
A Generalization of Self-Improving Algorithms
Siu-Wing Cheng
HKUST, Hong Kong, China
scheng@cse.ust.hk

Man-Kwun Chiu
Institut für Informatik, Freie Universität Berlin, Germany
chiumk@zedat.fu-berlin.de

Kai Jin
HKUST, Hong Kong, China
cscjjk@gmail.com

Man Ting Wong
HKUST, Hong Kong, China
mtwongaf@connect.ust.hk

Abstract
Ailon et al. [SICOMP’11] proposed self-improving algorithms for sorting and Delaunay triangulation
(DT) when the input instances x1, · · · , xn follow some unknown product distribution. That is, xi

comes from a fixed unknown distribution Di, and the xi’s are drawn independently. After spending
O(n1+ε) time in a learning phase, the subsequent expected running time is O((n+H)/ε), where
H ∈ {HS, HDT}, and HS and HDT are the entropies of the distributions of the sorting and DT
output, respectively. In this paper, we allow dependence among the xi’s under the group product
distribution. There is a hidden partition of [1, n] into groups; the xi’s in the k-th group are fixed
unknown functions of the same hidden variable uk; and the uk’s are drawn from an unknown product
distribution. We describe self-improving algorithms for sorting and DT under this model when the
functions that map uk to xi’s are well-behaved. After an O(poly(n))-time training phase, we achieve
O(n+HS) and O(nα(n) +HDT) expected running times for sorting and DT, respectively, where
α(·) is the inverse Ackermann function.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases expected running time, entropy, sorting, Delaunay triangulation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.29

Related Version A full version of this paper is available at http://arxiv.org/abs/2003.08329.

Funding Siu-Wing Cheng: Research of Cheng is supported by Research Grants Council, Hong Kong,
China (project no. 16200317).
Man-Kwun Chiu: Research of Chiu is supported by ERC StG 757609.
Kai Jin: Research of Jin is supported by Research Grants Council, Hong Kong, China (project
no. 16200317).
Man Ting Wong: Research of Wong is supported by Research Grants Council, Hong Kong, China
(project no. 16200317).

1 Introduction

Ailon et al. [1] proposed self-improving algorithms for sorting and Delaunay triangulation
(DT). The setting is that the input is drawn from an unknown but fixed distribution D. The
goal is to automatically compute some auxiliary structures in a training phase, so that these
auxiliary structures allow an algorithm to achieve an expected running time better than the
worst-case optimum in the subsequent operation phase. The expected running time in the
operation phase is known as the limiting complexity.

© Siu-Wing Cheng, Man-Kwun Chiu, Kai Jin, and Man Ting Wong;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-3557-9935
mailto:scheng@cse.ust.hk
mailto:chiumk@zedat.fu-berlin.de
https://orcid.org/0000-0003-3720-5117
mailto:cscjjk@gmail.com
mailto:mtwongaf@connect.ust.hk
https://doi.org/10.4230/LIPIcs.SoCG.2020.29
http://arxiv.org/abs/2003.08329
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A Generalization of Self-Improving Algorithms

This model is attractive for two reasons. First, it addresses the criticism that worst-case
time complexity alone may not be relevant because worst-case input may occur rarely, if
at all. Second, it is more general than some previous average-case analyses that deal with
distributions that have simple, compact formulations such as the uniform, Poisson, and
Gaussian distributions. There is still a constraint in the work of Ailon et al. [1], that is,
D must be a product distribution, meaning that the i-th input item follows a particular
distribution and two distinct input items are independently drawn from their respective
distributions.

Self-improving algorithms under product distributions have been proposed for sorting,
DT, 2D coordinatewise maxima, and 2D convex hull. For sorting, Ailon et al. showed that a
limiting complexity of O((n+HS)/ε) can be achieved for any ε ∈ (0, 1), where HS denotes the
entropy of the output permutations. This limiting complexity is optimal in the comparison-
based model by Shannon’s theory [11]. The training phase uses O(nε) input instances and
runs in O(n1+ε) time. The probability of achieving the stated limiting complexity is at least
1− 1/n. Ailon et al. [1] also proposed a self-improving algorithm for DT. The performance
of the training phase is the same. The limiting complexity is O((n+HDT)/ε), where HDT
denotes the entropy of the output Delaunay triangulations. Self-improving algorithms for 2D
coordinatewise maxima and convex hulls have been developed by Clarkson et al. [9]. The
limiting complexities for the 2D maxima and 2D convex hull problems are O(OptM + n)
and O(OptC + n log logn), where OptM and OptC are the expected depths of optimal linear
decision trees for the maxima and convex hull problems, respectively.

It is natural to allow dependence among input items. However, some restriction is
necessary because Ailon et al. showed that Ω(2n logn) bits of storage are necessary for
optimally sorting n numbers if there is no restriction on the input distribution. In [8], two
extensions are considered for sorting. The first extension assumes that there is a hidden
partition of [1, n] into groups Gk’s. The input items with indices in Gk are unknown
linear functions of a common parameter uk. The parameters u1, u2, · · · follow a product
distribution. A limiting complexity of O((n+HS)/ε) can be achieved after a training phase
that processes O(nε) instances in O(n2 log3 n) time and O(n2) space. The second extension
assumes that the input is a hidden mixture of product distributions, and that an upper
bound m is given on the number of distributions in the mixture. A limiting complexity of
O((n logm+HS)/ε) can be achieved after a training phase that processes O(mn log(mn))
instances in O(mn log2(mn) +mεn1+ε log(mn)) time and O(mn log(mn) +mεn1+ε) space.

In this paper, we revisit the problems of sorting and DT when there is a hidden partition
of [1, n] into G1, G2, · · · such that for each k, there is a hidden parameter uk such that for
all i ∈ Gk, xi = hi,k(uk) for some unknown function hi,k. For sorting, uk belongs to R; for
DT, uk belongs to R2; and u1, u2, · · · follow a product distribution. We call such an input
distribution a group product distribution. The groups Gk’s are not given and they have to be
learned in the training phase. Our generalization have the following features.

For sorting, we do not assume any specific formulation of the functions hi,k’s. Neither is
any oracle given for evaluating them. We only assume that the graph of each hi,k has at
most c0 extrema, where c0 is a known value, and the graphs of two distinct hi,k and hj,k
intersect in O(1) points. Our algorithm does not reconstruct or approximate the hi,k’s.
For DT, we assume that there are bivariate polynomials hxi,k and hyi,k in uk for i ∈ Gk
that give the x- and y-coordinates of the i-th input point. The degrees of the hxi,k’s and
hyi,k’s are no more than a fixed constant. No further information about these bivariate
polynomials are given. Depending on the distribution of uk, it may be impossible to
reconstruct the equations of hxi,k and hyi,k using the input data.

