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Abstract
In this paper we study the four-dimensional dominance range reporting problem and present data
structures with linear or almost-linear space usage. Our results can be also used to answer four-
dimensional queries that are bounded on five sides. The first data structure presented in this paper
uses linear space and answers queries in O(log1+ε n + k logε n) time, where k is the number of
reported points, n is the number of points in the data structure, and ε is an arbitrarily small positive
constant. Our second data structure uses O(n logε n) space and answers queries in O(logn+ k) time.

These are the first data structures for this problem that use linear (resp. O(n logε n)) space and
answer queries in poly-logarithmic time. For comparison the fastest previously known linear-space
or O(n logε n)-space data structure supports queries in O(nε + k) time (Bentley and Mauer, 1980).
Our results can be generalized to d ≥ 4 dimensions. For example, we can answer d-dimensional
dominance range reporting queries in O(log logn(logn/ log logn)d−3 +k) time using O(n logd−4+ε n)
space. Compared to the fastest previously known result (Chan, 2013), our data structure reduces
the space usage by O(logn) without increasing the query time.
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1 Introduction

In the orthogonal range searching problem we keep a set S of multi-dimensional points in a
data structure so that for an arbitrary axis-parallel query rectangle Q some information about
points in Q∩ S can be computed efficiently. Range searching is one of the most fundamental
and widely studied problems in computational geometry. Typically we want to compute
some aggregate function on Q ∩ S (range aggregate queries), generate the list of points in S
(reporting queries) or determine whether Q ∩ S = ∅ (emptiness queries). In this paper we
study the complexity of four-dimensional orthogonal range reporting and orthogonal range
emptiness queries in the case of dominance queries and in the case when the query range is
bounded on five sides. We demonstrate for the first time that in this scenario both queries
can be answered in poly-logarithmic time using linear or almost-linear space.

Range trees, introduced by Lueker [23] in 1978 and Bentley [7] in 1980, provide a
solution for the range reporting problem in O(n logd n) space and O(logd n + k) time for
any constant dimension d. Henceforth k denotes the number of points in the answer to a
reporting query and n denotes the number of points in the data structure. A number of
improvements both in time and in space complexity were obtained in the following decades.
See e.g., [24, 12, 17, 18, 16, 13, 32, 14, 15, 34, 35, 5, 6, 26, 25, 27, 22, 31, 11, 10] for a selection
of previous works on range reporting and related problems. Surveys of previous results can be
found in [3, 4, 29]. We say that a range query is f -sided if the query range is bounded on f
sides, i.e., a query can be specified with f inequalities; see Fig. 1 on p. 2. Researchers noticed
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(a) (b) (c)

Figure 1 Examples of queries in two and three dimensions. (a) A two-dimensional 3-sided query
(b) A three-dimensional 3-sided (dominance) query (c) A three-dimensional 5-sided query.

that the space and time complexity of range reporting depends not only on the dimensionality:
the number of sides that bound the query range is also important. Priority search tree,
introduced by McCreight [24], provides an O(n) space and O(logn + k) time solution for
3-sided range reporting queries in two dimensions. In [16] Chazelle and Edelsbrunner have
demonstrated that three-dimensional 3-sided queries (aka three-dimensional dominance
queries) can be answered in O(log2 n + k) time using an O(n) space data structure. In
1985 Chazelle [13] described a compact version of the two-dimensional range tree that
uses O(n) space and supports general (4-sided) two-dimensional range reporting queries in
O(logn+ k logε n) time, where ε denotes an arbitrarily small positive constant. In [13] the
author also presented an O(n) space data structure that supports 5-sided three-dimensional
reporting queries in O(log1+ε n+ k logε n) time. Bentley and Mauer [8] described a linear-
space data structure that supports d-dimensional range reporting queries for any constant d;
however, their data structure has prohibitive query cost O(nε + k).

Summing up, we can answer range reporting queries in poly-logarithmic time using an
O(n) space data structure when the query is bounded on at most 5 sides and the query is in
two or three dimensions. Significant improvements were achieved on the query complexity of
this problem in each case; see Table 1. However, surprisingly, linear-space and polylog-time
data structures are known only for the above mentioned special cases of the range reporting.
For example, to answer four-dimensional 4-sided queries (four-dimensional dominance queries)
in polylogarithmic time using previously known solutions one would need Ω(n logn/ log logn)
space. This situation does not change when we increase the space usage to O(n logε n) words:
data structures with poly-logarithmic time are known for the above described special cases
only. See Table 2.

Previous results raise the question about low-dimensional range reporting. What de-
termines the complexity of range reporting data structures in d ≥ 4 dimensions: the
dimensionality or the number of sides in the query range? The lower bound of Patrascu [33]
resolves this question with respect to query complexity. It is shown in [33] that any data struc-
ture using O(npolylog(n)) space needs Ω(logn/ log logn) time to answer four-dimensional
dominance (4-sided) queries. On the other hand, two- and three-dimensional 4-sided queries
can be answered in O(log logn + k) time using O(npolylog(n)) space. In this paper we
address the same question with respect to space complexity.

