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Abstract
This paper focuses on developing an efficient algorithm for analyzing a directed network (graph) from
a topological viewpoint. A prevalent technique for such topological analysis involves computation
of homology groups and their persistence. These concepts are well suited for spaces that are not
directed. As a result, one needs a concept of homology that accommodates orientations in input
space. Path-homology developed for directed graphs by Grigoryan, Lin, Muranov and Yau has
been effectively adapted for this purpose recently by Chowdhury and Mémoli. They also give an
algorithm to compute this path-homology. Our main contribution in this paper is an algorithm that
computes this path-homology and its persistence more efficiently for the 1-dimensional (H1) case.
In developing such an algorithm, we discover various structures and their efficient computations
that aid computing the 1-dimensional path-homology. We implement our algorithm and present
some preliminary experimental results.
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1 Introduction

When it comes to graphs, traditional topological data analysis has focused mostly on
undirected ones. However, applications in social networks [1,15], brain networks [16], and
others require processing directed graphs. Consequently, topological data analysis for these
applications needs to be adapted accordingly to account for directedness. Recently, some
work [4,14] have initiated to address this important but so far neglected issue.

Since topological data analysis uses persistent homology as a main tool, one needs a notion
of homology for directed graphs. Of course, one can forget the directedness and consider
the underlying undirected graph as a simplicial 1-complex and use a standard persistent
homology pipeline for the analysis. However, this is less than desirable because the important
information involving directions is lost. Currently, there are two main approaches that have
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been proposed for dealing with directed graphs. One uses directed clique complexes [8, 14]
and the other uses the concept of path homology [10]. In the first approach, a k-clique in
the input directed graph is turned into a (k − 1)-simplex if the clique has a single source
and a single sink. The resulting simplicial complex is subsequently analyzed with the usual
persistent homology pipeline. One issue with this approach is that there could be very
few cliques with the required condition and thus accommodating only a very few higher
dimensional simplices. In the worst case, only the undirected graph can be returned as the
directed clique complex if each 3-clique is a directed cycle. The second approach based on
path homology alleviates this deficiency. Furthermore, certain natural functorial properties,
such as Künneth formula, do not hold for the clique complex [10].

The path homology, originally proposed by Grigoryan, Lin, Muranov and Yau in 2012 [10]
and later studied by [5,11,12], has several properties that make it a richer mathematical
structure. For example, there is a concept of homotopy under which the path homology is
preserved; it accommodates Künneth formula; and the path homology theory is dual to the
cohomology theory of digraphs introduced in [12]. Furthermore, persistent path homology
developed in [5] is shown to respect a stability property for its persistent diagrams.

To use path homologies effectively in practice, one needs efficient algorithms to compute
them. In particular, we are interested in developing efficient algorithms for computing
1-dimensional path homology and its persistent version because even for this case the current
state of the art is far from satisfactory: Given a directed graph G with n vertices, the
most efficient algorithm proposed in [5] has a time complexity O(n9) (more precisely, their
algorithm takes O(n3+3d) to compute the (d− 1)-dimensional persistent path-homology).

The main contribution of this paper is stated in Theorem 1. The reduced time complexity
of our algorithm can be attributed to the fact that we compute the boundary groups more
efficiently. In particular, it turns out that for 1-dimensional path homology, the boundary
group is determined by bigons, certain triangles, and certain quadrangles in the input directed
graph. The bigons and triangles can be determined relatively easily. It is the boundary
quadrangles whose computation and size determine the time complexity. The authors in [5]
compute a basis of these boundary quadrangles by constructing a certain generating set for
the 2-dimensional chain group by a nice column reduction algorithm (being different from
the standard simplicial homology, it is non-trivial to do reduction for path homology). We
take advantage of the concept of arboricity and related results in graph theory, together
with other efficient strategies, to enumerate a much smaller set generating the boundary
quadrangles. Computing the cycle and boundary groups efficiently both for non-persistent
and persistent homology groups is the key to our improved time complexity.

I Theorem 1. Given a directed graph G with n vertices and m edges, set r = min{a(G)m,∑
(u,v)∈E(din(u) + dout(v))}, where a(G) is the so-called arboricity of G (with a(G) = O(n)),

and din(u) and dout(u) are the in-degree and out-degree of u, respectively. There is an
O(rmω−1 +mα(n)) time algorithm for computing the 1-dimensional persistent path homology
for G where ω < 2.373 is the exponent for matrix multiplication1, and α(·) is the inverse
Ackermann function.

This also gives an O(rmω−1 +mα(n)) time algorithm for computing the 1-dimensional
path homology H1 of G.

In particular, for a planar graph G, a(G) = O(1) and the time complexity becomes O(nω).

1 That is, the fastest algorithm to multiply two r × r matrices takes time O(rω).



T.K. Dey, T. Li, and Y. Wang 36:3

The arboricity a(G) of a graph G mentioned in Theorem 1 denotes the minimum number
of edge-disjoint spanning forests into which G can be decomposed [13]. It is known that in
general, a(G) = O(n), but it can be much smaller. For example, a(G) = O(1) for planar
graphs and a(G) = O(g) for a graph embedded on a genus-g surface [3]. Hence, for planar
graphs, we can compute 1-dimensional persistent path homology in O(nω) time whereas the
algorithm in [5] takes O(n5) time2.

