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Abstract
The Art Gallery problem is a fundamental visibility problem in Computational Geometry. The
input consists of a simple polygon P , (possibly infinite) sets G and C of points within P , and an
integer k; the task is to decide if at most k guards can be placed on points in G so that every point
in C is visible to at least one guard. In the classic formulation of Art Gallery, G and C consist of
all the points within P . Other well-known variants restrict G and C to consist either of all the points
on the boundary of P or of all the vertices of P . Recently, three new important discoveries were
made: the above mentioned variants of Art Gallery are all W[1]-hard with respect to k [Bonnet
and Miltzow, ESA’16], the classic variant has an O(log k)-approximation algorithm [Bonnet and
Miltzow, SoCG’17], and it may require irrational guards [Abrahamsen et al., SoCG’17]. Building
upon the third result, the classic variant and the case where G consists only of all the points on the
boundary of P were both shown to be ∃R-complete [Abrahamsen et al., STOC’18]. Even when both
G and C consist only of all the points on the boundary of P , the problem is not known to be in NP.

Given the first discovery, the following question was posed by Giannopoulos [Lorentz Center
Workshop, 2016]: Is Art Gallery FPT with respect to r, the number of reflex vertices? In light
of the developments above, we focus on the variant where G and C consist of all the vertices of P ,
called Vertex-Vertex Art Gallery. Apart from being a variant of Art Gallery, this case
can also be viewed as the classic Dominating Set problem in the visibility graph of a polygon. In
this article, we show that the answer to the question by Giannopoulos is positive: Vertex-Vertex
Art Gallery is solvable in time rO(r2)nO(1). Furthermore, our approach extends to assert that
Vertex-Boundary Art Gallery and Boundary-Vertex Art Gallery are both FPT as well.
To this end, we utilize structural properties of “almost convex polygons” to present a two-stage
reduction from Vertex-Vertex Art Gallery to a new constraint satisfaction problem (whose
solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.
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1 Introduction

Given a simple polygon P on n vertices, two points x and y within P are visible to each other
if the line segment between x and y is contained in P . Accordingly, a set S of points within P
is said to guard another set Q of points within P if, for every point q ∈ Q, there is some point
s ∈ S such that q and s are visible to each other. The computational problem that arises
from this notion is loosely termed the Art Gallery problem. In its general formulation,
the input consists of a simple polygon P , possibly infinite sets G and C of points within P ,
and a non-negative integer k. The task is to decide whether at most k guards can be placed
on points in G so that every point in C is visible to at least one guard. The most well-known
cases of Art Gallery are identified as follows: the X-Y Art Gallery problem is the Art
Gallery problem where G is the set of all points within P (if X=Point), all boundary
points of P (if X=Boundary), or all vertices of P (if X=Vertex), and C is defined
analogously with respect to Y. The classic variant of Art Gallery is the Point-Point
Art Gallery problem. Nevertheless, all variants where X=Vertex or Y=Point received
attention in the literature.1 In particular, Vertex-Vertex Art Gallery is equivalent to
the classic Dominating Set problem in the visibility graph of a polygon.

Art Gallery is a fundamental visibility problem in Discrete and Computational
Geometry, which was extensively studied from both combinatorial and algorithmic viewpoints.
The problem was first proposed by Victor Klee in 1973, which prompted a flurry of results [15,
page 1]. The main combinatorial question posed by Klee was how many guards are sufficient
to see every point of the interior of an n-vertex simple polygon? Chvátal [6] showed in
1975 that bn

3 c guards are always sufficient and sometimes necessary for any n-vertex simple
polygon (see [8] for a simpler proof by Fisk). After this, many variants of Art Gallery,
based on different definitions of visibility, restricted classes of polygons, different shapes of
guards, and mobility of guards, have been defined and analyzed. A book [15] and several
extensive surveys and book chapters were dedicated to Art Gallery and its variants (see,
e.g., [7, 18, 19]). In this article, our main proof states that Vertex-Vertex Art Gallery
is fixed-parameter tractable (FPT) parameterized by r, the number of reflex vertices of
P . Additionally, we show that both Vertex-Boundary Art Gallery and Boundary-
Vertex Art Gallery are FPT with respect to the number of reflex vertices as well.