We demonstrate that four-dimensional 5-sided queries can be answered in O(log1+ε n+
k logε n) time using an O(n) space data structure. Our data structure can also support
5-sided emptiness queries in O(log1+ε n) time. If the space usage is slightly increased to
O(n logε n), then we can answer reporting and emptiness queries in O(logn+k) and O(logn)
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time respectively. For comparison, the fastest previous method [9] requires O(n log1+ε n)
space and supports queries in O(logn+k) time. Since dominance queries are a special case of
5-sided queries, our results can be used to answer four-dimensional dominance queries within
the same time and space bounds. Using standard techniques, our results can be generalized
to d dimensions for any constant d ≥ 4: We can answer d-dimensional dominance queries
in O(log logn(logn/ log logn)d−3 + k) time and O(n logd−4+ε n) space. We can also answer
arbitrary (2d − 3)-sided d-dimensional range reporting queries within the same time and
space bounds.

Our base data structure is the range tree on the fourth coordinate and every tree node
contains a data structure that answers three-dimensional dominance queries. We design a
space-efficient representation of points stored in tree nodes, so that each point uses only
O(log logn) bits. Since each point is stored O(logn/ log logn) times in our range tree, the
total space usage is O(n logn) bits. Using our representation we can answer three-dimensional
queries on tree nodes in O(logε n) time; we can also “decode” each point, i.e., obtain the actual
point coordinates from its compact representation, in O(logε n) time. Efficient representation
of points is the core idea of our method: we keep a geometric construct called shallow
cutting in each tree node and exploit the relationship between shallow cuttings in different
nodes. Shallow cuttings were extensively used in previous works to decrease the query
time. But, to the best of our knowledge, this paper is the first that uses shallow cuttings
to reduce the space usage. The novel part of our construction is a combination of several
shallow cuttings that allows us to navigate between the nodes of the range tree and “decode”
points from their compact representations. We recall standard techniques used by our data
structure in Section 2. The linear-space data structure is described in Section 3. In Section 4
we show how the decoding cost can be reduced to O(1) by slightly increasing the space
usage. The data structure described in Section 4 supports queries in O(logn+ k) time and
uses O(n logε n) space. Previous and new results for 4-sided queries in four dimensions are
listed in Table 3. Compared to the only previous linear-space data structure [8], we achieve
exponential speed-up in query time. Compared to the fastest previous result [10], our data
structure reduces the space usage by O(logn) without increasing the query time.

The model of computation used in this paper is the standard RAM model. The space is
measured in words of logn bits and we can perform standard arithmetic operations, such as
addition and subtraction, in O(1) time. Our data structures rely on bit operations, such as
bitwise AND or bit shifts or identifying the most significant bit in a word. However such
operations are performed only on small integer values (i.e., on positive integers bounded by
n) and can be easily implemented using look-up tables. Thus our data structures can be
implemented on the RAM model with standard arithmetic operations and arrays.

We will assume in the rest of this paper that all point coordinates are bounded by n. The
general case can be reduced to this special case using the reduction to rank space, described
in Section 2. All results of this paper remain valid when the original point coordinates are
real numbers.

2 Preliminaries

In this paper ε will denote an arbitrarily small positive constant. We will consider four-
dimensional points in a space with coordinate axes denoted by x, y, z, and z′. The following
techniques belong to the standard repertoire of geometric data structures.

SoCG 2020
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Table 1 Linear-space data structures for different types of queries. The second column provides
the reference to the first data structure achieving linear space and the year of the first publication.
The third column contains the query time of the first data structure. The fourth and the fifth
columns contain the same information about the best (fastest) currently known data structure.
Result marked with E supports only emptiness queries. Data structures in rows 4 and 5 also support
4-sided queries.

Query First Best
Type Ref Query Time Ref Query Time
2-D 3-sided [24], 1985 O(logn+ k) [5], 2000 O(k + 1)
2-D 4-sided [13], 1985 O(logn+ k logε n) [11], 2011 O((k + 1) logε n)
3-D 3-sided [16], 1986 O(log2 n+ k) [9], 2011 O(log logn+ k)
3-D 5-sided [13], 1985 O(log1+ε n+ k logε n) [19], 2012 O(logn log logn)E

4-D 5-sided New O(log1+ε n+ k logε n)

Table 2 O(n logε n)-space data structures for orthogonal range reporting. The second and the
third columns contain the reference to and the query time of the first data structure. The fourth
and the fifth columns contain the reference to and the query time of the best (fastest) currently
known data structure. Data structures in rows 2 and 3 also support 4-sided queries.

