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Abstract
In this article, we extend the notions of dominated vertex and strong collapse of a simplicial complex
as introduced by J. Barmak and E. Miniam. We say that a simplex (of any dimension) is dominated
if its link is a simplicial cone. Domination of edges appears to be a very powerful concept, especially
when applied to flag complexes. We show that edge collapse (removal of dominated edges) in a
flag complex can be performed using only the 1-skeleton of the complex. Furthermore, the residual
complex is a flag complex as well. Next we show that, similar to the case of strong collapses, we can
use edge collapses to reduce a flag filtration F to a smaller flag filtration Fc with the same persistence.
Here again, we only use the 1-skeletons of the complexes. The resulting method to compute Fc is
simple and extremely efficient and, when used as a preprocessing for persistence computation, leads
to gains of several orders of magnitude w.r.t the state-of-the-art methods (including our previous
approach using strong collapse). The method is exact, irrespective of dimension, and improves
performance of persistence computation even in low dimensions. This is demonstrated by numerous
experiments on publicly available data.
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1 Introduction

Improving the performance of computing persistent homology has been a central goal in
Topological Data Analysis (TDA) since the early days of the field about 20 years ago. Very
significant progress has been obtained on the two main components of the overall pipeline: the
preprocessing of the sequence of complexes given as input and the computation of persistence
homology (PH). The latter line of research led to improvement of the persistence algorithm
and of its analysis, to efficient implementations and optimizations, and to a new generation
of software [37, 8, 6, 45]. The former and complementary direction has been intensively
explored with the goal of reducing the size of the complexes in the input sequence while
preserving the persistent homology of the sequence, or approximating it in a controlled
way [44, 30, 18, 13, 51, 41, 20, 27]. Among the most widely used complexes in TDA are
the flag complexes and, in particular, the Vietoris-Rips complexes. These complexes are
of great theoretical and practical interest since they are fully characterized by their graph
(or 1-skeleton) and can thus be stored in a very compact way. Specific algorithms and very
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19:2 Edge Collapse and Persistence of Flag Complexes

efficient codes have been developed for those complexes [6, 51]. Despite all these advances,
further progress has been obtained recently both for general simplicial complexes [12] and
for flag complexes [11] using a special type of collapses, called strong collapses, introduced
by J. Barmak and E. Miniam [5]. The basic idea is to simplify the complexes of the input
sequence by using strong collapses and to compute the PH of an induced sequence of reduced
simplicial complexes whose PH is the same or a close approximation of the PH of the initial
sequence. In the case of flag complexes, the critical observation was that the construction
of the reduced sequence can be done using only the 1-skeletons of the complexes, without
constructing the full complexes, therefore saving time and space.

This paper further improves on these last results. Although the general philosophy is
the same, there are some new key features that make the new method several orders of
magnitude more efficient than all known methods.

1. Instead of strong collapses, we use the so-called edge collapses. In fact, we more generally
define k-collapses that are identical to the extended collapses introduced in [4] (see also
the early work of V. Welker [53]). When k = 0, we have strong collapses and when k = 1
edge collapses. Edge collapses share with strong collapses some important properties.
Most notably, we can use edge collapses to reduce any flag filtration F to a smaller flag
filtration Fc with the same persistence, using only the 1-skeletons of the complexes.

2. The reduction is exact and the PH of the reduced sequence is identical to the PH of
the input sequence. However, the method can be easily adapted so as to produce an
approximate reduction that would lead to better run time.

3. In [12] and in [11], the reduced sequence associated to a filtration was usually a tower
(a sequence of simplicial complexes connected through simplicial maps), and part of the
computing time was devoted to transforming this tower in another equivalent filtration
using ideas from [26, 40]. There is no such need in the algorithm presented in this paper,
which is another main source of improvement. Note however that the algorithm described
in [11] works for flag towers while, in this paper, we restrict ourselves to flag filtrations.

4. The resulting method is simple and extremely efficient. On the theory side, we show that
the edge collapse of a flag filtration can be computed in time O(nnc k2), where n and
nc are the number of edges in the input and output 1-skeletons respectively and k is the
maximal degree of a vertex in the input graph. The algorithm has been implemented.
Numerous experiments on publicly available data show that preprocessing PH computation
of flag complexes using edge collapse leads to unprecedented performance. The code will
be soon released in the Gudhi library [37].

An outline of this paper is as follows. Section 2 recalls some basic ideas and constructions
related to simplicial complexes and simple collapses. We introduce k-collapses and then
edge collapses in Section 3. In Section 4, we prove that simple collapses preserve persistence.
In Section 5, we provide the main algorithm that reduces a flag filtration to another flag
filtration using edge collapses. Experiments are discussed in Section 6.

2 Preliminaries

In this section we provide some background material. Readers can refer to [38] for a
comprehensive introduction to these topics.

