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Abstract
Topological transforms are parametrized families of topological invariants, which, by analogy with
transforms in signal processing, are much more discriminative than single measurements. The first
two topological transforms to be defined were the Persistent Homology Transform (PHT) and Euler
Characteristic Transform (ECT), both of which apply to shapes embedded in Euclidean space. The
contribution of this paper is to define topological transforms for abstract metric measure spaces.
Our proposed pipeline is to pre-compose the PHT or ECT with a Euclidean embedding derived
from the eigenfunctions and eigenvalues of an integral operator. To that end, we define and study an
integral operator called the distance kernel operator, and demonstrate that it gives rise to stable and
quasi-injective topological transforms. We conclude with some numerical experiments, wherein we
compute and compare the eigenfunctions and eigenvalues of our operator across a range of standard
2- and 3-manifolds.
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1 Introduction

One way of viewing the success of convolutional neural networks in the classification and
analysis of large, multi-channel images is that these neural networks learn an optimal set
of coordinates for representing sets of images in Euclidean space. However, when the data
consist of shapes whose underlying topologies may vary, it becomes apparent that new tools
and techniques must be brought to bear. One approach is to use topological transforms to
represent these shapes as collections of topological summaries.

The topological summaries we use are persistence diagrams. Given a real-valued filter
function f on a space X, the associated persistence diagram Diag(f) describes how the
topology of the sublevel sets Xα = {f(x) ≤ α | x ∈ X} evolves as α increases. When the
filter-function f measures something about the geometry of X, such as its curvature, the
resulting persistence diagram contains both topological and geometric information. If we
use not one, but a family of filter functions, the resulting collection of persistence diagrams
is called a topological transform. Although the space of persistence diagrams (with the
Bottleneck of Wasserstein distances) is not an inner product space, there are many methods
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for mapping persistence diagrams to a Hilbert space. The composition of any such map with
our topological transform results in a collection of vectors that can be concatenated and fed
into any standard machine learning model.

Turner et al. [20] first introduced topological transforms for shapes embedded in Euclidean
space. Their work, and the work in various subsequent papers, demonstrates that this
transform completely captures the geometric structure of its defining shape. Our goal in this
article is to extend these topological transforms to intrinsic metric spaces by pre-composing
them with a suitable Euclidean embedding. For this pipeline to be successful in practice, the
chosen Euclidean embedding must preserve the geometric structure of our metric spaces. In
this paper, we make the case that a particular integral operator, the distance kernel operator,
is well suited to this task. We show that the eigenfunctions and eigenvalues of this operator
are stable with respect to discretization and perturbations of the underlying shape, that they
define a Euclidean embedding which encodes the large-scale geometry of our metric space,
and that the resulting topological transforms enjoys favorable stability and quasi-injectivity
properties.

Related Work. In [20], Turner et al. defined the Persistent Homology Transform (PHT) and
Euler Characteristic Transform (ECT). These transforms take as input sufficiently regular
subsets S of Euclidean space Rd, and associate to every vector v ∈ Sd−1 of the sphere in
Rd the persistence diagram, or Euler characteristic curve, of the sublevel-set filtration of S
induced by the function fv : S → R: fv(x) = v · x. It was subsequently proven in [9] and [12]
that these topological transforms are injective in all dimensions1. Moreover, it was shown in
[5] and [9] that, for certain families of embedded shapes, these topological transforms can be
computed in finitely many steps2. Complimenting these theoretical results, Crawford et al.
[8] demonstrated how to use these topological transforms to build an improved classifier for
glioblastoma patient outcomes.

In [16], Oudot and Solomon defined a topological transform for intrinsic metric spaces
(X, dX). This transform associates to every basepoint x0 ∈ X the extended persistence
diagram of the function fx0 : X → R: fx0(x) = dX(x0, x). The resulting invariant, called the
Intrinsic Persistent Homology Transform (IPHT), is the collection of all persistence diagrams
arising from basepoints in X. By computing Euler characteristic curves instead of persistence
diagrams, one obtains the Intrinsic Euler Characteristic Transform (IECT). This invariant
was first studied, in the case of metric graphs, by Dey, Shi, and Wang in [10], where they
proved stability and computability results and ran some experiments. The main result of
[16] demonstrated that these invariants are injective3 on an appropriately generic subset of
the space of metric graphs. For a detailed survey on related problems in applied topology,
we refer the reader to [17]. Another line of research, at the intersection between persistent
homology and spectral geometry, can be found in the work of Polterovich et al. [18], where
they study and bound various functionals on persistence diagrams arising from Laplacian
eigenfunctions on compact surfaces.

As this paper is concerned with both applied topology and spectral geometry, let us now
consider some results, both classical and modern, in the latter field. To begin, the data
of a weighted graph can be encoded via its adjacency matrix, and the spectral theory of

1 By “injective”, we mean that two subsets of Euclidean space have the same transform if and only if
they are identical. Thus, the transform is injective on the space of admissible subsets.

2 That is, finitely many directions determine the entire transform, and these directions can be identified
with finitely many geometric computations.