1 The X-Y Art Gallery problem, for any X,Y ∈ {Point, Boundary, Vertex}, is often loosely termed
the Art Gallery problem. For example, in the survey of open problems by Ghosh and Goswami [9],
the term Art Gallery problem refers to the Vertex-Vertex Art Gallery problem.
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1.1 Background: Related Algorithmic Works
We focus only on algorithmic works on X-Y Art Gallery for X,Y∈ {Point,Boundary,
Vertex}. (The discussions regarding known approximation and exact algorithms can be
found in the full version [4] of the paper.)

Hardness. In 1983, O’Rourke and Supowit [16] proved that Point-Point Art Gallery
is NP-hard if the polygon can contain holes. The requirement to allow holes was lifted shortly
afterwards [3]. In 1986, Lee and Lin [12] showed that Vertex-Point Art Gallery is
NP-hard. This result extends to Vertex-Vertex Art Gallery and Vertex-Boundary
Art Gallery. Later, numerous other restricted cases were shown to be NP-hard as well.
For example, NP-hardness was established for orthogonal polygons by Katz and Roisman
[11] and Schuchardt and Hecker [17]. We remark that the reductions that show that X-Y
Art Gallery (for X,Y ∈ {Point, Boundary, Vertex}) is NP-hard also imply that these
cases cannot be solved in time 2o(n) under the Exponential-Time Hypothesis (ETH).

While it has long been known that even very restricted cases of Art Gallery are NP-
hard, the inclusion of X-Y Art Gallery, for X,Y ∈ {Point, Boundary}, in NP remained
open. (When X=Vertex, the problem is clearly in NP.) In 2017, Abrahamsen et al. [1]
began to reveal the reasons behind this discrepancy for the Point-Point Art Gallery
problem: they showed that exact solutions to this problem sometimes require placement
of guards on points with irrational coordinates. Shortly afterwards, they extended this
discovery to prove that Point-Point Art Gallery and Boundary-Point Art Gallery
are ∃R-complete [2]. Roughly speaking, this result means that (i) any system of polynomial
equations over the real numbers can be encoded as an instance of Point/Boundary-Point
Art Gallery, and (ii) these problems are not in the complexity class NP unless NP = ∃R.

Parameterized Complexity. Two years ago, Bonnet and Miltzow [5] showed that Vertex-
Point Art Gallery and Point-Point Art Gallery are W[1]-hard with respect to
the solution size, k. With straightforward adaptations, their results extend to most of the
known variants of the problem, including Vertex-Vertex Art Gallery. Thus, the classic
parameterization by solution size leads to a dead-end. However, this does not rule out the
existence of FPT algorithms for non-trivial structural parametrizations. We refer to the nice
surveys by Niedermeier on the art of parameterizations [13, 14].

1.2 Giannopoulos’s Parameterization and Our Contribution
In light of the W[1]-hardness result by Bonnet and Miltzow [5], Giannopoulos [10] proposed
to parameterize the Art Gallery problem by the number r of reflex vertices of the input
polygon P . Specifically, Giannopoulos [10] posed the following open problem: “Guarding
simple polygons has been recently shown to be W[1]-hard w.r.t. the number of (vertex or
edge) guards. Is the problem FPT w.r.t. the number of reflex vertices of the polygon?” The
motivation behind this proposal is encapsulated by the following well-known proposition,
see [15, Sections 2.5-2.6].

I Proposition 1 (Folklore). For any polygon P , the set of reflex vertices of P guards the set
of all points within P .

That is, the minimum number k of guards needed (for any of the cases of Art Gallery)
is upper bounded by the number of reflex vertices r. Clearly, k can be arbitrarily smaller than
r (see Fig. 1). Our main result is that the Vertex-Vertex Art Gallery problem is FPT
parameterized by r. This implies that guarding the vertex set of “almost convex polygons” is
easy. In particular, whenever r2 log r = O(logn), the problem is solvable in polynomial time.

SoCG 2020
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Figure 1 The solution size k = 1, yet the number of reflex vertices r is arbitrarily large.

I Theorem 2. Vertex-Vertex Art Gallery is FPT parameterized by r, the number of
reflex vertices. In particular, it admits an algorithm with running time rO(r2)nO(1).