In the full version, we develop an algorithm to compute 1-dimensional minimal path
homology basis [7, 9], and also show experiments demonstrating the efficiency of our new
algorithms.

Organization of the paper. After characterizing the 1-dimensional path homology group
H1 in Section 3, we first propose a simple algorithm to compute it. In Section 4, we consider
its persistent version and present an improved and more efficient algorithm.

2 Background

We briefly introduce some necessary background for path homology. Interested readers can
refer to [10] for more details. The original definition can be applied to structures beyond
directed graphs; but for simplicity, we use directed graphs to introduce the notations.

Given a directed graph G = (V,E), we denote (u, v) as the directed edge from u to v. A
self-loop is defined to be the edge (u, u) from u to itself. Throughout this paper, we assume
that G does not have self-loops. We also assume that G does not have multi-edges, i.e.
for every ordered pair u, v, there is at most one directed edge from u to v. For notational
simplicity, we sometimes use index i to refer to vertex vi ∈ V = {v1, . . . , vn}.

Let F be a field with 0 and 1 being the additive and multiplicative identities respectively.
We use −a to denote the additive inverse of a in F. An elementary d-path on V is simply
a sequence i0, i1, · · · , id of d + 1 vertices in V . We denote this path by ei0,i1,··· ,id . Let
Λd = Λd(G,F) denote the F-linear space of all linear combinations of elementary d-paths
with coefficients from F. It is easy to check that the set {ei0,··· ,id | i0, · · · , id ∈ V } is a basis
for Λd. Each element p of Λd is called a d-path, and it can be written as

p =
∑

i0,··· ,id∈V
ai0···idei0···id , where ai0···id ∈ F.

Similar to simplicial complexes, there is a well-defined boundary operator ∂ : Λd → Λd−1:

∂ei0···id =
∑

i0,··· ,id∈V
(−1)jei0···̂ij ···id ,

where îk means the omission of index ik. The boundary of a path p =
∑
i0,··· ,id∈V ai0···id ·

ei0···id , is thus ∂p =
∑
i0,··· ,id∈V ai0···id · ∂ei0···id . We set Λ−1 = 0 and note that Λ0 is the set

of F-linear combinations of vertices in V . Lemma 2.4 in [10] shows that ∂2 = 0.
Next, we restrict to real paths in directed graphs. Specifically, given a directed graph

G = (V,E), call an elementary d-path ei0,··· ,id allowed if there is an edge from ik to ik+1
for all k. Define Ad as the space of all allowed d-paths, that is, Ad := span{ei0···id :
ei0···id is allowed}. An elementary d-path i0 · · · id is called regular if ik 6= ik+1 for all k, and is
irregular otherwise. Clearly, every allowed path is regular since there is no self-loop. However,

2 The original time complexity stated in the paper is O(n9) for 1-dimensional case. However, one can
improve it to O(n5) by a more refined analysis for planar graphs.
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(a) Bigon. (b) Boundary triangle. (c) Boundary quadrangle.

Figure 1 Examples of 1-boundaries.

the boundary map ∂ on Λd may create a term resulting into an irregular path. For example,
∂euvu = evu − euu + euv is irregular because of the term euu. To deal with this case, the
term containing consecutive repeated vertices is identified with 0 [10]. Thus, for the previous
example, we get ∂euvu = evu − 0 + euv = evu + euv. The boundary map ∂ on Ad is taken to
be the boundary map for Λd restricted on Ad with this modification: where all terms with
consecutive repeated vertices created by the boundary map ∂ are replaced with 0’s.

Unfortunately, after restricting to the space of allowed paths A∗, the inclusion that
∂Ad ⊂ Ad−1 may not hold any more; that is, the boundary of an allowed d-path is not
necessarily an allowed (d− 1)-path. To this end, we adopt a stronger notion of allowed paths:
an allowed path p is ∂-invariant if ∂p is also allowed. Let Ωd := {p ∈ Ad | ∂p ∈ Ad−1} be
the space generated by all ∂-invariant paths. We then have ∂Ωd ⊂ Ωd−1 (as ∂2 = 0). This
gives rise to the following chain complex of ∂-invariant allowed paths:

· · ·Ωd
∂−→ Ωd−1

∂−→ · · ·Ωd
∂−→ Ω0

∂−→ 0.

We can now define the homology groups of this chain complex. The d-th cycle group is
defined as Zd = Ker ∂|Ωd , and elements in Zd are called d-cycles. The d-th boundary group
is defined as Bd = Im ∂|Ωd+1 , with elements of Bd being called d-boundary cycles (or simply
d-boundaries). The resulting d-dimensional path homology group is Hd(G,F) = Zd/Bd.

2.1 Examples of 1-boundaries
Below we give three examples of 1-boundaries; see Figure 1.

Bi-gon. A bi-gon is a 1-cycle euv + evu consisting of two edges (u, v) and (v, u) from
E; see Figure 1(a). Consider the 2-path euvu. We have that its boundary is ∂(euvu) =
evu − euu + euv = evu + euv. Since both evu and euv are allowed 1-paths, it follows that any
bi-gon evu + euv of G is necessarily a 1-boundary.

