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Abstract
We propose a dynamic data structure for the distribution-sensitive point location problem. Suppose
that there is a fixed query distribution in R2, and we are given an oracle that can return in O(1)
time the probability of a query point falling into a polygonal region of constant complexity. We
can maintain a convex subdivision S with n vertices such that each query is answered in O(OPT)
expected time, where OPT is the minimum expected time of the best linear decision tree for point
location in S. The space and construction time are O(n log2 n). An update of S as a mixed sequence
of k edge insertions and deletions takes O(k log5 n) amortized time. As a corollary, the randomized
incremental construction of the Voronoi diagram of n sites can be performed in O(n log5 n) expected
time so that, during the incremental construction, a nearest neighbor query at any time can be
answered optimally with respect to the intermediate Voronoi diagram at that time.
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1 Introduction

Planar point location is a classical problem in computational geometry. In the static
case, a subdivision is preprocessed into a data structure so that, given a query point, the
face containing it can be reported efficiently. In the dynamic case, the data structure
needs to accommodate edge insertions and deletions. It is assumed that every new edge
inserted does not cross any existing edge. There are well-known worst-case optimal results
in the static case [1, 19, 25, 29]. There has been a long series of results in the dynamic
case [3, 5, 8, 9, 14, 15, 21, 26, 27]. For a dynamic connected subdivision of n vertices, an
O(logn) query time and an O(log1+ε n) update time for any ε > 0 can be achieved [8].

When the faces have different probabilities of containing the query point, it is appropriate
to minimize the expected query time. Assume that these probabilities are given or accessible
via an oracle. Arya et al. [4] and Iacono [23] obtained optimal expected query time when
the faces have constant complexities. Later, Collete et al. [16] obtained the same result for
connected subdivisions. So did Afshani et al. [2] and Bose et al. [7] for general subdivisions.

In the case that no prior information about the queries is available, Iacono and Mulzer [24]
designed a method for triangulations that can process an online query sequence σ in time
proportional to n plus the entropy of σ. We developed solutions for convex and connected
subdivisions in a series of work [11, 10, 12]. For convex subdivisions, the processing time is
O(Topt+n), where Topt is the minimum time needed by a linear decision tree to process σ [10].
For connected subdivisions, the processing time is O(Topt + n+ |σ| log(log∗ n)) [12].
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In this paper, we are interested in dynamic distribution-sensitive planar point location.
Such a problem arises when there are online demands for servers that open and close over
time, and a nearest server needs to be located for a demand. For example, walking tourists
may look for a facility nearby (e.g. convenience store) and search on their mobile phones.
The query distribution can be characterized using historical data. New convenience store
may open and existing ones may go out of business. If we use the Euclidean metric, then we
are locating a query point in a dynamic convex subdivision which is a Voronoi diagram. We
are interested in solutions with optimal expected query time.

We assume that there is an oracle that can return in O(1) time the probability of a query
point falling inside a polygonal region of constant complexity. We propose a data structure
for maintaining a convex subdivision S with n vertices such that each query is answered
in O(OPT) expected time, where OPT is the minimum expected time of the best point
location decision tree for S, i.e., the best linear decision tree for answering point location
queries in S. An update of S as a mixed sequence of k edge insertions and deletions can be
performed in O(k log5 n) amortized time. The space and construction time are O(n log2 n).
As a corollary, we can carry out the randomized incremental construction of the Voronoi
diagram of n sites so that, during the incremental construction, a nearest neighbor query at
any time can be answered optimally with respect to the intermediate Voronoi diagram at
that time. The expected total construction time is O(n log5 n) because each site insertion
incurs O(1) expected structural changes to the Voronoi diagram. A key ingredient in our
solution is a new data structure, slab tree, for maintaining a triangulation with a nearly
optimal expected point location time and polylogarithmic amortized update time. This data
structuring technique may find other applications. Omitted proofs and details are in [13].

2 Dynamic convex subdivision

Let S be a convex subdivision. Let ∂S be the outer boundary of S, which bounds a convex
polygon. A general-update sequence Φ is a mixed sequence of edge insertions and deletions in
S that produces a convex subdivision. The intermediate subdivision after each edge update is
only required to be connected, not necessarily convex. Vertices may be inserted into or deleted
from ∂S, but the shape of ∂S is never altered. We will present in Sections 3-5 a dynamic
point location structure for a DK-triangulation of S (to be defined below). Theorem 8
in Section 5 summarizes the performance of this data structure. We show how to apply
Theorem 8 to obtain a dynamic distribution-sensitive point location structure for S.

2.1 Dynamic DK-triangulation
Let P be a convex polygon. Find three vertices x, y and z that roughly trisect the boundary
of P . This gives a triangle xyz. Next, find a vertex w that roughly bisects the chain delimited
by x and y. This gives a triangle xyw adjacent to xyz. We recurse on the other chains
to produce a DK-triangulation of P [17]. It has the property that any line segment inside
P intersects O(log |P |) triangles. A DK-triangulation of S is obtained by computing the
DK-triangulations of its bounded faces. Goodrich and Tamassia [20] proposed a method
to maintain a balanced geodesic triangulation of a connected subdivision. We can use it
to maintain a DK-triangulation of S because a DK-triangulation is a balanced geodesic
triangulation. By their method, each edge insertion/deletion in S is transformed into O(logn)
edge insertions and deletions in the DK-triangulation of S, where n is the number of vertices
of S. Consequently, each edge insertion/deletion in S takes O(log2 n) time.
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2.2 Point location
We modify our adaptive point location structure for static convex subdivisions [10] to make
it work for the distribution-sensitive setting. Compute a DK-triangulation ∆1 of S. For each
triangle t ∈ ∆1, use the oracle to compute the probability Pr(t) of a query point falling into
t. This probability is the weight of that triangle. We call the triangles in ∆1 non-dummy
because we will introduce some dummy triangles later.