Simplex, simplicial complex and simplicial map. An abstract simplicial complex K is
a collection of subsets of a non-empty finite set X, such that for every subset A in K, all
the subsets of A are in K. From now on, we will call an abstract simplicial complex simply
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a simplicial complex or just a complex. An element of K is called a simplex. An element
of cardinality k + 1 is called a k-simplex and k is called its dimension. Given a simplicial
complex K, we denote its geometric realization as |K|. A simplex is called maximal if
it is not a proper subset of any other simplex in K. A sub-collection L of K is called a
subcomplex if it is a simplicial complex itself.

A map ψ : K → L between two simplicial complexes is called a simplicial map if it
always maps a simplex in K to a simplex in L. Simplicial maps are induced by vertex-
to-vertex maps. A simplicial map ψ : K → L between two simplicial complexes K and L
induces a continuous map |ψ| : |K| → |L| between the underlying geometric realizations. Any
general simplicial map can be decomposed into more elementary simplicial maps, namely
elementary inclusions (i.e., inclusions of a single simplex) and elementary contractions
{{u, v} 7→ u} (where a vertex is mapped onto another vertex). The inverse operation of an
inclusion is called a simplicial removal, denoted as K ←↩ L.

Flag complex and Neighborhood. A complex K is a flag or a clique complex if, when a
subset of its vertices form a clique (i.e. any pair of vertices is joined by an edge), they span a
simplex. It follows that the full structure of K is determined by its 1-skeleton (or graph) we
denote by G. For a vertex v in G, the open neighborhood NG(v) of v in G is defined as
NG(v) := {u ∈ G | [uv] ∈ E}, here E is the set of edges of G. The closed neighborhood
NG[v] is NG[v] := NG(v) ∪ {v}. Similarly we define the closed and open neighborhood of an
edge [xy] ∈ G, NG[xy] and NG(xy) as NG[xy] := N [x] ∩N [y] and NG(xy) := N(x) ∩N(y),
respectively. The above definitions can be extended to any k-clique σ = [v1, v2, ..., vk] of G;
NG[σ] :=

⋂
vi∈σ N [vi] and NG(σ) :=

⋂
vi∈σ N(vi).

Star, Link and Simplicial Cone. Let σ be a simplex of a simplicial complex K, the closed
star of σ in K, stK(σ) is a subcomplex of K which is defined as follows, stK(σ) := {τ ∈
K| τ ∪σ ∈ K}. The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ) which
do not intersect with σ, lkK(σ) := {τ ∈ stK(σ)|τ ∩σ = ∅}. The open star of σ in K, stoK(σ)
is defined as the set stK(σ) \ lkK(σ). Usually stoK(σ) is not a subcomplex of K.

Let L be a simplicial complex and let a be a vertex not in L. Then the set aL defined as
aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L} is called a simplicial cone.

Sequences of complexes. A sequence of simplicial complexes T : {K1
f1−→ K2

f2−→
· · ·

f(m−1)−−−−→ Km} connected through simplicial maps fi is called a simplicial tower or simply
a tower. When all the simplicial maps fi are inclusions, the tower is called a filtration. If all
the simplicial complexes Ki are flag complexes, we call it flag towers and flag filtrations.

Persistent homology. If we compute the homology classes of all the Ki, we get the sequence

P(T ) : {Hp(K1) f∗1−→ Hp(K2) f∗2−→ Hp(K3) f∗3−→ · · ·
f∗(m−1)−−−−→ Hp(Km)}. Here Hp() denotes the

homology class of dimension p with coefficients from a field F and f∗i is the homomorphism
induced from fi. P(T ) is a sequence of vector spaces connected through the f∗i called a
persistence module. More formally, a persistence module V is a sequence of vector spaces
{V1 −→ V2 −→ V3 −→ · · · −→ Vm} connected with homomorphisms {−→} between them. A
persistence module arising from a sequence of simplicial complexes captures the evolution of
the topology of the sequence. Two different persistence modules V : {V1 −→ V2 −→ · · · −→ Vm}
and W : {W1 −→W2 −→ · · · −→Wm}, connected through a set of homomorphisms φi : Vi →Wi

are equivalent if the φi are isomorphisms and the following diagram commutes [14, 24].

SoCG 2020



19:4 Edge Collapse and Persistence of Flag Complexes

V1 V2 · · · Vm−1 Vm

W1 W2 · · · Wm−1 Wm

φ1 φ2 φm−1 φm

Any persistence module can be decomposed into a collection of intervals of the form [i, j)
[14]. The multiset of all the intervals [i, j) in this decomposition is called the persistence
diagram of the persistence module. An interval of the form [i, j) in the persistence diagram
of P(T ) corresponds to a homological feature (a “cycle”) which appeared at i and disappeared
at j. The persistence diagram (PD) completely characterizes the persistence module, that
is, there is a bijective correspondence between the PD and the equivalence class of the
persistence module [14, 58]. In other words, equivalent persistence modules have the same
the same persistence diagram.