Boundary triangle. Consider the 1-cycle C = evw − euw + euv of G (it is easy to check that
∂ C = 0). Now consider the 2-path euvw: its boundary is then ∂(euvw) = evw−euw+euv = C.
Note that every summand in the boundary is allowed. Thus C is a 1-boundary. We call any
triangle in G isomorphic to C a boundary triangle. Note that a boundary triangle always has
one sink and one source; see the source u and sink w in Figure 1(b). In what follows, we use
(u,w | v) to denote a boundary triangle where u is the source and w is the sink.

Boundary quadrangle. Consider the 1-cycle C = euv + evw − euz − ezw from G. It is
easy to check that C is the boundary of the 2-path euvw − euzw, as ∂(euvw − euzw) =
evw − euw + euv − (ezw − euw + euz) = evw + euv − ezw − euz = C. We call any quadrangle
isomorphic to C a boundary quadrangle.
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In the remainder of the paper, we use R(u, v, w, z) to represent a quadrangle; i.e, a 1-cycle
consisting of 4 edges whose undirected version has the form (u, v) + (v, w) + (w, z) + (z, u).
(Note that a quadrangle may not be a boundary quadrangle). We denote a boundary
quadrangle euv + evw − euz − ezw by {u,w | v, z}, where u and w are the source and sink of
this boundary quadrangle respectively.

3 Computing 1-dimensional path homology H1

Note that the 1-dimensional ∂-invariant path space Ω1 = Ω1(G) is the space generated by all
edges [10] because the boundary of every edge is allowed by definition.

Now consider the 1-cycle group Z1 ⊆ Ω1; that is, Z1 is the kernel of ∂ applied to Ω1.
We show below that a basis of Z1 can be computed by considering a spanning tree of the
undirected version of G, which denoted by Gu. This is well known when F is Z2. It is easy
to see that this spanning tree based construction also works for arbitrary field F.

Specifically, let T be a rooted spanning tree of Gu with root r, and T̄ := Gu \ T . For
every edge e = (v1, v2) ∈ T̄ , let ce be the 1-cycle (under Z2) obtained by summing e and
all edges on the paths π1 and π2 between v1 and r, and v2 and r respectively. The cycles
{ce, e ∈ T̄} form a basis of 1-cycle group of Gu under Z2 coefficient. Now for every such cycle
ce in Gu, we also have a cycle in Ω1(G) containing same edges with ce which are assigned a
coefficient 1 or −1 depending on their orientations in G. We call this 1-cycle in Ω1(G) also
ce. Then we have the following proposition, whose proof is in the full version.

I Proposition 2. The cycles {ce|e ∈ T̄} in Ω1(G) form a basis for Z1 under any coefficient
field F.

Now, we show a relation between 1-dimensional homology, cycles, bigons, triangles and
quadrangles. Recall that bi-gons, boundary triangles and boundary quadrangles are specific
types of 1-dimensional boundaries with two, three or four vertices, respectively; see Section
2.1. The following theorem is similar to Proposition 2.9 from [11], where the statement there
is under coefficient ring Z. For completeness, we include the (rather similar) proof for our
case in the full version.

I Theorem 3. Let G = (V,E) be a directed graph. Let Q denote the space generated by all
boundary triangles, boundary quadrangles and bi-gons in G. Then we have B1 = Q.

I Corollary 4. The 1-dimensional path homology group satisfies that H1 = Z1/Q.

3.1 A simple algorithm
Theorem 3 and Corollary 4 provide us a simple framework to compute H1. Below we only
focus on the computation of the rank of H1; but the algorithm can easily be modified to output
a basis for H1 as well. Later in Section 4, we will develop a more efficient and sophisticated
algorithm for the 1-dimensional persistent path homology H1, which as a by-product, also
gives a more efficient algorithm to compute H1.

In the remaining of this paper, we represent each cycle in Z1 with a vector. Assume all
edges are indexed from 1 to m as e1, · · · , em where m is the number of edges. Then, each
1-cycle C is an m-dimensional vector, where C[i] ∈ F records the coefficient for edge ei in C.

(Step 1): cycle group Z1. By Proposition 2, rank(Z1) = |E| − |V |+ 1 for directed graph
G = (V,E). The computation of the rank takes O(1) time (or O(|V |2) time if we need to
output a basis of it explicitly).

SoCG 2020
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Algorithm 1 A simple first algorithm to compute rank of H1.

1: procedure CompH1-Simple(G, t)
2: (Step 1): Compute rank of 1-cycle group Z1
3: (Step 2): Compute rank of 1-boundary group B1
4: (Step 2.a) Compute a generating set C of 1-boundary cycles that generates B1
5: (Step 2.b) From C compute a basis for B1
6: Return rank(H1) = rank(Z1)− rank(B1).
7: end procedure

(Step 2): boundary group B1. Note that by Theorem 3, we can compute the set of all
bigons, boundary triangles and boundary quadrangles as a generating set C of 1-boundary
cycles (meaning that it generates the boundary group B1) for (Step 2.a). However, such a
set C could have size Ω(n2) even for a planar graph, where n = |V |; see Figure 2. (For a
general graph, the number of boundary quadrangles could be Θ(n4).)