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:3

Let α(·) be the inverse Ackermann function. We prove that an optimal O(n+HS) limiting
complexity for sorting and a nearly optimal O(nα(n) +HDT) limiting complexity for DT
can be achieved with probability at least 1−O(1/n) after a polynomial-time training phase.
The training takes Õ(c0n3 + c20n

2) time for sorting and Õ(n10) time for DT.
We use several new techniques to obtain our results. To learn the hidden partition for

sorting, we need to test if two indices i and j are in the same group. By collecting xi’s and
xj ’s from some instances, we can reduce the test to finding the longest monotonic subsequence
(LMS) among the points (xi, xj)’s. We establish a threshold such that i and j are in the
same group with very high probability if and only if the LMS has length greater than or
equal to the threshold. In the operation phase, there are O(n) ordered intervals from left
to right, and we need to sort the subset of an input instance I within an interval. Under
the group product distribution, there can be a large subset I ′ ⊂ I from the same group that
reside in an interval, which does not happen in the case of product distribution. We do not
have enough time to sort I ′ from scratch. Instead, we need to recognize that I ′ gives a result
similar to what we have seen in the training phase. To this end, we must be able to “read
off” the answer from some precomputed information in the training phase in order to beat
the worst-case bound. We use a trie to compute and store Lehmer codes [18] in the training
phase. This trie structure is essential for achieving the optimal limiting complexity.

The hidden partition for DT seems harder to learn given the 2D nature of the problem.
We employ tools from algebraic geometry to do so, which is the reason for requiring the hxi,k’s
and hyi,k’s to be bivariate polynomials of fixed degree. In the operation phase, we need to
compute the Voronoi diagram of the subsets of I inside the triangles of a canonical Delaunay
triangulation. Under the group product distribution, a large subset I ′ ⊂ I may fall in to the
same triangle t, which does not happen in the case of product distribution. The big hurdle
is to decide what information to compute and store in the training phase so that we can
“read off” the Voronoi diagram needed. We need a structure that is equivalent to a Delaunay
triangulation or Voronoi diagram. Yet it should be “more combinatorial” in nature so that it
is not as sensitive to geometric perturbations. The split tree of a point set fits this role nicely
because the Delaunay triangulation can be computed from it in linear expected time [2]. We
can now expand the trie structure used for sorting to record different split trees that are
generated in the training phase to facilitate the DT computation in the operation phase.

2 Self-improving sorter

Let uk ∈ R denote the parameter that governs the group Gk. Let hi,k denote the function
that determines xi = hi,k(uk) for i ∈ Gk. We do not impose any particular formulation of
the hi,k’s as long as they satisfy the following properties:
∀k ∀ i, the graph of hi,k has at most c0 extrema for a known value c0.
∀k ∀ i 6= j, the graphs of hi,k and hj,k intersect at O(1) points.
∀k ∀ i ∀ c ∈ R, Pr

[
hi,k(uk) = c

]
= 0.

2.1 Hidden partition and V -list
We first learn the hidden partition of [1, n]. Given a sequence σ of real numbers, let LMS(σ)
be the length of the longest monotone subsequence of σ (either increasing or decreasing), and
let LIS(σ) be the length of the longest increasing subsequence of σ.

We describe how to test if the indices 1 and 2 belong to the same group. The other index
pairs can be handled in the same way. Let N = max

{
1003, (90 ln(4n3))2, (6c0 + 3)2}, where

c0 is the upper bound on the number of extrema of hi,k. Take N instances. Let I1, I2, · · · , IN

SoCG 2020

29:4 A Generalization of Self-Improving Algorithms

be these instances in increasing order of their first items. That is, x(1)
1 < · · · < x

(N)
1 , where

x
(i)
1 denotes the first item in Ii. Similarly, x(i)

2 denotes the second item in Ii. Then, compute
LIS
(
x

(1)
2 , . . . , x

(N)
2
)
and LIS

(
x

(N)
2 , . . . , x

(1)
2
)
in O(N logN) time. The larger of the two is

LMS
(
x

(1)
2 , . . . , x

(N)
2
)
. If LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1), report that 1 and 2 are in the

same group. Otherwise, report that 1 and 2 are in different groups.
We show that the above test works correctly with very high probability. The following

result is obtained by applying the first theorem in [17] and the setting that N ≥ 1003.

I Lemma 1 ([17]). If σ is a permutation of [1, N] drawn uniformly at random, then
Pr
[
LIS(σ) ≥ 3

√
N
]
≤ exp

(
−
√
N/90

)
= O(1/n3).

We are ready to show the correctness of our test procedure.

I Lemma 2. If the indices 1 and 2 belong to the same group, then LMS
(
x

(1)
2 , . . . , x

(N)
2
)
≥

N/(2c0 + 1); otherwise, Pr
[
LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1)

]
= O(1/n3).

Proof. Suppose that 1 and 2 belong to group Gk. Then, x1 = h1,k(uk) and x2 = h2,k(uk).
Let t1, . . . , tm, where m ≤ 2c0, be the values of uk at the extrema of h1,k and h2,k. Let
t0 = −∞ and let tm+1 = +∞. By the pigeonhole principle, there exists j ∈ [0,m] such
that

∣∣{x(1)
1 , . . . x

(N)
1
}
∩ [tj , tj+1)

∣∣ ≥ N/(m + 1) ≥ N/(2c0 + 1), and both h1,k and h2,k are
monotonic in [tj , tj+1). It follows that LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1).

Suppose that 1 and 2 belong to different groups. The distribution of x(1)
2 , · · · , x(N)

2 is the
same as the uniform distribution of the permutations of [1, N]. Lemma 1 implies that

Pr
[
LIS
(
x

(1)
2 , . . . , x

(N)
2
)
≥ 3
√
N
]
≤ O(1/n3).

Symmetrically,

Pr
[
LIS
(
x

(N)
2 , . . . , x

(1)
2
)
≥ 3
√
N
]
≤ O(1/n3).

As LMS
(
x

(1)
2 , . . . , x

(N)
2
)

= max
{

LIS
(
x

(1)
2 , . . . , x

(N)
2
)
,LIS

(
x

(N)
2 , . . . , x

(1)
2
)}

, by the union
bound, we get Pr

[
LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ 3
√
N
]
≤ O(1/n3). Since N ≥ (6c0 + 3)2, we have

3
√
N ≤ N/(2c0 + 1). Hence, Pr

[
LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1)

]
= O(1/n3). J

There are O(n2) index pairs to check, each taking O(N logN) time. We conclude that:

I Corollary 3. The partition of [1, n] into groups can be learned in Õ(c20n2) time using
Õ(c20n2) instances. The probability of success is at least 1−O(1/n).