Simple collapse. Given a complex K, a simplex σ ∈ K is called a free simplex if σ has
a unique coface τ ∈ K. The pair {σ, τ} is called a free pair. The action of removing a
free pair: K → K \ {σ, τ} is called an elementary simple collapse. A series of such
elementary simple collapses is called a simple collapse. We denote it as K ↘ L. This
operation preserves the homotopy type of the simplicial complex K, which we write K ∼ L.
In particular, there is a retraction map |r| : |K| → |L| between the underlying geometric
realization of K and L which is a strong deformation retraction. A complex K ′ will be called
simple-collapse minimal if there is no free pair {σ, τ} in K ′. A subcomplex Kec of K is
called an elementary core of K if K↘Kec and Kec is simple-collapse minimal.

Removal of a simplex. We denote by K \ σ the subcomplex of K obtained by removing
σ, i.e. the complex that has all the simplices of K except the simplex σ and the cofaces of σ.

3 Edge Collapse

In this section, we first extend the definition of a dominated vertex introduced in [5] to
simplices of any dimension. Given a simplex σ ∈ K, we denote by Σσ the set of maximal
simplices of K that contain σ. The intersection of all the maximal simplices in Σσ will be
denoted as

⋂
Σσ :=

⋂
τ∈Σσ τ .

Dominated simplex. A simplex σ in K is called a dominated simplex if the link lkK(σ)
of σ in K is a simplicial cone, i.e. if there exists a vertex v′ /∈ σ and a subcomplex L of K,
such that lkK(σ) = v′L. We say that the vertex v′ is dominating σ and that σ is dominated
by v′, which we denote as σ ≺ v′.

k-collapse. Given a complex K, the action of removing a dominated k-simplex σ from K

is called an elementary k-collapse, denoted as K↘↘k{K \ σ}. A series of elementary
k-collapses is called a k-collapse, denoted as K ↘↘k L. We further call a complex K
k-collapse minimal if it does not have any dominated k simplices. A subcomplex Kk of
K is called a k-core if K ↘↘k Kk and Kk is k-collapse minimal.
The notion of k-collapse is the same as the notion of extended collapse introduced in [4]. We
give it a different name to indicate the dependency on the dimension. A 0-collapse is a strong
collapse as introduced in [5]. A 1-collapse will be called an edge collapse. It is not hard to
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see that an elementary simple collapse of a k-simplex σ is a k-collapse, as it is dominated
by the vertex v = τ \ σ, where τ is the unique coface containing σ. Each k-collapse can be
decomposed into a sequence of elementary simple collapses and therefore k-collapses preserve
the simple homotopy type [53, Lemma 2.7] and [4, Lemma 8]. Therefore, like simple collapses,
k-collapses induce a strong deformation retract as well on the geometric realization.

The following lemma extends a result in [5] to general k-collapse. It shows that the
domination of a simplex can be characterized in terms of maximal simplices.

I Lemma 1. A simplex σ ∈ K is dominated by a vertex v′ ∈ K, v′ /∈ σ, if and only if all
the maximal simplices of K that contain σ also contain v′, i.e. v′ ∈

⋂
Σσ.

Proof. If σ ≺ v′ then lkK(σ) = v′L by definition. This implies that for any maximal simplex
τ in stK(σ), v′ ∈ τ . Therefore, v′ ∈

⋂
Σσ. For the reverse direction, let v′ ∈

⋂
Σσ. Hence,

for any maximal simplex τ in stK(σ), we have v′ ∈ τ . Now as v′ /∈ σ, v′ belong to all the
simplices τ \σ, and thus lkK(σ) = v′L where L = (τ \σ)\v′. Hence σ ≺ v′ iff v′ ∈

⋂
Σσ. J

Lemma 1 has important algorithmic consequences. To perform a k-collapse, one simply
needs to store the adjacency matrix between the k-simplices and the maximal simplices of K.

Next we study the special case of a flag complex K and characterize the domination of a
simplex σ of a flag complex K in terms of its neighborhood.

I Lemma 2. Let σ be a simplex of a flag complex K. Then σ will be dominated by a vertex
v′ if and only if NG[σ] ⊆ NG[v′].

Proof. Assume that NG[σ] ⊆ NG[v′] and let τ be a maximal simplex of K that contains σ.
For a vertex x ∈ τ and for any vertex v ∈ σ, the edge [x, v] ∈ τ . Therefore x ∈ NG[σ] ⊆ NG[v′].
Every vertex in τ is thus linked by an edge to v′ and, since K is a flag complex and τ is
maximal, v′ must be in τ . This implies that all the maximal simplices that contains σ also
contain v′. Hence σ is dominated by v′.