Figure 2 There are n vertices but ls ·lt = Θ(n2) quadrangles, ls = b(n−2)/2c and lt = d(n−2)/2e.

To make (Step 2.b) efficient, we wish to have a generating set C of 1-boundary cycles with
small cardinality. To this end, we leverage a classical result of [3] to reduce the size of C.

Given an undirected graph G, its arboricity a(G) is the minimum number of edge-disjoint
spanning forests which G can be decomposed into [13]. An alternative definition is

a(G) = max
H is a subgraph of G

|E(H)|
|V (H)| − 1 .

From this definition, it is easy to see (and well-known, see e.g, [3]) that:

I Observation 3.1.
(1) If G is a planar graph, or a graph with bounded vertex degrees, then a(G) = O(1).
(2) If G is a graph embedded on a genus g surface, then a(G) = O(g).
(3) In general, if G does not contain self-loops, then a(G) = O(n).
We will leverage some classical results from [3]. First, to represent quadrangles, we use the
following triple-list representation [13] : a triple-list (u, v, {w1, w2, · · · , wl}) means that for
each i, wi is adjacent to both u and v, where we say u′ and v′ are adjacent if either (u′, v′)
or (v′, u′) are in E (i.e, u′ and v′ are adjacent when disregarding directions). Given such a
triple-list ξ = (u, v, {w1, w2, · · · , wl}), it is easy to see that u,wi, v, wj form the consecutive
vertices of a quadrangle in the undirected version of graph G; and we also say that the
undirected quadrangle R(u,wi, v, wj) is covered by this triple-list. We say that a vertex z is
in a triple-list (u, v, {w1, w2, · · · , wl}) if it is in the set {w1, w2, · · · , wl}.

The size of a triple-list is the total number of vertices contained in it. This triple-list ξ
thus represents Θ(l2) number of undirected quadrangles in G succinctly with Θ(l) size.
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I Proposition 5 ([3]).
(1) Let G be a connected undirected graph with n vertices and m edges. There is an algorithm

listing all the triangles in G in O(a(G)m) time.
(2) There is an algorithm to compute a set of triple-lists which covers all quadrangles in

a connected graph G in O(a(G)m) time. The total size complexity of all triple-lists is
O(a(G)m).

Using the above result, we can have the following theorem, with proof in the full version.

I Theorem 6. Let G = (V,E) be a directed graph with n vertices and m edges. We can
compute a generating set C of 1-boundary cycles for B1 with cardinality O(a(G)m) in time
O(a(G)m).

It then follows from Theorem 3 that (Step 2.a) can be implemented in O(a(G)m) time,
producing a generating set of cardinality O(a(G)m). Finally, representing each boundary
cycle in C as a vector of dimension m = |E|, we can then compute the rank of cycles in C in
O(|C|mω−1) = O(a(G)mω),where ω < 2.373 is the exponent for matrix multiplication [2].

Putting everything together, we have that

I Theorem 7. Given a directed graph G = (V,E) with n = |V | and m = |E|, Algorithm 1
computes the rank of the 1-dimensional path homology group H1 in O(a(G)mω) time.

The algorithm can be extended to compute a basis for H1 with the same time complexity.

For example, by Observation 3.1, if G is a planar graph, then we can compute H1 in
O(nω). For a graph G embedded on a genus g surface, H1 can be computed in O(gnω) time.
In contrast, we note that the algorithm of [5] takes O(n5) time for planar graphs.

4 Computing persistent path homology H1

The concept of arboricity used in the previous section does not consider edge directions.
Indeed, our algorithm to compute a generating set C as given in the proof of Theorem 6
first computes a (succinct) representation of all quadrangles, whether they contribute to
boundary quadrangles or not. On the other hand, as Figure 3 illustrates, a graph G can have
no boundary quadrangle despite the fact that the graph is dense (with Θ(n2) edges and thus
a(G) = Θ(n) arboricity). Another way to view this is that the example has no allowed 2-path,
and thus no ∂-invariant 2-paths and consequently no 1-boundary cycles. Our algorithm will
be more efficient if it can also respect the number of allowed elementary 2-paths.

Figure 3 A dense graph with no boundary quadrangle.

In fact, a more standard and natural way to compute a basis for the 1-boundary group
proceeds by taking the boundary of ∂-invariant 2-paths. The complication is that unlike
in the simplicial homology case, it is not immediately evident how to compute a basis for
Ω2 (the space of ∂-invariant 2-paths). Nevertheless, Chowdhury and Mémoli presented

SoCG 2020
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an elegant algorithm to show that a basis for B1 (and H1) can still be computed using
careful column-based matrix reductions [5]. The time complexity of their algorithm is
O((

∑
(u,v)∈E(din(u) + dout(v)))mn2) which depends on the number of elementary 2-paths3.

