best on all empirical tasks. Indeed,
for the pressing case of measuring a distance between trajectories, this new distance measure
dominates a dozen other distance measures (including dynamic time warping, discrete Frechet
distance, edit distance for real sequences) in terms of classification performance. In practice
we find we only need |Q| = 20 landmarks to achieve high classification accuracy. It is
also considerably more efficient in clustering and nearest neighbor tasks [23]; since it uses
Euclidean distance, Lloyds algorithms works for k-means clustering and extremely efficient
nearest neighbor packages [1, 25] automatically work with no extra engineering.

The goal of this paper is to formally understand how many landmarks in Q are needed
for various error guarantees, and how to chose the locations of these points Q.

Our aims in the choice of Q are two-fold: first, we would like to approximate dQ with dQ̃,
and second we would like to recover J ∈ J exactly only using vQ(J). The specific results
vary depending on the initial set Q and the object class J. More precisely, the approximation
goal aims to preserve dQ for all objects J in some class J with a subset Q̃ ⊂ Q of landmarks.
Or possibly a weighted set of landmarks W, Q̃ with |Q̃| = N , so each qi is associated with a
weight wi and the weighted distance is defined

dQ̃,W (J1, J2) =

√√√√ N∑
i=1

wi · (vi(J1)− vi(J2))2 =
∥∥∥ṽQ̃(J1)− ṽQ̃(J2)

∥∥∥
where ṽQ̃ = (ṽ1, · · · , ṽN ) with ṽi = √wivi. The set Q could also represent a continuous
measure ω, which replaces w, and an integral on domain Ω replaces the sum. Specifically, our
aim is an (ρ, ε, δ)-approximation of Q over J so when W, Q̃ is selected by a random process
that succeeds with probability at least 1− δ, then for a pair J1, J2 ∈ J with dQ(J1, J2) ≥ ρ

(1− ε)dQ(J1, J2) ≤ dQ̃,W (J1, J2) ≤ (1 + ε)dQ(J1, J2).

When this holds for all pairs in J, we say it is a strong (ρ, ε, δ)-approximation of Q over J. In
some cases we set to 0 either δ (the process is deterministic) or ρ (this preserves arbitrarily
small distances), and may be able to use uniform weights wi = 1

|Q̃| for all selected points.

1.1 Our Results
We begin with a special signed variant of the distance associated with the class J of (d− 1)-
dimensional hyperplanes (which for instance could model linear separators or linear regression
models). This has vi(J) as negative on one side of the separator. In this variant, we show
that if Q is full rank, then we can recover J from vQ(J), and a variant of sensitivity sampling
can be used to select O(d/(δε2)) points to provide a (0, ε, δ)-approximation W, Q̃. Or by
selecting O( dε2 (d log d+ log 1

δ )) results in a strong (0, ε, δ)-approximation (Theorem 2).
Next we consider the more general case where the objects are bounded geometric objects

S. For such objects it is useful to consider a bounded domain ΩL = [0, L]d (for d a fixed
constant), and consider the case where each S ∈ S and landmarks satisfy S,Q ⊂ ΩL. In this
case, the number of samples required for a (ρ, ε, δ)-approximation is SQ

1
ε2δ where

SQ = O

(L
ρ

) 2d
2+d

min
(

log L
η
, logn,

(
L

ρ

)2
) 2

2+d
 , (1)
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where η = minq,q′∈Q ‖q − q′‖∞. A few special cases are worth expanding upon. When
Q is continuous and uniform over ΩL then SQ = O((L/ρ)

2d
2+d ), and this is tight in R2 at

SQ = Θ(L/ρ). That is, we can show that SQ = Θ(L/ρ) may be needed in general. When
d = 2 but not necessarily uniform on ΩL, then SQ = O(Lρ min{

√
logn,L/ρ}). And when

Q is on a grid over ΩL in R2 of resolution Θ(ρ), then SQ = O(Lρ
√

log L
ρ ), just a

√
logL/ρ

factor more than the lower bound.
We conclude with some specific results for trajectories, represented as piecewise-linear

curves. When considering the class Tk with at most k segments, then O( 1
ε2 SQ(k3 logSQ +

log 1
δ )) samples is sufficient for a strong (ρ, ε, δ)-approximation.
Also when considering trajectories Tτ where the critical points are at distance at least

τ apart from any non-adjacent part of the curve, we can exactly reconstruct the trajectory
from vQ as long as Q is a grid of side length Ω(τ). It is much cleaner to describe the results
for trajectories and Q precisely on a grid, but these results should extend for any object with
k piecewise-linear boundaries, and critical points sufficiently separated, or Q as having any
point in each sufficiently dense grid cell, as opposed to being exactly on the grid lattice.

1.2 Connections to other Domains, and Core Challenges
Before deriving these results, it is useful to lay out the connection to related techniques,
including ones that our results will build on, and the challenges in applying them.

Sensitivity sampling. Sensitivity sampling [20, 16, 18, 26] is an important technique for
our results. This typically considers a dataset X (a subset of a metric space), endowed with
a measure µ : X → R+, and a family of cost functions F . These cost functions are usually
related to the fitting of a data model or a shape S to X, and for instance on a single point
x ∈ X, for f ∈ F , where

f(x) = dist(x, S)2 = inf
p∈S
‖x− p‖2

is the squared distance from x to the closest point p on the shape S. And then f̄ =∫
X
f(x)dµ(x). The sensitivity [20] of x ∈ X w.r.t. (F,X, µ) is defined as σF,X,µ(x) :=

supf∈F
f(x)
f̄
, and the total sensitivity of F is defined as S(F ) =

∫
X
σF,X,µ(x)dµ(x). This

concept is quite general, and has been widely used in applications ranging from various forms
of clustering [16, 18] to dimensionality reduction [17] to shape-fitting [26]. In particular,
this will allow us to draw N samples X̃ iid from X proportional to σF,X,µ(x), and weighted
w̃(x̃) = S(F )

N ·σF,X,µ(x̃) ; we call this σF,X,µ-sensitive sampling. Then X̃ is a (0, ε, δ)-coreset; that
is, with probability 1− δ for each f ∈ F

(1− ε)f̄ ≤
∫
X̃

f(x̃)dw̃(x̃) ≤ (1 + ε)f̄ ,

using N = O(S(F )
ε2δ ) [20]. The same error bound holds for all f ∈ F (then it is called a

(0, ε, δ)-strong coreset) with N = O(S(F )
ε2 (sF logS(F ) + log 1

δ )) where sF is the shattering
dimension of the range space (X, ranges(F )) [5]. Each range r ∈ (X, ranges(F )) is defined as
points in a sublevel set of a cost function r = {x ∈ X | µ(x)

S(F )
f(x)
f̄
≤ ξ} for some f ∈ F , ξ ∈ R.