Consider the other direction. If σ ≺ v′, by Lemma 1, all the maximal simplices that
contain σ also contain v′. This implies NG[σ] ⊆ NG[v′]. J

Lemma 2 is a generalisation of Lemma 1 in [11]. The next lemma, though elementary, is of
crucial significance. Both lemmas show that edge collapses are well-suited to flag complexes.

I Lemma 3. Let K be a flag complex and let L be any subcomplex of K obtained by edge
collapse. Then L is also a flag complex.

1

2

3
4

5
6

7

Figure 1 The above complex does not have any dominated vertex and thus cannot be 0-collapsed.
However, by proceeding from the boundary edges, one can edge collapse this complex to a 1-
dimensional complex. The 1-core obtained in this way is collapsible to a point using 0-collapse.

SoCG 2020
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Efficiency of reduction. As will be demonstrated in Section 6, edge collapse appears to be
a very efficient tool to reduce the size of a complex while preserving its homotopy type. A
simple example will help giving some intuition why edge collapse can be superior to vertex
collapse. See Figure 1.

1

2
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Figure 2 The complex on the left has two different 1-cores, the one in the middle is obtained
after removing the inner edges [1, 3] and [4, 6], and the one in the right by removing the outer edges
[1, 2] and [4, 5]. Note that the one in the right can be further strong collapsed.

4 Simple Collapse and Persistence

In this section, we turn our attention to the general case of simple collapses (of which
k-collapses are a special case) and provide one of the main result of this article. This can be
seen as a generalization of Theorem 2 of [12].

I Theorem 4. Let f : K → L be a simplicial map between two complexes K and L and let
K ′ ⊂ K and L′ ⊂ L be subcomplexes of K and L such that K ↘ K ′ and L↘ L′. Then there
exists a map f ′ : K ′ → L′, induced by f , such that the persistence of f∗ : Hp(K)→ Hp(L)
and f ′∗ : Hp(K ′)→ Hp(L′) are the same for any integer p ≥ 0. The induced map f ′ may not
be simplicial. Nevertheless, it can be expressed as a combination of inclusions, contractions
and removals of simplices.

Proof. Let us consider the following diagram between the geometric realizations of the
complex |K|, |L|, |K ′| and |L′|.

|K| |L|

|K ′| |L′|

|f |

|rk| |rl|
|f ′|

|ik| |il|

and the associated diagram after computing the p-th singular homology groups

Ho
p(|K|) Ho

p(|L|)

Ho
p(|K ′|) Ho

p(|L′|)

|f |∗

|rk|∗ |rl|∗

|f ′|∗
|ik|∗ |il|∗

Here |rk| and |rl| are the deformation retractions on the geometric realizations associated
with the simple collapse and |ik| and |il| are the inclusion maps. Ho

p() denotes the singular
homology and * is the induced homomorphisms by the corresponding continuous maps.
The map |f ′| is defined as |f ′| := |rl||f ||ik|. Hence |f ′||rk| = |rl||f ||ik||rk|. Now observe
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that, since |rk| is a deformation retraction, |ik||rk| is homotopic to the identity over |K|.
It follows that |rl||f ||ik||rk| is homotopic to |rl||f |. Since homotopic maps induce identical
homomorphisms on the corresponding homology groups [38, Proposition 2.19], we deduce that
|f ′|∗|rk|∗ = |rl|∗|f |∗ (commutativity). Also, since |rk|∗ and |rl|∗ are induced by deformation
retractions, they are isomorphisms on their respective singular homology groups. We have
thus proved that the above diagram commutes and that the vertical maps |rk| and |rl| are
isomorphisms. This implies that the two maps |f | : |K| → |L| and |f ′| : |K ′| → |L′| have the
same singular persistent homology.
|f ′| induces a map f ′ := rl ◦ f ◦ ik between the simplicial complexes K ′ and L′. Note that

f ′ can be expressed as a composition of inclusions, contractions and removals of simplices, as
ik is an inclusion, f is simplicial and rl is a simple collapse. Also, for simplicial complexes,
singular homology is isomorphic to simplicial homology [38, Theorem 2.27]. This implies that
the persistent singular homology |f ′|∗ : Ho

p(|K ′|)→ Ho
p(|L′|) and the persistent simplicial

homology f ′
∗ : Hp(K ′) → Hp(L′) are equivalent. Therefore, the persistent simplicial

homologies f∗ : Hp(K)→ Hp(L) and f ′∗ : Hp(K ′)→ Hp(L′) are equivalent. J

The use of singular homology in the proof is due to the lack of a simplicial map associated
with the retraction (|r|) of a simple collapse. Due to the same reason, the induced map
f ′ : K ′ → L′ may not be necessarily simplicial. However, as mentioned in the above proof
the map f ′ can be expressed as a combination of inclusions, contractions and removals of
simplices. When a sequence of simplicial complexes contains removals of simplices, it is called
a zigzag sequence. There are algorithms [45, 42] to compute zigzag persistence but they are
not as efficient as the usual algorithms for filtrations and towers.