Query First Best
Type Ref Query Time Ref Query Time
2-D 4-sided [13], 1985 O(logn+ k) [5], 2000 O(log logn+ k)
3-D 5-sided [13], 1985 O(logn+ k) [11], 2011 O(log logn+ k)
4-D 5-sided New O(logn+ k)

Shallow Cuttings. A point q dominates a point p if and only if every coordinate of q is
larger than or equal to the corresponding coordinate of p. The level of a point q in a set S is
the number of points p in S, such that q dominates p (the point q is not necessarily in S).
We will say that a cell C is a region of space dominated by a point qc and we will call qc the
apex point of C. A t-shallow cutting of a set S is a collection of cells C, such that (i) every
point in Rd with level at most t (with respect to S) is contained in some cell Ci of C and
(ii) if a point p is contained in some cell Cj of C, then the level of p in S does not exceed 2t.
The size of a shallow cutting is the number of its cells. We can uniquely identify a shallow
cutting C by listing its cells and every cell can be identified by its apex point. Since the level
of any point in a cell Cj does not exceed 2t, every cell Cj contains at most 2t points from S,
|Cj ∩ S| ≤ 2t for any Cj in C.

There exists a t-shallow cutting of size O(n/t) for d = 2 [35] or d = 3 dimensions [1].
Shallow cuttings and related concepts are frequently used in data structures for three-
dimensional dominance range reporting queries.

Consider a three-dimensional point q3 = (a, b, c) and the corresponding dominance range
Q3 = (−∞, a]×(−∞, b]×(−∞, c]. We can find a cell C of a t-shallow cutting C that contains
q3 (or report that there is no such C) by answering a point location query in a planar
rectangular subdivision of size O(n/t). Point location queries in a rectangular subdivision of
size n can be answered in O(log logn) time using an O(n)-space data structure [10].

Range Trees. A range tree is a data structure that reduces d-dimensional orthogonal range
reporting queries to a small number of (d− 1)-dimensional queries. Range trees provide a
general method to solve d-dimensional range reporting queries for any constant dimension d.
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Table 3 Previous and new results on dominance range reporting in four dimensions. Results in
lines 2, 3, and 7 can be modified so that space is decreased to O(n logn/ log logn) and the query
time is increased by O(logε n) factor.

Ref. Space Query Time
[8] O(n) O(nε + k)
[16] O(n logn) O(log2 n+ k)
[21] O(n logn) O(log2 n/ log logn+ k)
[25] O(n log2+ε n) O(logn log logn+ k)
[1] O(n log1+ε n) O(logn log logn+ k)
[9] O(n log1+ε n) O(logn+ k)
[9] O(n logn) O(logn log logn+ k)
New O(n logε n) O(logn+ k)
New O(n) O(log1+ε n+ k logε n)

`a `b

Figure 2 Example of a query in a range tree with node degree ρ = 3. Canonical nodes are shown
in red. Only nodes of πa ∪ πb and π′a ∪ π′b are shown.

In this paper we use this data structure to reduce four-dimensional 5-sided reporting queries
to three-dimensional 3-sided queries. A range tree for a set S is a balanced tree that holds
the points of S in the leaf nodes, sorted by their z′-coordinate. We associated a set S(u) with
every internal node u. S(u) contains all points p that are stored in the leaf descendants of u.
We assume that each internal node of T has ρ = logε n children. Thus every point is stored
in O(logn/ log logn) sets S(u). We keep a data structure that supports three-dimensional
reporting queries on S(u) for every node u of the range tree.

Consider a query Q = Q3 × [a, b], where Q3 denotes a 3-sided three-dimensional query
range. Let `a be the rightmost leaf that holds some z′-coordinate a′ < a and let `b be the
leftmost leaf that holds some b′ > b. Let vab denote the lowest common ancestor of `a and `b.
We denote by πa (resp. πb) the set of nodes on the path from `a (`b) to vab, excluding the
node vab. We will say that u is a left (right) sibling of v iff u and v have the same parent node
and u is to the left (respectively, to the right) of v. The set π′a consists of all nodes u that
have some left sibling v ∈ πa and π′b consists of all nodes u that have a right sibling v ∈ πb.
The set π′′a (π′′b ) consists of all nodes in π′a (resp. in π′b) that are not children of vab. The set
π′ab consists of all children of vab that are in π′a ∩ π′b. For any point p ∈ S, a ≤ p.z′ ≤ b iff
p ∈ S(u) for some u in π′′a ∪ π′′b ∪ π′ab. Nodes u ∈ π′′a ∪ π′′b ∪ π′ab are called canonical nodes for
the range [a, b]. See an example on Fig. 2. In order to answer a four-dimensional query Q we
visit every canonical node u and report all points p ∈ S(u) ∩Q3.

Thus we can answer a four-dimensional 5-sided query by answering O(ρ · logn/ log logn)
three-dimensional 3-sided queries in canonical nodes.

SoCG 2020



59:6 Four-Dimensional Dominance Range Reporting in Linear Space

Rank Space. Let E be a set of numbers. The rank of a number x in E is the number
of elements in E that do not exceed x: rank(x,E) = |{ e ∈ E | e ≤ x }|. Let pred(x,E) =
max{ e ∈ E | e ≤ x } and succ(x,E) = min{ e ∈ E | e ≥ x }. An element e ∈ E is in the
range [a, b], a ≤ e ≤ b, iff its rank satisfies the inequality a′ ≤ rank(e, E) ≤ b′ where
a′ = rank(succ(a,E), E) and b′ = rank(b, E). Hence we can report all e ∈ E satisfying
a ≤ e ≤ b by finding all elements e satisfying a′ ≤ rank(e, E) ≤ b′.