It seems natural that a form of our results would follow directly from these approaches.
However, two significant and intertwined challenges remain. First, our goal is to approximate
the distance between a pair of sketches ‖vQ(J1)− vQ(J2)‖, whereas these results effectively
only preserve the norm of a single sketch ‖vQ(J1)‖; this prohibits many of the geometric

SoCG 2020
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arguments in the prior work on this subject. Second, the total sensitivity S(F ) associated
with unrestricted Q and pairs J1, J2 ∈ J is in general unbounded (as we prove in Section 3.1).
Indeed, if the total sensitivity was bounded, it would imply a mapping to bounded vector
space [20], wherein the subtraction of the two sketches vQ(J1) − vQ(J2) would still be an
element of this space, and the norm bound would be sufficient.

We circumvent these challenges in two ways. First, we identify a special case in Section
2 (with negative distances, for hyperplanes) under which there is a mapping of the sketch
vQ(J1) to metric space independent of the size and structure of Q. This induces a bound for
total sensitivity related to a single object, and allows the subtraction of two sketches to be
handled within the same framework.

Second, we enforce a lower bound on the distance dQ(J1, J2) > ρ and an upper bound
on the domain ΩL = [0, L]d. This induces a restricted class of pairs JL/ρ where L/ρ is a
scaleless parameter, and it shows up in bounds we are then able to produce for the total
sensitivity with respect to JL/ρ and Q ⊂ ΩL.

Leverage scores, and large scales. The leverage score [14] of the ith column ai of matrix
A is defined as τi(A) := aTi (AAT )+ai, where (·)+ is the Moore-Penrose pseudoinverse. This
definition is more specific and linear-algebraic than sensitivity, but has received more attention
for scalable algorithm development and approximation [14, 4, 13, 10, 22, 11].

However, the full version shows that if F is the collection of some functions defined on a
set Q of n points (µ(qi) = 1

n for all qi ∈ Q), where each f ∈ F is the square of some function
v in a finite dimensional space V spanned by a basis {v(1), · · · , v(κ)}, then we can build a
κ× n matrix A where the ith column is 1√

n

(
v(1)(qi), · · · , v(κ)(qi)

)T , and then 1
n · σF,Q,µ(qi)

is precisely the leverage score of the ith column of the matrix A. A similar observation has
been made by Varadarajan and Xiao [26].

A concrete implication of this connection is that we can invoke an online row sampling
algorithm of Cohen et al. [11]. In our context, this algorithm would stream overQ, maintaining
(ridge) estimates of the sensitivity of each qi from a sample Q̃i−1, and retaining each qi in
that sample based on this estimate. This provides a streaming approximation bound not
much weaker than the sampling or gridding bounds we present; see full version.

MinDist and shape reconstruction. The fields of computational topology and surface
modeling have extensively explored [6, 24, 8] the distance function to a compact set J ⊂ Rd

dJ(x) = dist(x, J) = inf
p∈J
‖x− p‖,

their approximations, and the offsets Jr = d−1
J ([0, r]). For instance the Hausdorff distance

between two compact sets J, J ′ is dH(J, J ′) = ‖dJ−dJ′‖∞. The gradient of dJ implies stability
properties about the medial axis [9]. And most notably, this stability of dJ with respect
to a sample P ∼ J or P ∼ ∂J is closely tied to the development of shape reconstruction
(aka geometric and topological inference) through α-shapes [15], power crust [2], and the
like. The intuitive formulation through dJ (as opposed to Voronoi diagrams of P ) has led to
more statistically robust variants [8, 24] which also provide guarantees in shape recovery up
to small feature size [7], essentially depending on the maximum curvature of ∂J .

Our formulation flips this around. Instead of considering samples P from J (or ∂J) we
consider samples Q from some domain Ω ⊂ Rd. This leads to new but similar sampling
theory, still depending on some feature size (represented by various scale parameters ρ, τ ,
and η), and still allowing recovery properties of the underlying objects. While the samples P
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from J can be used to estimate Hausdorff distance via an all-pairs O(|P |2)-time comparison,
our formulation requires only a O(|Q|)-time comparison to compute dQ. We leave as open
questions the recovering of topological information about an object J ∈ J from vQ(J).

2 The Distance Between Two Hyperplanes using Signed Sketches

A more detailed derivation of the results in this section are presented in the full version
where proofs and a few technical details require more careful notation to navigate.

Let H = {h | h is a hyperplane in Rd} represent the space of all hyperplanes. Each
hyperplane h can be represented by a vector u ∈ Rd+1 composed as a normal vector
ū = (u1, . . . , ud) ∈ Rd with ‖ū‖ = 1 and offset ud+1. Then the ith coordinate of a sketch
vector can be derived as a signed distance from qi as vi(h) = ud+1 + 〈ū, qi〉.

Recovery. Our recent paper [23] showed that if Q is full rank (there exist d+ 1 points in Q
not on a common hyperplane) then dQ(h1, h2) 6= 0 if h1 6= h2, and thus dQ is a metric. This
full rank condition on Q is also sufficient to recover h from vQ(h); e.g., using PCA.

Distance Preservation. Next we show that we can use a σ-sensitive sample Q̃,W as a
(0, ε, δ)-coreset for this formulation; that is dQ̃,W preserves relative error with respect to dQ.
We assume Q is full rank, and has uniform weight µ = 1

n on each point. Using X = Q we
need to define the family of functions F to complete the tuple (F,Q, µ). To this end, let V
be a (d + 1)-dimensional function space with each element vu is a linear function defined
vu(qi) = vi(h) = ud+1 + 〈ū, qi〉. Now each f ∈ F is defined as f(q) = v(q)2, and through its
representation u, each h ∈ H maps to a unique element of F .

However, we are interested in preserving dQ which requires a pair h1, h2 ∈ H, with
corresponding normals u(1), u(2). Since V is a linear function space, then using u = u(1)−u(2),
then fh1,h2(q) = vu(q)2, and dQ(h1, h2) = ( 1

n

∑
q∈Q fh1,h2(q)) 1

2 . Note that u will likely not
correspond to a single halfspace since the first d coordinates may not be a unit vector,
but that is not an issue for this framework. Using Langberg and Schulman [20], the total
sensitivity is d+ 1, and the sensitivities can be calculated (e.g., via leverage scores).