In the next section, we consider the case of flag filtrations and show that we can restrict
the way the edge collapses are performed so that the reduced filtration is also a flag filtration.

5 Edge collapse of a flag filtration

In Section 3, we have introduced edge collapse for general simplicial complexes and provided
an easy criterion for edge-domination in a flag complex using only the 1-skeleton of the
complex. In this section, we provide an algorithm to simplify a flag filtration by removing
dominated edges (i.e. edge collapses), again using only the 1-skeleton of the complex.

We define a notion of removable edge to help explain how our algorithm works (Al-
gorithm 1) and to prove its correctness. Let G be a graph and K be the associated flag
complex. We say that an edge e in a graph G is removable either if it is dominated in K
or if there exists a sequence of edge collapses K↘↘1Kc such that e is dominated in the
reduced complex Kc. Our algorithm is based on the fact that the flag complexes K and Kc

are homotopy equivalent [53, Lemma 2.7] and [4, Lemma 8]. If e = [u, v], we define the edge-
neighborhood of an edge e ∈ G as the set ENG(e) := {[x, y], x ∈ {u, v}, y ∈ NG([uv])}.

Algorithm. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→ G2 ↪→
· · · ↪→ Gn be the associated sequence of 1-skeletons. We further assume that Gi ↪→ Gi+1 is
an elementary inclusion, namely the inclusion of a single edge we name ei+1. The edges in
E := {e1, ..., en} are thus indexed by their order in the filtration and we denote by Gi the
subset {e1, ..., ei}. Our algorithm computes a subset of edges Ec ⊆ E and attach to each
edge in Ec a new index. We thus obtain a new sequence of flag complexes Fc corresponding
to Ec, we call the core sequence. The construction of Ec and of the new indices is done so
that Fc has the same persistence diagram as F .

Let’s give an intuitive presentation of the algorithm first. The central idea is to identify
edges that appear to be non-removable at some point in the algorithm. We store such edges

SoCG 2020
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in a set Ec. To be more specific, consider the case of the inclusion of an edge Gi−1
ei
↪−→ Gi

such that ei is dominated in Gi : ei is thus removable in Gi and is not included in Ec.
Suppose first that all further edges es are dominated in Gs, i < s ≤ n. Then ei remains
removable and will never be put in Ec. This is consistent with the fact that ei does not
change the topology of the complexes Ks and is therefore not required when computing
persistence.

Assume now that some edge ep, i < p ≤ n, is non-dominated in Gp. The status of ei,
that was removable in all Gs for s < p, may change to non-removable in Gp. Therefore, we
check whether ei is non-removable in Gp (by proceeding in the reverse filtration order) and,
in the affirmative, include ei in Ec. In turn, the fact that ei changed from removable to
non removable may change the status of the edges with smaller indices which could become
non-removable after the inclusion of ei. If such edges are found, they are also included in Ec.

Before describing the algorithm in detail, two remarks are in order. First, we do not change
the status of an edge from non-removable to removable even if it has become removable: this
will enforce the output sequence to be a filtration. Second, we change the filtration values of
some edges: the new filtration value of an edge is the first index at which it is found to be
non-removable. The second point leads to faster computation of Ec, otherwise one has to
proceed backward recursively to search for new non-removable edges.

We now explain how to compute Ec. See [Algorithm 1] for the pseudo-code. The main
for loop on line 6 (called the forward loop) iterates over the edges in the filtration F by
increasing filtration values, i.e. in the forward direction, and check whether or not the current
edge ei is dominated in the graph Gi. If not, we insert ei in Ec and keep its original index i.

After the insertion of an edge ei in Ec, we proceed to the so-called backward loop ([Lines
9-26]) and look for new non-dominated edges in Gi, considering the edges by decreasing
filtration values. We assign Gi to a temporary graph G, and we assign the edge-neighborhood
of ei in the graph Gi to Enbd [Line 9-10]. As established in Lemma 5, the search for new
non-dominated edges can be restricted to Enbd. If an edge ej is not in Ec and not in Enbd
[Line 13-14], ej is still dominated : we then remove it from G [Line 22]. If ej 6∈ Ec and
ej ∈ Enbd, then we check whether it is dominated or not. If ej is dominated, we remove it
from G [Line 19]. Otherwise, we insert ej in Ec and assign to it the new index i, i.e. the
index of the edge ei that has triggered the backward search in Gi. Next we enlarge the
edge-neighborhood Enbd by inserting the edge-neighbors of ej in G. We repeat this process
until the last index j = 1. Upon termination of the forward loop [Line 6-30], we output Ec
as the final set.