Construct a data structure D1 for ∆1 with two parts. The first part of D1 is a new
dynamic distribution-sensitve point location structure for triangulations (Theorem 8). The
query time of the first part of D1 is O(OPT+log logn), where OPT is the minimum expected
time of the best point location decision tree for ∆1. The second part can be any dynamic
point location structure with O(logn) query time, provided that its update time is O(log2 n)
and space is O(n log2 n) [3, 8, 15, 28].

For i ≥ 2, define ni = (log2 ni−1)4 inductively, where n1 = n. To construct ∆i from ∆i−1,
extract the non-dummy triangles in ∆i−1 whose probabilities of containing a query point
are among the top (log2 ni−1)4. For each subset of extracted triangles that lie inside the
same bounded face of S, compute their convex hull and its DK-triangulation. These convex
hulls are holes in the polygon Hi with ∂S as its outer boundary. Triangulate Hi. We call
the triangles used in triangulating Hi dummy and the triangles in the DK-triangulations of
the holes of Hi non-dummy. The dummy and non-dummy triangles form the triangulation
∆i. The size of ∆i is O(ni). For each non-dummy triangle t ∈ ∆i, set its weight to be
max{Pr(t),W ∗i /ni}, where W ∗i is the sum of Pr(t) over the non-dummy triangles t in ∆i.
Dummy triangles are given weightW ∗i /ni. The total weightWi of all triangles in ∆i is Θ(W ∗i ).
Construct Di as the point location structure of Iacono [23] for ∆i, which can answer a query
in O

(
log Wi

wi

)
time, where wi is the weight of the triangle containing the query point. The

query time of Di is no worse than O(logni) in the worst case as wi ≥W ∗i /ni = Θ(Wi/ni).
A hierarchy (∆1, D1), . . . , (∆m, Dm) is obtained in the end, where the size of ∆m is less

than some predefined constant. So m = O(log∗ n).
For i ≥ 2, label every non-dummy triangle t ∈ ∆i with the id of the bounded face of

S that contains it. If t is located by a query, we can report the corresponding face of S.
The labelling of triangles in ∆1 is done differently in order to allow updates in ∆1 to be
performed efficiently. For each vertex p of S, its incident triangles in ∆1 are divided into
circularly consecutive groups by the incident edges of p in S. Thus, each group lies in a
distinct face of S incident to p. We store these groups in clockwise order in a biased search
tree Tp [6] associated with p. Each group is labelled by the bounded face of S that contains
it. The group weight is the maximum of 1/n and the total probability of a query point falling
into triangles in that group. The threshold of 1/n prevents the group weight from being
too small, allowing Tp to be updated in O(logn) time. The query time to locate a group is
O
(
log W

w

)
, where w is the weight of that group and W is the total weight in Tp. Suppose

that D1 returns a triangle t ∈ ∆1 incident to p. We find the group containing t which tells
us the face of S that contains t. If p is a boundary vertex of S, there are two edges in ∂S
incident to p, so we can check in O(1) time whether t lies in the exterior face. Otherwise, we
search Tp to find the group containing t in O

(
log W

w

)
= O

(
log 1

Pr(t)
)
time.

Given a query point q, we first query Dm with q. If a non-dummy triangle is reported by
Dm, we are done. Otherwise, we query Dm−1 and so on.

I Lemma 1. Let D = ((∆1, D1), . . . , (∆m, Dm)) be the data structure maintained for S.
The expected query time of D is O(OPT), where OPT is the minimum expected time of the
best point location decision tree for S.

SoCG 2020
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2.3 General-update sequence
Let Φ be a general-update sequence with k ≤ n/2 edge updates. We call k the size of Φ. As
discussed in Section 2.1, each edge update in S is transformed into O(logn) edge updates in
∆1. Updating ∆1 takes O(k log2 n) time. We also update the biased search tree Tp at each
vertex p of S affected by the structural changes in ∆1. This step also takes O(k log2 n) time.

For i ≥ 2, we recompute ∆i from ∆i−1 and then Di from ∆i. By keeping the triangles of
∆1 in a max-heap according to the triangle probabilities, which can be updated in O(k log2 n)
time, we can extract the n2 = log4

2 n triangles to form ∆2 in O(n2 logn2) time. For i ≥ 3,
we scan ∆i−1 to extract the ni = log4

2 ni−1 triangles to form ∆i in O(ni−1 + ni logni) time.
For i ≥ 2, constructing Di takes O(ni) time [23]. The total update time of ∆i and Di for
i ≥ 2 is O

(∑
i≥2 log4 ni−1 log logni−1

)
, which telescopes to O(log4 n log logn).

Consider D1. The second part of D1 is a dynamic point location structure that admits an
edge insertion/deletion in ∆1 in O(log2 n) time, giving O(k log3 n) total time. By Theorem 8
in Section 5, the update time of the first part of D1 is O(k log5 n) amortized.

In the biased search tree Tp’s at the vertices p of S, there are different weight thresholds
of 1/n depending on when a threshold was computed. To keep these thresholds within a
constant factor of each other, we rebuild the entire data structure periodically. Let n′ be
the number of vertices in the last rebuild. Let c < 1/2 be a constant. We rebuild when the
total number of edge updates in S in all general-update sequences exceeds cn′ since the last
rebuild. Rebuilding the first part of D1 takes O(n log2 n) time by Theorem 8. The second
part of D1 can also be constructed in O(n log2 n) time. This results in an extra O(log2 n)
amortized time per edge update in S.