The same approach can be also extended to multi-dimensional range reporting. A three-
dimensional transformation is implemented as follows. We say that a three-dimensional point
p ∈ S is reduced to rank space (or p is in the rank space) if each coordinate of p is replaced
by its rank in the set of corresponding coordinates. That is, each point p = (p.x, p.y, p.z)
is replaced with ξ(p) = (rank(p.x, Sx), rank(p.y, S.y), rank(p.z, Sz)), where Sx, Sy, and Sz
denote the sets of x-, y-, and z-coordinates of points in S. For a point p ∈ S we have

p ∈ [a, b]× [c, d]× [e, f ]⇔ ξ(p) ∈ [a′, b′]× [c′, d′]× [e′, f ′]

where a′ = rank(succ(a, Sx), Sx), c′ = rank(succ(c, Sy), Sy), e′ = rank(succ(e, Sz), Sz), b′ =
rank(b, Sx), d′ = rank(d, Sy), and f ′ = rank(f, Sz). Thus we can reduce three-dimensional
queries on a set S to three-dimensional queries on a set { ξ(p) | p ∈ S }. Suppose that we
store the set ξ(S) in a data structure that answers queries in time t(n) and uses space s(n).
Suppose that we also keep data structures that answers predecessor queries on Sx, Sy, and
Sz. Then we can answer orthogonal range reporting queries on S in time t(n) +O(tpred(n))
using space s(n) + O(spred(n)). Here spred(n) and tpred(n) are the space usage and query
time of the predecessor data structure. Additionally we need a look-up table that computes
ξ−1(p), i.e., computes the coordinates of a point p from its coordinates in the rank space. As
we will show later, in some situations this table is not necessary. Summing up, reduction to
rank space enables us to reduce the range reporting problem on a set S ⊂ R3 to a special
case when all point coordinates are positive integers bounded by |S|.

The same rank reduction technique can be applied to range reporting in any constant
dimension d. In the rest of this paper we will assume for simplicity that all points of S are
in the rank space.

3 Five-Sided Range Reporting in Linear Space

Base Structure. We keep all points in a range tree that is built on the fourth coordinate.
Each tree node has ρ = logε n children; thus the tree height is O(logn/ log logn). Let S(u)
denote the set of points assigned to a node u. To simplify the notation, we will not distinguish
between points in S(u) and their projections onto (x, y, z)-space. We will say for example
that a point p is in a range Q = (−∞, a] × (−∞, b] × (−∞, c] if the projection of p onto
(x, y, z)-space is in Q.

Since we aim for a linear-space data structure, we cannot store sets S(u) in the nodes of
the range tree. We keep a t0-shallow cutting C(u) of S(u) where t0 = log2 n. For every cell
Ci(u) of the shallow cutting we store all points from S(u)∩Ci in a data structure supporting
three-dimensional dominance queries. We do not store the original (real) coordinates of
points1 in Ci. Instead we keep coordinates in the rank space of S(u) ∩ Ci. Since S(u) ∩ Ci
contains O(log2 n) points, we need only O(log logn) bits per point to answer three-dimensional
dominance queries in the rank space.

1 To avoid clumsy notation, we will sometimes omit the node specification when the node is clear from
the context. Thus we will sometimes write Ci instead of Ci(u) and C instead of C(u). The same
simplification will be used for other shallow cuttings.
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We can answer a 5-sided query (−∞, qx] × (−∞, qy] × (−∞, qz] × [z′l, z′r] by visiting
all canonical nodes that cover the range [z′l, z′r]. In every visited node we answer a three-
dimensional dominance query, i.e., report all points dominated by q3 = (qx, qy, qz) in two
steps: first, we search for some cell Ci(u) that contains q3. If such a cell Ci(u) exists, then
we answer the dominance query in the rank space of S(u) ∩ Ci(u) in O(1) time per point.
We describe the data structure for dominance queries on t0 rank-reduced points in the full
version of this paper [30].

We must address several issues in order to obtain a working solution: How can we
transform a three-dimensional query to the rank space of Ci(u)? A data structure for cell
Ci(u) reports points in the rank space of Ci(u). How can we obtain the original point
coordinates? Finally how do we answer a query on S(u) if q3 is not contained in any cell
Ci(u)? First, we will explain how to decode points from a cell C(u) and obtain their original
coordinates. We also show how to transform a query to the rank space of a cell. Next we
will describe a complete procedure for answering a query. Finally we will improve the query
time and achieve the main result of this section.

Decoding Points. This is the crucial component of our construction. We will need additional
structures to obtain the original coordinates of points from C(u). To this end we keep an
additional (4t0)-shallow cutting C′(u) in every node of the range tree. For each cell C ′i(u) of
C′(u) we create a separate (2t0)-shallow cutting of S(u) ∩ C ′i(u), called Di(u).

I Lemma 1. Let A be an f -shallow cutting for a set S and let B be an (f ′)-shallow cutting
for a set S′ ⊆ S so that f ′ ≥ 2f . Every cell Ai of A is contained in some cell Bj of B.