The computation of non-removable edges (the set Ec) is dependent on the order in which
we do the backward search (the backward loop). In Algorithm 1 we chose to proceed in the
reverse order of the filtration. A different choice of order might result in a different set of
non-removable edges since edge collapses are order dependent as mentioned in Section 3.

We now prove the correctness of the above algorithm after some more definitions.

Critical Edges. Edges in Ec are called critical while edges in E\Ec are called non-critical.
All edges have an original index i given by the insertion order in the input filtration F . The
critical edges received a second index j, called their critical index, when they are inserted
in Ec. By convention, if an edge is not critical and thus has never been inserted in Ec, we
will set its critical index to be ∞. Hence, at the end of Algorithm 1, each edge e ∈ E has
two indices, an original and a critical index. To make this explicit, we denote e as eji . Clearly
i ≤ j. We further distinguish the cases i = j and i < j. If i = j, ei has been put in Ec

during the forward loop and we call ei a primary critical edge. If i < j, ei has been put
in Ec during the backward loop and we call it a secondary critical edge.
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Algorithm 1 Core flag filtration algorithm.

1: procedure Core-Flag-Filtration(E)
2: input : set of edges E of GF sorted by filtration value.
3: Ec ← ∅; i← 1;
4: Enbd ← ∅
5: G← ∅
6: for ei ∈ E do . For i = 1, ..., n in increasing order
7: if ei is non-dominated in Gi then
8: Insert {ei, i} in Ec.
9: G← Gi

10: Enbd ← ENGi(ei)
11: j ← i− 1
12: for ej in Gi do . For j = (i− 1), ..., 1 in decreasing order
13: if ej /∈ Ec then
14: if ej ∈ Enbd then
15: if ej is non-dominated in G then
16: Insert {ej , i} in Ec.
17: Enbd ← Enbd ∪ ENG(ej)
18: else
19: G← G \ ej
20: end if
21: else
22: G← G \ ej
23: end if
24: end if
25: j ← j − 1
26: end for
27: end if
28: G← ∅
29: i← i+ 1
30: end for
31: return Ec . Ec is the 1-skeleton of the core flag filtration.
32: end procedure

For i = 1, ..., n, we define the critical graph at index i, denoted Gci , as the graph whose
edges are the edges in Ec with a critical index at most i. We denote the associated flag
complex as Kc

i .

Correctness. We now prove some lemmas to certify the correctness of our algorithm.
The following lemma justifies the fact that the search for new critical edges during the

backward loop of Algorithm 1 is restricted to the neighborhood of already found critical edges.

I Lemma 5. Let e be an edge in a graph G and let e′ be a new edge and G′ := G ∪ e′. If e
is dominated in G and e /∈ ENG′(e′), then e is dominated in G′.

Proof. Let e ≺ v′ in G, then NG[e] ⊆ NG[v′]. Plainly, NG[v′] ⊆ NG′ [v′] and, since e /∈
ENG′(e′), NG′ [e] = NG[e]. Therefore, NG′ [e] = NG[e] ⊆ NG′ [v′] implies e ≺ v′ in G′. J

The following lemma says that a non-critical edge is always removable and that a critical
edge is removable until it becomes critical.
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I Lemma 6. Let eji be an edge with i < j, then it is removable in all Gt, i ≤ t < min(n+1, j).

Proof. According to the algorithm, if i < j, eji is dominated in Gi (j being finite or not).

1. Let us first consider the case j = ∞. Note that e∞i is non-critical and let ji be the
smallest primary critical index greater than i. If no such index exists, set ji = n+ 1. We
show by induction that e∞i remains removable in all Gt, i ≤ t < n+ 1. As shown above, it
is true for t = i since eji is dominated in Gi. So assume that eji is removable in Gt−1 and
consider the insertion of et in Gt, for some t < ji. By definition of ji, et is dominated in
Gt, which implies that eji is removable in Gt (in the backward sequence et, et−1, . . . , ei).
Consider now t = ji. Since eji is a primary critical edge, it is non-dominated in Gji .
According to the algorithm, a backward loop has been triggered at ji. During this
backward loop, e∞i has not been inserted in Ec since its second critical index is ∞. This
is only possible because e∞i has been found to be dominated in G. Since G is initialized
as Gji , it follows that e∞i is removable in Gji . We can now proceed in a similar way for
all t, ji < t < n+ 1.

2. The proof is very similar for the case i < j ≤ n. As eji has not been inserted in Ec until
the backward loop triggered at index j, eji remains removable in all Gt, i ≤ t < j. J

Note that our statement does not imply that a critical edge eji , i < j ≤ n, can never be
removable in Gt, t ≥ j. It just means that we are sure that it will remain removable until
the point it becomes critical.