I Theorem 2. Suppose that there is a fixed but unknown query point distribution in R2, and
there is an oracle that returns in O(1) time the probability of a query point falling into a
polygonal region of constant complexity. There exists a dynamic point location structure for
maintaining a convex subdivision S of n vertices with the following guarantees.

Any query can be answered in O(OPT) expected time, where OPT is the minimum
expected query time of the best point location linear decision tree for S.
The data structure uses O(n log2 n) space, and it can be constructed in O(n log2 n) time.
A general-update sequence with size k ≤ n/2 takes O(k log5 n) amortized time.

3 Slab tree: fixed vertical lines

In this section, we present a static data structure for distribution-sensitive point location in
a triangulation. Its dynamization will be discussed in Sections 4 and 5.

For any region R ⊂ R2, let Pr(R) denote the probability of a query point falling into R.
Let ∆ be a triangulation with a convex outer boundary. The vertices of ∆ lie on a given set
L of vertical lines, but some line in L may not pass through any vertex of ∆. For simplicity,
we assume that no two vertices of ∆ lie on the same vertical line at any time.

Enclose ∆ with an axis-aligned bounding box B such that no vertex of ∆ lies on the
boundary of B. We assume that the left and right sides of B lie on the leftmost and rightmost
lines in L. Connect the highest vertex of ∆ to the upper left and upper right corners of
B, and then connect the lowest vertex of ∆ to the lower left and lower right corners of B.
This splits B \∆ into two triangles and two simple polygons. The two simple polygons are
triangulated using the method of Hershberger and Suri [22]. Let ∆B denote the triangle
tiling of B formed by ∆ and the triangulation of B \∆. Let n denote the number of triangles
in ∆B . Any line segment in B \∆ intersects O(logn) triangles in ∆B [22]. When we discuss
updates in ∆ later, the portion ∆B \∆ of the tiling will not change although new vertices
may be inserted into the outer boundary of ∆.
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3.1 Structure definition

Let (l1, l2, · · · , l|L|) be the vertical lines in L in left-to-right order. We build the slab tree
T as follows. The root of T represents the slab bounded by l1 and l|L|. The rest of T is
recursively defined by constructing at most three children for every node v of T .

We use slab(v) to denote the slab represented by v. Let (li, · · · , lk) be the subsequence
of lines that intersect slab(v). Choose j ∈ [i, k) such that both the probabilties of a query
point falling between li and lj and between lj+1 and lk are at most Pr(slab(v))/2. Create the
nodes vL, vM , and vR as the left, middle, and right children of v, respectively, where slab(vL)
is bounded by li and lj , slab(vM ) is bounded by lj and lj+1, and slab(vR) is bounded by lj+1
and lk. No vertex of ∆B lies in the interior of vM .

The recursive expansion of T bottoms out at a node v if v is at depth log2 n or slab(v)
contains no vertex of ∆B in its interior. So the middle child of a node is always a leaf.

Every node v of T stores several secondary structures. A connected region R ⊂ R2 spans
v if there is a path ρ ⊂ R ∩ slab(v) that intersects both bounding lines of slab(v). The
triangulation ∆B induces a partition of slab(v) into three types of regions:

Free Gap: For all triangle t that spans v but not parent(v), t∩ slab(v) is a free gap of v.
Blocked Gap: Let E be the set of all edges and triangles in ∆B that intersect slab(v)
but do not span v. Every connected component in the intersection between slab(v) and
the union of edges and triangles in E is a blocked gap of v.
Shadow Gap: Take the union of the free gaps of all proper ancestors of v. Each connected
component in the intersection between this union and slab(v) is a shadow gap of v.

The upper boundary of a blocked gap g has at most two edges, and so does the lower
boundary of g. If not, there would be a triangle t outside g that touches g, intersects slab(v),
and does not span v. But then t should have been included in g, a contradiction.1

Two gaps of v are adjacent if the lower boundary of one is the other’s upper boundary.
The list of free and blocked gaps of v are stored in vertical order in a balanced search tree,

denoted by gaplist(v). Group the gaps in gaplist(v) into maximal contiguous subsequences.
Store each such subsequence in a biased search tree [6] which allows an item with weight w
to be accessed in O

(
log W

w

)
time, where W is the total weight of all items. The weight of a

gap g set to be Pr(g). We call each such biased search tree a gap tree of v.
For every internal node v of T , we set up some pointers from the gaps of v to the gap

trees of the children of v as follows. Let w be a child of v. The free gaps of v only give rise
to shadow gaps of w, so they do not induce any item in gaplist(w). Every blocked gap g of v
gives rise to a contiguous sequence σ of free and blocked gaps of w. Moreover, σ is maximal
in gaplist(w) because g is not adjacent to any other blocked gap of v. Therefore, σ is stored
as one gap tree Tσ of w. We keep a pointer from g to the root of Tσ.

Since we truncate the recursive expansion of the slab tree T at depth log2 n, we may not
be able to answer every query using T . We need a backup which is a dynamic point location
structure T ∗ [3, 8, 15, 28]. Any worst-case dynamic point location structure with O(logn)
query time suffices, provided that its update time is O(log2 n) and its space is O(n logn).

1 There is one exception: when a blocked gap boundary contains a boundary edge e of ∆, updates may
insert new vertices in the interior of e, splitting e into collinear boundary edges. However, the portion
∆B \ ∆ of the triangle tiling remains fixed. We ignore this exception to simplify the presentation.