A few remarks are in place. First, our result extends (with straightforward adaptation) to
the most general discrete annotated case of Art Gallery where G and C are each a subset
of the vertex set of the polygon, which can include points where the interior angle is of 180
degrees. Consequently, a simple discretization procedure shows that Vertex-Boundary
Art Gallery and Boundary-Vertex Art Gallery are both FPT parameterized by
r as well. However, we do not know how to handle Vertex-Point Art Gallery and
Point-Vertex Art Gallery; determining whether these variants are FPT with respect to
r remains open. Second, for variants where both X 6= Vertex and Y 6= Vertex, the design
of exact algorithms poses extremely difficult challenges. As discussed earlier, these cases
are not even known to be in NP; in particular, Point-Point Art gallery is ∃R-hard [2].
Moreover, there is only one known exact algorithm that resolves these cases and it employs
extremely powerful machinery (as a black box), not known to be avoidable. Third, note that
our result is among very few positive results that concern optimal solutions to (any case of)
Art Gallery.

Along the way to establish our main result, we prove that a constraint satisfaction
problem called Monotone 2-CSP is solvable in polynomial time. This result might be
of independent interest. Informally, in Monotone 2-CSP, we are given k variables and
m constraints. Each constraint is of the form [x sign f(x′)] where x and x′ are variables,
sign ∈ {≤,≥}, and f is a monotone function. The objective is to assign an integer from
{0, 1, . . . , N} to each variable so that all of the constraints will be satisfied. For this problem,
we develop a surprisingly simple algorithm based on a reduction to 2-CNF-SAT.

I Theorem 3 (♠2). Monotone 2-CSP is solvable in polynomial time.

The main technical component of our work is an exponential-time reduction that creates
an exponential (in r) number of instances of Monotone 2-CSP so that the original instance
is a Yes-instance if and only if at least one of the instances of Monotone 2-CSP is a
Yes-instance. Our reduction is done in two stages due to its structural complexity. In the
first stage of the reduction, we aim to make “guesses” that determine the relations between
the “elements” of the problem (that are the “critical” visibility relations in our case) and
thereby elucidate and further binarize them (which, in our case, is required to impose order
on guards). This part requires exponential time (given that there are exponentially many
guesses) and captures the “NP-hardness” of the problem. Then, the second stage of the
reduction is to translate each guess into an instance of Monotone 2-CSP. This part, while

2 Details of the results marked with ♠ can be found in the full version of the paper [4].
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3. Karp Reduction
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poly time

poly time

poly time

Figure 2 The four components of our proof.

requiring polynomial time, relies on a highly non-trivial problem-specific insight – specifically,
here we need to assert that the relations considered earlier can be encoded by constraints
that are not only binary, but that the functions they involve are monotone. We strongly
believe that our approach can be proven fruitful to resolve the parameterized complexity of
other problems of discrete geometric flavour.

1.3 Our Methods and Preliminaries

Our Methods. The proof of Theorem 2 consists of four components (see Fig. 2). The
first component (in Section 2.1) establishes several structural claims regarding monotone
properties of visibility in polygons. Informally, we order the vertices of the polygon according
to their appearance on the boundary, and consider each sequence between two reflex vertices
to be a “convex region”. Then, we argue that for every pair of convex regions, as we “move
along” one of them, the (index of the) first vertex in the other region that we see either
never becomes smaller or never becomes larger. Symmetrically, this claim also holds for the
last visible vertices that we encounter. In addition, we argue that if a vertex sees some two
vertices in a convex region, then it also sees all vertices in between these two vertices.

Our second component (in Section 2.2) is a Turing reduction to an intermediate problem
that we term Structured Art Gallery. Roughly speaking, in this problem, each convex
region “announces” how many guards it will contain, and how many guards are necessary
to see it completely. In addition, it announces that a prefix of the sequence that forms this
region will be guarded by, say, “the ith guard to be placed on region C”, then the following
subsequence will be guarded by, say, “the jth guard to be placed on region C ′”, and so on,
until it announces how a suffix of it is to be guarded. We stress that the identity of what is
“the ith guard to be placed on region C”, or what is “the jth guard to be placed on region
C ′”, are of course not known, and should be discovered. Moreover, even the division into
subsequences is not known. In Structured Art Gallery, we only focus on solutions that
are of the above form. We utilize our second component not only to impose these additional
conditions, but also to begin the transition from the usage of visibility-based conditions to
function-based constraints. Specifically, functions called first and last will encode, for any
vertex v and convex region C, the first and last vertices in C visible to v. To argue that such
simple functions encode all necessary information concerning visibility, we make use of the
structural claims established earlier.