3 As with the PHT and ECT, this means that two graphs having the same transform must be isometric.
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these matrices is deep and of great utility, seeing application in, e.g., graph clustering and
Google’s PageRank algorithm. Another matrix associated to a graph is its Laplacian, whose
eigendecomposition forms the basis for the Laplacian Eigenmaps technique studied by Belkin
and Niyogi in [2, 3, 4], as well as the diffusion maps of Coifman and Lafon [7]. Spectral
analysis of the Gram matrix of the distances gives rise to the classical Multi-Dimensional
Scaling embedding and its extension by Tenenbaum et al. [19] to non-linear embeddings:
IsoMap. Lastly, the X-ray transform of [14] takes as input a continuous, compactly supported
function f on Rd, and outputs a function on the space of lines in Rd that encodes the
corresponding line integral of f .

Contributions and Outline. The structure of this article is as follows. In Section 2, we
introduce a general framework for producing topological transforms on intrinsic metric objects
via embedding these shapes in Euclidean space, and then applying the extrinsic topological
transforms of [20]. To that end, we are charged with identifying a Euclidean embedding
whose associated topological transforms have desirable stability and inverse properties. We
observe that the eigenfunctions of the Laplacian are not well suited to this task, and so, in
Section 3, we define a new operator, called the distance kernel operator, which we prove
gives rise to a Euclidean embedding (which we call distance kernel embedding, or DKE).
In Section 4, we show that the DKE is sufficiently regular to allow for the computation of
topological invariants, in addition to being stable under discrete sampling and perturbation
of the metric. We also show that the regularity of the DKE implies stability results for its
associated topological transforms. In Section 5, we prove inverse results for the DKE and its
topological transforms. We conclude, in Section 6, with a range of experiments illustrating
the discriminative power of the DKE for discrete samples of various 2- and 3-manifolds.

2 Intrinsic Topological Transforms from Compact Operators

In this section we introduce a general framework for combining the existing extrinsic topolog-
ical transforms with Euclidean embeddings of intrinsic metric spaces via compact operators.

2.1 Extrinsic Topological Transforms

I Definition 1. Let f be a real-valued function on a topological space X. We write PH(X, f)
to denote the graded sublevel set persistence diagram of (X, f), which contains the sublevel
set persistence diagrams of (X, f) for each homological degree. We write GrDiag to refer
to the space of such graded persistence diagrams. For a fixed degree k, we write βk(X, f) to
denote the corresponding Betti curve, which is the sum of the indicator functions of intervals
in the persistence diagram. Lastly, we write χ(X, f) to denote the Euler curve, which is the
alternating sum of the Betti curves in all degrees.

I Definition 2. Let Sk be the k-dimensional sphere, and L(Rk+1,R) the space of linear
maps from Rk+1 to R. Define the map Θ : Sk → L(Rk+1,R) which sends v ∈ Sk to the map
x 7→ 〈x, v〉.

SoCG 2020
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I Definition 3 ([9]). Let X ⊂ Rd be a compact, definable set4. For every v ∈ Sd−1, the
sublevel set persistence diagram and Euler curve of the pair (X,Θ(v)) exist. The Persistent
Homology Transform is the map PHT (X) : Sd−1 → GrDiag defined by:

PHT (X)(v) = PH(X,Θ(v)).

If one computes Euler curves instead of persistence diagrams, one obtains the Euler Charac-
teristic Transform ECT (X).

Intuitively, the PHT and ECT probe an embedded subset of Euclidean space like a
multi-directional MRI scanner, recording how the topology evolves along each direction. The
following injectivity result demonstrates the rich geometric content of these transforms.

I Theorem 4 ([9, 12]). The PHT and ECT are injective for all k. That is, for any definable
sets X,Y ⊂ Rd, if PHT (X) = PHT (Y ) or ECT (X) = ECT (Y ), then X = Y as sets.

2.2 Compact Operators and their Embeddings
I Definition 5. Let H be a Hilbert space. A linear operator T : H → H is bounded if there
exists a constant M such that, for all v ∈ H, ‖Tv‖ ≤M‖v‖. A bounded operator is compact
if the image of any bounded subset of H under T is relatively compact. A bounded operator T
is self-adjoint if T is equal to its adjoint T ∗; equivalently, 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H.

The spectral theorem for compact, self-adjoint operators on a Hilbert space asserts that
these operators can be diagonalized.

I Theorem 6 (Spectral Theorem). Let T be a compact, self-adjoint operator on a Hilbert
space H. Then H admits a finite or countably infinite basis {φi} of eigenvectors of T with
real eigenvalues {λi}, where limi→∞ λi = 0.

Given a compact metric (Borel) measure space (X, dX , µX), we can consider compact,
self-adjoint operators on the Hilbert space L2(X). The eigenfunctions {φi} and eigenvalues
{λi} arising from the spectral theorem can then be used to define embeddings of X into
Euclidean space. This requires the adoption of various conventions and generic assumptions:
1. The spectral theorem asserts the existence of the eigenfunctions φi, but it does not

guarantee their uniqueness. Indeed, the choice is never unique. If the eigenvalue λi
has geometric multiplicity one, then there are two choices of unit norm eigenfunctions:
{φi,−φi}. If the eigenvalue has geometric multiplicity greater than one, then there are
infinitely many choices. In the rest of the paper, we make the generic assumption that all
the eigenvalues have multiplicity one5.