SoCG 2020
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3.2 Querying
Given a query point q, we start at the root r of T , and q must lie in a gap stored in the only
gap tree of r. In general, when we visit a node v of T , we also know a gap tree Tv of v such
that q lies in one of the gaps in Tv. We search Tv to locate the gap, say g, that contains q. If
g is a free gap, the search terminates because we have located a triangle in ∆B that contains
q. Suppose that g is a blocked gap. Then, we check in O(1) time which child w of v satisfies
q ∈ slab(w). By construction, g contains a pointer to the gap tree Tw of w that stores the
free and blocked gaps of w in g ∩ slab(w). We jump to Tw to continue the search. If the
search reaches a leaf of T without locating a triangle of ∆B , we answer the query using T ∗.

I Lemma 3. The expected query time of T is O(OPT+log logn), where OPT is the expected
query time of the best point location decision tree for ∆.

3.3 Construction
The children of a node v of T can be created in time linear in the number of lines in L that
intersect slab(v). Thus, constructing the primary tree of T takes O(|L| logn) time.

The gap lists and gap trees are constructed via a recursive traversal of T . In general,
when we come to a node v of T from parent(v), we maintain the following preconditions.

We have only those triangles in ∆B such that each intersects slab(v) and does not span
parent(v). These triangles form a directed acyclic graph Gv: triangles are graph vertices,
and two triangles sharing a side are connected by a graph edge directed from the triangle
above to the one below.2
The connected components of Gv are sorted in order from top to bottom. Note that each
connected component intersects both bounding lines of slab(v).

Each connected component C in Gv corresponds to a maximum contiguous subsequence
of free and blocked gaps in gaplist(v) (to be computed), so for each C, we will construct a
gap tree TC . We will return the roots of all such TC ’s to parent(v) in order to set up pointers
from the blocked gaps of parent(v) to the corresponding TC ’s.

Gap list. We construct gaplist(v) first. Process the connected components of Gv in vertical
order. Let C be the next one. The restriction of the upper boundary of C to slab(v) is the
upper gap boundary induced by C. Perform a topological sort of the triangles in C. We
pause whenever we visit a triangle t ∈ C that spans v. Let t′ denote the last triangle in C
encountered that spans v, or in the absence of such a triangle, the upper boundary of C. If
t ∩ t′ = ∅ or t ∩ t′ does not span v, the region in slab(v) between t′ and t is a blocked gap,
and we append it to gaplist(v). Then, we append slab(v) ∩ t as a newly discovered free gap
to gaplist(v). The construction of gaplist(v) takes O(|Gv|) time.

Recurse at the children. Let vL, vM and vR denote the left, middle and right children of v.
We scan the connected components of Gv in the vertical order to extract GvL

. A connected
component C in Gv may yield multiple components in GvL

because the triangles that span v
are omitted. The components in GvL

are ordered vertically by a topological sort of C. Thus,
GvL

and the vertical ordering of its connected components are produced in O(|Gv|) time.
The generation of GvM

, GvR
and the vertical orderings of their connected components is

similar. Then, we recurse at vL, vM and vR.

2 Refer to [19, Section 4] for a proof that this ordering is acyclic.
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Gap trees. After we have recursively handled the children of v, we construct a gap tree for
each maximal contiguous subsequence of gaps in gaplist(v). The construction takes linear
time [6]. The recursive call at vL returns a list, say X, of the roots of gap trees at vL, and X
is sorted in vertical order. There is a one-to-one correspondence between X and the blocked
gaps of v in vertical order. Therefore, in O(|gaplist(v)|) time, we can set up pointers from the
blocked gaps of v to the corresponding gap tree roots in X. The pointers from the blocked
gaps of v to the gap tree roots at vM and vR are set up in the same manner. Afterwards, if
v is not the root of T , we return the list of gap tree roots at v in vertical order.

Running time. We spend O(|Gv|) time at each node v. If a triangle t contributes to Gv for
some node v, then either slab(v)∩ t is a free gap of v, or slab(v)∩ t is incident to the leftmost
or rightmost vertex of t. Like storing segments in a segment tree, t contributes O(logn) free
gaps. The nodes of T whose slabs contain the leftmost (resp. rightmost) vertex of t form a
root-to-leaf path. Therefore, t contributes O(logn) triangles in the Gv’s over all nodes v in
T . The sum of |Gv| over all nodes v of T is O(n logn).

I Lemma 4. Given ∆B and L, the slab tree and its auxiliary structures, including gap lists
and gap trees, can be constructed in O(|L| logn) time and O(n logn) space.

4 Handling triangulation-updates: fixed vertical lines

We discuss how to update the slab tree when ∆B is updated such that every new vertex lies
on a vertical line in the given set L. This restriction will be removed later in Section 5. A
triangulation-update U has the following features:

It specifies some triangles in ∆ whose union is a polygon RU possibly with holes.
It specifies a new triangulation TU of RU . TU may contain vertices in the interior of
RU . TU does not have any new vertex in the boundary of RU , except possibly for the
boundary edges of RU that lie on the outer boundary of ∆.
The construction of TU takes O(|TU | log |TU |) time.
The size of U is the total number of triangles in ∆ ∩RU and TU .