In this section, we present an algorithm that can take advantage of both of the previous
approaches (the algorithm of [5] and Algorithm 1). Similar to [5], we will now consider
the persistent path homology setting, where we will add directed edges in G one by one
incrementally. Hence our algorithm can compute the persistent H1 w.r.t. a filtration. However
different from [5], instead of reducing a matrix with columns corresponding to all elementary
allowed 2-paths, we will follow a similar idea as in Algorithm 1 and add a generating set of
boundary cycles each time we consider a new directed edge.

4.1 Persistent path homology
We now introduce the definition of the persistent path homology [5]. The persistent vector
space is a family of vector spaces together with linear maps {Uδ

µδ,δ′−−−→ Uδ
′

δ≤δ′∈R} so that: (1)
µδ,δ is the identity for every δ ∈ R; and (2) µδ,δ′′ = µδ,δ′ ◦ µδ′,δ′′ for each δ ≤ δ′ ≤ δ′′ ∈ R.

Let G = (V,E,w) be a weighted directed graph where V is the vertex set, E is the edge
set, and w is the weight function w : E → R+. For every δ ∈ R+, a directed graph Gδ can
be constructed as Gδ = (V δ = V,Eδ = {e ∈ E : w(e) ≤ δ}). This gives rise to a filtration of
graphs {Gδ ↪−→ Gδ

′}δ≤δ′∈R using the natural inclusion map iδ,δ′ : Gδ ↪−→ Gδ
′ .

I Definition 8 ([5]). The 1-dimensional persistent path homology of a weighted directed graph
G = (V,E,w) is defined as the persistent vector space H1 := {H1(Gδ)

iδ,δ′−−−→ H1(Gδ′)}δ≤δ′∈R.
The 1-dimensional path persistence diagram Dg(G) of G is the persistence diagram of H1.

To compute the path homology H1(G) of an unweighted directed graph G = (V,E), we
can order edges in E arbitrarily with the index of an edge in this order being its weight.
The rank of H1(G) can then be retrieved from the 1-dimensional persistent homology group
induced by this filtration by considering only those homology classes that “never die”.

4.2 A more efficient algorithm
In what follows, to simplify presentation, we assume that we are given a directed graph
G = (V,E), where edges are already sorted e1, . . . , em in increasing order of their weights.
Let G(i) = (V,E(i) = {e1, . . . , ei}) denote the subgraph of G spanned by the edges e1, . . . , ei;
and set G(0) = (V,∅). We now present an algorithm to compute the 1-dimensional persistent
path homology induced by the nesting sequence G(0) ⊆ G(1) ⊆ · · ·G(m). In particular, in
Algorithm 2, as we insert each new edge es, moving from G(s−1) to G(s), we maintain a basis
for Z1(s) := Z1(G(s)) and for B1(s) := B1(G(s)), updated from Z1(s− 1) and B1(s− 1) and
output new persistent pairs. On a high level, this algorithm follows the standard procedure
in [6]; details are in the full version.

4.2.1 Procedure GenSet(s)

Note that G(s) is obtained from G(s−1) by inserting a new edge es = (u, v) to G(s−1). At
this point, we have already maintained a basis B for B1(G(s−1)). Our goal is to compute a
set of generating boundary cycles Cs such that B ∪ Cs contains a basis for B1(G(s)).

3 The time complexity given in the paper [5] assumes that the input directed graph is complete, and takes
O(n9) to compute H1. However, a more refined analysis of their time complexity shows that it can be
improved to O((

∑
(u,v)∈E

din(u) + dout(v))mn2).
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Algorithm 2 Compute 1-D persistent path homology for a directed graph G = (V,E).

1: procedure Persistence(G)
2: Order the edges in non-decreasing order of their weights: e1, . . . , em.
3: Set G(0) = (V,∅), current basis for 1-boundary group is B = ∅.
4: for s = 1 to m do
5: Call GenSet(s) to compute a generating set Cs containing a basis for newly

generated 1-boundary cycles moving from G(s−1) to G(s).
6: Call FindPairs(s) to output new persistent pairs, and update the boundary basis
B for G(s).

7: end for
8: end procedure

We first inspect the effect of adding edge es = (u, v) to G(s). Two cases can happen:

Case-A: The endpoints u and v are in different connected components in (the undirected
version of) G(s−1), and after adding es, those two components are merged into a single
one in G(s). In this case, no cycle is created, nor does the boundary group change. Thus
Z1(G(s−1)) = Z1(G(s)) and B1(G(s−1)) = B1(G(s)). We say that edge es is negative in
this case (as it kills in H0).
The algorithm maintains the set of negative edges seen so far, which is known to form
a spanning forest Ts of V . (Here, we abuse the notation slightly and say that a set of
directed edges span a tree for a set of vertices if they do so when directions are ignored.)
The algorithm maintains Ts via a union-find data structure.

Figure 4 The insertion of edge (u, v) increases the rank of the boundary group by 3.

Case-B: The endpoints u and v are already in the same connected component in G(s−1).
After adding this edge es, new cycles are created in G(s). Hence es is positive in this case
(as it creates an element in Z1; although different from the standard simplicial homology,
it may not necessarily create an element in H1 as we will see later).
Whether es is positive or negative can be easily determined by performing two Find
operations in the union-find data structure representing Ts−1. A Union(u, v) operation is
performed to update Ts−1 to Ts if es is negative.