SoCG 2020
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Our third component (in Section 2.3) is a Karp reduction from Structured Art
Gallery to the constraint satisfaction problem, Monotone 2-CSP, discussed in Section
1.2. This is the part of the proof that most critically relies on all of the structural claims
established earlier. Here, we need to translate the constraints imposed by Structured
Art Gallery into constraints that comply with the very restricted form of an instance
of Monotone 2-CSP, namely, being monotone and involving only two variables. We
remark that if one removes the requirement of monotonicity, or allows each constraint to
consist of more variables, then the problem can be easily shown to encode Clique and
hence become W[1]-hard (see Section 2.3). The translation entails a non-trivial analysis
to ensure that all functions are indeed monotone. Specifically, each convex region requires
its own set of tailored functions to enforce some relationships between the (unknown)
guards it announced to contain and the (unknown) subsequences that these guards are
supposed to see. In a sense, our first three components extract the algebraic essence of the
Vertex-Vertex Art Gallery problem: by identifying monotone properties and making
guesses to ensure binary dependencies between solution elements, the problem is encoded by
a restricted constraint satisfaction problem.

Lastly, our fourth component is a relatively simple polynomial-time algorithm for Mono-
tone 2-CSP (see Theorem 3), based on a reduction to 2-CNF-SAT. The crux is not to
encode every pair of a variable of Monotone 2-CSP and a potential value for it as a variable
of 2-CNF-SAT that signifies equality, because then, although the functions become easily
encodable in the language of 2-CNF-SAT, it is unclear how to ensure that each variable of
Monotone 2-CSP will be in exactly one pair that corresponds to a variable assigned true
when satisfying the 2-CNF-SAT formula. Indeed, the naive approach seems futile, because it
does not exploit the monotonicity of the input functions. Instead, for each pair of a variable
of Monotone 2-CSP and a potential value for it with the exception of 0, we introduce
a variable of 2-CNF-SAT signifying that the variable is assigned at least the value in the
pair. The assignment of value 0 is implicitly encoded by the negation of pairs with the value
1. Then, we can ensure that each variable is assigned exactly one value (when translating
a truth assignment for the 2-CNF-SAT instance we created back into an assignment for
the Monotone 2-CSP input instance), and by relying on the monotonicty of the input
functions, we are able to encode them correctly in the language of 2-CNF-SAT.

For notational clarity, we describe our proof for Vertex-Vertex Art Gallery. How-
ever, all arguments extend in a straightforward manner to solve the annotated generalization
of Vertex-Vertex Art Gallery where G and C are each a subset of the vertex set of the
polygon. Then, simple discretization procedures yield the positive resolution of the param-
eterized complexity also of Vertex-Boundary Art Gallery and Boundary-Vertex
Art Gallery (see Section 5 of the full version [4]).

Preliminaries. We use the abbreviation Art Gallery to refer to Vertex-Vertex Art
Gallery. We model a polygon by a graph P = (V,E) with V = {1, 2, . . . , n} and E =
{{i, i+1}} : i ∈ {1, . . . , n−1}}∪{{n, 1}}. For a simple polygon P , we consider the boundary
of P as part of its interior. We slightly abuse notation and refer to vertices i ∈ V where the
interior angle of P at i is 180 degrees as convex vertices. We denote the set of reflex vertices
of P by reflex(P ), and the set of convex vertices of P by convex(P ). Given a non-convex
polygon P = (V,E), we suppose w.l.o.g. that 1 ∈ V is a reflex vertex. We say that a point p
sees (or is visible to) a point q if every point of the line segment pq belongs to the interior of
P . More generally, a set of points S sees a set of points Q if every point in Q is seen by at
least one point in S. The definition of a convex polygon asserts the following.

I Observation 4. Any point within a convex polygon P sees all points within P .
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Figure 3 A simple polygon with three maximal convex regions: [2, 7], [9] and [13, 17]. Although
2, 5 ∈ [2, 7] belong to the same convex region, they do not see each other.