I Theorem 1. Consider full rank Q ⊂ Rd and halfspaces H with ε, δ ∈ (0, 1). A σ-
sensitive sample Q̃ of (Q,F ) of size |Q̃| ≥ d+1

δε2 results in a (0, ε, δ)-coreset. It is an (0, ε, δ)-
approximation so with probability at least 1− δ, for each pair h1, h2 ∈ H

(1− ε)dQ(h1, h2) ≤ dQ̃,W (h1, h2) ≤ (1 + ε)dQ(h1, h2).

We can also achieve a strong coreset for this variant using results from Braverman et
al. [5]. For this we need to provide an additional bound about the shattering dimension
s = dim(Q,X) associated with each f ∈ F and a weight w : Q → R+. The range in the
range space associated with fh1,h2 is defined for some η as

Xh1,h2,η = {q ∈ Q | w(q)fh1,h2(q) ≤ η}.

For f ∈ F defined by a single halfspace, this is classically known to be O(d). For the more
general functions fh1,h2 ∈ F defined by two halfspaces h1, h2, the same asymptotic bound can
be shown using straight-forward decomposition properties of range spaces (see full version
for proof). Then we can obtain the following result.

SoCG 2020
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Figure 1 Q is the set of blue points, γ1 is the red curve, γ2 is the green (dashed) curve, and they
coincide with each other on the boundary of the square.

I Theorem 2. Consider full rank Q ⊂ Rd and halfspaces H with ε, δ ∈ (0, 1). A σ-sensitive
sample Q̃ of (Q,F ) of size |Q̃| = O( dε2 (d log d + log 1

δ )) results in a strong (0, ε, δ)-coreset.
And thus a strong (0, ε, δ)-approximation so with probability at least 1− δ, for all h1, h2 ∈ H

(1− ε)dQ(h1, h2) ≤ dQ̃,W (h1, h2) ≤ (1 + ε)dQ(h1, h2).

3 Sketched MinDist for Two Geometric Objects

In this section, we mildly restrict dQ to the distance between any two geometric objects, in
particular, bounded closed sets. Let S = {S ⊂ Rd | S is a bounded closed set} be the space
of objects J we consider.

As before define vi(S) = infp∈S ‖p − qi‖, and then for S1, S2 ∈ S define fS1,S2(qi) =
(vi(S1) − vi(S2))2. The associated function space is F (S) = {fS1,S2 | S1, S2 ∈ S}. Setting
µ(q) = 1

n for all q ∈ Q, then (dQ(S1, S2))2 = f̄S1,S2 :=
∑n
i=1 µ(qi)fS1,S2(qi). Using sensitivity

sampling to estimate dQ(S1, S2) requires a bound on the total sensitivity of F (S).
We show that while the total sensitivity S(F (S)) is unbounded in general, it is tied to

the ratio L/ρ between the diameter of the domain L, and the minimum allowed dQ distance
between objects ρ. In particular, it can be at least proportional to this, and in R2 in most
cases (e.g., for near-uniform Q) is at most proportional to L/ρ or not much larger for any Q.

3.1 Lower Bound on Total Sensitivity
Suppose Q is a set of n points in R2 and no two points are at the same location, then for any
q0 ∈ Q we can draw two curves γ1, γ2 as shown in Figure 1, where γ1 is composed by five line
segments and γ2 is composed by four line segments. The four line segments of the γ2 forms a
square, on its boundary γ1 and γ2 coincide with each other, and inside this square, q0 is the
endpoint of γ1. We can make this square small enough, such that all points q 6= q0 are outside
this square. So, we have dist(q0, γ1) = 0 and dist(q0, γ2) 6= 0, and dist(q, γ1) = dist(q, γ2) = 0
for all q 6= q0. Thus, we have fγ1,γ2(q0) > 0 and fγ1,γ2(q) = 0 for all q 6= q0, which implies

σF (S),Q,µ(q0) ≥ fγ1,γ2(q0)
f̄γ1,γ2

= fγ1,γ2(q0)
1
n

∑
q∈Q fγ1,γ2(q)

= nfγ1,γ2(q0)
fγ1,γ2(q0) = n.

Since this construction of two curves γ1, γ2 can be repeated around any point q ∈ Q,

S(F (S)) =
∑
q∈Q

µ(q)σF (S),Q,µ(q) ≥
∑
q∈Q

1
n
n = n.
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We can refine this bound by introducing two parameters L, ρ for S. Given L > ρ > 0 and
a set Q ⊂ Rd of n points, we define S(L) = {S ∈ S | S ⊂ [0, L]d} and F (S(L), ρ) = {fS1,S2 ∈
F (S) | S1, S2 ∈ S(L), dQ(S1, S2) ≥ ρ}. The following lowerbounds the total sensitivity of
F (S(L), ρ) for d = 2; it holds for any d ≥ 2 using the construction in a 2d subspace.

I Lemma 3. For d = 2 we can construct a set Q ⊂ [0, L]2 such that S(F (S(L), ρ)) = Ω(Lρ ).

Proof. We uniformly partition [0, L]2 into n grid cells, such that C1
L
ρ ≤ n ≤ C2

L
ρ for

constants C1, C2 ∈ (0, 1). The side length of each grid is η = L√
n
. We take Q as the n grid

points, and for each point q ∈ Q we can choose two curves γ1 and γ2 (similar to curves in
Figure 1) such that dist(q, γ1) = 0, dist(q, γ2) ≥ C2η, and dist(q′, γ1) = dist(q′, γ2) = 0 for all
q′ ∈ Q \ {q} . Thus, dQ(γ1, γ2) ≥ C2

η√
n

= C2
L
n ≥ ρ. So, fγ1,γ2 ∈ F (S(L), ρ)) and σ(q) ≥ n

for all q ∈ Q and S(F (S(L), ρ)) ≥ n ≥ C1
L
ρ , which implies S(F (S(L), ρ)) = Ω(Lρ ). J

3.2 Upper Bound on the Total Sensitivity
A simple upper bound of S(F (S(L), ρ) is O

(
L2

ρ2

)
; it follows from the L/ρ constraint. The

sensitivity of each point q ∈ Q is defined as supfS1,S2∈F (S(L),ρ)
fS1,S2 (q)
f̄S1,S2

, where fS1,S2(q) =
O(L2) for all S1, S2 ∈ S(L) and q ∈ Q ⊂ [0, L]d, and the denominator f̄S1,S2 ≥ ρ2 by
assumption for all fS1,S2 ∈ F (S(L), ρ). Hence, the sensitivity of each point in Q is O

(
L2

ρ2

)
,

and thus their average, the total sensitivity is O
(
L2

ρ2

)
. In this section we will improve and

refine this bound.
We introduce two variables that only depends on Q = {q1, · · · , qn} ⊂ [0, L]d:

Cq := max
0<r≤L

rd

Ld
n

|Q ∩B∞(q, r)| for q ∈ Q, and CQ := 1
n

∑
q∈Q

C
2

2+d
q . (2)

where B∞(q, r) := {x ∈ Rd | ‖x− q‖∞ ≤ r}. Intuitively, |Q∩B∞(q,r)|
rd

is proportional to the
point density in region B∞(q, r), and the value of rd

Ld
n

|Q∩B∞(q,r)| can be maximized, when
the region B∞(q, r) has smallest point density, which means r should be as large as possible
but the number of points contained in B∞(q, r) should be as small as possible. A trivial
bound of Cq is n, but if we make Cq0 = n for one point q0, then it implies the value of Cq
for other points will be small, so for CQ it is possible to obtain a bound better than n

2
d+2 .