Following [1], we define a V -list, (v0, v1, · · · , vn+1), in the training phase as follows. Take
λ = n2 lnn instances. Let y1 < · · · < yλn be these numbers sorted in increasing order. Define
v0 = −∞, vr = yλr for all r ∈ [1, n], and vn+1 = +∞. We take [v0, v1) to be (−∞, v1).

I Lemma 4. It holds with probability at least 1− 1/n192 that for every r ∈ [0, n],

EI∼D[|I ∩ [vr, vr+1)|] = O(1).

Proof. Recall that y1 < · · · < yλn is the sorted list of the λ instances used to define the
V -list. Let y0 = −∞ and let yλn+1 =∞. Fix a pair (i, j) for some distinct i, j ∈ [0, λn+ 1]
such that yi < yj . Let mij be the number of instances among the λ instances that contain
neither yi nor yj . Denote them by I1, · · · , Imij

. Note that mij = λ− 2 or λ− 1.

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:5

For a ∈ [1,mij], define the random variable Y (i,j)
a =

∣∣Ia ∩ [yi, yj]
∣∣. Define Y (i,j) =

Y
(i,j)
1 + . . .+ Y

(i,j)
mij . We call (i, j) a good pair if E

[
Y (i,j)] ≤ 11λ or Y (i,j) > λ. We prove in

the following that (i, j) is a good pair with high probability.
For a ∈ [1,mij], let Xa = 1

nY
(i,j)
a . Let X = X1 + . . . + Xmij = 1

nY
(i,j). Note that

X1, . . . , Xmij
are independent and each lies in the range [0, 1]. By Hoeffding’s inequality [15],

Pr
[∣∣X − E[X]

∣∣ ≥ βmij

]
< 2e−2mijβ

2 for any β > 0. Setting β = 10E[X]/(11mij) gives
Pr
[∣∣X − E[X]

∣∣ ≥ 10E[X]/11
]
< 2e−2mij(10E[X])2/(11mij)2 . Thus, Pr

[
X < E[X]/11

]
<

2e−200E[X]2/(121mij). When E[X] > 11λ/n, we have Pr[X < λ/n] ≤ Pr
[
X < E[X]/11

]
<

2e−200×121λ2/(121n2mij) = 2e−200λ2/(n2mij) < 2e−200λ/n2 = 2n−200. In other words, it holds
that Pr

[
Y (i,j) < λ

]
< 2n−200 when E

[
Y (i,j)] > 11λ. Hence, for a fixed pair (i, j), it holds

with probability at least 1− n−199 that (i, j) is a good pair.
There are at most (λn+ 2)2 < n7 pairs of distinct indices. By the union bound, it holds

with probability at least 1− n−192 that all pairs of distinct indices from [0, λn+ 1] are good.
Assume that all distinct pairs of indices from [0, λn+ 1] are indeed good. Consider two

consecutive elements vr and vr+1 in the V -list. They correspond to yi and yj , respectively, for
some distinct i, j ∈ [0, λn+ 1]. By the construction of the V -list, the range (yi, yj) contains
fewer than λ points among y1 < · · · < yλn. There are mij instances used in defining V that
contain neither yi and yj . Therefore, fewer than λ points from these mij instances fall in
[yi, yj], that is, Y (i,j) < λ. Then, E

[
Y (i,j)] ≤ 11λ because (i, j) is a good pair by assumption.

Hence, E
[
|I ∩ [vr, vr+1]|

]
≤ E

[
Y (i,j)]/mij ≤ E

[
Y (i,j)]/(λ− 2) = O(1). J

Lemma 4 is more general than its counterparts in [1, 8] in that it does not make any
assumption on the distribution that generates the instances. The price to pay is that
O(n2 logn) instances are needed instead of O(logn) in [1, 8], but this cost will be dominated
by the trie construction cost in the training phase to be discussed in the next section.

2.2 Trie
In the operation phase, we distribute the numbers in an instance I to the intervals [vr, vr+1)’s,
sort numbers in each interval, and concatenate the results. We need an efficient method to
distribute the numbers. In [8], the functions hi,k’s are linear, so we can reformulate each
hi,k as a linear function in another input number, say x1. This gives an arrangement of
lines for each Gk (including the horizontal lines at each vr). Cutting vertically through each
arrangement vertex gives a sorted order of the xi’s and the vr’s within a range on x1.

We cannot compute such arrangements here because there is no assumption on the
formulations of the hi,k’s. We use a different method. Define:

bk : R|Gk| → [0, n]|Gk| such that for all |Gk|-tuple of numbers (z1, · · · , z|Gk|), we have
bk(z1, · · · , z|Gk|) = (r1, · · · , r|Gk|) such that for all m ∈

[
1, |Gk|

]
, zm ∈ [vrm

, vrm+1).

The output of bk tells us to which interval a number in I with index from Gk belongs. In
order to distribute these numbers quickly, we need another function defined as follows:

πk : R|Gk| → [0, n]|Gk| such that for all |Gk|-tuple of numbers (z1, · · · , z|Gk|), we
have πk(z1, · · · , z|Gk|) = (j1, · · · , j|Gk|) such that for all m ∈

[
1, |Gk|

]
, jm = 0 if

zm = mina∈[1,m] za; otherwise, jm is the index of the largest element in {z1, · · · , zm−1}
that is less than zm.

The output of πk is the Lehmer code of z1, · · · , z|Gk| [18]. For our purposes, (z1, · · · , z|Gk|)
is given as a doubly linked list L, and the output of πk is a list of pointers to entries in L.
Given πk(z1, · · · , z|Gk|), it is easy to sort z1, · · · , z|Gk| in increasing order in O(|Gk|) time.

SoCG 2020

29:6 A Generalization of Self-Improving Algorithms

Let I|Gk
denote the subsequence of I with indices from Gk. For any set S ⊆ R|Gk|, let

bk(S) = {bk(x) : x ∈ S} and let πk(S) = {πk(x) : x ∈ S}.

I Lemma 5. Let S = {I|Gk
: I ∼ D}. Then, |bk(S)| = O(c0n|Gk|) and |πk(S)| = O(|Gk|2).

Proof. Assume that Gk = [1,m]. The graph of each hi,k(uk) is a curve in R2. By assumption,
there are O(m2) intersections among the hi,k’s for i ∈ [1,m]. The vertical lines through these
intersections divide R2 into O(m2) slabs. Clearly, πk(x1, . . . , xm) is invariant when uk is
restricted to any one of these slabs. So there are O(m2) possible outcomes for πk(x1, . . . , xm).