2. We adopt the convention of dropping the eigenfunctions in the zero-eigenspace, and, to
fix the choice of sign, we pick φi such that 〈φi, |φi|〉 > 0 for all i6.

3. We order the eigenvalues (and hence eigenfunctions) in decreasing order of absolute value,
|λ1| ≥ |λ2| ≥ |λ3| ≥ . . ., breaking the tie between positive-negative pairs by listing the
positive eigenvalue first.

4 The notion of definability is always understood to be relative to a choice of o-minimal structure on Rd,
which is an algebra of sets satisfying certain membership conditions. Examples include the collection of
semi-algebraic or analytic subsets of Rd. See [9] §2 for details.

5 We can always infinitesimally perturb our space to make this true.
6 We make the generic assumption that this dot product is nonzero.
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4. To take advantage of many useful results in operator theory, we restrict ourselves to
operators that are Hilbert-Schmidt, which means that

∑∞
i=1 λ

2
i < ∞. Every Hilbert-

Schmidt operator on L2(X) can be represented as an integral operator with square
integrable kernel K(·, ·)7, i.e., an operator of the form:

T : L2(X)→ L2(X) (Tf)(x) =
∫
X

K(x, y)f(y)dµX(y).

We thus assume our operators are of this form.

I Definition 7. Given a compact metric (Borel) measure space (X, dX , µX), let T be a
compact, self-adjoint operator on L2(X) with spectral decomposition {φi, λi}, following the
conventions above. We define coordinate functions on X as follows: αi(x) =

√
λiφi(x). Note

that the eigenvalue λi may be negative (we have not assumed that the operator is positive
definite), so the coordinate function takes values in C. When λi is negative, we adopt the
convention of taking the square root with positive imaginary part. By identifying C with R2,
we can also think of this coordinate function as taking a pair of real values.

Our rationale for scaling the eigenfunctions by the square root of their eigenvalues
is that, for an integral operator T with kernel K(·, ·), the sum

∑∞
k=1 λiφi(x)φi(x′) =∑∞

k=1(
√
λiφi(x))(

√
λiφi(x′)) =

∑∞
i=1 αi(x)αi(x′) converges to K(x, x′) in L2(X,X)8. Using

these coordinates, we define a kernel embedding9:

I Definition 8. Let (X,dX , µX), T , and {φi, λi} be as in Definition 7. For k ≥ 1, we define
Φk : X → Ck ∼= R2k to be the map sending a point x ∈ X to (α1(x), · · · , αk(x)) ∈ Ck ∼= R2k.
Setting k =∞ gives us a map Φ : X → C∞ ∼= R∞. When Φ is continuous and injective, the
image of Φ (resp. Φk) is called the kernel embedding (resp. truncated kernel embedding)
associated to T .

2.3 Topological Kernel Transforms
By post-composing this embedding with the PHT or the ECT, we obtain topological
transforms that are defined intrinsically on metric measure spaces10.

I Definition 9. Let X and Φ be as in Definition 8. For k finite, the embedded persistence
kernel transform e-PKTk(X) is the PHT applied to the image of the embedding Φk(X) ⊂ R2k,
which takes as input vectors in S2k−1 and takes values in GrDiag. Using Euler curves in
place of persistent diagrams gives rise to the embedded Euler kernel transform e-EKTk.

The following meta-theorem motivates the constructions and results to follow.

I Theorem 10. Fix a positive integer k. Let M be a class of metric measure spaces with
integral kernels {KM}M∈M, giving definable embeddings {ΦMk }M∈M. If ΦMk (M) 6= ΦM ′

k (M ′)
for any pair of non-isometric spaces M 6= M ′ ∈ M, then the e-PKTk and e-EKTk are
injective onM.

Proof. This is an immediate consequence of Theorem 4. J

7 This is the Hilbert-Schmidt Kernel Theorem. See Appendix B of [13], where the result is proven for
subsets of R. The proof for compact metric (Borel) measure spaces is identical.

8 This convergence is not necessarily uniform, unless K(·, ·) is positive semidefinite (Mercer’s theorem).
9 The use of the term embedding comes from the injectivity properties of this map, proved in §5.1
10We implicitly assume here that these persistence diagrams and Euler curves exist. Later on in this

article, we verify this explicitly for the integral operator of interest.

SoCG 2020
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For most classes M of interest, such as the set of Riemannian manifolds of a given
dimension, there are no known integral operators whose associated embeddings in finite
dimensions are injective in the sense of Theorem 10. However, if we relax the assertion of
injectivity, and ask only that ΦMk (M) = ΦM ′

k (M ′) implies a bound on the Gromov-Hausdorff
distance between M and M ′, we can construct such an integral operator. Before defining
this operator, which is the subject of the next section, we note that the diffusion operator,
which is related to the local geometry of a space, does not enjoy global guarantees of this
kind. Indeed, although one can recover the metric on a Riemannian manifold from the exact
knowledge of all its Laplacian eigenfunctions and eigenvalues (cf. [21]), this reconstruction is
asymptotic, cannot be approximated with finitely many eigenfunctions and eigenvalues, and
is unstable to noise.