Importantly, these quantities Cq and CQ will be directly related to the sensitivity of a
single point σ(q) and the total sensitivity of the point set SQ, respectively. We formalize
this in two technical lemmas: First (in Lemma 7) σ(q) ≤ O((Cq(L/ρ)d)

2
2+d ) and hence

SQ = O(CQ · (L/ρ)
2d

2+d ); and second (in Lemma 8) we show CQ ≤ O((min{log L
η , logn})

2
2+d )

for Q of size n and η = minq,q′∈Q, q 6=q′ ‖q − q′‖∞.
Since fS1,S2 ∈ F (S(L), ρ), we know fS1,S2(q) ≤ dL2 for all q ∈ Q and 1

n

∑
q′∈Q fS1,S2(q′) ≥

ρ2, so σ(q) ≤ dL2

ρ2 for all q ∈ Q. Thus, we can expand 1
|Q|
∑
q∈Q σ(q) using Lemma 7 and

factor out CQ using Lemma 8 to immediately obtain the following theorem.

I Theorem 4. Suppose L > ρ > 0, Q = {q1, · · · , qn} ⊂ [0, L]d and η = minq,q′∈Q, q 6=q′ ‖q −
q′‖∞. Then, we have

S(F (S(L), ρ)) ≤ SQ = O

(L
ρ

) 2d
2+d

min
(

log L
η
, logn,

(
L

ρ

)2
) 2

2+d
 .

From Lemma 7 and Theorem 4, using [20][Lemma 2.1] we can obtain the following.

SoCG 2020
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I Theorem 5. Let L > ρ > 0, Q = {q1, · · · , qn} ⊂ [0, L]d, S1, S2 ∈ S(L) and dQ(S1, S2) ≥ ρ.
Then for δ, ε ∈ (0, 1) a σ-sensitive sampling of size N ≥ SQ

δε2 provides Q̃, a (ρ, ε, δ)-coreset;
that is with probability at least 1− δ, we have

(1− ε)dQ(S1, S2) ≤ dQ̃,W (S1, S2) ≤ (1 + ε)dQ(S1, S2).

If Q describes a continuous uniform distribution in [0, L]d (or sufficiently close to one,
like points on a grid), then there exists an absolute constant C > 0 such that Cq ≤ C for all
q ∈ Q, then in Lemma 7 σ(q) ≤ Cd

(
L
ρ

) 2d
2+d for all q ∈ Q, and in Theorem 4 SQ ≤ Cd

(
L
ρ

) 2d
2+d .

So, for uniform distribution, the sample size of Q in Theorem 5 is independent from the size
of Q, and for d = 2 the bound SQ = O(L/ρ) matches the lower bound in Lemma 3.

I Corollary 6. If Q describes the continuous uniform distribution over [0, L]d, then the
sample size in Theorem 5 can be reduced to N = O

((
L
ρ

) 2d
2+d 1

δε2

)
.

Technical lemmas bounding σ(q) and CQ.

I Lemma 7. For function family F (S(L), ρ) the sensitivity for any q ∈ Q ⊂ [0, L]d is bounded

σ(q) ≤ CdC
2

2+d
q

(L
ρ

) 2d
2+d

,

where Cd = 4
2

2+d (8
√
d)

2d
2+d and Cq given by (2).

Proof. Recall σ(q) = supfS1,S2∈F (S(L),ρ)
fS1,S2 (q)

1
n

∑
q′∈Q

fS1,S2 (q′)
. For any fixed q ∈ Q, for now

suppose fS1,S2 ∈ F (S(L), ρ) satisfies this supremum σ(q) = fS1,S2 (q)
1
n

∑
q′∈Q

fS1,S2 (q′)
. We define

dist(q, S) = infp∈S ‖q − p‖ (so for qi ∈ Q then dist(qi, S) = vi(S)), and then use the
parameter M := |dist(q, S1)− dist(q, S2)|, where M2 = fS1,S2(q). If M = 0, then obviously
fS1,S2(q) = M2 = 0, and σ(q) = 0. So, without loss of generality, we assume M > 0 and
dist(q, S1) = τ and dist(q, S2) = τ +M . We first prove σ(q) ≤ CdCq L

d

Md . There are two cases
for the relationship between τ and M , as shown in Figure 2.

r

τ

M

q

q′

τ

M

qr

q′

τ

M

qr

q′

Figure 2 Left: Case 1, r = M
8 ≤ τ , and q′ ∈ B(q, r). Right: Case 2, r = M

8 > τ , and
q′ ∈ B(q, τ + r).
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Case 1: τ ≥ M
8 . For any q′ ∈ B(q, M8 ) := {q′ ∈ Rd | ‖q′ − qi‖ ≤ M

8 }, we have τ + M =
dist(q, S2) ≤ dist(q, q′) + dist(q′, S2) ≤ M

8 + dist(q′, S2), which implies for all q′ ∈ B(q, M8 )

dist(q′, S2) ≥ τ +M − M

8 = τ + 7
8M.

Similarly dist(q′, S1) ≤ dist(q′, q) + dist(q, S1) ≤ M
8 + τ for all q′ ∈ B(q, M8 ). Thus for all

q′ ∈ B(q, M8 )

|dist(q′, S2)− dist(q′, S1)| ≥ dist(q′, S2)− dist(q′, S1) ≥ τ + 7
8M − (τ + M

8 ) = 3
4M.

Case 2: 0 ≤ τ < M
8 . For any q′ ∈ B(q, τ + M

8 ) := {q′ ∈ Rd | dist(q′, q) ≤ τ + M
8 }, we

have τ +M = dist(q′, S2) ≤ dist(q, q′) + dist(q′, S2) ≤ τ + M
8 + dist(q′, S2), which implies for

all q′ ∈ B(q, τ + M
8 )

dist(q′, S2) ≥ 7
8M.