Proof. Consider an apex point ai of Ai (i.e., the point with maximum x- y-, and z-coordinates
in Ai). The level of ai in S is at most 2f by definition of a shallow cutting. Since S′ ⊆ S,
the level of ai in S′ does not exceed 2f . Hence there exists a cell Bj of B that contains
ai. The apex bj of Bj dominates ai. Hence bj also dominates all points from Ai and Bj
contains Ai. J

Lemma 1 will be extensively used in our decoding procedure. We will say that a point p
in C ′i(u) is interesting if p is contained in some Ck(w), where w is an ancestor of u. Each
interesting point p ∈ S(u) can be uniquely represented by (a) a cell C ′i(u) of C′(u) that
contains p and (b) coordinates of p in the rank space of C ′i(u). The following relationship
between shallow cuttings provides the key insight.

I Lemma 2.
(i) Every cell Ci(u) of C(u) is contained in some cell C ′j(u) of C′(u)
(ii) Let ur be a child of an internal node u. Every cell Dij(u) of every Di(u) is contained

in some cell C ′k(ur) of C′(ur).
(iii) Every interesting point from C ′i(u) is stored in some cell Dij(u) of Di(u).

Proof. (i) Immediately follows from Lemma 1.(ii) Consider the apex point pa of Dij(u). The
point pa dominates at most 4t0 points from S(u) and at most 4t0 points from S(ur) because
S(ur) ⊂ S(u). Hence both pa and Dij(u) are contained in some cell of C ′(ur). (iii) Suppose
that a point p ∈ S(w) is stored in some cell Ck(w) of C(w) where w is an ancestor of u. The
point p dominates at most 2t0 points from S(w). Since S(u) is a subset of S(w), p dominates
at most 2t0 points in S(u). Hence p is contained in some cell C ′i(u) of the shallow cutting
C′(u). Every point of C ′i(u) ∩ S(u) that dominates at most 2t0 points of S(u) is contained in
some cell Dij(u) of Di(u). J

SoCG 2020
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Consider an arbitrary point p in a cell Ci(u) of C(u). Our decoding procedure finds a
representation of p in C′(u). That is, we find the cell C ′j(u) of C′(u), such that p ∈ C ′j(u),
and the rank of p in C ′j(u). The key observation is that Ci(u) is contained in some C ′j(u)
(Lemma 2, item (i)) Therefore we need to store a pointer to C ′j(u) only once for all points
p in Ci(u). For every p from Ci(u), we can store its rank in C ′j(u) using O(log logn) bits.
Next, our decoding procedure moves from a node u to its child uf , such that p ∈ S(uf ), and
computes a representation of p in C′(uf ). This is done in two steps: First we examine the
shallow cutting Dj(u) and find the cell Djl(u) that contains p. By Lemma 2, item (iii), such
a cell always exists. The shallow cutting Djl(u) consists of O(1) cells. Therefore we can
store, for any interesting point p, the cell Djl(u) containing p and the rank of p in Djl(u)
using O(log logn) bits. Then we move from Djl(u) to C(uf ): by Lemma 2, item (ii), Djl(u)
is contained in some C ′k(uf ). Thus we need to store the pointer to C ′k(uf ) only once for
all interesting points p in Djl(u). We can store the rank of p in C ′k(uf ) using O(log logn)
bits. When the representation of p in C′(uf ) is known, we move to the child ud of uf , such
that p ∈ S(ud) and compute a representation of p in C′(ud). We continue in the same way
until a leaf node is reached. Every leaf node ` contains original (real) coordinates of points
in S(`). Hence we can obtain the coordinates of p when a leaf is reached. Summing up,
shallow cuttings C′(u) and Di(u) allow us to move from a node u to a child of u using
only O(log logn) additional bits per point. A more detailed description of auxiliary data
structures needed for decoding is given in the next paragraph.

For each cell Ci(u) of C(u) we keep a pointer to the cell C ′cont(i)(u) of C′(u) that contains
Ci(u). For every cell Dij(u) ∈ Di(u) and for each child ur of u, we keep a pointer to the cell
C ′down(i,j,r)(ur) ∈ C′(ur), such that C ′down(i,j,r)(ur) contains Dij(u). We can identify a point
in each cell of a shallow cutting C(u) (resp. C′(u) or D′i(u)) with O(log logn) bits because
each cell contains a poly-logarithmic number of points. The x-rank of a point in a cell will
be used as its identifier. We keep a mapping from points in a cell Ci to the corresponding
points in a containing cell C ′cont(i). The array FX(Ci) maps x-ranks of points in Ci to their
x-ranks in C ′cont(i): if the x-rank of a point p ∈ Ci is equal to f , then FX [f ] = g where g
is the x-rank of p in C ′cont(i). The array F ′′X,r for a cell Dij(u) and a child ur of u maps
x-ranks of points in Dij(u) to their x-ranks in C ′down(i,j,r). If the x-rank of a point p ∈ Ci
is equal to f , then F ′′X,r[f ] = g where g is the x-rank of p in C ′down(i,j,r). We also keep a
mapping from C ′i(u) to cells of Di(u): for every point p ∈ Ci(u) we store the cell Dij that
contains p and the x-rank of p in Cij (or NULL if p is not in Cij). For every point p in each
cell Dij(u) of C′i(u), we store the index of the child ur such that p ∈ S(ur). Our method
requires O(log logn) bits per point. Each pointer from Ci(u) to C ′cont(i)(u) and from Dij(u)
to C ′down(i,j,r)(u) consumes O(logn) bits. We store O(log2ε n) pointers per cell and there are
O(n/(logn log logn)) cells in all shallow cuttings of the range tree. Hence the total space
used by all pointers is O(n log2ε n) bits.