3 The Distance Kernel Operator and its Embedding

We now define our proposed integral operator, and prove that it is compact and self-adjoint.
Recall that a compact metric measure space (X,dX , µX) has finite volume µX(X) < +∞.
We write Vol(X) := µX(X).

I Definition 11. Let (X,dX , µX) be a compact metric measure space11. We define the
following operator DX on L2(X), called the distance kernel operator (DKO):

(DXf)(x) =
∫
X

f(y) dX(x, y)dµX(y).

I Proposition 12. DX is a self-adjoint operator.

Proof. By convention, µX is Radon. Since X is compact, this implies that µX(X) < ∞,
and hence (X,µX) is σ-finite. We can thus apply Fubini’s theorem, and the symmetry of the
distance function dX , to observe that, for two integrable functions f and g,

〈DXf, g〉 =
∫
X

(∫
X

f(y) dX(x, y)dµX(y)
)
g(x)dµX(x)

=
∫
X

∫
X

f(y)g(x) dX(x, y)dµX(x)dµX(y)

=
∫
X

f(y)
(∫

X

g(x) dX(y, x)dµX(x)
)
dµX(y) = 〈f,DXg〉,

demonstrating self-adjointness. J

I Proposition 13. DX is a compact operator.

Proof. Let fn ∈ L2(X) be a bounded sequence of functions, ||fn||L2 ≤ C for all n.
For all dX(x, x′) ≤ ε and all n,

|DXfn(x)−DXfn(x′)| =
∣∣∣∣∫
X

(dX(x, y)fn(y)− dX(x′, y)fn(y)) dµX(y)
∣∣∣∣

≤
∫
X

|dX(x, y)− dX(x′, y)||fn(y)|dµX(y)

(Cauchy-Schwarz) ≤ ‖dX(x, y)− dX(x′, y)‖L2(y) · ‖fn(y)‖L2(y)

(triangle inequality) ≤ ‖ε‖L2(y) · ‖fn(y)‖L2(y)

≤ ε
√

Vol(X) · C,

11For the rest of the paper, we assume that µX is a Radon measure.
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where Vol(X) is finite. Thus, DXfn is an equicontinuous family of functions on X, so, by
the Arzelà-Ascoli theorem, it contains a uniformly convergent, and hence L2-convergent,
subsequence. This demonstrates compactness. J

Note that, as a consequence of the proof of this proposition, the eigenfunctions of the
distance kernel operator are always continuous. We can thus define an embedding as in
Definition 8, which we call the distance kernel embedding (DKE)12. From now on, we write
Φ and Φk to exclusively denote the distance kernel embedding, and the e-PKT and e-EKT
likewise refer exclusively to the resulting transforms. In the following sections, we study the
stability and inverse properties of these embeddings and transforms.

4 Stability for the DKE and its Topological Transforms

Let (X,dX , µX) be a compact metric (Borel) measure space. The eigenfunctions of the
distance kernel operator with nonzero eigenvalue are Lipschitz continuous, with the Lipschitz
constant being inversely proportional to the absolute value of the eigenvalue.

I Lemma 14. For every i ∈ N>0, The function λiφi is
√

Vol(X)-Lipschitz. Hence, if
λi 6= 0, φi is (

√
Vol(X)/|λi|)-Lipschitz. Note that X being compact, Vol(X) < +∞ and these

Lipschitz constants are indeed finite.

Proof. Let x, y ∈ X and ε = dX(x, y). By the fact that λiφi = DXφi, we have

|λiφi(x)− λiφi(y)|2 =
∣∣(DXφi)(x)− (DXφi)(y)

∣∣2
=
∣∣∣∣∫
X

(dX(x, z)− dX(y, z))φi(z)dµX(z)
∣∣∣∣2

(Cauchy-Schwarz) ≤
∫
X

(dX(x, z)− dX(y, z)︸ ︷︷ ︸
≤dX(x,y)=ε

)2dµX(z) ·
∫
X

φ2
i (z)dµX(z)︸ ︷︷ ︸

=1

≤ ε2 Vol(X).

Thus, |λiφi(x)− λiφi(y)| ≤ ε
√

Vol(X), so λiφi is
√

Vol(X)-Lipschitz. J

This regularity result on eigenfunctions has many implications for our topological trans-
forms, which are given below (the proofs can be found in the full version of the paper [15],
but are omitted here due to their complexity and length). The result implies in particular
that persistence diagrams exist and are well-defined (which is not the case for an arbitrary
continuous function on a compact topological space), and, under the additional assumption
that the space X implies bounded degree-q total persistence13, that Euler curves exist:

I Proposition 15. Let (X,dX , µX) be a compact metric measure space homeomorphic to
the geometric realization of a finite simplicial complex. Then, any finite linear combination
f =

∑n
i=1 ciφi of eigenfunctions of the distance kernel DX has a well-defined sublevel set

graded persistence diagram PH(X, f). Now, suppose further that X implies bounded degree-q
total persistence. Let p = 1/q. Then for any homological degree k, the sum defining βk(X, f)
converges in Lp. Moreover, the sum defining χ(X, f) is finite, so the Euler curve exists as a
function in Lp.