Combined with τ < M
8 and dist(q′, S1) ≤ dist(q′, q)+dist(q, S1) ≤ τ+ M

8 +τ = M
8 + M

8 + M
8 ≤

3
8M for all q′ ∈ B(q, τ + M

8 ), we have

|dist(q′, S2)− dist(q′, S1)| ≥ dist(q′, S2)− dist(q′, S1) ≥ 7
8M −

3
8M = M

2 .

Combining these two cases on τ , for all q′ ∈ B(q, M8 ) |dist(q′, S2) − dist(q′, S1)| ≥ M
2 .

Then since B∞(q, r√
d
) ⊂ B(q, r) for all r ≥ 0, from

Cq = max
0<r≤L

rd

Ld
n

|Q ∩B∞(q, r)| ≥ ( 1
8
√
d

)dM
d

Ld
n

|Q ∩B∞(q, M
8
√
d
)|
,

we can bound the denominator in σ(q) as

1
n

∑
q′∈Q

fS1,S2 (q′) ≥ 1
n

∑
q′∈Q∩B∞(q, M

8
√
d

)

fS1,S2 (q′) = 1
n

∑
q′∈Q∩B∞(q, M

8
√
d

)

(dist(q′, S1)− dist(q′, S2))2

≥ 1
4

1
n
M2
∣∣∣Q ∩B∞(q, M

8
√
d

)
∣∣∣ ≥ 1

4( 1
8
√
d

)dM
2

Cq

Md

Ld
= 1

4( 1
8
√
d

)d 1
Cq

M2+d

Ld
,

which implies

σ(q) = M2

1
n

∑
q′∈Q fS1,S2(q′)

≤ 4(8
√
d)dM2Cq

Ld

M2+d = 4(8
√
d)dCq

Ld

Md
.

Combining this with σ(q) ≤ M2

ρ2 , we have σ(q) ≤ min
(
M2

ρ2 , 4(8
√
d)dCq L

d

Md

)
. If M2+d ≤

4(8
√
d)dCqρ2Ld, then M2

ρ2 ≤ 4(8
√
d)dCq L

d

Md , which means σ(q) ≤ min
(
M2

ρ2 , 4(8
√
d)dCq L

d

Md

)
=

M2

ρ2 ≤ 4
2

2+d (8
√
d)

2d
2+dC

2
2+d
q

(
L
ρ

) 2d
2+d . If M2+d ≥ 4(8

√
d)dCqρ2Ld, then 4(8

√
d)dCq L

d

Md ≤ M2

ρ2 ,

so σ(q) ≤ min
(
M2

ρ2 , 4(8
√
d)dCq L

d

Md

)
= 4(8

√
d)dCq L

d

Md ≤ 4
2

2+d (8
√
d)

2d
2+dC

2
2+d
q

(
L
ρ

) 2d
2+d . J

Hence, to bound the total sensitivity of F (S(L), ρ), we need a bound of CQ =
1
n

∑
q∈Q C

2
2+d
q .

SoCG 2020
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I Lemma 8. Suppose Q ⊂ [0, L]d of size n, η = minq,q′∈Q, q 6=q′ ‖q − q′‖∞, and CQ is given
by (2). Then using Cd = 2d+1 we have

CQ ≤ Cd min
((

log2
L

η

) 2
2+d ,

(1
d

log2 n
) 2

2+d
)
.

Proof. We define C̃Q := 1
n

∑
q∈Q Cq, and using Hölder inequality we have

CQ = 1
n

∑
q∈Q

C
2

2+d
q ≤ 1

n

(∑
q∈Q

Cq

) 2
2+d

n
d

2+d =
( 1
n

∑
q∈Q

Cq

) 2
2+d = (C̃Q)

2
2+d .

So, we only need to bound C̃Q.
We define rq := arg max0<r≤L

rd

Ld
n

|Q∩B∞(q,r)| for all q ∈ Q, Qi := {q ∈ Q | L
2i+1 < rq ≤

L
2i }, and A := {i ≥ 0 | i is an integer and |Qi| > 0}.

For any fixed i ∈ A, we use li := L
2i+1 as the side length of grid cell to partition the

region [0, L]d into si = (Lli )
d = 2(i+1)d grid cells: Ω1. · · · ,Ωsi where each Ωj is a closed

set, and define Qi,j := Qi ∩ Ωj . Then, |Qi ∩ B̄∞(q, li)| ≥ |Qi,j | for all q ∈ Qi,j where
B̄∞(q, li) := {q′ ∈ Rd| ‖q′ − q‖∞ ≤ li}, and we have

∑
q∈Qi

rdq
Ld

1
|Qi ∩B∞(q, rq)|

≤
∑
q∈Q

Ld

2idLd
1

|Qi ∩B∞(q, rq)|
≤ 1

2id
∑
q∈Qi

1
|Qi ∩ B̄∞(q, li)|

≤ 1
2id

∑
j∈[si],|Qi,j |>0

∑
q∈Qi,j

1
|Qi ∩ B̄∞(q, li)|

≤ 1
2id

∑
j∈[si],|Qi,j |>0

∑
q∈Qi,j

1
|Qi,j |

= 1
2id

∑
j∈[si],|Qi,j |>0

|Qi,j |
|Qi,j |

≤ si
2id = 2(i+1)d

2id = 2d.

Then using the definitions of C̃Q and rq we have

C̃Q =
∑
q∈Q

max
0<r≤L

rd

Ld
1

|Q ∩B∞(q, r)| =
∑
q∈Q

rdq
Ld

1
|Q ∩B∞(q, rq)|

=
∑
i∈A

∑
q∈Qi

rdq
Ld

1
|Q ∩B∞(q, r)|

≤
∑
i∈A

∑
q∈Qi

rdq
Ld

1
|Qi ∩B∞(q, r)| ≤

∑
i∈A

2d = 2d|A|.

We assert rq ≥ Ln−
1
d for all q ∈ Q. This is because for any r ∈ (0, Ln− 1

d ) we have

rd

Ld
n

|Q ∩B∞(q, r)| ≤
Ld

nLd
n

1 = 1 ≤ Ld

Ld
n

|Q ∩B∞(q, L)| ,

which implies the optimal rq ∈ [Ln− 1
d , L]. Moreover, since rq ≥ minq′∈Q, q′ 6=q ‖q − q′‖∞ ≥

η, we have rq ≥ max(Ln− 1
d , η) for all q ∈ Q. If i > min

(
log2

L
η ,

1
d log2 n

)
, then L

2i <

max(Ln− 1
d , η) ≤ rq, and from the definition of Qi and A we know i /∈ A, which implies

|A| ≤ 1 + min
(

log2
L
η ,

1
d log2 n

)
. Hence we obtain C̃Q ≤ 2d+1 min

(
log2

L
η ,

1
d log2 n

)
and

using CQ = (C̃Q)
2

2+d we prove the lemma. J

4 Strong Coresets for the Distance Between PL Curves

In this section, we study the distance dQ defined on a subset of S(L): the collection of
k-piecewise linear curves, and use the framework in [5] to construct a strong approximation
for Q. This requires a bound on the shattering dimension, not possible for unrestricted
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objects as in Section 3. We assume the multiset Q contains m distinct points q1, · · · , qm,
where each point qi appears mi times and

∑m
i=1mi = n. So, in this section Q will be viewed

as a set {q1, · · · , qm} (not a multiset) and each point q ∈ Q has a weight w(qi) = mi
n .