Our update algorithm is a localized version of the construction algorithm in Section 3.3.
It is also based on a recursive traversal of the slab tree T . When we visit a node v of T , we
have a directed acyclic graph Hv that represents legal and illegal regions in TU ∩ slab(v):

For each triangle t ∈ TU that intersects the interior of slab(v) and does not span parent(v),
t ∩ slab(v) is a legal region in Hv.
Take the triangles in TU that span parent(v). Intersect their union with slab(v). Each
resulting connected component that has a boundary vertex in the interior of slab(v) is an
illegal region. Its upper and lower boundaries contain at most two edges each. Requiring
a boundary vertex inside slab(v) keeps the complexity of illegal regions low.
Store Hv as a directed acyclic graph: regions are graph vertices, and two regions sharing
a side are connected by an edge directed from the region above to the one below.

To update gaplist(v), we essentially merge it with a topologically sorted order of regions
in each component of Hv.

I Lemma 5. Updating gaplist(v) and the gap trees of v takes O(|Hv| logn) amortized time.

Let c < 1/2 be a constant. We rebuild T and its auxiliary structures with respect to L
and the current ∆B when the total size of triangulation-updates exceeds cn′ since the initial
construction or the last rebuild, where n′ was the number of triangles in ∆B then.

SoCG 2020
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I Lemma 6. Let n denote the number of triangles in ∆B.
n = Θ(n′).
Any query can be answered in O(OPT + log logn) expected time, where OPT is the
minimum expected query time of the best point location decision tree for ∆.
The data structure uses O(n logn) space and can be constructed in O(|L| logn) time.
A triangulation-update of size k ≤ n/2 takes O(k log2 n+ (|L| logn)/n) amortized time.

5 Allowing arbitrary vertex location

In this section, we discuss how to allow a new vertex to appear anywhere instead of on one
of the fixed lines in L. This requires revising the slab tree structure. The main issue is how
to preserve the geometric decrease in the probability of a query point falling into the slabs of
internal nodes on every root-to-leaf path in T .

Initialize L to be the set of vertical lines through the vertices of the initial ∆B . Construct
the initial slab tree T for ∆B and L using the algorithm in Section 3.3. Whenever T is
rebuilt, we also rebuild L to be the set of vertical lines through the vertices of the current
∆B . Between two successive rebuilds, we grow L monotonically as triangulation-updates are
processed. Although every vertex of ∆B lies on a line in L, some line in L may not pass
through any vertex of ∆B between two rebuilds.

The free, blocked, and shadow gaps of a slab tree node are defined as in Section 3. So are
the gap trees of a slab tree node. However, gap weights are redefined in Section 5.1 in order
that they are robust against small geometric changes.

When a triangulation-update U is processed, we first process the vertical lines through
the vertices of TU before we process TU as specified in Section 4. For each vertical line `
through the vertices of TU , if ` 6∈ L, we insert ` into L and then into T . Sections 5.2 and 5.3
provide the details of this step. The processing of TU is discussed in Section 5.4.

Querying is essentially the same as in Section 3.2 except that we need a fast way to
descend the slab tree as some nodes have O(logn) children. This is described in Section 5.2.

5.1 Weights of gaps and more
Let n′ be the number of triangles in ∆B in the initial construction or the last rebuild,
whichever is more recent. Let N = 2(c+ 1)n′, where c is the constant in the threshold cn′
for triggering a rebuild of T .

For every free gap g, let tg denote the triangle in the current ∆B that contains g, and
the weight of g is wt(g) = max{Pr(tg), 1/N}. The alternative 1/N makes the access time of
g in a gap tree no worse than O(logN) = O(logn).

For every blocked gap g, every vertex p of ∆B , and every node v of T , define:
wt(p) = sum of max

{ 1
N , Pr(t)

}
over all triangles t ∈ ∆B incident to p.

vert(g) = {vertex p lying in g : ∃ triangle pqr ∈ ∆B s.t. interior(pqr) ∩ interior(g) 6= ∅}.
wt(g) =

∑
p∈vert(g) wt(p).

blocked-gaps(p) = {blocked gap g : p ∈ vert(g)}.
vert(v) = the subset of vertices of ∆B that lie in slab(v).
lines(v) = the subset of lines in L that intersect slab(v).

The set vert(g) is only used for notational convenience. The set blocked-gaps(p) is not
stored explicitly. We discuss how to retrieve blocked-gaps(p) in Section 5.2. The sets vert(v)
and lines(v) are stored as balanced search trees in increasing order of x-coordinates.
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5.2 Revised slab tree structure
Node types. A vertical line pierces a slab if the line intersects the interior of that slab. An
internal node v of T has children of two possible types.

Heavy-child: A child w of v is a heavy-child if Pr(slab(w)) > Pr(slab(v))/2.
The heavy-child w may be labelled active or inactive upon its creation. This label will
not change. If w was created in the initial construction or the last rebuild of T , then
w is inactive.
If w is inactive, gaplist(w) and the gap trees of w are represented as before. If w is
active, then w is a leaf, and gaplist(w) and the gap trees of w are stored as persistent
data structures using the technique of node copying [18].

Light-child: There are two sequences of light-children of v, denoted by left-light(v) and
right-light(v), which satisfy the following properties.

For each light child w of v, Pr(slab(w)) ≤ Pr(slab(v))/2.
For each light child w of v, gaplist(w) and the gap trees of w are represented as before.
Let left-light(v) = (w1, w2, · · · , wk) and let right-light(v) = (wk+1, wk+2, · · · , wm) in
the left-to-right order of the nodes.
∗ For i ∈ [1, k − 1] ∪ [k + 1,m− 1], slab(wi) and slab(wi+1) are interior-disjoint and

share a boundary.
∗ If v has an active heavy-child w, then slab(w) is bounded by the right and left

boundaries of slab(wk) and slab(wk+1), respectively. Otherwise, the right boundary
of slab(wk) is the left boundary of slab(wk+1).