12The matter of injectivity will be established in Lemma 20.
13 Intuitively, this technical condition means that, for any graded persistence diagram PH(X, f), the sum

of the qth powers of the persistences of the points across all degrees is finite. The bilipschitz image of a
finite dimensional Euclidean simplicial complex has bounded degree-q total persistence for q sufficiently
large. See the full version of this paper for details.

SoCG 2020
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In addition, we obtain the following stability result for the resulting topological transforms:

I Theorem 16. Suppose X is homeomorphic to the geometric realization of a finite simplicial
complex. If we equip GrDiag with the graded bottleneck distance and the sphere S2k−1 with
the `1 distance, then the e-PKTk is Lipschitz continuous. Now suppose further that X implies
bounded degree-q total persistence for some q > 0, and that there is a uniform bound on the
number of points in the persistence diagrams obtained when evaluating the e-PKTk at an
arbitrary vector v ∈ S2k−1. If we equip the sphere S2k−1 with the `1 distance, and the space
of Euler curves with the L1/q distance, then the e-EKTk is q-Hölder continuous on S2k−1.

We also have two more stability results for the DKE, for which we do not yet have
analogues for the topological transforms. The first result asserts that the distance kernel
embedding of a discrete sample of a space converges almost surely to the distance kernel
embedding of the underlying space:

I Theorem 17. Let (X,dX , µX) be a compact metric measure space with (a, b)-standard
Borel measure14. For an i.i.d sample Xn of X of size n, call Φ̂k(Xn) the empirical DKE
defined on the metric measure space (Xn,dX , µn) with uniform measure µn(x̂) = µX(X)/n
for all x̂ ∈ Xn. Writing dL

2

H for the Hausdorff distance for the L2 norm in Ck, we have:

dL
2

H (Φk(X), Φ̂k(Xn)) a.s.−−→ 0 as n→ +∞.

In addition, the distance kernel embedding is stable on the space of Riemannian manifolds.
The following is a simplified version of the result contained in the full version of the paper,
which gives an explicit form for the function F .

I Theorem 18. Let (X,dX , µX) and (Y,dY , µY ) be compact finite-dimensional Riemannian
manifolds equipped with their volume measures, such that µX(X) = µY (Y ). Let ε =
dGP̄ (X,Y ) be the modified Gromov-Prokhorov distance15 between X and Y , and let |λ1| >
. . . > |λk| > 0 and |ν1| > . . . > |νk| > 0 be the k largest (in absolute value) eigenvalues of the
distance kernel operators of X and Y respectively, all non-zero with distinct absolute values.
Let Φk(X) and Ψk(Y ) be the induced DKE. If we write Λ for the set {λ1, · · · , λk, ν1, · · · νk},
then there is a function F (Λ, ε), depending on the magnitude of the elements of Λ and the
gaps |λ2

i − ν2
i | between corresponding eigenvalues, such that:

dL
2

H (Φk(X),Ψk(Y )) ≤ F (Λ, ε) and lim
ε→0

F (Λ, ε) = 0.

5 Injectivity for the DKE and its Topological Transforms

We now demonstrate some inverse results for the distance kernel embedding and transforms.
We stress that these results apply specifically when the integral kernel is taken to be dX(·, ·).

5.1 Injectivity of Φ
Our first result, in Corollary 21 below, is that, under the mild hypothesis of strict positivity
(defined below), the infinite-dimensional embedding Φ is a homeomorphism of the metric
measure space onto its image in C∞.

14This ensures a lower bound on the volume of metric balls. See the full paper for a precise definition.
15This is a slight modification of the Gromov-Prokhorov distance, introduced by Burago et al. in §8 of [6].



C. Maria, S. Oudot, and E. Solomon 56:9

I Definition 19. For a topological space X equipped with its Borel σ-algebra, we call a
measure µX strictly positive if the measure of any nonempty open set is strictly positive.

I Lemma 20. Let (X,dX , µX) be a compact, strictly positive metric measure space. Then
the map Φ : X → C∞ is injective.

Proof. Suppose that there are x 6= y ∈ X such that Φ(x) = Φ(y). This implies that
αi(x) = αi(y) and, in turn, λiφi(x) = λiφi(y) for all i. Let dx and dy be the distance
functions associated to x and y respectively. Using the L2-convergence of the eigenfunction
expansion, we know that:

‖dx−
n∑
i=1

λiφi(x)φi‖L2
n→∞−−−−→ 0 and ‖ dy −

n∑
i=1

λiφi(y)φi‖L2
n→∞−−−−→ 0.

Since
∑n
i=1 λiφi(x)φi =

∑n
i=1 λiφi(y)φi for all n, the triangle inequality implies that

‖dx− dy ‖L2 = 0. Let now r = dX(x, y)/3 > 0, and let U be the open neighborhood of
radius r around x. The function |dx−dy | is bounded below by r on U , and since U is not
empty (it contains x), it has strictly positive measure. This then implies ‖ dx−dy ‖L2 > 0, a
contradiction. Thus, Φ(x) 6= Φ(y) for x 6= y. J

I Corollary 21. By Lemma 14, every component of the map Φ is continuous. Meanwhile,
any metric on C∞ gives it a Hausdorff topological structure. Thus, for any such choice of
metric, Φ is a continuous injection from a compact space to a Hausdorff space. Hence, Φ is
a homeomorphism.