I Lemma 3. For any interesting point p in a cell C ′i(u), we can find the representation of p
in C ′i(uf ), where uf is the child of u that contains p.

Proof. First we identify the cell Dij(u) of Di(u) that contains p and compute the x-rank of
p in Dij(u). Since p is interesting, such a cell exists. Then we use the array F ′′X,k of this cell
and find the x-rank of p in the cell C ′down(i,j,k). J

For any point from Ci(u) we can obtain its position in some cell C ′cont(i)(u) in O(1) time.
Then we can move down and obtain its representation in a child of u in O(1) time. We can
access the original coordinates of p when a leaf node is reached. Thus we can “decode” a
point p if we know its position in a cell Ci(u) in O(logn/ log logn) time.
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We can reduce a three-dimensional query (−∞, a]×(−∞, b]×(−∞, c] to the rank space of
a cell by binary search. Let X(Ci) denote the list of points in a cell Ci sorted by x-coordinates.
To compare a with the x-coordinate of X(Ci)[g] for some index g, we decode the point
p = X(Ci)[g] as explained above. Hence we can find the predecessor of a in X(Ci) by binary
search in O(log logn) time. We can find the predecessor of b in Y (Ci) and the predecessor of
c in Z(Ci) using the same procedure, where Y (Ci) and Z(Ci) are the lists of points in Ci
sorted by their y- and z-coordinates respectively.

Queries. Consider a four-dimensional 5-sided query (−∞, a]× (−∞, b]× (−∞, c]× [z′l, z′r].
We visit all canonical nodes that cover the range [z′l, z′r]. In every visited node we answer a
three-dimensional query using the following procedure. We find a cell Ci(u) that contains
p. We transform (−∞, a] × (−∞, b] × (−∞, c] to the rank space of Ci(u) and answer the
transformed query on Ci(u) ∩ S(u). Every reported point is decoded using the procedure
described above. If there is no cell Ci(u) that contains p, then p dominates at least t0 points
from S(u). In this case we visit all children of u and recursively answer three-dimensional
dominance query in each child using the same procedure.

We need O(log logn) time to find the cell Ci(u) or determine that Ci(u) does not exist.
To answer a query on Ci(u) we need O(logn) time (ignoring the time to report points, but
taking into account the time that we need to transform a query to the rank space of Ci(u)).
Thus the total time spent in a node u is O(logn). The time spent in descendants of u can
be estimated as follows. Let Tu be the subtree of the range tree induced by u and its visited
descendants. Let T ′u denote the subtree of Tu obtained by removing all leaves of Tu. Every
leaf of T ′u is an internal node of Tu. Hence we report at least t0 points for every leaf in T ′u.
The height of T ′u is bounded by O(logn/ log logn). Let lu denote the number of leaves in T ′u.
The total number of nodes in T ′u is bounded by O(lu logn/ log logn). Every node of T ′u has
ρ children. Hence the total number of nodes in Tu does not exceed O(lu(log1+ε n/ log logn)).
The time spent in all nodes of Tu can be bounded by O(lu log2+ε n) (again, ignoring the
time to decode and report points). When we visit descendants of u we report at least
ku = Ω(lu · t0) points and each point is decoded in O(logn/ log logn) time. The total time
spent in descendants of u is O(lu log2+ε n+ku(logn/ log logn) = O(ku(logn/ log logn)). The
time spent in all canonical nodes and their descendants is O(log2+ε n+ k(logn/ log logn)).

Faster Decoding. We can speed-up the decoding procedure and thus the overall query time
without increasing the asymptotic space usage. Our approach is very similar to the method
used in compact two-dimensional range trees [13, 28, 11]. All nodes in the range tree are
classified according to their depth. A node u is an i-node if the depth hu of u divides ρi
where ρ = logε n, hu = x · ρi for some i ≥ 0, but hu does not divide ρj for j > i. We keep
an additional 4ti-shallow cutting Ci in every i-node u where ti = ρi · log2 n. As before for
each cell Cji of Cj we construct a 2tj-shallow cutting Dji . Let an i-descendant of a node u
denote the highest i-node v that is a descendant of u. If a node u is an i-node, then it has
ρi i-descendants. For every cell Dj

ik of each Dji and for every j-descendant ul of u, we keep
the index r = down(j, i, l) of the cell Cjr (ul) that contains Dj

ik(u). For each point in Dj
ik(u)

we keep the index l of the i-descendant that contains p and the x-rank of p in Cjr (ul) where
r = down(j, i, l).