Suppose Tk := {γ = 〈c0, · · · , ck〉 | ci ∈ Rd} is the collection of all piecewise-linear curves
with k line segments in Rd. For γ = 〈c0, · · · , ck〉 ∈ Tk, 〈c0, · · · , ck〉 is the sequence of k + 1
critical points of γ. The value dist(q, γ) = infp∈γ ‖p−q‖, and function fγ1,γ2(q) = (dist(q, γ1)−
dist(q, γ2))2 are defined as before. We now use weights w(qi) = mi

n

(∑
q∈Q w(q) = 1

)
and

the resulting distance is dQ(γ1, γ2) =
(∑

q∈Q w(q)fγ1,γ2(q)
) 1

2 .
For L > ρ > 0, Q = {q1, · · · , qm} ⊂ Rd , we define

Xdk(L, ρ) := {(γ1, γ2) ∈ Tk × Tk | γ1, γ2 ∈ S(L), dQ(γ1, γ2) ≥ ρ} .

We next consider the sensitivity adjusted weights w′(q) = σ(q)
SQ

w(q) and cost function
gγ1,γ2(q) = 1

σ(q)
fγ1,γ2 (q)
f̄γ1,γ2

. These use the general bounds for sensitivity in Lemma 7 and
Theorem 4, with as usual f̄γ1,γ2 =

∑
q∈Q w(q)fγ1,γ2(q). These induce an adjusted range

space (Q,T′k,d) where each element is defined

Tγ1,γ2,η = {q ∈ Q | w′(q)gγ1,γ2(q) ≤ η, γ1, γ2 ∈ Xdk(L, ρ)}.

Now to apply the strong coreset construction of Braverman et al. [5][Theorem 5.5] we only
need to bound the shattering dimension of (Q,T′k,d).

Two recent results provide bounds on the VC dimension of range spaces related to
trajectories. Given a range space (X,R) with VC dimension ν and shattering dimension s,
it is known that s = O(ν log ν) and ν = O(s). So up to logarithmic factors these terms are
bounded by each other. First Driemel et al. [12] shows VC dimension for a ground set of
curves Xm of length m, with respect to metric balls around curves of length k, for various
distance between curves. The most relevant case is where m = 1 (so the ground set are
points like Q), and the Hausdorff distance is considered, where the VC dimension is bounded
O(d2k2 log(km)) = O(k2 log k) for d = 2, and is at least Ω(max{k, logm}) = Ω(k). Second,
Matheny et al. [21] considered ground sets Xk of trajectories of length k, and ranges defined
by geometric shapes which may intersect those trajectories anywhere to include them in a
subset, but this result is also not directly relevant. Neither of these cases directly imply the
results for our intended range space, since ours involves a pair of trajectories.

I Lemma 9. The shattering dimension of range space (Q,T′k,d) is O(k3), for constant d.

Proof. Suppose (γ1, γ2) ∈ Xdk(L, ρ) and η ≥ 0, where γ1 = 〈c1,0, · · · , c1,k〉 and γ2 =
〈c2,0, . . . , c2,k〉, then we can define the range Tγ1,γ2,η as

Tγ1,γ2,η := {q ∈ Q | w′(q)gγ1,γ2(q) ≤ η}
= {q ∈ Q | w(q)fγ1,γ2(q) ≤ SQf̄γ1,γ2η}
= {q ∈ Q | w(q)(dist(q, γ1)− dist(q, γ2))2 ≤ SQf̄γ1,γ2η}.

For a trajectory γ defined by critical points c0, c1, . . . , ck for j ∈ [k] define sj as the
segment between cj−1, cj and `j as the line extension of that segment. The distance between
q and a segment sj is illustrated in Figure 3 and defined

ξj := dist(q, sj) =


dist(q, cj−1), if 〈cj − cj−1, q − cj−1〉 ≤ 0
dist(q, cj), if 〈cj−1 − cj , q − cj〉 ≤ 0
dist(q, `j), otherwise

.