We also have the following injectivity result, where the domain of interest is the space of
compact metric measure spaces. As a consequence of Corollary 21, it suffices to consider
pairs of metric measure spaces that are defined on a common topological space.

I Theorem 22. Fix a compact topological space Z. Let µ and µ′ be strictly positive measures
for the Borel σ-algebra on Z, with µ absolutely continuous with respect to µ′, and d and
d′ metrics on X, both consistent with the topology on Z, making X = (Z,d, µ) and X ′ =
(Z,d′, µ′) metric measure spaces. If Φ(X) = Φ(X ′), then d = d′.

Proof. By assuming that both metric measure spaces induce the same topology, we can
work with a single σ-algebra: their common Borel σ-algebra. This will prove essential in
the following proof, where we take various unions and complements of measurable sets for
µ and µ′, respectively. Next, let D and D′ be the integral operators with kernels d and
d′, respectively. The equality Φ(X) = Φ(X ′) implies that D and D′ have the same scaled
eigenfunctions αi. The distance functions d,d′ thus have the same eigenfunction expansion:

(x1, x2) 7→
∞∑
i=1

αi(x1)αi(x2).

This converges to d in L2(µ⊗ µ) and to d′ in L2(µ′ ⊗ µ′) to d′. Let us denote by Sn the
partial sums of this expansion:

Sn =
n∑
i=1

αi(x1)αi(x2).
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It is a standard result in measure theory that any L2-convergent sequence admits a
subsequence that converges pointwise a.e.16 Thus, one can extract a subsequence Snk

that
converges to d pointwise on (Z × Z) \ N1, for some set N1 ⊂ Z such that (µ ⊗ µ)(N1) =
0. We can then extract a further subsequence Snkj

that converges pointwise to d′ on
((Z × Z) \N1) \N2, where (µ′ ⊗ µ′)(N2) = 0. Since µ is absolutely continuous to µ′, if we
set N = N1 ∪N2 then (µ⊗ µ)(N) = 0. Since µ is strictly positive, the set N cannot contain
any open sets, hence N c is dense in Z × Z. We see then that d = d′ on a dense subset of
Z × Z; since these functions are both continuous in the same topology Z, they are equal
everywhere. J

5.2 Quasi-Injectivity of Φk

While the truncated embedding Φk may not be injective, we can get control over the
diameter of its fibers (Corollary 26). The bounds are expressed in terms of the error of the
approximation of the metrics by its truncated expansion:

I Definition 23. For a compact metric measure space (X,dX , µX) and a positive integer k,
we define the error function EX,k, which measures the pointwise distance between dX and its
truncated eigenfunction expansion:

EX,k(x, x′) = |
k∑
i=1

αi(x)αi(x′)− dX(x, x′)|.

I Theorem 24. Let (X,dX , µX) and (Y,dY , µY ) be compact metric measure spaces, with
eigenvalues {λi} and {νi}. Let k ∈ N>0 be and integer, and ε := dL

2

H (Φk(X),Φk(Y )). Then:

dGH(X,Y ) ≤ 2εmin
{

max
x∈X
‖Φk(x)‖2,max

y∈Y
‖Φk(y)‖2

}
+ ‖EX,k‖∞ + ‖EY,k‖∞ + ε2.

In the special case where X and Y are finite metric measure spaces, Theorem 24 assumes a
more precise form:

I Theorem 25. Let (X,dX , µX) and (Y,dY , µY ), with eigenvalues {λi} and {νi}, and let θ =
min{minx∈X µX(x),miny∈Y µX(y)}. Take k ≤ |X|, |Y |, and suppose that
dL

2

H (Φk(X),Φk(Y )) ≤ ε. Then,

dGH(X,Y ) ≤ 2ε
min(

√
|λ1|,

√
|ν1|)

θ
+ ε2 + |λk+1|+ |νk+1|

θ
.

We thus obtain the following bound on the diameter of the fibers of the DKE.

I Corollary 26. Let (X,dX , µX) and (Y,dY , µY ) be compact metric measure spaces, with
eigenvalues {λi} and {νi}. Let k ∈ N be a positive integer, and suppose that Φk(X) = Φk(Y ).
Then, dGH(X,Y ) ≤ ‖EX,k‖∞ + ‖EY,k‖∞. If X and Y are finite metric spaces, and we set
θ = min{minx∈X µX(x),miny∈Y µX(y)}, then dGH(X,Y ) ≤ 1

θ (|λk+1|+ |νk+1|).