We now describe how to handle (Case-B). After adding edge es, multiple cycles containing
es can be created in G(s). Nevertheless, by Proposition 2, the dimension of Z1 increases only
by 1. On the other hand, the addition of es may create new boundary cycles. Interestingly,
it could increase the rank of B1 by more than 1. See Figure 4 for an example where rank(B1)
increases by 3; and note that this number can be made arbitrarily large.
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As mentioned earlier, in this case, we wish to compute a set of generating boundary
cycles Cs such that B ∪ Cs contains a basis for B1(G(s)).

Similar to Algorithm 1, using Theorem 3, we choose some bigons, boundary triangles
and boundary quadrangles and add them to Cs. In particular, since Cs only accounts for
the newly created boundary cycles, we only need to consider bigons, boundary triangles and
boundary quadrangles that contain es. We now describe the construction of Cs, which is
initialized to be ∅.

(i) Bigons. At most one bigon can be created after adding es (namely, the one that contains
es). We add it to Cs if this bigon exists.

(a) (b) (c)

Figure 5 Three types of boundary triangles incident to es = (u, v).

(ii) Boundary triangles. There could be three types of newly created boundary triangles
containing es = (u, v). The first case is when u is the source and v is the sink; see
Figure 5(a). In this case multiple 2-paths may exist from u to v, euw1v, euw2v, · · · euwpv,
forming multiple boundary triangles of this type containing es. However, we only
need to add one triangle of them into Cs, say (u, v | w1) since every other triangle
(u, v | wj) can be written as a linear combination of (u, v | w1) and an existing boundary
quadrangle (u, v | w1, wj) in G(s−1).
For the second case (see Figure 5(b)) where u is the source but v is not the sink, we
include all such boundary triangles to Cs. We also add all boundary triangles of the
last type in which v is the sink but u is not the source to Cs; see Figure 5(c). It is easy
to see that Cs ∪B can generate all new boundary triangles containing es = (u, v).

(a) (b)

Figure 6 (a) Examples of new boundary quadrangles with u being the source. (b) Not all
boundary quadrangles in M will be added to the generating set Cs.

(iii) Boundary quadrangles. Given an edge es = (u, v), there are two types of the boundary
quadrangles incident to it: one has u as the source; the other has v as the sink. We
focus on the first case; see Figure 6(a). The second case can be handled symmetrically.
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In particular, we will first compute a set M and then select a subset of quadrangles from
M for adding to Cs.

Specifically, take any successor w of v, that is, there is an edge (v, w) ∈ G(s−1) forming
an allowed 2-path euvw in G(s). Before introducing the edge es, there may be multiple
allowed 2-paths euv1w, euv2w, · · · , euvlw in G(s−1); see Figure 6 (a). For each such 2-path
euvkw, 1 ≤ k ≤ l, a new boundary quadrangle (u,w | v, vk) containing es = (u, v) will be
created. However, among all such 2-paths euv1w, · · · , euvlw, we will pick just one 2-path, say
euv1w and only add the quadrangle (u,w | v, v1) formed by euvw and euv1w to M . Observe
that any other boundary quadrangle containing 2-path euvw, say (u,w | v, vk), can be written
as a linear combination of the quadrangle (u,w | v, v1) and boundary quadrangle (u,w | vk, v1)
which is already in G(s−1) (and in the span of B which is a basis for B1(G(s−1))). In other
words, (u,w | v, v1) ∪B generates any other boundary quadrangle containing 2-path euvw.

We perform this for each successor w of v. Hence this step adds at most dG(s−1)

out (v)
number of boundary quadrangles to the set M .

Not all quadrangles inM will be added to Cs. In particular, suppose we have p quadrangles
A = {(u,wj | v, z) : 1 ≤ j ≤ p} ⊆M incident to the newly inserted edge es = (u, v) as well
as another vertex z, i.e. there are edges (u, z), (wj , z) and (v, wj), 1 ≤ j ≤ p; see Figure 6 (b).
If there does not exist any other vertex u′ such that edges (u′, z), (u′, v) ∈ G(s−1), then we
add all quadrangles in A to Cs. If this is not the case, let u′ be another vertex such that
(u′, z) and (u′, v) are already in G(s−1); see Figure 6 (b). In this case, we only add one
quadrangle from set A, say, (u,w1|v, z) to the generating set Cs.

It is easy to check that any other quadrangle (u,wj | v, z), 1 < j ≤ p, can be written
as the combination of (u,w1 | v, z), (u′, w1 | v, z) and (u′, wj | v, z). As the latter two
quadrangles are boundary quadrangles from G(s−1), they can already be generated by B.
The entire process takes time O(|M |) = O(dG(s−1)

out (v)). It is also easy to see that B ∪ Cs can
generate any boundary quadrangle containing es = (u, v) and with u being its source.

The case when v is the sink of a boundary quadrangle is handled symmetrically in time
O(dG(s−1)

in (u)). Hence the total time to compute a generating set Cs is O(dG(s−1)

in (u)+dG(s)

out (v))
when inserting a single edge es = (u, v).