Add horizontal lines y = vr for each r ∈ [1, n]. There are at most (c0 + 1)nm intersections
between these horizontal lines and the graphs of hi,k’s mentioned above. The vertical lines
through the intersections in the overlay of the graphs of hi,k’s and these horizontal lines
define O(c0nm) slabs. Clearly, bk(x1, . . . , xm) is invariant when uk is restricted to any one
of these slabs. So there are O(c0nm) possible outcomes for bk(x1, . . . , xm). J

We prove the main tool for achieving our results on sorting.

I Theorem 6. Let S = {I|Gk
: I ∼ D}. Let f ∈ {bk, πk}. Let n0 = max{n, |f(S)|}. Using

n0 lnn0(lnn+ ln c0) instances in the training phase, with probability at least 1− n−2
0 , we can

compute a data structure such that given I ∼ D, it returns f(I|Gk
) in O(|Gk|+Hf) expected

time, where Hf is the entropy of f(S). The data structure uses O(n0|Gk|) space, and it can
be constructed in Õ(n0n) time.

Proof. Let N = n0 lnn0(lnn+ ln c0). Take instances I1, · · · , IN in the training phase. Let
{β1, · · · , βM} be the set of distinct outcomes among f(I1|Gk

), · · · , f(IN |Gk
). Let ρ̃i be the

frequency of βi divided by N .
Store the βj ’s in a trie T . There is one leaf in T for each βj . Each edge in T has a label

from [0, n] so that for j ∈ [1,M], βj is equal to the string of symbols on the path from the
root to the leaf for βj .

Given an instance I in the operation phase, we show how to return f(I|Gk
). For simplicity,

let I|Gk
= (x1, · · · , x|Gk|). Let x0 be a dummy symbol to the left of x1. Then, repeat the

following starting at the root of T : when we are at xi−1 and a node u, find the child w of u
such that the label on uw is consistent with xi, and then move to xi and w. The existence of
a particular child w of u depends on whether there is an input instance in the training phase
that prompts the creation of w. If we reach a leaf, we return the corresponding βj . If we
cannot find an appropriate child to proceed at any point, we abort and compute f(I|Gk

) in
O(|Gk| logn) time using plain algorithms. We discuss how to find the correct child quickly.

If f = bk, we seek an edge label r such that xi ∈ [vr, vr+1). We use a nearly optimal
binary search tree Au to store the labels of edges to the children of u [19], which can be
constructed in linear time [13]. The weight of w in Au is the node weight that we assign to
all nodes of T recursively as follows. The weight of a leaf of T for βi is ρ̃i. The weight of
an internal node of T is the sum of the weights of its children. The search time of Au is
O(log(weight(u)/weight(w))). To build Au, in the training phase, we grow a balanced binary
search tree Lu from being initially empty to the final set of elements in Au. That is, as new
elements of Au are discovered, they are inserted into Lu in O(logn) each. Also, Lu provides
access to children of u in the trie in O(logn) time in the training phase. At the end of the
training phase, we build Au as a nearly optimal binary search tree of the elements in Lu. So
the construction of T for bk takes O(n0n logn) time.

Consider the case of f = πk. At the node u, inductively, we know γ : [1, i− 1]→ [1, i− 1]
such that xγ(a) is the a-th smallest number among x1, · · · , xi−1. We saw the same permutation
γ at u in the training phase. Thus, we organize a search tree Au with i leaves corresponding to

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:7

the i intervals ω0, ω1, . . . , ωi−1, where ω0 denotes the interval between −∞ and the smallest
number, ωa denotes the interval between the a-th and (a + 1)-th smallest numbers for
a ∈ [1, i−2], and ωi−1 denotes the interval between the largest number and∞. We store γ(a)
and a pointer to xγ(a) at the internal node in Au that separates the a-th smallest number
from the (a+ 1)-th smallest number, so that we can decide in O(1) time whether xi < xγ(a)
or xi > xγ(a). The search of Au terminates at a leaf representing the interval between xγ(c)
and xγ(c+1) for some c. Thus, γ(c) is the index of the largest element in {x1, · · · , xi−1} that
is less than xi. That leaf of Au also stores a pointer to the corresponding child of u.

We store each map γ as a persistent search tree [12] to facilitate an efficient construction
in the training phase. The a-th node in the symmetric order stores γ(a). When we create a
child w of u in the trie and label the trie edge uw by γ(c), we need to extend γ to a map
γ′ : [1, i]→ [1, i] at w such that γ′(a) = γ(a) for a ∈ [1, c], γ′(c+ 1) = i, and γ′(a+ 1) = γ(a)
for a ∈ [c+ 1, i− 1]. This can be done by a persistent insertion of a new node between the
c-th and (c + 1)-th nodes in γ. The new version of γ produced is γ′. This takes O(logn)
amortized time and O(1) amortized space.

We store Au as a nearly optimal binary search tree as in the case of f = bk. In the
operation phase, accessing a child w in Au takes O(log(weight(u)/weight(w))) time.

As a result, querying T takes O(|Gk|+ log(1/ρ̃i)) time if the search terminates at the
leaf of T for βi. Although the true probability of this event is not ρ̃i, the entropy of Hf is
approximated well by

∑
i ρ̃i log(1/ρ̃i), giving an expected time of O(|Gk|+Hf). If we are

stuck at some internal node of T , the query time is O(|Gk| logn) due to the total access time
of the Au’s before getting stuck and computing f(I|Gk

) (by plain algorithms) afterwards.
Nevertheless, the probability of this event is very low thanks to the training phase. Hence, the
overall expected query time is O(|Gk|+Hf). The details are given in the full version [7]. J

Fredman [14] obtained a special case of Theorem 6 when f = πk, πk(S) is given, and
every outcome in πk(S) is equally likely.

2.3 Operation phase
1. For r ∈ [0, n], initialize Zr := ∅.
2. Repeat the following steps for each group Gk.

a. Let I|Gk
= (xi1 , · · · , xi|Gk|). Compute πk(xi1 , · · · , xi|Gk|) and bk(xi1 , · · · , xi|Gk|) using

Theorem 6.
b. Use πk(xi1 , · · · , xi|Gk|) to sort (xi1 , · · · , xi|Gk|). Let xs1 < · · · < xs|Gk| denote the

sorting output. Using bk(xi1 , · · · , xi|Gk|), for all j ∈
[
1, |Gk|

]
, we can read off the

interval [vrj
, vrj+1) to which xsj

belongs.
c. By a left-to-right scan, break (xs1 , · · · , xs|Gk|) at the boundaries of the intervals

[vr, vr+1)’s into contiguous subsequences. Insert each contiguous subsequence σ as a
new element into Zr, where [vr, vr+1) is the interval that contains the numbers in σ.

3. For each r ∈ [0, n], merge the subsequences in Zr into one sorted list.
4. Concatenate the sorted lists of step 3 in the left-to-right order of the intervals. Return

the output.