The effectiveness of these results depends on the magnitude of the quantities ‖EX,k‖∞ and
the decay of the eigenvalues λi. It remains to identify general metric and measure-theoretic
criteria that imply bounds on these spectral statistics. The rest of this section is devoted to

16Chebyshev’s inequality proves that L2 convergence implies convergence in measure. See Theorem 2.15(c)
in [11] for the implication that convergence in measure implies the existence of pointwise a.e. convergent
subsequence.
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the proof of Theorem 24. Theorem 25 follows from Theorem 24, and we refer the reader to
the full version of the paper for the details of this derivation [15]. The proof of Theorem 24
requires us to define the following algebraic operation, and to prove some technical lemmas
regarding it.

I Definition 27. For vectors v, w ∈ Ck, define the following bilinear form:

[v, w] =
k∑
i=1

viwi ∈ C.

This form is symmetric but not a dot product.

The utility of the bilinear form [·, ·] comes from the following equality:

[Φk(x),Φk(x′)] =
k∑
i=1

αi(x)αi(x′) =
k∑
i=1

(√
λiφi(x)

)(√
λiφi(x′)

)
=

k∑
i=1

λiφi(x)φi(x′).

That is, when applied to the distance kernel embedding, [·, ·] gives the first k terms of
the eigenfunction expansion of the distance function dX .

I Lemma 28. The bilinear form [·, ·] satisfies the following Cauchy-Schwarz inequality:

|[v, w]| ≤ ‖v‖2‖w‖2.

Proof Sketch. By the triangle inequality for complex numbers, we have |[v, w]| ≤ [ṽ, w̃] =
〈ṽ, w̃〉, where ṽ, w̃ are obtained from v and w by replacing each coordinate with its modulus.
The result then follows by applying the standard Cauchy-Schwarz inequality. J

The following lemma asserts that pairs of nearby vectors have similar bilinear products.

I Lemma 29. Let v1, v2, w1, w2 ∈ Ck be such that ‖v1−w1‖2 ≤ ε and ‖v2−w2‖2 ≤ ε. Then

|[v1, v2]− [w1, w2]| ≤ εmin {‖v1‖2 + ‖v2‖2, ‖w1‖2 + ‖w2‖2}+ ε2.

Proof. By bilinearity,

[w1, w2] = [v1, v2] + [v1, (w2 − v2)] + [(w1 − v1), v2] + [(w1 − v1), (w2 − v2)].

Thus,

|[v1, v2]− [w1, w2]| ≤ |[v1, (w2 − v2)]|+ |[(w1 − v1), v2]|+ |[(w1 − v1), (w2 − v2)]|.

By a symmetric argument, switching v1 and v2 with w1 and w2, one obtains:

|[v1, v2]− [w1, w2]| ≤ |[w1, (v2 − w2)]|+ |[(v1 − w1), w2]|+ |[(v1 − w1), (v2 − w2)]|.

The result then follows by applying the Cauchy-Schwarz inequality to each term on the
right-hand sides of both inequalities, and by taking the minimum of the two sums. J

We can now prove Theorem 24:

Proof. Let C be an optimal Hausdorff correspondence between Φk(X) and Φk(Y ). Let
(x, x′) ∈ X ×X and (y, y′) ∈ Y × Y with (Φk(x),Φk(y)), (Φk(x′),Φk(y′)) ∈ C. Lemma 29,
together with the bounds ‖Φk(x)− Φk(y)‖L2 ≤ ε and ‖Φk(x′)− Φk(y′)‖L2 ≤ ε , gives

|[Φk(x),Φk(x′)]− [Φk(y),Φk(y′)]| ≤ 2εmin
{

max
x∈X
‖Φk(x)‖2,max

y∈Y
‖Φk(y)‖2

}
+ ε2.
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Using the triangle inequality, we can replace [Φk(x),Φk(x′)] with dX(x, x′) and
[Φk(y),Φk(y′)] with dY (y, y′), at the cost of adding an additive error of at most ‖EX,k‖∞
and ‖EY,k‖∞ respectively, giving the following inequality, from which the result follows:

|dX(x, x′)−dY (y, y′)| ≤ 2εmin
{

max
x∈X
‖Φk(x)‖2,max

y∈Y
‖Φk(y)‖2

}
+‖EX,k‖∞+‖EY,k‖∞+ε2.

J

5.3 Quasi-Injectivity of the e-P KTk and e-EKTk

Corollary 26, taken together with Theorem 4, implies the following result, which bounds
the diameter of the fibers of the topological transforms. For general metric measure spaces,
the diameter depends on the error functions EX,k and EY,k. As k goes to infinity, these
functions go to zero in the L2 norm, but we do not have any general guarantees that this
also holds in the L∞ norm17. For finite metric spaces, the diameter does indeed go to 0 as k
goes to infinity.

I Theorem 30. Let (X,dX , µX) and (Y,dY , µY ) be compact metric measure spaces, with
eigenvalues {λi} and {νi} respectively, giving rise to definable distance kernel embeddings.
Let k ∈ N be a positive integer, and suppose that e-PKTk(X) = e-PKTk(Y ) or e-EKTk(X)
= e-EKTk(Y ). Then dGH(X,Y ) ≤ ‖EX,k‖∞ + ‖EY,k‖∞. If X and Y are finite spaces, and
we set θ = min{minx∈X µX(x),miny∈Y µX(y)}, then dGH(X,Y ) ≤ 1

θ (|λk+1|+ |νk+1|).