4.3 Analysis of Algorithm 2
Correctness of the algorithm. Notice that the invariant that B is a basis for G(s) at the
end of the for-loop (line-7 of Algorithm 2) is maintained. Furthermore, B is always in reduced
form which is maintained via left-to-right column additions only. Hence the algorithm
computes the 1-dimensional persistent path homology correctly [6].

Time complexity analysis. The remainder of this section is devoted to determining the
time complexity of Algorithm 2. Specifically, we first show the following theorem.

I Theorem 9. Across all stages s ∈ [1,m], the total cardinality of the generating set
C = ∪sCs is O(min{a(G)m,

∑
(u,v)∈E(din(u) + dout(v))}). The total time taken by procedure

NewBasis(s) for all s ∈ [1,m] is O(m+
∑

(u,v)∈E(din(u) + dout(v))}).

Proof. We will count separately the number of bigons, boundary triangles, and boundary
quadrangles added to any Cs. Set r = min{a(G)m,

∑
(u,v)∈E(din(u) + dout(v))}.

(i) Bigons: First, it is easy to see that for each edge es = (u, v) with s ∈ [1,m], at most
one bigon (incident to es) is added. Besides, if dout(v) = 0, there is no bigon incident to
es. Hence the total number ever added to C is O(min{m,

∑
(u,v)∈E(dout(v))}) = O(r)

and it takes O(m) time to compute them.

SoCG 2020



36:12 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

(ii) Boundary triangles: For boundary triangles, we know from Proposition 5 that there
are altogether O(a(G)m) triangles (thus at most O(a(G)m) boundary triangles) in a
graph G and they can all be enumerated in O(a(G)m) time. Obviously, the number of
boundary triangles ever added to C is at most O(a(G)m).
We now argue that the number of boundary triangles added to C is also bounded by
O(

∑
(u,v)∈E(din(u) + dout(v))). Note that, for every 2-path, at most one boundary

triangle is added to the set. Since the number of 2-paths is indeed Θ(
∑

(u,v)∈E(din(u) +
dout(v))), the number of triangles we add is O(

∑
(u,v)∈E(din(u) + dout(v))). Recall

that there are three cases for boundary triangles added; see Figure 5. The time spent
for the first case for every s is O(1)by recording any 2-path euwv, and O(din(u) +
dout(v)) for the last two cases. Thus the total time spent at adding boundary triangles
incident to es and identifying triangles to be added to Cs for all s ∈ [1,m] takes
O(m+

∑
(u,v)∈E(din(u) + dout(v))) time.

(iii) Boundary quadrangles: The situation here is somewhat opposite to that of the boundary
triangles: Specifically, it is easy to see that this step accesses at most O(din(u)+dout(v))
boundary quadrangles when handling edge es = (u, v). Hence the number of boundary
quadrangles it can add to Cs is at most O(din(u) + dout(v)). The total number
of boundary quadrangles ever added to C is thus bounded by O(

∑
(u,v)∈E(din(u) +

dout(v))).
We now prove that the number of boundary quadrangles ever added to C is also bounded
by O(a(G)m). We use the existence of a succinct representation of all quadrangles as
specified in Proposition 5 to help us argue this upper bound. Notice that our algorithm
does not compute this representation. It is only used to provide this complexity
analysis.

Specifically, by Proposition 5, we can compute a list L of triple-lists with O(a(G)m) total
size complexity, which generates all undirected quadrangles. Following the proof of Theorem
6(see the full version), we can further refine this list, where each triple-list ξ ∈ L further gives
rise to three lists that are of type-1, 2, or 3. Let L̂ denote this refinement of L, consisting of
lists of type-1, 2 or 3. From the proof of Theorem 6, we know that the total size complexity
for all lists in L̂ is still O(a(G)m). This also implies that the cardinality of L̂ is bounded by
|L̂| = O(a(G)m).

We now denote by R the set of all boundary quadrangles ever added to C = ∪sCs by
Algorithm 2. Furthermore, let

P := {(ξ, w) | ξ ∈ L̂, w ∈ ξ}.

Below we show that we can find an injective map π : R → P. But first, note that |P| is
proportional to the total size complexity of L̂ and thus is bounded by O(a(G)m).

We now establish the injective map π : R → P. Specifically, we process each boundary
quadrangle in the order that they are added to C. Consider a boundary quadrangle R =
R(u, v, w, z) added to Cs while processing edge es = (u, v). There are two cases: The first is
that R is of the form (u,w | v, z) in which u is the source of this quadrangle. The second is
that it has the form (w, v | u, z) in which v is the sink. We describe the map π(R) for the
first case, and the second one can be analyzed symmetrically.