I Lemma 7. For each i, Algorithm 1 produces a sequence of elementary edge collapses such
that Ki ↘↘1 Kc

i .

Proof. By definition, Gi \Gci = {emt | t ≤ i,m > i} is the set of edges of Gi whose critical
index m is greater than i, which includes the non-critical edges (m = ∞). Any edge
emt ∈ Gi \Gci is removable in all Kj , j < m by Lemma 6. J

The proof of the following theorem certifying the correctness of our algorithm follows
directly through the application of Lemma 7 and Theorem 4.

I Theorem 8. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→ G2 ↪→
· · · ↪→ Gn be the associated sequence of 1-skeletons, such that Gi ↪→ Gi+1 is an elementary
inclusion of an edge ei+1. Let Gci be the critical graph and Kc

i be its flag complex as defined
before. Then the associated flag filtration of the critical edges, Fc : Kc

1 ↪→ Kc
2 ↪→ · · · ↪→ Kc

n

has the same persistence diagram as F .

Proof. Let us consider the following diagram of the geometric realizations of the flag
complexes for any i ∈ {1, ..., n}, where Kc

i is the flag complex of the critical graph Gci .

|Ki| |Ki+1|

|Kc
i | |Kc

i+1|

|ri| |ri+1|

Using Lemma 7, there is an edge collapse and therefore a simple collapse from Ki to
Kc
i and from Ki+1 to Kc

i+1. And |ri| and |ri+1| are the deformation retractions induced by
the corresponding edge collapses. The equivalence of the persistence modules then follows
directly from the application of Theorem 4. J
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Complexity. Write nv for the total number of vertices, n for the total number of edges and
k for the maximum degree of a vertex in Gn. We represent each graph Gi as an adjacency
list, where every vertex stores a sorted list of at most k adjacent vertices. Additionally, we
store the set of edges (E and Ec) as a separate data structure.

The cost of inserting and removing an edge from such an adjacency list is O(k). Since
the size of NG[v] is at most k for any vertex v, the cost of computing NG[e] for an edge e is
O(k). Checking if an edge e is dominated by a vertex v ∈ NG[e] reduces to checking whether
NG[e] ⊆ NG[v], see Lemma 2. Since all the lists are sorted, this operation takes O(k) time
per vertex v, hence O(k2) time in total.

Let us now analyze the worst-case time complexity of Algorithm 1. At each step i of
the forward loop [Line 6], either ei is dominated (which can be checked in O(k2) time) or a
backward loop is triggered [Line 12]. The backward loop will consider all edges with (original)
index at most i and check whether they are dominated or not. Writing nc for the number of
primary critical edges, the worst-case time complexity is nk2 +

∑nc
i=1 nk

2 = O(nnck2). The
space complexity is O(n). In practice, nc is a small fraction of n (see Table 1).

6 Computational Experiments

Our algorithm [Algorithm 1] has been implemented for VR filtrations as a C++ module
named EdgeCollapser. Our previous preprocessing method described in [11] to simplify VR
filtrations using strong collapses is called VertexCollapser (previously called RipsCollapser).
Both EdgeCollapser and VertexCollapser take as input a VR filtration and return the reduced
flag filtration according to their respective algorithms.

We present results on five datasets netw-sc, senate, eleg,HIV and torus. The first four
datasets are publicly available [22] and are given as the interpoint distance matrix of the points.
The last dataset torus has 2000 points sampled in a spiraled fashion on a torus embedded in
a 3-sphere of R4 [39]. The reported time includes the time of EdgeCollapser/VertexCollapser
and the time to compute the persistence diagram (PD) using the Gudhi library [37].

The code has been compiled using the compiler “clang-900.0.38” and all computations
were performed on a “2.8 GHz Intel Core i5” machine with 16 GB of available RAM. Both
EdgeCollapser and VertexCollapser work irrespective of the dimension of the complexes
associated to the input datasets. However, the size of the complexes in the reduced filtration,
even if much smaller than in the original filtration, might exceed the capacities of the PD
computation algorithm. For this reason, we introduced, as in Ripser [6], a parameter dim
and restricts the expansion of the flag complexes to a maximal dimension dim.

The experimental results using EdgeCollapser are summarized in Table 1. Observe
that the reduction in the number of edges done by EdgeCollapser is quite significant. The
ratio between the number of initial edges and the number of critical edges is approximately
20. Therefore the reduction in the size of k-simplices can be as large as O(20k). This is
verified experimentally too, as the reduced complexes are small and of low dimension (column
Size/Dim) compared to the input VR-complexes which are of dimensions respectively 57, 54
and 105 for the first three datasets netw-sc, senate and eleg.1

Comparison with VertexCollapser. The same set of experimental results using Vertex-
Collapser are summarized in Table 2. VertexCollapser can be used in two modes: in the
exact mode (step=0), the output filtration has the same PD as the input filtration while,

1 The sizes of the complexes are so big that we could not compute the exact number of simplices.
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in the approximate mode (step>0), a certified approximation is returned. For appropriate
comparison, we use VertexCollapser in exact mode. It can be seen that EdgeCollapser is
faster than VertexCollapser by approximately two orders of magnitude. The main reason for
this is the efficient preprocessing algorithm behind EdgeCollapser. As it can be noticed in
some cases, the reduction obtained using VertexCollapser is better than using EdgeCollapser,
but even in those cases EdgeCollapser is faster than VertexCollapser.