The condition that the DKEs be definable is always satisfied when the spaces are finite.
It remains to work out the correct hypotheses to ensure definability more generally; this is
work in progress.

6 Experiments

The goal of this section is to illustrate the results of Sections 4 and 5. In the following
experiments, we compute the DKE for a variety of discrete samples on the torus and 2-sphere,
with metric induced by their embedding in Euclidean space, on the 3-sphere, and on the
Lens spaces L(7, 1) and L(7, 4), with spherical geometry. The measures on these samples are
uniform. These spaces have distinct integer homology, except for the two Lens spaces that
have the same homotopy type but are not homeomorphic, and therefore not isometric. This
makes L(7, 1) and L(7, 4) difficult to distinguish by purely topological methods. We see that
the DKE (and, therefore, the resulting topological transforms) is capable of distinguishing
these Lens spaces.

Spectra of various manifolds. In Figure 1a, we have plotted the first 8 eigenvalues of
five discrete metric spaces, sampled from each of these five manifolds, normalized by the
number of points in each sample. We can observe the following: (1) the two Lens spaces
have relatively similar eigenvalues, (2) the 2- and 3-sphere have many similar eigenvalues,
but their first and fourth eigenvalues are significantly different, and (3) the torus has the
most distinct spectrum.

17However, experimental studies suggest that this is the case for a variety of manifolds [15].
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Spectra of Lens spaces for various samples. In Figure 1b, we compare the spectra of a
number of different random i.i.d. samples of the two Lens spaces L(7, 1) and L(7, 4). To be
precise, for each Lens space we compute the spectra of two distinct random samples with
2000 points, and a third sample with 5000 points. The spectra for the different samples of
the same Lens space are virtually impossible to distinguish, and only two curves – one for
the spectrum of L(7, 1), and one of the spectrum of L(7, 4) – are visible in Figure 1b. This
attests to the stability of the eigenvalues of the distance kernel operator under random i.i.d.
sampling, in line with Theorem 17. Notably, the two Lens spaces are distinguished by the
first, third, and fourth eigenvalues of their distance kernel operators. L(7, 1) and L(7, 4)
having same homotopy type, this illustrates the ability of the operator to capture geometric
information and distinguish between non-isometric spaces.

Hausdorff distance between DKEs. Finally, in Figure 1c, we compare the Hausdorff
distances between various pairs of distance kernel embeddings. We observe the following:
(1) The two samples of the same size coming from the L(7, 1) Lens space are the closest
in Hausdorff distance, and that distance is close to zero up to dimension k = 4. Indeed, if
we had taken samples of sufficiently high resolution, we would see the Hausdorff distances
going to zero for larger values of k, as proven in Theorem 17. (2) The second closest pair
of spaces are the Lens spaces L(7, 1) and L(7, 4), that have same homotopy type and have
both spherical geometry. (3) The third closest pair of spaces are the Lens space L(7, 1) and
the 3-Sphere, both with spherical geometry (Lens spaces are constructed as quotients of
3-Spheres). (4) The manifold that appears to be most distinct from the rest is the torus. (5)
For all pairs of manifolds, the Hausdorff distance stabilizes at around k = 10, after which
eigenvalues are close to 0.

In conclusion, these experiments illustrate that the spectra and embedding of the distance
kernel operator can be approximated by finite samples, as predicted by Theorem 17. Moreover,
by combining the DKE with the Hausdorff metric on Euclidean space, we obtain a pseudo-
metric on the space of compact metric measure spaces that succeeds in distinguishing a
variety of diverse manifolds.

7 Open Problems

This work introduces new techniques, at the crossroads of topological data analysis and
spectral geometry, to study general metric measure spaces. It also raises a number of
interdisciplinary questions in persistence theory, optimal transport, spectral geometry, and
o-minimal geometry, that, due to their specialized and technical nature, have not been
resolved in this article:

Using the sampling and stability results for the distance kernel operator (Theorems 17
and 18) to provide analogous results for the topological transforms.
Proving that the truncated distance kernel embedding is an injection for k sufficiently
large. This for example the case for Laplacian eigenfunctions on manifolds, as shown by
Bates [1], whose proof relies on deeper results in spectral geometry.
Providing general hypotheses that ensure the definability of the DKE.
Obtaining experimental results for these topological transforms in line with the distance
kernel embedding experiments of Section 6. These experiments will hinge on a principled
method for choosing which vector directions should be used for the computation of
topological invariants; this is a question of interest in the TDA community, and we expect
some heuristics and theoretical guarantees to emerge on this topic in the near future.
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(a) Eigenvalues of the DKO for a variety of
spaces, normalized by the number of points
in the sample.

(b) A comparison of the eigenvalues of various sam-
ples, at different resolutions, of these two Lens
spaces.

(c) A comparison of Hausdorff distances between various samples of 2- and 3-manifolds.

Figure 1 Spectra and DKE for samples of various manifolds. In subfigures (a) and (b), the
x-represents the index of the eigenvalues in the sorted sequence of eigenvalues. In subfigure (c), the
x-axis represents the embedding dimension (over C).
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