∗ If v does not have an active heavy child, v has at most 2 log2 N + 2 children.
∗ If v has an active heavy-child, the following properties are satisfied.
(i) For r ≥ 1, a light-child w of v has rank r if the number of lines in L that intersect

slab(w) is in the range [2r, 2r+1). So r ≤ log2 N , where N = 2(c + 1)n′. We
denote r by rank(w).

(ii) We have rank(w1) > · · · > rank(wk) and rank(wk+1) < · · · < rank(wm). For
r ∈ [1, log2 N ], there is at most one light-child of rank r in each of left-light(v)
and right-light(v) .

Node access. Each node v keeps a biased search tree children(v). The weight of a child w in
children(v) is max

{Pr(slab(v))
2 log2 N+2 , Pr(slab(w))

}
, whereN = 2(c+1)n′. Since n = Θ(n′), accessing

w takes O
(
min

{
log Pr(slab(v))

Pr(slab(w)) , log logn
})

time. For each blocked gap g of v, we use a biased
search tree Tg to store pointers to the gap trees induced by g at the children of v. The weight
of the node in Tg that represents a gap tree T at a child w is max

{Pr(slab(v))
2 log2 N+2 , Pr(slab(w))

}
.

Accessing T via Tg takes O
(
min

{
log Pr(slab(v))

Pr(slab(w)) , log logn
})

time. Given a vertex p of ∆B,
there are O(logn) blocked gaps in blocked-gaps(p) and we can find them as follows. Traverse
the path from the root of T to the leaf whose slab contains p, and for each node v encountered,
we search gaplist(v) to find the blocked gap of v that contains p. The time needed is O(log2 n).

5.3 Insertion of a vertical line into the slab tree
Let ` be a new vertical line. We first insert ` into L and then insert ` into T in a recursive
traversal towards the leaf whose slab is pierced by `.
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Internal node. Suppose that we visit an internal node v. We first insert ` into lines(v). We
query children(v) to find the child slab pierced by `. If v does not have an active heavy-child,
recursively insert ` at the child found. Otherwise, we work on left-light(v) or right-light(v).

Case 1: ` pierces slab(wj) for some wj ∈ left-light(v). If slab(wj) intersects fewer than
2rank(wj)+1 lines in L, recursively insert ` into wj and no further action is needed.3
Otherwise, slab(wj) intersects 2rank(wj)+1 lines in L, violating the structural property of
a light-child. In this case, we merge some nodes in left-light(v) as follows.

Let left-light(v) = (w1, · · · , wj , · · · ). Find the largest i ≤ j such that the number
of lines in L that intersect slab(wi) ∪ · · · ∪ slab(wj) is in the range [2r, 2r+1) for some
rank(wi) ≤ r < rank(wi−1). Note that r > rank(wj). Let `L denote the left boundary of
slab(wi). Let `R denote the right boundary of slab(wj). Let S denote the slab bounded
by `L and `R. We rebuild the slab subtree rooted at wi and its auxiliary structures
to expand slab(wi) to S as follows. It also means that rank(wi) is updated to r. The
children wi+1, . . . , wj and their old subtrees are deleted afterwards.

Let V = vert(wi) ∪ · · · ∪ vert(wj). Let Λ = lines(wi) ∪ · · · ∪ lines(wj). First, we
construct a new slab subtree rooted at wi with respect to V and Λ as described in
Section 3.1. No auxiliary structure is computed yet. We control the construction so that
it does not produce any node at depth greater than log2 N = O(logn) with respect to
the whole slab tree. The construction time is O(|Λ| logn). Afterwards, slab(wi) becomes
S. Label all heavy-children in the new slab subtree rooted at wi as inactive.

Mark the triangles that are incident to the vertices in V , overlap with S, and do not
span S. Let Gwi

be the set of marked triangles. This takes O(|Gwi
|) time, assuming that

each vertex p has pointers to its incident triangle(s) intersected by a vertical line through
p. The old blocked gaps of wi will be affected by the rebuild at wi. The old free gaps
of wi contained in some triangles in Gwi will be absorbed into some blocked gaps. The
other old free gaps of wi are not affected because their containing triangles span S.

To update gaplist(wi), intersect Gwi with S to generate the directed acyclic graph
Hwi

and then update gaplist(wi) as in Section 4. This takes O(|Gwi
| logn) amortized

time. Only the blocked gaps of wi can induce gap lists and gap trees at the descendants
of wi. Therefore, as in the construction algorithm in Section 3.3, we can take the subset
of Gwi

that induce the blocked gaps of wi and recursively construct the gap lists and gap
trees at the descendants of wi. This takes O(|Gwi | log2 n) time by an analysis analogous
to the one for Lemma 4.4 For each blocked gap g of wi, we create a biased search tree of
pointers to the gap trees induced by g at the children of wi.

The update of gaplist(wi) preserves the old shadow gaps of wi, and it does not generate
any new shadow gap. Therefore, no two gap trees of wi can be merged and no gap tree
of wi can be split, although the content of a gap tree may be updated. A gap tree of
wi is updated only when some free gaps in it are merged into some blocked gaps. Thus,
updating the gap trees of wi takes O(|Gwi | logn) time.

Finally, vert(wi) := V , lines(wi) := Λ, and the recursive insertion of ` terminates.
Case 2: ` pierces slab(wj) for some wj ∈ right-light(v). Symmetric to Case 1.
Case 3: ` pierces the active heavy-child of v. An active heavy-child is a leaf of the slab
tree. We discuss how to insert a vertical line at a leaf next.