I Theorem 7. Under the group product distribution setting, there is a self-improving sorter
with a limiting complexity of O(n+HS). The storage needed by the operation phase is O(c0n3).
The training phase processes Õ(c20n2) instances in Õ(c0n3 + c20n

2) time using Õ(c0n3 + c20n
2)

space. The success probability is at least 1−O(1/n).

SoCG 2020

29:8 A Generalization of Self-Improving Algorithms

Proof. Correctness is obvious. The training complexities and space used in the operation
phase follow from Corollary 3, Lemma 5, and Theorem 6. By Theorem 6, step 2(a) takes
O(n+

∑
kHbk

+
∑
kHπk

) time. By the result in [1, Lemma 2.3],
∑
kHbk

= O(n+HS) because
one can merge the sorted order of I with the V -list to obtain the outputs of all bk’s in O(n)
time. As there are O(|Gk|2) different outputs of πk by Lemma 5, Hπk

= O(ln |Gk|) = O(|Gk|)
and so

∑
kHπk

= O(n). Step 3 runs in O(
∑
r

∑
k |σk,r| log |Zr|) = O

(∑
r

∑
k |Zr||σk,r|

)
time, where σk,r = I|Gk

∩ [vr, vr+1). Let yk,r be number of groups other than Gk that
have elements in Zr. Then, |Zr| ≤ yk,r + 1. So E

[
|Zr||σk,r|

]
≤ E

[
(yk,r + 1)|σk,r|

]
=

E
[
|σk,r|

]
+ E

[
yk,r|σk,r|

]
= E

[
|σk,r|

]
+ E

[
yk,r

]
E
[
|σk,r|

]
= (1 + E

[
yk,r

]
)E
[
|σk,r|

]
, which is

O
(
E
[
|σk,r|

])
as Lemma 4 implies that E

[
yk,r

]
= O(1). Finally,

∑
k

∑
r E
[
|σk,r|

]
= O(n). J

3 Self-improving Delaunay triangulator

An input instance I consists of n points, (p1, · · · , pn), where pi = (pi,x, pi,y). We assume
that there is a hidden partition of [1, n] into disjoint groups G1, G2, For all k ≥ 1, Gk is
governed by a random variable uk ∈ R2. That is, there exist hxi,k, h

y
i,k : R2 → R such that

pi,x = hxi,k(uk) and pi,y = hyi,k(uk). The functions hxi,k and hyi,k are bivariate polynomials
with degree at most some known constant d0. We assume that the following properties hold.

For all non-zero bivariate polynomial f of degree at most d0d1, Pr[f(uk) = 0] = 0, where
d1 = 2(d2

0/2 + d0)16.
∀ i∀ k ∀c ∈ R, both Pr[hxi,k(uk) = c] and Pr[hyi,k(uk) = c] are zero.

We show in the full version [7] that G1, G2, · · · can be learned in O(n2) time almost surely
using O(n2) instances.

3.1 Auxiliary structures
Take a set S of λ = n2 lnn instances. Take a (1/n)-net V ′ of S with respect to disks, that is,
for any disk C, |C ∩ S| ≥ |S|/n⇒ C ∩ V ′ 6= ∅. It is known that |V ′| = O(n) [10]. Add to V ′
three special points that form a huge triangle τ such that any input point lies inside τ . Let
V be the union of V ′ and these three special points. The canonical Delaunay triangulation
Del(V) satisfies the following property with a proof analogous to that of Lemma 4.

I Lemma 8. It holds with probability at least 1− 1/n189 that for every triangle t ∈ Del(V),
EI∼D[|I ∩ Ct|] = O(1), where Ct is the circumscribing disk of t.

We will need the following function which is the counterpart of bk for self-improving
sorters. Let |Del(V)| denote the number of triangles in Del(V). Arbitrarily assign indices
from 1 to |Del(V)| to the triangles in Del(V); the triangle with index r is denoted by tr.

Bk : R2|Gk| →
[
1, |Del(V)|

]|Gk| such that for all |Gk|-tuple of points (q1, · · · , q|Gk|),
Bk(q1, · · · , q|Gk|) = (r1, · · · , r|Gk|) such that qi lies in the triangle tri ∈ Del(V).

We use a variant of the fair split tree in [3]. Let R̂ and R be the smallest axis-aligned
bounding square and the smallest axis-aligned bounding rectangle, respectively, of the given
input instance I. We initialize the split tree to be a single node u with R(u) = R and
R̂(u) = R̂. In general, for any internal node w, R(w) is the smallest axis-aligned rectangle of
the subset of points represented by w, and R̂(w) is an outer rectangle that encloses R(w).
To split w, take the bisecting line of R(w) that is perpendicular to a longest side of R(w).
This line splits the point set at w into two non-empty subsets, and it also splits R̂(w) into
the outer rectangles of the children of w. The expansion bottoms out at nodes that represent
only one point in I. This gives a split tree I which is a full binary tree with n leaves. Since
we bisect R(w) at each internal node w, we call the output split tree a halving split tree.

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:9

For every rectangle r, let `min(r) and `max(r) be the minimum and maximum side lengths
of r, respectively. The following property is satisfied [3, equation (1) in Lemma 4.1]:

For each node u of the split tree, `min(R̂(u)) ≥ 1
3`max(R(parent(u))). (1)

There are non-halving split trees that also satisfy (1), which are called fair split trees in
[3]. We use SplitT (I) to denote a fair split tree of I. Using (1), one can show that a fair split
tree can be used to produce a well-separated pair decomposition of O(n) size, which can then
be used to produce a Delaunay triangulation in O(n) expected time (see Lemma 12 below).

We will require the following function which is the counterpart of πk for self-improving
sorters. Let HST denote the set of halving split trees of all possible |Gk| points in R2.

Πk : R2|Gk| → [0, n]|Gk| × [0, n]|Gk| × HST such that for all |Gk|-tuple of points
q, Πk(q) = (πk(qx), πk(qy), the halving split tree of q), where q = (q1, · · · , q|Gk|),
qx = (q1,x, · · · , q|Gk|,x), and qy = (q1,y, · · · , q|Gk|,y).

We call the first output of Πk the x-order and the second output the y-order.

I Lemma 9. Given S = {I|Gk
: I ∼ D}, |Bk(S)| = O(n2|Gk|2) and |Πk(S)| = O(|Gk|8).