Using these additional shallow cuttings, we can reduce the decoding time to O(logε n).
To decode a point p in S(u) we move down from a node u to its child u0,1 and find a
representation of p in C′(u0,1). Then we move to the child u0,2 of u0,1 and continue in the
same manner until a 1-node u1,1 is reached. Next we move from u1,1 to its 1-descendant u1,2,
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then to a 1-descendant u1,3 of u1,2, and so on until a 2-node is reached. During the j-th
iteration we move down along a sequence of j-nodes until a (j + 1)-node or a leaf node is
reached. During each iteration we visit O(logε n) nodes and spend O(1) time in every node.
There are at most logρ logn = O(1/ε) iterations. Hence the decoding time for a point is
O(logε n). The total query time is reduced to O(log1+2ε n+ k logε n). If we replace ε with
ε/2 in the above proof, we obtain our first result.

I Theorem 4. There exists a linear-space data structure that answers four-dimensional 5-
sided reporting queries in O(log1+ε n+ k logε n) time and four-dimensional 5-sided emptiness
queries in O(log1+ε n) time.

4 Faster Queries using More Space

In this section we will show how to reduce the decoding time to O(1) per point by increasing
the space usage. We make several modifications in the basic construction of Section 3.

For any i and j such that 1 ≤ i ≤ j ≤ ρ and for any internal node u of the range tree, we
store the set S(u, i, j). S(u, i, j) is the union of sets S(ui), S(ui+1), . . ., S(uj). For every set
S(u, i, j) we construct a t0-shallow cutting C(u, i, j). For each cell Cl of C(u, i, j) we store a
three-dimensional data structure that keeps points from Cl ∩ S(u, i, j) in the rank space and
answers three-dimensional dominance queries in O(k + 1) time.

The decoding procedure is implemented in the same way as in Section 3, but with different
parameter values. Recall that a node u is an i-node for some i ≥ 0 if the depth of u divides
ρi but does not divide ρi+1. We keep an additional 4ti+1-shallow cutting Ci(u, l, r) for every
i-node u and every pair 1 ≤ l ≤ r ≤ ρ. For every cell Cs of Ci(u, l, r) we keep a 2ti+1-shallow
cutting Ds. Consider a cell Dg of Ds. For every (i+ 1)-descendant v of u and for every pair
l, r satisfying 1 ≤ l ≤ r ≤ ρ, we keep the index x = down(Dg, v, l, r) such that the cell Cx
of Ci+1(v, l, r) contains Dg. We also store a mapping from C(u, l, r) to Ci(u, l, r) for every
i-node u. That is, for every cell Cf of C(u, l, r) we keep the index g = cont(f), such that
the cell Cg ∈ Ci(u, l, r) contains Cf ; for every point p ∈ S(u) ∩ Cf we keep its identifier in
Ccont(f). For every cell Cg of Ci(u, l, r) we keep a mapping from Cg to Dg. That is, for every
point p in Cg ∩ S(u, l, r) we store the cell Ds of Dg that contains p and the identifier of p in
Ds. Finally we also store a mapping from every cell Ds of each Dg to shallow cuttings in
(i+ 1)-descendants of u. For every point p ∈ Ds ∩ S(u, l, r) we store (i) the i-descendant v of
u such that p ∈ S(v) and (ii) the identifier of p in Cx where x = down(Ds, v, l, r).

Our modified data structure usesO(n log3ε n) words of space. The representation of a point
in C(u, i, j) takes O(log logn) bits per point and every point is stored in O(log1+2ε n/ log logn)
shallow cuttings C(u, i, j). The mapping from C(u, l, r) to Ci(u, l, r) in an i-node u takes
O(log(i+1)ε n) bits per point. We also need O(log(i+1)ε n) bits per point to store the mapping
from a cell Cg of Ci(u, l, r) to Dg. The mapping from a cell Ds of Dg to shallow cuttings in
(i+ 1)-descendants of u consumes the same space. The total number of points in all S(u)
where u is an i-node is O(n log1−iε n). The total number of points in all S(u, l, r) where
u is an i-node and 1 ≤ l ≤ r ≤ ρ is O(n log1+(2−i)ε n). Hence the total space used by all
mappings in all i-nodes is O(n log1+3ε n) bits or O(n log3ε n) words of logn bits.

Every point p in Ci ∩ S(u, l, r), where Ci is a cell of C(u, l, r), can be decoded in O(1)
time. Suppose that u is a j-node. Using the mapping from Ci to Cj(u, l, r), we can find the
representation of p in Cj(u, l, r), i.e., a cell Cs that contains p and the identifier of p in Cs.
If we know the identifier of p in Cs, we can find the representation of p in Ds. Using the
mapping from a cell of Ds to (j + 1)-descendants of u, we can compute the representation of
p in a cell Cv of Cj+1(v, l′, r′), where v is a direct (j + 1)-descendant of u. Thus we moved
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from a j-node to its (j + 1)-descendant in O(1) time. We continue in the same way and
move to a (j + 2)-descendant of u, then a (j + 3)-descendant of u, and so on. After at most
(1/ε) = O(1) iterations, we reach a leaf node and obtain the original coordinates of p.