3 The line ` has already been inserted into L.
4 Since wi has O(log n) instead of O(1) children, the construction time has an extra log factor.
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Leaf node. Suppose that we come to a leaf v. If depth(v) = log2 N , do nothing and return.
Otherwise, there are two cases. Note that gaplist(v) consists of free gaps only. The line `
divides slab(v) into slabs SL and SR on the left and right of `, respectively.

Case 1: v is not an active heavy-child of parent(v). Turn v into an internal node by
making two children wL and wR of v with slab(wL) = SL and slab(wR) = SR. If
Pr(slab(wL)) > Pr(slab(v))/2, then wL is the heavy-child of v, label wL active, and set
left-light(v) := ∅. If not, wL is a light-child of rank one and set left-light(v) := (wL). The
handling of wR is symmetric. As gaplist(v) consists of free gaps only, gaplist(wL) and
gaplist(wR) are empty. So wL and wR have no gap tree. The initializations of vert(wL),
vert(wR), lines(wL), and lines(wR) are trivial.
Case 2: v is an active heavy-child of parent(v). We expand left-light(parent(v)) and/or
right-light(parent(v)) as follows. W.l.o.g., assume that Pr(SL) ≤ Pr(slab(v))/2. Update
slab(v) := SR, which does not change gaplist(v) or any gap tree of v combinatorially. The
weights of gaps in gaplist(v) are also unaffected.

Case 2.1: Pr(SR) ≤ Pr(slab(parent(v)))/2. Then, parent(v) has no heavy-child af-
terwards. Note that parent(v) has at most 2 log2 N + 1 children before this update,
where N = 2(c+ 1)n′. Create a light-child wL of parent(v) with slab(wL) = SL. Note
that gaplist(wL) and the gap trees of wL are combinatorially identical to those of v,
which are stored as persistent search trees. We copy them to form gaplist(wL) and
the gap trees of wL, each taking O(1) amortized space and time. Append wL to
left-light(parent(v)). Add v to right-light(parent(v)) as its leftmost element. Therefore,
parent(v) has at most 2 log2 N + 2 children afterwards.
Case 2.2: Pr(SR) > Pr(slab(parent(v)))/2. Then, v remains the active heavy-child of
parent(v). We handle SL as follows.
∗ If left-light(parent(v)) contains no light-child of rank one, then create a light-child
wL with slab(wL) = SL as in Case 2.1 above, and append wL to left-light(parent(v)).

∗ Otherwise, let left-light(parent(v)) = (w1, · · · , wk), i.e., rank(wk) = 1. Find the
largest i ≤ k such that the number of lines in L that intersect slab(wi) ∪ · · · ∪
slab(wk) ∪ SL is in the range [2r, 2r+1) for some rank(wi) ≤ r < rank(wi−1).
Expand slab(wi) to the slab bounded by the left boundary of slab(wi) and the
right boundary of SL as in Case 1 of the insertion of a vertical line at an internal
node. Rebuild the slab subtree rooted at wi and its auxiliary structures. Label all
heavy-children in the new slab subtree rooted at wi as inactive.

I Lemma 7. Let T be the slab tree constructed for a set L′ of vertical lines and ∆B in
the initial construction or the last rebuild, whichever is more recent. For any L ⊃ L′, the
insertion time of lines in L \ L′ into T is O(|L \ L′| log4 n) plus some charges on edges of
∆B such that every edge gains at most O(log4 n) charge since the initial construction or the
last rebuild, whichever is more recent.

5.4 Handling triangulation-updates
Let U be a triangulation-update of size k ≤ n/2. Let n′ be the number of triangles in ∆B in
the initial construction or the last rebuild, whichever is more recent. Let c be a constant less
than 1/2. If the threshold cn′ has been exceeded by the total size of triangulation-updates
(including U) since the initial construction or the last rebuild, we rebuild T and its auxiliary
structures. It takes O(n log2 n) time and space. If U does not trigger a rebuild, we proceed
as follows instead.
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Step 1. Check the O(k) vertical lines through the vertices of TU . For each line that does
not appear in L, we insert it into L and then into T as discussed in Section 5.3.

Step 2. The weights of O(k) vertices may change and O(k) vertices may be inserted or
deleted. It is straightforward to update the weights of existing vertices, set the weights of
new vertices, and delete vertices in O(k) time. For every vertex p of the old triangulation,
let wt′(p) be its weight in the old triangulation. For every vertex p of the new triangulation,
let wt(p) be its weight in the new triangulation. We perform the following action.

Action-I: for every vertex p of the old triangulation that lies in RU ,
for every gap g ∈ blocked-gaps(p), update wt(g) := wt(g)− wt′(p);
if p does not lie in the boundary of RU , then for each slab tree node v such that
p ∈ vert(v), delete p from vert(v).

Action-I runs in O(k log2 n) time.

Step 3. For every vertex p of TU that lies strictly inside RU , and every ancestor v of the
leaf node of T whose slab contains p, insert p into vert(v). This step takes O(k log2 n) time.

Step 4. To update the gap lists and the gap trees, traverse T as in Section 4. For each
node v of T visited, form a directed acyclic graph Hv of regions to update v as in Section 4.
This step takes O(

∑
v |Hv| logn) amortized time.

Step 5. The weight of a free gap does not change as long as its defining triangle is preserved.
The weights of some blocked gaps may not be updated completely yet, and we fix them by
performing Action-II below. Assume that a zero weight is assigned initially to every blocked
gap that is created by the triangulation-update and contains vertices in TU only.