SoCG 2020



63:12 Sketched MinDist

cj�1
<latexit sha1_base64="+Bz6RhyTJSshs5MLt0pR8C3jub8="></latexit>

cj
<latexit sha1_base64="52TEysw4UEmvhKk47yNoGbAbI+s="></latexit>

sj
<latexit sha1_base64="UyrKNj2QbxhCHlj6GIaAU+4/TDY="></latexit>

q
<latexit sha1_base64="02oLuJC+arvj7p7y3NKLfb9WSXg="></latexit>

cj�1
<latexit sha1_base64="+Bz6RhyTJSshs5MLt0pR8C3jub8="></latexit>

cj
<latexit sha1_base64="52TEysw4UEmvhKk47yNoGbAbI+s="></latexit>

sj
<latexit sha1_base64="UyrKNj2QbxhCHlj6GIaAU+4/TDY="></latexit>

q
<latexit sha1_base64="02oLuJC+arvj7p7y3NKLfb9WSXg="></latexit>

cj�1
<latexit sha1_base64="+Bz6RhyTJSshs5MLt0pR8C3jub8="></latexit>

cj
<latexit sha1_base64="52TEysw4UEmvhKk47yNoGbAbI+s="></latexit>

sj
<latexit sha1_base64="UyrKNj2QbxhCHlj6GIaAU+4/TDY="></latexit>

q
<latexit sha1_base64="02oLuJC+arvj7p7y3NKLfb9WSXg=">AAAEKXicdVPLbhMxFHU7PEp4tWUHmxEpUjeNMkEVCKlSJFSJBYJWkLZSHFUez53Eiu0xtqcQWfMFLNjAV/AX/AE7YMs3sMeetGoeYGlGd+45595zx3aqODO23f65shpduXrt+tqNxs1bt+/cXd/YPDJFqSn0aMELfZISA5xJ6FlmOZwoDUSkHI7T8fOAH5+BNqyQb+1EwUCQoWQ5o8T61OG70/Vmu9WuV7wcJOdBs3sfb//59gkfnG5EmzgraClAWsqJMf2krezAEW0Z5VA1cGlAETomQ+j7UBIBZuBqp1X8yGeyOC+0f6SN62wDG/C+5dCOHLbwwb5nmR3t7bZ2mazmwDDkf0FFNJOZd1W5thBLmBkzVblOa7fGLj06IoyZiNR7E8SOzCIWkv/C+qXNnw4ck6q0IGkVzwmhNFQzZZda1eUa2M9BCyGIzBwGZSqHz4j2AeOFXID9SGF7jZ8LMwvCl4t3OsrWQ4Ha20mmsS3UBeQraJitQat+MvCdpCk1BAsO75dvaoeumVTVkiBdFoR3ml7QZ8njDKrpzhnqwscCnpace4IspvsTb9UZsFtx+GtzTJ7VjX2Ux9jkORGMT+LQc54YTvrUopc4/JLoIQTapWhBQJk9r1yfOZfyEjzbMjmJ+81ksNjg9cH+q1nPFzoNmZeFpoHxrIq9sNHwtyhZvDPLwVGnlTxudQ6TZreDpmsNPUAP0TZK0BPURS/QAeohigB9RJ/Rl+hr9D36Ef2aUldXzjX30NyKfv8FtVpw7A==</latexit>

Figure 3 Illustration of the dist(q, sj) from point q to segment sj .

Then dist(q, γ) = minj∈[k] ξj . For trajectories γ1 and γ2, specify these segment distances as
ξ

(1)
i and ξ(2)

i , respectively. Then the expression for Tγ1,γ2,η can be rewritten as

Tγ1,γ2,η = {q ∈ Q | w′(q)gγ1,γ2 (q) ≤ η}

= {q ∈ Q | w(q)(min
j∈[k]

ξ
(1)
j − min

j∈[k]
ξ

(2)
j )2 ≤ SQf̄γ1,γ2η}

= ∪j1,j2∈[k]{q ∈ Q | ξ(1)
j1
≤ ξ(1)

j , ξ
(2)
j2
≤ ξ(2)

j ∀j ∈ [k], w(q)(ξ(1)
j1
− ξ(2)

j2
)2 ≤ SQf̄γ1,γ2η}

=
⋃

j1,j2∈[k]


(
∩j∈[k],j 6=j1 {q ∈ Q | ξ

(1)
j1
≤ ξ(1)

j }
)

∩
(
∩j∈[k],j 6=j2 {q ∈ Q| ξ

(2)
j2
≤ ξ(2)

j }
)

∩ {q ∈ Q |
√
w(q)(ξ(1)

j1
− ξ(2)

j2
) ≤ (SQf̄γ1,γ2η) 1

2 }
∩ {q ∈ Q |

√
w(q)(ξ(2)

j2
− ξ(1)

j1
) ≤ (SQf̄γ1,γ2η) 1

2 }

 .

This means set Tγ1,γ2,η can be decomposed as the union and intersection of O(k3) simply-
defined subsets of Q. Specifically looking at the last line, this can be seen as the union over
O(k2) sets (the outer union), and the first two lines are the intersection of O(k) sets, and
the last two lines inside the union are the intersection with one set each.

Next we argue that each of these O(k3) simply defined subsets of Q can be characterized
as an element of a range space. By standard combinatorics [19, 3], the bound of the shattering
dimension of the entire range space is O(k3) times the shattering dimension of any of these
simple ranges spaces.

To get this simple range space shattering dimension bound, we can use a similar lin-
earization method (see full version). For any simple range space R determined by the set
decomposition of Tγ1,γ2,η, we can introduce new variables c0 ∈ R, z, c ∈ Rd′ , where z depends
only on q, and c0, ci depend only on γ1, γ2 and r, and d′ only depends on d. Here, Q
is a fixed set and thus SQ is a constant. By introducing new variables we can construct
an injective map ϕ : Q 7→ Rd′ , s.t. ϕ(q) = z. There is also an injective map from R to
{{z ∈ ϕ(Q) | c0 + zT c ≤ 0} | c0 ∈ R, c ∈ Rd′}. Since the shattering dimension of the range
space (Rd′ ,Hd′), where Hd′ = {h is a halfspace in Rd′}, is O(d′), we have the shattering
dimension of(Q,R) is O(d′) ≤ Cd where Cd is a positive constant depending only on d.
Piecing this all together we obtain Cdk3 bound for the shattering dimension of (Q,T′k,d). J

Now, we invoke Lemma 9 and [5][Theorem 5.5] to get a (ρ, ε, δ)-strong coreset for Xdk(L, ρ).

I Theorem 10. Let L > ρ > 0, Q ⊂ [0, L]d, and consider trajectory pairs Xdk(L, ρ). Suppose
σ(q) and SQ are defined in Lemma 7 and Theorem 4 respectively. Then for δ, ε ∈ (0, 1) a σ-
sensitive sampling of size N = O(SQε2 (k3 logS + log 1

δ )) provides Q̃, a strong (ρ, ε, δ)-coreset;
that is with probability at least 1− δ, for all pairs γ1, γ2 ∈ Xdk(L, ρ) we have

(1− ε)dQ(γ1, γ2) ≤ dQ̃,W (γ1, γ2) ≤ (1 + ε)dQ(γ1, γ2).
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5 Trajectory Reconstruction

Let T := {γ = 〈c0, · · · , ck〉 | ci ∈ R2, k ≥ 1} be the set of all piecewise-linear curves in R2.
Each curve in T is specified by a series of critical points 〈c0, c1, . . . , ck〉, and k line segments
s1, s2, . . . , sk, where si is the line segment ci−1ci. In this section we study how to recover γ
from Q and vQ(γ) for γ ∈ T.

Restrictions on curves and Q. For τ > 0 we define a family of curves Tτ ⊂ T s.t. each
γ ∈ Tτ has two restrictions:

(R1): Angles ∠[ci−1,ci,ci+1] at an internal critical point ci is non-zero (i.e., in (0, π)).
(R2): Each critical point ci is τ -separated, that is the disk B(ci, τ) = {x ∈ R2 | ‖x− ci‖ ≤
τ} only intersects the two adjacent segments si−1 and si of γ, or one adjacent segment
for endpoints (i.e., only the s1 for c0 and sk for ck).

We next restrict that all curves (and Q) lie in region Ω ⊂ R2. Let Tτ (Ω) be the subset of
Tτ where all curves γ have all critical points within Ω, and in particular, no ci ∈ γ is within
a distance τ of the boundary of Ω.