2 Algorithm for Art Gallery

In this section, we prove that Art Gallery is FPT with respect to r, the number of reflex
vertices, by developing an algorithm with running time 2O(r2 log r)nO(1). We first present
structural claims that exhibit the monotone way in which vertices in a so called “convex region”
see vertices in another such region (Section 2.1). Then, we present a Turing reduction from
Art Gallery to a problem called Structured Art Gallery (Section 2.2). Next, based on
the claims in Section 2.1, we present our main reduction, which translates Structured Art
Gallery to Monotone 2-CSP (Section 2.3). By developing an algorithm for Monotone
2-CSP, we conclude the proof.

2.1 Simple Structural Claims
We begin our analysis with the definition of a subsequence of vertices termed a convex region,
illustrated in Fig. 3. Below, j + 1 for j = n refers to 1. Because we assumed that vertex 1 of
any non-convex polygon is a reflex vertex, any convex region [i, j] satisfies i 6= 1.

I Definition 5. Let P = (V,E) be a simple polygon. A non-empty set of vertices [i, j] =
{i, i+ 1, . . . , j} is a convex region of P if all the vertices in [i, j] are convex. In addition, if
i− 1 ≥ 1 and j + 1 are reflex vertices, then [i, j] is a maximal convex region.

In what follows, we would like to argue that for every two (not necessarily distinct) convex
regions, one convex region sees the other in a manner that is “monotone” for each “orientation”
in which we traverse these regions. To formalize this, we make use of the following notation,
illustrated in Fig. 4. For a polygon P = (V,E), a convex region [i, j] of P and a vertex
v ∈ V , denote the smallest and largest vertices in [i, j] that are seen by v by first(v, [i, j]) and
last(v, [i, j]), respectively. If v sees no vertex in [i, j], define first(v, [i, j]) = last(v, [i, j]) = nil.
Accordingly, we define two types of monotone views. First, we address the orientation
corresponding to first (see Fig. 4). Roughly speaking, we say that the way a convex region
[i, j] views a convex region [i′, j′] is, say, non-decreasing with respect to first, if when we
traverse [i, j] from i to j and consider the first vertices in [i′, j′] that vertices in [i, j] see, then
the sequence of these first vertices (viewed as integers) is a monotonically non-decreasing
sequence once we omit all occurrences of nil from it.3 We further demand that, between two
equal vertices in this sequence, no nil occurs. Formally,

3 A non-decreasing function (or sequence) is one that never decreases but can sometimes not increase.

SoCG 2020
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Figure 4 The way [2, 6] views [8, 19] is non-decreasing with respect to both first and last.

I Definition 6. Let P = (V,E) be a simple polygon. We say that the way a convex region
[i, j] of P views a (not necessarily distinct) convex region [i′, j′] of P is non-decreasing
(resp. non-increasing) with respect to first if for all t, t̂ ∈ {i, i + 1, . . . , j} such that t ≤ t̂,
first(t, [i′, j′]) 6= nil and first(t̂, [i′, j′]) 6= nil, we have that

first(t, [i′, j′]) ≤ first(t̂, [i′, j′]) (resp. first(t, [i′, j′]) ≥ first(t̂, [i′, j′])), and
if first(t, [i′, j′]) = first(t̂, [i′, j′]), then for all p ∈ {t, . . . , t̂}, first(p, [i′, j′]) = first(t, [i′, j′]).4

Symmetrically, we address the orientation corresponding to the notation last.

I Definition 7. Let P = (V,E) be a simple polygon. We say that the way a convex region
[i, j] of P views a (not necessarily distinct) convex region [i′, j′] of P is non-decreasing
(resp. non-increasing) with respect to last if for all t, t̂ ∈ {i, i + 1, . . . , j} such that t ≤ t̂,
last(t, [i′, j′]) 6= nil and last(t̂, [i′, j′]) 6= nil, we have that

last(t, [i′, j′]) ≤ last(t̂, [i′, j′]) (resp. last(t, [i′, j′]) ≥ last(t̂, [i′, j′])), and
if last(t, [i′, j′]) = last(t̂, [i′, j′]), then for all p ∈ {t, . . . , t̂}, last(p, [i′, j′]) = last(t, [i′, j′]).

The main purpose of this section is to prove the following two lemmas. We believe that
some arguments required to establish their proofs might be folklore. The first lemma asserts
that the subsequence seen by a vertex within a convex region does not contain “gaps”.