In terms of size reduction, EdgeCollapser either outperforms VertexCollapser by a big
amount or is comparable. Some intuition can be gained from the torus example. This is
a well distributed point sets sampled from a manifold without boundary. The fact that
there is no boundary implies that there are only a few number of dominated vertices, which
dramatically reduces the capacity of VertexCollapser to collapse.

EdgeCollapser computes the exact PD of the input filtration while VertexCollapser has
an exact and an approximate modes, Results in Table 2 are obtained using the exact mode
of VertexCollapser, while results in Table 1 [11] are obtained using the approximate mode.
In both cases, EdgeCollapser performs much better than VertexCollapser. An approximate
version of EdgeCollapser can be easily implemented similarly to the case of VertexCollapser.
Instead of triggering the backward loop of the algorithm [Line12-26] at each primary critical
edge we find, we can trigger the backward loop at certain snapshot values only. See Section
5 of [11] for more details on the approximate methodology and description of snapshot.

Table 1 The columns are, from left to right: dataset (Data), number of points (Pnt), max-
imum value of the scale parameter (Thrsld), Initial number of edges/Critical (final) number of
edges Edge(I)/Edge(C), number of simplices (Size) and dimension of the final filtration (Dim),
parameter (dim), time (in seconds) taken by Edge-Collapser and total time (in seconds) including
PD computation (Tot-Time).

Data Pnt Thrsld EdgeCollapser +PD
Edge(I)/Edge(C) Size/Dim dim Pre-Time Tot-Time

netw-sc 379 5.5 8.4K/417 1K/6 ∞ 0.62 0.73
senate 103 0.415 2.7K/234 663/4 ∞ 0.21 0.24
eleg 297 0.3 9.8K/562 1.8K/6 ∞ 1.6 1.7
HIV 1088 1050 182K/6.9K 86.9M/? 6 491 2789
torus 2000 1.5 428K/14K 44K/3 ∞ 288 289

Table 2 The columns are, from left to right: dataset (Data), number of points (Pnt), maximum
value of the scale parameter (Thrsld), number of simplices (Size) and dimension of the final
filtration (Dim), parameter (dim), time (in seconds) taken by VertexCollapser, total time (in
seconds) including PD computation (Tot-Time), parameter Step (linear approximation factor) and
the number of snapshots used (Snaps). For the last experiment (torus), the preprocessing was
stopped after 12hrs due to the number of snapshots and the size of the complexes.

Data Pnt Thrsld VertexCollapser +PD
Size/Dim dim Pre-Time Tot-Time Step Snaps

netw-sc 379 5.5 175/3 ∞ 366.46 366.56 0 8420
senate 103 0.415 417/4 ∞ 15.96 15.98 0 2728
eleg 297 0.3 835K/16 ∞ 518.36 540.40 0 9850
HIV 1088 1050 127.3M/? 4 660 3,955 4 184
torus 2000 1.5 4 ∞* ∞ 0 428K
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Comparison with Ripser. Ripser is a state-of-the-art software to compute the persistent
homology of VR-complexes [6]. Ripser computes the exact PD associated to an input
filtration up to some dimension dim. EdgeCollapser (as well as VertexCollapser) are not
really competitors of Ripser since they act more as a preprocessing of the input filtration
and do not compute Persistence Homology and can be associated to any software computing
PH of flag filtrations. Nevertheless, we run Ripser2 on the same datasets as in Table 1 to
demonstrate the benefit of using EdgeCollapser. Results are presented in Table 3. The main
observation is that, in most of the cases, EdgeCollapser computes PD in all dimensions
and outperforms Ripser, even when we restrict the dimension of the input filtration given
to Ripser.

Table 3 Time is the total time (in seconds) taken by Ripser. ∞ means that the experiment ran
longer than 12 hours or crashed due to memory overload.

Data Pnt Threshold Ripser Ripser Ripser
dim Time dim Time dim Time

netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
senate 103 0.415 3 0.52 4 5.9 5 52.3

” ” ” 6 406.8 7 ∞
eleg 297 0.3 3 8.9 4 217 5 ∞
HIV 1088 1050 2 31.35 3 ∞
torus 2000 1.5 2 193 3 ∞
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