To define Q, for η > 0, define an infinite grid Gη = {gv ∈ R2 | gη = ηv for v =
(v1, v2) ∈ Z2}, where Z is all integers. Suppose η ≤ τ

32 , then Q = Gη ∩ Ω = {q1, · · · , qn},
γ ∈ Tτ (Ω), vi = minp∈γ ‖qi − p‖ and vQ(γ) = (v1, . . . , vn). We define some notations that
are used in this section for the implied circle Ci := {x ∈ R2| ‖x− qi‖ = vi}, the closed disk
Bi := {x ∈ R2| ‖x− qi‖ ≤ vi}, and the open disk Ḃi := {x ∈ R2| ‖x− qi‖ < vi} around each
qi or radius vi. When the radius is specified as r (with perhaps r 6= vi), then we, as follows,
denote the associated circle Ci,r, closed disk Bi,r, and open disk Ḃi,r around qi.

For Q, γ ∈ Tτ (Ω) and vQ(γ) we have the following three observations.
(O1): In any disk with radius less than τ , there is at most one critical point of γ; by (R2).
(O2): If a point moves along γ, it can only stop or change direction at critical points of γ.
(O3): For any qi ∈ Q, γ cannot go into Ḃi. Moreover, Ci must contain at least one point
of γ, and if this point is not a critical point, then γ must be tangent to Ci at this point.

The restriction (R2) only implies if there is a critical point of γ, then in its neighborhood
γ has at most two line segments. However, if there is no critical point in a region, then the
shape of γ can be very complicated in this region, so we need to first identify the regions
that contain a critical point.

These observations form the basis for the algorithm and its proof of correctness. We next
describe the algorithm, state the main results, and provide intuition for the proofs. For space,
some pseudocode and full proofs which rely heavily on case analysis are in the full version.

Recovery algorithm. The entire algorithm is overviewed in Algorithm 1. For each critical
point c ∈ γ, there exists q ∈ Q such that dist(q, c) < η. So to recover γ, we first traverse
{qi ∈ Q | vi < η} and use isCritical(qi) to solve the decision problem of if there is a critical
point in Bi,3η. Whenever there is a critical point in Bi,3η, we then use FindCritical(qi) to
find it – collectively, this finds all critical points of γ. Finally, we use DetermineOrder
(Algorithm 2) to determine the order of all critical points of γ, which recovers γ.

Existence of critical points. In isCritical(qi) we consider the common tangent line of Ci
and Cj for all qj in a neighborhood of qi. If no common tangent line can go through Bi,3η
without going into the interior of any other circle centered in Bi,3η, unlike Figure 4(Left),
then it implies there is a critical point of γ in Bi,3η. This can be confirmed checking the
possible tangent lines for circles centered at grid points in Bi,3η and around qi; cases for
endpoints and internal points are illustrated in Figure 4(Center,Right).
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Algorithm 1 Recover γ ∈ Tτ (L) from Q and vQ(γ).

Initialize Qη := {qi ∈ Q | vi < η}, close set Qr := ∅, endpoints E = ∅ and critical points
A := ∅.
for each qi ∈ Qη do

if qi ∈ Qr or isCritical(qi)=False then
continue

Let (c, S) := FindCritical(qi).
if |S| = 1 then
E := E ∪ {(c, S)}. // c is an endpoint of γ

Let A := A ∪ {(c, S)} and Qr := Qr ∪
(
Qη ∩Bc,16η

)
. // aggregate critical points

return γ := DetermineOrder(E,A)
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Figure 4 Determining no critical point (Left), endpoint (Center), or internal critical point (Right).

I Lemma 11. Suppose qi ∈ Q and vi < η. If isCritical(qi) returns True, then there must
be a critical point of γ in Bi,3η. Moreover, for any critical point c ∈ γ there exists some
qi ∈ Q such that vi < η and isCritical(qi) returns True for the input qi.

Finding a critical point. If there is a critical point c in Bi,3η, then using (R2) we know in
the neighborhood of c, γ has a particular pattern: it either has one line segment, or two line
segments. We will need two straightforward subfunctions:

FCT (Find Common Tangents) takes in three grid points qi, qj , qk, and returns the all
common tangent lines of Cj and Ck which do not intersect the interior of disks Ḃl of
a disk associated with a point ql ∈ Qi,8η. This generates a feasible superset of possible
nearby line segments which may be part of γ.
MOS (Merge-Overlapping-Segments) takes a set of line segments, and returns a smaller
set, merging overlapping segments. This combines the just generated potential line
segments of γ.

Now in FindCritical(qi) for each pair qj , qk ∈ Bi,8η, we first use FCS to find the common
tangent line of Cj , Ck that could be segments of γ, and then use MOS to reduce this set
down to a minimal set of possibilities Sm. By definition, there must be a critical point c,
and thus can be at most 2 actual segments of γ within Bi,8η, so we can then refine Sm. We
first check if c is an endpoint, in which case there must be only one valid segment. If not,
then there must be 2, and we need to consider all pairs in Sm. This check can be done by
verifying that every Ck for qk ∈ Qi,8η is tangent to the associated ray ray(s) (for an endpoint)
or for the associated rays ray(s) and ray(s′) for their associated segment pairs (for an internal
critical point). Some of these cases are illustrated in Figure 5.
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Figure 5 Illustration of how Q ∩Bi,8η is sufficient to recover a critical point c in Bi,3η for the c
and endpoint (Left), or an internal point with small angle (Center) or large angle (Right).

I Lemma 12. Suppose c′ ∈ Bi,3η is a critical point of γ, and (c, S) is the output of
FindCritical(qi), then c = c′. Moreover, |S| = 1 if and only if c is an endpoint of γ.

Using isCritical and FindCritical we can find all critical points (E,A) with associated
line segments of γ, so the final step is to use function DetermineOrder(E,A) (Algorithm
2) to determine their order, as we argue it will completely recover γ.

Algorithm 2 DetermineOrder(E,A): Determine the order of critical points.

Choose any (c0, S0) ∈ E, let k = |A| − 1, A := A \ {(c0, S0)}, s1 ∈ S0 and γ := 〈c0〉.
for i = 1 to k do
Find closest c from (c, S) ∈ A to ci−1 so c is on ray(si), and let A := A \ {(c, S)}.
Append ci = c to γ, and if i < k then let si+1 = s where s ∈ S is not parallel with si.

return γ

I Theorem 13. Suppose Q = Gη ∩ Ω, η ≤ τ
32 , and vQ(γ) is generated by Q and γ ∈ Tτ (Ω)

with k segments, then Algorithm 1 can recover γ from vQ(γ) in O(|Q|+ k2) time.
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