Action-II: for each vertex p of TU and every gap g ∈ blocked-gaps(p), update wt(g) :=
wt(g) + wt(p).

Action-II runs in O(k log2 n) time.

I Theorem 8. Let n denote the number of triangles in ∆B.
Any query can be answered in O(OPT + log logn) expected time, where OPT is the
minimum expected query time of the best point location decision tree for ∆.
The data structure uses O(n log2 n) space, and it can be constructed in O(n log2 n) time.
A triangulation-update of size k ≤ n/2 takes O(k log4 n) amortized time.

References
1 U. Adamy and R. Seidel. On the exact worst case query complexity of planar point location.

Journal of Algorithms, 27(1):189–217, 2000.
2 P. Afshani, J. Barbay, and T. Chan. Instance-optimal geometric algorithms. Journal of the

ACM, 64(1):3:1–3:38, 2017.
3 L. Arge, G.S. Brodal, and L Georgiadis. Improved dynamic planar point location. In Proceedings

of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 305–314,
2006.

4 S. Arya, T. Malamatos, D. Mount, and K. Wong. Optimal expected-case planar point location.
SIAM Journal on Computing, 37(2):584–610, 2007.

5 H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general subdivisions.
Journal of Algorithms, 17(3):342–380, 1994.



S.-W. Cheng and M.-K. Lau 30:13

6 S.W. Bent, D.D. Sleator, and R.E. Tarjan. Biased search trees. SIAM Journal on Computing,
14(3):545–568, 1985.

7 Prosenjit Bose, Luc Devroye, Karim Douieb, Vida Dujmovic, James King, and Pat Morin.
Odds-on trees, 2010. arXiv:1002.1092.

8 T. Chan and Y. Nekrich. Towards an optimal method for dynamic planar point location.
SIAM Journal on Computing, 47(6):2337–2361, 2018.

9 S.-W. Cheng and R. Janardan. New results on dynamic planar point location. SIAM Journal
on Computing, 21(5):972–999, 1992.

10 S.-W. Cheng and M.-K. Lau. Adaptive planar point location. In Proceedings of the 33rd
International Symposium of Computational Geometry, pages 30:1–30:15, 2017.

11 S.-W. Cheng and M.-K. Lau. Adaptive point location in planar convex subdivisions. Interna-
tional Journal of Computational Geometry and Applications, 27(1–2):3–12, 2017.

12 S.-W. Cheng and M.-K. Lau. Adaptive planar point location, 2018. arXiv:1810.00715.
13 S.-W. Cheng and M.-K. Lau. Dynamic distribution-sensitive point location, 2020. arXiv:

2003.08288.
14 Y.-J. Chiang, F.P. Preparata, and R. Tamassia. A unified approach to dynamic point location,

ray shooting, and shortest paths in planar maps. SIAM Journal on Computing, 25(1):207–233,
1996.

15 Y.-J. Chiang and R. Tamassia. Dynamization of the trapezoid method for planar point
location in monotone subdivisions. Internatational Journal of Computational Geometry and
Applications, 2(3):311–333, 1992.

16 S. Collette, V. Dujmović, J. Iacono, S. Langerman, and P. Morin. Entropy, triangulation, and
point location in planar subdivisions. ACM Transactions on Algorithms, 8(3):29:1–29:18, 2012.

17 D.P. Dobkin and D.G. Kirkpatrick. Determining the separation of preprocessed polyhedra—a
unified approach. In Proceedings of the 17th International Colloquium on Automata, Languages
and Programming, pages 400–413, 1990.

18 J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences, 38(1):86–124, 1989.

19 H. Edelsbrunner, L. J Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM Journal on Computing, 15(2):317–340, 1986.

20 M.T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in planar subdivi-
sions via balanced geodesic triangulations. Journal of Algorithms, 23(1):51–73, 1997.

21 M.T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. SIAM Journal
on Computing, 28(2):612–636, 1998.

22 J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk.
Journal of Algorithms, 18(3):403–431, 1995.

23 J. Iacono. Expected asymptotically optimal planar point location. Computational Geometry:
Theory and Applications, 29(1):19–22, 2004.

24 J. Iacono and W. Mulzer. A static optimality transformation with applications to planar point
location. International Journal of Computational Geometry and Applications, 22(4):327–340,
2012.

25 D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

26 E. Oh. Point location in incremental planar subdivisions. In Proceedings of the 29th Interna-
tional Symposium on Algorithms and Computation, pages 51:1–51:12, 2018.

27 E. Oh and H.-K. Ahn. Point location in dynamic planar subdivision. In Proceedings of the
34th International Symposium on Computational Geometry, pages 63:1–53:14, 2018.

28 F.P. Preparata and R. Tamassia. Fully dynamic point location in a monotone subdivision.
SIAM Journal on Computing, 18(4):811–830, 1989.

29 N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communica-
tions of ACM, 29(7):669–679, 1986.

SoCG 2020

http://arxiv.org/abs/1002.1092
http://arxiv.org/abs/1810.00715
http://arxiv.org/abs/2003.08288
http://arxiv.org/abs/2003.08288

	Introduction
	Dynamic convex subdivision
	Dynamic DK-triangulation
	Point location
	General-update sequence

	Slab tree: fixed vertical lines
	Structure definition
	Querying
	Construction

	Handling triangulation-updates: fixed vertical lines
	Allowing arbitrary vertex location
	Weights of gaps and more
	Revised slab tree structure
	Insertion of a vertical line into the slab tree
	Handling triangulation-updates