We can translate a query (−∞, a]× (−∞, b]× (−∞, c] into the rank space of a cell Ci in
constant time. Let X(Ci) denote the list of x-coordinates of S(u, l, r) ∩ Ci. We keep X(Ci)
in the compact trie data structure of [20]. This data structure requires O(log logn) bits per
point. Elements of X(Ci) are not stored in the compact trie; we only store some auxiliary
information using O(log logn) bits per element. Compact trie supports predecessor queries
on X(Ci) in O(1) time, but the search procedure must access O(1) elements of X(Ci). Since
we can decode a point from Ci in O(1) time, we can also access an element of X(Ci) in O(1)
time. Hence, we can compute the predecessor of a in X(Ci) (and its rank) in O(1) time. We
can translate b and c to the rank space in the same way.

Queries. Consider a four-dimensional 5-sided query (−∞, a]× (−∞, b]× (−∞, c]× [z′1, z′2].
There are O(logn/ log logn) canonical sets S(ui, li, ri), such that p.z ∈ [z′1, z′2] iff p ∈
S(ui, li, ri) for some i. Canonical sets can be found as follows. Let `1 be the leaf that holds
the largest l1 < z′1 and `2 be the leaf that holds the smallest l2 > z′2. Let v denote the lowest
common ancestor of `1 and `2. Let π1 denote the path from `1 to v (excluding v) and let π2
denote the path from `2 to v (excluding v). For each node u ∈ π2, we consider a canonical
set S(u, l, r) such that ul, . . ., ur are left siblings of some node ur+1 ∈ π2. For each node
u ∈ π1, we consider a canonical set S(u, l, r) such that ul, . . ., ur are right siblings of some
node ul−1 ∈ π1. Finally we consider the set S(v, l, r) such that vl, . . ., vr have a left sibling
on π1 and a right sibling on π2. The fourth coordinate of a point p is in the interval [z′1, z′2] iff
p is stored in one of the canonical sets described above. Hence we need to visit all canonical
sets and answer a three-dimensional query (−∞, a]× (−∞, b]× (−∞, c] in each set.

There are O(logn/ log logn) canonical sets S(u, l, r). Each canonical set is processed as
follows. We find the cell Cu of C(u, l, r) that contains q3 = (a, b, c). Then we translate q3
into the rank space of Cu ∩ S(u, l, r) and answer the dominance query. Reported points
are decoded in O(1) time per point as explained above. We can also translate the query
into the rank space of Cu in O(1) time. If q3 is not contained in any cell of C(u, l, r), then
q3 dominates at least log2 n points of S(u, l, r). We visit all children ui of u for l ≤ i ≤ r

and recursively answer the dominance query in each child. Using the same arguments as in
Section 3, we can show that the total number of visited nodes does not exceed O(k/ logε n),
where k is the number of reported points.

If we replace ε with ε/3 in the above proof, we obtain the following result.

I Theorem 5. There exists an O(n logε n) space data structure that answers four-dimensional
5-sided reporting queries in O(logn+ k) time and four-dimensional 5-sided emptiness queries
in O(logn) time.

We can extend our result to support dominance queries (or any (2d− 3)-sided queries) in
d ≥ 4 dimensions using standard techniques.

I Theorem 6. There exists an O(n logd−4+ε n) space data structure that supports d-dimensio-
nal dominance range reporting queries in O(logd−3 n/(log logn)d−4 +k) time for any constant
d ≥ 4.
There exists an O(n logd−4+ε n) space data structure that supports d-dimensional (2d−3)-sided
range reporting queries in O(logd−3 n/(log logn)d−4 + k) time for any constant d ≥ 4.
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5 Conclusions

In this paper we described data structures with linear and almost-linear space usage that
answer four-dimensional range reporting queries in poly-logarithmic time provided that the
query range is bounded on 5 sides. This scenario includes an important special case of
dominance range reporting queries that was studied in a number of previous works [16, 35,
25, 1, 11, 10]; for instance, the offline variant of four-dimensional dominance reporting is
used to solve the rectangle enclosure problem [11, 2]. Our result immediately leads to better
data structures in d ≥ 4 dimensions. E.g., we can answer d-dimensional dominance range
reporting queries in O(n logd−4+ε n) space and O(log logn(logn/ log logn)d−3) time. We
expect that the methods of this paper can be applied to other geometric problems, such as
the offline rectangle enclosure problem.

Our result demonstrates that the space complexity of four-dimensional queries is deter-
mined by the number of sides, i.e., the number of inequalities that are needed to specify
the query range. This raises the question about the space complexity of dominance range
reporting in five dimensions. Is it possible to construct a linear-space data structure that
supports five-dimensional dominance range reporting queries in poly-logarithmic time?

Compared to the fastest previous solution for the four-dimensional dominance range
reporting problem [10], our method decreases the space usage by O(logn) factor without
increasing the query time. However, there is still a small gap between the O(logn+ k) query
time, achieved by the fastest data structures, and the lower bound of Ω(logn/ log logn),
proved in [33]. Closing this gap is another interesting open problem.
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