Proof. Assume that Gk = [1,m]. Recall that the functions hxi,k’s and h
y
i,k’s have degrees at

most d0. Consider the following equations for some possibly non-distinct indices i1, i2, i3, i4 ∈
[1,m]: hxi1,k = hxi2,k, h

y
i1,k

= hyi2,k, h
x
i1,k
− hxi2,k = hyi3,k − h

y
i4,k

, hxi1,k + hxi2,k = 2hxi3,k, and
hyi1,k + hyi2,k = 2hyi3,k. Each of these equations is an algebraic curve in R2 of degree at most
d0, so the arrangement A of these O(m4) curves has complexity O(m8). We argue that there
are no more combinatorially different halving split trees than the cells in A.

Take the coarser arrangement A0 formed by the curves hxi1,k = hxi2,k and hyi1,k = hyi2,k for
distinct indices i1, i2 ∈ [1,m]. Each cell of A0 gives a distinct combination of x-order and
y-order, so each cell may lead to a different split tree. Take a cell C of A0. Suppose that u is
the split tree root, R̂(u) has pi1 and pi2 on its vertical sides, and we split R̂(u) vertically. The
curves {hxi1,k + hxi2,k = 2hxi3,k : i3 ∈ [1,m] \ {i1, i2}} divide C into interior-disjoint regions.
Each region corresponds to a distinct partition of points into the children w1 and w2 of
u. Take one such region C ′. Suppose that the smallest bounding rectangle of points in w1
have pi′1 and pi′2 on its vertical sides and pi′3 , and pi′4 on its horizontal sides. The sign of
(hxi′1,k − h

x
i′2,k

)− (hyi′3,k − h
y
i′4,k

) determines whether R̂(w1) is split vertically or horizontally.
Similarly, the sign of (hxi′5,k − h

x
i′6,k

) − (hyi′7,k − h
y
i′8,k

) for some i′5, i′6, i′7, i′8 tells us if R̂(w2)
is split vertically or horizontally. So the two curves (hxi′1,k − h

x
i′2,k

) = (hyi′3,k − h
y
i′4,k

) and
(hxi′5,k − h

x
i′6,k

) = (hyi′7,k − h
y
i′8,k

) divide C ′ to subregions such that each subregion corresponds
to a combinatorial distinct splitting of w1 and w2. Continuing with the above argument
shows that there are no more halving split trees than the cells in A. So |Πk(S)| = O(m8).

Let L be the set of support lines of all edges in Del(V). Let the equations of these lines
be αjx+ βjy + γj = 0 for j ∈

[
1, |L|

]
. Consider the following algebraic curves in R2.

αjh
x
i,k(uk) + βjh

y
i,k(uk) + γj = 0 for i ∈ [1,m] and j ∈

[
1, |L|

]
.

Let A′ be the arrangement of these O(nm) curves. Since these curves have degrees no more
than d0, the complexity of A′ is O(n2m2). Inside any cell of A′, the signs of

αjh
x
i,k(uk) + βjh

y
i,k(uk) + γj for i ∈ [1,m] and j ∈

[
1, |L|

]
are invariant. These signs determine Bk(p1, . . . , pm). Hence, |Bk(S)| = O(n2m2). J

SoCG 2020

29:10 A Generalization of Self-Improving Algorithms

We can generalize Theorem 6 to work for Bk and Πk.

I Theorem 10. Theorem 6 holds for f ∈ {Bk,Πk}.

Proof. The input to Bk and Πk is the tuple q = I|Gk
. W.l.o.g., let q = (q1, · · · , q|Gk|).

For Bk, we build a trie T like the case of f = bk in the proof of Theorem 6. If we are
at qi−1 and a node u of T , we seek an edge uw for some child w of u such that qi lies in
tr ∈ Del(V), where r is the label of uw. Therefore, we build a distribution-sensitive planar
point location structure for the subset of triangles of Del(V) represented by the labels of
edges from u to its children [16]. For an edge uw with label r, the weight of tr in the point
location structure is equal to the weight of w in T , which is defined recursively as in the
proof of Theorem 6. So finding w takes O(log(weight(u)/weight(w))) time [16] as before.

Consider Πk. The top |Gk| levels of T is a trie T1 for determining πk(q1,x, · · · , q|Gk|,x).
So T1 is a copy of the trie for πk in the proof of Theorem 6. We expand each leaf u of T1
into a trie T2,u for determining πk(q1,y, · · · , q|Gk|,y). Let T2 be the composition of T1 and all
T2,u’s. Given an instance I, we know the x-order and y-order of I at a leaf in T2.

We expand each leaf v of T2 to a trie T3,v as follows. Let Pv = I. For i ∈ [1, n − 1],
v may have a child corresponding to a vertical cut between the i-th and (i+ 1)-th points
in the x-order of Pv. Similarly, for i ∈ [1, n − 1], v may have a child corresponding to a
horizontal cut between the i-th and (i+ 1)-th points in the y-order of Pv. So v has at most
2n− 2 children. The existence of a particular child w of v depends on whether some input
instance in the training phase prompts the creation of w. Each child w of v represents a
subset Pw ⊂ Pv. We recursively expand the children of v, and the recursion bottoms out
when we reach a node that represents only a single point. The trie T3,v models the sequence
of possible cuts deployed in the training phase in constructing a split tree for a point set
that has the same x-order and y-order represented by v. Hence, each leaf of T3,v represents
a split tree. Let T3 be the composition of T2 and all T3,v’s.

We need a fast way to locate a child in T3. We build a nearly optimal binary search trees at
each internal node of T1 and all T2,u’s as in the case of πk in the proof of Theorem 6. At each
internal node u of T3,v, we keep two nearly optimal binary search trees Au,0 and Au,1 organized
as follows. At the node u, inductively, we know two functions γx :

[
1, |Pu|

]
→
[
1, n
]
and

γy :
[
1, |Pu|

]
→
[
1, n
]
such that qγx(a) and qγy(a) has the a-th smallest x- and y-coordinates

in Pu, respectively. We discovered the same functions γx and γy at u in the training phase.
We organize a nearly optimal binary search tree Au,0 with |Pu| + 1 leaves corresponding
to the |Pu|+ 1 gaps among −∞, the x-coordinates of points in Pu in increasing order, and
∞. We store γx(a) at the internal node in Au,0 that separates the a-th and the (a+ 1)-th
smallest x-coordinates. By comparing qγx(|Pu|),x − qγx(1),x and qγy(|Pu|),y − qγy(1),y in O(1)
time, we can determine whether u should be split vertically or horizontally.

If the cutting line at u is vertical and has x-coordinate X, we can decide in O(1) time
whether X < qγx(a),x or X > qγx(a),x. The search of Au,0 terminates at a leaf representing
the gap between qγx(c),x and qγx(c+1),x for some c. It means that the cut at X should lead
us to the child w of u such that the label uw represents a vertical cut between the c-th and
(c + 1)-th smallest x-coordinates. The weight of the leaf Au,0 corresponding to child w is
weight(w). The search time of Au,0 is thus O(log(weight(u)/weight(w))).