By construction of L, there is at least one triple-list ξ ∈ L covering R = (u,w | v, z).
There are three possibilities:
Case-a: The triple-list ξ is of the form ξ = ξuw = (u,w, {· · · }). In this case, the boundary

quadrangle R = (u,w | v, z) is in a type-1 list ξ(1)
uw = (u,w, S) ∈ L̂, and both v, z ∈ S. We

now claim that the pair (ξ(1)
uw, v) ∈ P has not yet been mapped (i.e, there is no R′ ∈ C with
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π(R′) = (ξ(1)
uw, v) yet), and we can thus set π(R) = (ξ(1)

uw, v) ∈ P. Suppose on the contrary
there already exists R′ ∈ C that we processed earlier than R with π(R′) = (ξ(1)

uw, v). In
that case, R′ = (u,w | v, z′) must contain the 2-path euvw as well. Since R′ is processed
earlier than R, and edge es = (u, v) is the most recent edge added, R′ must be added when
we process es as well (as R′ contains es). However, Algorithm 2 in this case only adds
one quadrangle containing the 2-path euvw, meaning that R′ cannot exist (as otherwise,
we would not have added R to Cs; recall Figure 6 (a)). Hence, the map π so far remains
injective.

Case-b: The triple-list ξ is of the form ξ = ξwu = (w, u, {· · · }). In this case, this quadrangle
is covered by the type-2 list ξ(2)

wu ∈ L̂. We handle this in a manner symmetric to (Case-a)
and map π(R) = (ξ(2)

wu, v).
Case-c: The last case is that R is generated by triple-list ξ of the form ξvz = (v, z, {· · · }).

In this case, the quadrangle R = (u,w | v, z) will be covered by the type-3 list ξ(3)
vz =

(v, z, S1, S2) with u ∈ S1 and w ∈ S2; see Figure 7. We now argue that at least one of
(ξ(3)
vz , u) and (ξ(3)

vz , w) has not been mapped under π yet.

Figure 7 At least one of (ξ(3)
vz , u) and (ξ(3)

vz , w) has not been mapped yet.

Suppose this is not the case and we already have both π(Q1) = (ξ(3)
vz , u) and π(Q2) =

(ξ(3)
vz , w). Then Q1 is necessarily of the form (u,w′ | v, z) and Q2 is of the form (u′, w | v, z);

and both Q1 and Q2 are processed before R. See Figure 7. Furthermore, Q1 is only added
when we process edge es. However, in this case, once Q1 is added, Algorithm 2 will not add
further quadrangle containing edges (u, v) and (u, z) (recall the handling of Figure 6 (b)).
Hence R cannot be added to Cs in this case.

In other words, it cannot be that both Q1 and Q2 already exist, and hence we can set
π(R) to be one of (ξ(3)

vz , u) and (ξ(3)
vz , w) that is not yet mapped. Consequently, the map π

we construct remains injective.
We process all quadrangles in C in order. The final π : R → P is injective, meaning that

|R| ≤ |P| and thus |R| = O(a(G)m).
Putting everything together, we have that the total number of boundary quadrangles

added to C is bounded by O(min{a(G)m,
∑

(u,v)∈E(din(u) + dout(v))}).
Finally, Algorithm 2 spends O(m+

∑
(u,v)∈E(din(u) +dout(v))) time to handle both cases

in Figure 6. The theorem then follows. J

Combined with some standard matrix operations, the above theorem gives Theorem 1. The
details of the proof are given in the full version of the paper.
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I Remark 10. We note that neither term in r = min{a(G)m,
∑

(u,v)∈E(din(u) + dout(v))}
always dominates. In particular, it is easy to find examples where one term is significantly
smaller (asymptotically) than the other. For example, for any planar graph G, a(G)m = O(n).
However, it is easy to have a planar graph where the second term

∑
(u,v)∈E(din(u)+dout(v)) =

Ω(n2); see e.g, Figure 2.
On the other hand, it is also easy to have a graph G where

∑
(u,v)∈E(din(u) + dout(v)) =

O(1) yet a(G)m = Θ(n3). Indeed, consider the bipartite graph in Figure 3, where for each
edge (u, v) ∈ E, din(u) + dout(v) = 0. However, this graph has a(G) = Θ(n), m = Θ(n2) and
thus a(G)m = Θ(n3).

I Remark 11. We note that the time complexity of the algorithm proposed by Chowdhury
and Mémoli in [5] to compute the (d − 1)-dimensional persistence path homology takes
O(n3+3d) time. However, for the case d = 2, a more refined analysis shows that in fact, their
algorithm takes only O((

∑
(u,v)∈E(din(u) + dout(v)))mn2) time.

Compared with our algorithm, which takes time O(rmω−1) with r = min{a(G)m,∑
(u,v)∈E(din(u) + dout(v))} and ω < 2.373, observe that our algorithm can be significantly

faster (when a(G)m is much smaller than
∑

(u,v)∈E(din(u)+dout(v)). For example, for planar
graphs, our algorithm takes O(nω) time, whereas the algorithm of [5] takes O(n5) time.

Finally, in the full version of the paper, we extend our algorithm to compute the so-called
minimal path homology basis efficiently, and provide some preliminary experimental results,
including showing the efficiency of our algorithm compared to the previous best algorithm
over several datasets.

5 Concluding remarks

A natural question is whether it is possible to have a more efficient algorithm for computing
(persistent) path homology of higher dimensions improving the work of [5]. Another question
is whether we can compute a minimal path homology basis faster improving our current time
bound O(mωn) (see the full version of the paper).
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