I Lemma 8 (♠). Let P = (V,E) be a simple polygon, v ∈ V , and [i, j] be a convex region
of P . Then, v sees every vertex t ∈ [i, j] such that first(v, [i, j]) ≤ t ≤ last(v, [i, j]).5

The second lemma asserts that views are monotone. Intuitively, whenever we move along
a convex region [i, j] while viewing a convex region [i′, j′] as described earlier, the first vertices
(and last vertices) seen form a non-increasing or non-decreasing sequence.6

I Lemma 9 (♠). Let P = (V,E) be a simple polygon, and let [i, j] and [i′, j′] be two (not
necessarily distinct) maximal convex regions of P . Then, (i) the way in which [i, j] views
[i′, j′] with respect to first is either non-decreasing or non-increasing, and (ii) the way in
which [i, j] views [i′, j′] with respect to last is either non-decreasing or non-increasing.

4 We remark that this condition cannot be replaced by “for all p ∈ {t, . . . , t̂}, first(p, [i′, j′]) 6= nil”. For
example, in Fig. 4, neither first(4, [8, 19]) nor first(6, [8, 19]) is nil, but first(5, [8, 19]) = nil.

5 If v does not see any vertex in [i, j], the claim holds vacuously.
6 We remark that we do not know whether it is possible that the first vertices would form a non-increasing
(or non-decreasing) sequence and the last vertices would not. Our weaker claim suffices for our purposes.
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og(1) = og([2,4]) = og(5) = og(6) = og(7) = og(15) = og([16]) = og(17) = og(23) = 1 

og([8,14]) = 2 

og([18,22]) = 3 

 

how[18,22]: 1 → ([8,14],1), 2 → (5,1), 3 → ([18,22],1) 
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how7(1) = how15(1) = how17(1) = ([8,14],1) 
 

how[16](1) = ([8,14],2) 
 

how23(1) = ([18,22],1) 
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Solution. S ={5, 9, 10, 12, 22} 

k = 5 

s(5,1)=5,  s([8,14],1)=9,  s([8,14],2)=10,  s([8,14],3)=12,  s([18,22],1)=22     

 

 

 

 

 

 

 

 

 

 
Figure 5 An input and a solution for the Structured Art Gallery problem.

2.2 Turing Reduction to Structured Art Gallery

An intermediate step in our reduction from Art Gallery to Monotone 2-CSP addresses
an annotated version of Art Gallery, called Structured Art Gallery. Intuitively, in
Structured Art Gallery each convex region “announces” how many guards it should
contain, and how many guards are to be used to see it completely. In addition, each convex
region announces by which unknown guard (identified as “the ith guard to be placed on
region C” for some i and C) its prefix should be guarded, by which unknown guard a region
after this prefix should be guarded, and so on. In what follows, we formally define the
Structured Art Gallery problem; then, we present our reduction from Art Gallery
to Structured Art Gallery, and afterwards argue that this reduction is correct. For a
polygon P , let C(P ) be the set of maximal convex regions of P . Note that |C(P )| ≤ r.

Problem Definition. The input of Structured Art Gallery consists of a simple polygon
P = (V,E), a non-negative integer k < r, and the following functions (see Fig. 5).

ig : C(P ) ∪ reflex(P ) → {0, . . . , k}, where
∑

x∈C(P )∪reflex(P ) ig(x) ≤ k. Intuitively, for a
convex region or reflex vertex x, ig assigns the number of guards to be placed in x.
og : C(P ) ∪ reflex(P )→ {1, . . . , k}, where for all x ∈ reflex(P ), og(x) = 1. Intuitively, for
a convex region or reflex vertex x, og assigns the number of guards required to see x.
For each x ∈ C(P ) ∪ reflex(P ), howx : {1, . . . , og(x)} → (C(P ) ∪ reflex(P )) × {1, . . . , k},
where for each (y, i) in the image of howx, i ≤ ig(y). Intuitively, for any j ∈ {1, . . . , og(x)},
howx(j) = (y, i) indicates that the jth guard required to see x is the ith guard placed in y.