The search tree Au,1 is symmetrically organized for the horizontal cuts using γy.
Since we preserve the time to descend from a node of the trie to its appropriate child as

in the proof of Theorem 6, the overall expected search time of the trie is still O(|Gk|+Hf).
The construction of T2 has been described in Theorem 6. The construction of T3,v for

each leaf v of T2 follows the procedure to construct a split tree [3]. The construction of the
auxiliary structures γx’, γy’s, Au,0’s. and Au,1’s in the training phase is also similar to the
construction of analogous structures in Theorem 6. J

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:11

Given a point set P and Q ⊆ P , we can construct SplitT (Q) from SplitT (P) as follows.
Make a copy T of SplitT (P). Remove all leaves of T that represent points in P \Q. Repeatedly
remove nodes in T with only one child until there is none. For each node u of SplitT (P) that
is inherited by SplitT(Q), the same cut that splits u in SplitT(P) is also used in splitting
u in SplitT(Q). So SplitT(Q) may not be a halving split tree. For every surviving node u
in SplitT(Q), R(u) may shrink due to point deletions, but R̂(u) may remain the same or
expand. For example, if parent of u is deleted but the grandparent of u survives, then R̂(u)
in SplitT (Q) is equal to R̂(parent(u)) in SplitT (P). Hence, (1) is still satisfied by SplitT (Q).

I Lemma 11. Suppose that we have constructed SplitT (P) for a point set P .
(i) For any Q ⊆ P , SplitT (Q) can be computed from SplitT (P) in O(|P |) time.
(ii) For any subsets Q1, · · · , Qm of P , if each Qi is ordered as in the preorder traversal

of SplitT(P), then SplitT(Q1), · · · ,SplitT(Qm) can be computed from SplitT(P) in
O
(
α(|P |) ·

(
|P |+

∑m
i=1 |Qi|

))
time, where α(·) is the inverse Ackermann function.

Proof. The correctness of (i) follows from our previous discussion. For (ii), the construction
of SplitT(Qi) boils down to O(|Qi|) nearest common ancestor queries in SplitT(P), which
can be solved in the time stated [20]. There are solutions without the factor α(·), but they
require table lookup which is incompatible with the comparison-based model here. J

We also need the following result that follows from the works in [3, 2]. The proof is in
the full version [7].

I Lemma 12. There is a randomized algorithm that constructs Del(P) from SplitT(P) in
O(|P |) expected time.

3.2 Operation phase
Let I = (p1, · · · , pn) be an input instance. The construction of Del(I) proceeds as follows.

1. For each k, compute Bk(I|Gk
) and Πk(I|Gk

) using Theorem 10.
2. For i ∈ Gk, Bk(I|Gk

) gives the triangle t′ ∈ Del(V) that contains pi, and a BFS in Del(V)
from t′ gives ∆i = {t ∈ Del(V) : pi ∈ Ct}, where Ct is the circumscribing disk of t.

3. For each k,
a. Πk(I|Gk

) gives SplitT (I|Gk
) (note that the halving split tree is also a fair split tree);

b. traverse SplitT (I|Gk
) in preorder to produce an ordered list Qk of points in I|Gk

;
c. initialize Qk,t = ∅ for all t ∈

⋃
i∈Gk

∆i;
d. for all pi ∈ Qk (in order) and t ∈ ∆i, append pi to Qk,t;

4. Compute SplitT (Qk,t) for all k and t ∈
⋃
i∈Gk

∆i from SplitT (I|Gk
) using Lemma 11(ii).

5. For all k and t ∈
⋃
i∈Gk

∆i, compute Del(Qk,t) from SplitT (Qk,t) using Lemma 12.
6. Compute Vor(V ∪ I) and hence Del(V ∪ I) from the Del(Qk,t)’s over all k and t.
7. Split Del(V ∪ I) to produce Del(I) and Del(V). Return Del(I).

By Lemma 9 and Theorem 10, the training phase takes Õ(n10) time. Most of time is
spent on constructing the tries for the groups G1, G2, . . . to support the retrieval of the
Bk(I|Gk

)’s and Πk(I|Gk
)’s.

By Theorem 10, step 1 takes O(n+
∑
kHBk

+
∑
kHΠk

) expected time. Observe that
|Qk,t| is the total number of pairs (pi, t), where pi ∈ I and t ∈ Del(V), such that i ∈ Gk
and pi ∈ Ct. Therefore,

∑
k,t |Qk,t| =

∑n
i=1 |∆i|. By Lemma 8, E

[∑n
i=1 |∆i|

]
= O(n),

and therefore, E
[∑

k |Qk,t|
]

= O(1). So steps 2 and 3 run in O(n) expected time. By
Lemma 11(ii), the expected running time of step 4 is O

(∑
k |Gk|α(n)+E

[∑
k,t |Qk,t|

]
α(n)

)
=

SoCG 2020

29:12 A Generalization of Self-Improving Algorithms

O
(
nα(n) + E

[∑n
i=1 |∆i|

]
α(n)

)
= O(nα(n)). By Lemma 12, the expected running time of

step 5 is O
(
E
[∑

k,t |Qk,t|
])

= O(n). For step 7, a randomized algorithm is given in [6]
that splits Del(V ∪ I ′) in O(|V | + |I ′|) = O(n) expected time. It remains to discuss the
implementation and running time of step 6.

Step 6 is decomposed into two tasks. Let Pt be subset of I that lie in Ct, i.e., Pt =
⋃
kQk,t.

First, for all t ∈ Del(V), compute Del(Pt) by merging the non-empty Del(Qk,t)’s over all k.
Second, construct Vor(V ∪ I) by merging the Vor(Pt)’s over all t ∈ Del(V).

The first task is equivalent to computing Vor(Pt) for all t ∈ Del(V). It is known how to
merge two Voronoi diagrams in linear time [4, 5]. So we can merge the non-empty Vor(Qk,t)’s
in O

(∑
k zt|Qk,t|

)
time, where zt is the number of groups Gk’s with points in Ct. The

expected running time of the first task is O
(
E
[∑

t

∑
k zt|Qk,t|

])
. We have seen the analysis

of the similar quantity O
(
E
[∑

r

∑
k |Zr||σk,r|

])
in the proof of Theorem 7, and the same

analysis gives E
[∑

t zt
∑
k |Qk,t|

]
= O

(∑
t

∑
k E
[
|Qk,t|

])
= O(n).

Consider the second task of merging the Vor(Pt)’s over all t ∈ Del(V). We use the same
strategy in [1]. For each t ∈ Del(V), let νt be the Voronoi vertex dual to t in Vor(V). For
each Voronoi cell C of Vor(V), pick the vertex νt of C such that |Pt| is smallest, breaking
ties by selecting t with the smallest id in Del(V), and then triangulate C by connecting νt to
other vertices of C. This gives the geode triangulation of Vor(V) with respect to I.

I Lemma 13 ([1]). For any geode triangle τ = νt1νt2νt3 , Vor(V ∪ I) ∩ τ = Vor
(
{vτ} ∪⋃3

i=1 Pti
)
∩ τ , where vτ is the point in V whose Voronoi cell contains τ .

By Lemma 13, we can compute Vor
(
{vτ} ∪

⋃3
i=1 Pti

)
∩ τ for all geode triangles τ ,

and stitch these fragments to form Vor(V ∪ I). The expected running time is domi-
nated by the expected construction time of Vor

(
{vτ} ∪

⋃3
i=1 Pti

)
for all τ ’s. We merge

Vor(Pt1),Vor(Pt1),Vor(Pt3), vτ to form Vor
(
{vτ} ∪

⋃3
i=1 Pti

)
in linear time [4, 5]. The

expected merging time is O
(
E
[
1 +
∑3
i=1 |Pti |

])
= O(1) because E

[
|Pti |

]
= O(1) by Lemma 8.

In summary, we conclude that step 6 runs in O(n) expected time.

I Theorem 14. Under the group product distribution setting, there is a self-improving
Delaunay triangulator with a limiting complexity of O(nα(n) +HDT). The storage needed by
the operation phase is O(n9). The training phase processes Õ(n9) instances in Õ(n10) time
using O(n9) space. The success probability is at least 1−O(1/n).

Proof. The training time complexity and the space complexities of the training and operation
phases follow from previous discussion. Moreover, as discussed earlier, the expected running
time in the operation phase is O(nα(n) +

∑
kHBk

+
∑
kHΠk

). Given I and Del(I), an
algorithm is given in [1, Section 4.2] for finding the triangles in Del(V) that contain the
points in I. The same algorithm also works in the group product distribution setting.
The expected running time of this algorithm is dominated by E

[∑n
i=1 |∆i|

]
, which is O(n)

as we argued previously. We can then apply the result in [1, Lemma 2.3] to conclude
that

∑
kHBk

= O(n + HDT). There are O(|Gk|8) different outputs of Πk, so
∑
kHΠk

=
O(
∑
k ln |Gk|) = O(n). J

References
1 N. Ailon, B. Chazelle, K. Clarkson, D. Liu, W. Mulzer, and C. Seshadhri. Self-improving

algorithms. SIAM Journal on Computing, 40(2):350–375, 2011. doi:10.1137/090766437.
2 K. Buchin and W. Mulzer. Delaunay triangulations in O(sort(N)) time and more. Journal of

the ACM, 58(2):6:1–6:27, 2011. doi:10.1145/1944345.1944347.

https://doi.org/10.1137/090766437
https://doi.org/10.1145/1944345.1944347

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:13

3 P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM, 42(1):67–
90, 1995. doi:10.1145/200836.200853.

4 T.M. Chan. A simpler linear-time algorithm for intersecting two convex polyhedra in
three dimensions. Discrete & Computational Geometry, 56(4):860–865, 2016. doi:10.1007/
s00454-016-9785-3.

5 B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM
Journal on Computing, 21(4):671–696, 1992. doi:10.1137/0221041.

6 B. Chazelle, O. Devillers, F. Hurtado, M. Mora, V. Sacristan, and M. Teillaud. Splitting
a delaunay triangulation in linear time. Algorithmica, 34(1):39–46, 2002. doi:10.1007/
s00453-002-0939-8.

7 S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong. A generalization of self-improving
algorithms. CoRR, abs/2003.08329, 2020. arXiv:2003.08329.

8 S.-W. Cheng, K. Jin, and L. Yan. Extensions of self-improving sorters. Algorithmica, 82:88–106,
2020. doi:10.1007/s00453-019-00604-6.

9 K.L. Clarkson, W. Mulzer, and C. Seshadhri. Self-improving algorithms for coordinatewise
maxima and convex hulls. SIAM Journal on Computing, 43(2):617–653, 2014. doi:10.1137/
12089702X.

10 K.L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set cover.
Discrete and Computational Geometry, 37:43–58, 2007. doi:10.1007/s00454-006-1273-8.

11 T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-Interscience, New
York, 2 edition, 2006.

12 J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures persistent.
Journal of Computer System and Sciences, 38:86–124, 1989. doi:10.1016/0022-0000(89)
90034-2.

13 M.L. Fredman. Two applications of a probabilistic search technique: sorting x+y and building
balanced search trees. In Proceedings of the 7th ACM Symposium on Theory of Computing,
pages 240–244, 1975. doi:10.1145/800116.803774.

14 M.L. Fredman. How good is the information theory bound in sorting? Theoretical Computer
Science, 1(4):355–361, 1976. doi:10.1016/0304-3975(76)90078-5.

15 W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963. URL: http://www.jstor.org/stable/
2282952.

16 J. Iacono. Expected asymptotically optimal planar point location. Computational Geometry:
Theory and Applications, 29:19–22, 2004. doi:10.1016/j.comgeo.2004.03.010.

17 J.H. Kim. On increasing subsequences of random permutations. Journal of Combinatorial
Theory, Series A, 76(1):148–155, 1996. doi:10.1006/jcta.1996.0095.

18 D.H. Lehmer. Teaching combinatorial tricks to a computer. In Proceedings of Symposia in Ap-
plied Mathematics, Combinatorial Analysis, volume 10, pages 179–193. American Mathematics
Society, 1960.

19 K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975. doi:
10.1007/BF00264563.

20 R.E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM,
26(4):690–715, 1979. doi:10.1145/322154.322161.

SoCG 2020

https://doi.org/10.1145/200836.200853
https://doi.org/10.1007/s00454-016-9785-3
https://doi.org/10.1007/s00454-016-9785-3
https://doi.org/10.1137/0221041
https://doi.org/10.1007/s00453-002-0939-8
https://doi.org/10.1007/s00453-002-0939-8
http://arxiv.org/abs/2003.08329
https://doi.org/10.1007/s00453-019-00604-6
https://doi.org/10.1137/12089702X
https://doi.org/10.1137/12089702X
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/800116.803774
https://doi.org/10.1016/0304-3975(76)90078-5
http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
https://doi.org/10.1016/j.comgeo.2004.03.010
https://doi.org/10.1006/jcta.1996.0095
https://doi.org/10.1007/BF00264563
https://doi.org/10.1007/BF00264563
https://doi.org/10.1145/322154.322161

	Introduction
	Self-improving sorter
	Hidden partition and V-list
	Trie
	Operation phase

	Self-improving Delaunay triangulator
	Auxiliary structures
	Operation phase