The objective of Structured Art Gallery is to determine whether there exists a set
S ⊆ V of size at most k such that the following conditions hold:
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For C = [8,14] and t = 1: 

i = 11, j = 11, q = 14 

 

For C = [18,22] and t = 1: 

i = 19, j = 20, q = 20 

 

For C = [18,22] and t = 2: 

i = 20, j = 21, q = 22 
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Input and solution in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Condition 3b satisfied by a solution for Structured Art Gallery.

1. For each x ∈ C(P )∪ reflex(P ), |S ∩x| = ig(x).7 Accordingly, for each x ∈ C(P )∪ reflex(P )
and i ∈ {1, . . . , ig(x)}, let s(x,i) denote the ith largest vertex in S ∩ x (see Fig. 5).

2. For each x ∈ reflex(P ), showx(1) sees x.
3. For each C ∈ C(P ), the following conditions hold:

a. first(showC (1), C) is the smallest vertex in C.
b. For every t ∈ {1, . . . , og(C) − 1}, denote i = last(showC (t), C), j = first(showC(t+1), C)

and q = last(showC (t+1), C). Then, (i) i ≥ j − 1, and (ii) i ≤ q − 1. (See Fig. 6.)
c. last(showC (og(C)), C) is the largest vertex in C.

Informally, Condition 3b states that (i) the last vertex in C seen by its tth guard should be
at least as large as the predecessor of the first vertex in C seen by its (t+ 1)th guard, and
(ii) the last vertex in C seen by its tth guard should be smaller than the last vertex in C seen
by its (t+ 1)th guard. The first condition ensures that no unseen “gaps” are created within
C, while the second condition ensures that as the index t grows larger, the last vertex seen
by the tth guard grows larger as well. (The second condition will be part of our transition
towards the interpretation of the objective of Art Gallery by binary constraints.)

Turing Reduction. Given an instance (P, k) of Art Gallery, in case r ≤ k, output
Yes.8 Otherwise, the output of the reduction, reduction(P, k), is the set of all instances
(P, k, ig, og, {howx}|x∈C(P )∪reflex(P )) of Structured Art Gallery.

Observe that |C(P ) ∪ reflex(P )| ≤ 2r, and therefore the number of possible functions ig is
upper bounded by (k + 1)2r, the number of possible functions og is upper bounded by k2r,
and for each x ∈ C(P ) ∪ reflex(P ), the number of possible functions howx is upper bounded
by (2rk)k. Hence, the number of instances produced is upper bounded by (k + 1)2r · k2r ·
((2rk)k)2r. When k ≤ r, this number is upper bounded by rO(r2). Moreover, the instances
in reduction(P, k) can be enumerated with polynomial delay. Thus,

I Observation 10. Let (P, k) be an instance of Art Gallery. Then, | reduction(P, k)| =
rO(r2), and reduction(P, k) is computable in time rO(r2)nO(1).

7 If x ∈ reflex(P ), by S ∩ x we mean S ∩ {x}.
8 To comply with the formal definition of a Turing reduction, by Yes we mean a set with a single trivial

Yes-instance of Structured Art Gallery.
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w2

w1

w3
w4

Figure 7 Example of a possible selection of w1, w2, . . . , wp. Solution vertices are colored green
and red, and C is colored blue.

Correctness. Our proof of correctness crucially relies on Lemma 8 and Proposition 1.

I Lemma 11. An instance (P, k) is a Yes-instance of Art Gallery if and only if there is
a Yes-instance of Structured Art Gallery in reduction(P, k).

Proof.
Forward Direction. Suppose that (P, k) is a Yes-instance of Art Gallery and that r > k.

Accordingly, let S ⊆ V be a solution to (P, k). We first define the function ig : C(P ) ∪
reflex(P ) → {0, . . . , k} as follows. For each x ∈ C(P ) ∪ reflex(P ), let ig(x) = |S ∩ x|.
Because |S| ≤ k (since S is a solution to (P, k)), we have that

∑
x∈C(P )∪reflex(P ) ig(x) ≤ k.

For each x ∈ C(P )∪ reflex(P ), we order the vertices in S ∩ x from smallest to largest, and
denote them accordingly by s(x,1), s(x,2), . . . , s(x,ig(x)).
We define the functions og : C(P ) ∪ reflex(P )→ {1, . . . , k} and howx : {1, . . . , og(x)} →
(C(P ) ∪ reflex(P )) × {1, . . . , k} for all x ∈ C(P ) ∪ reflex(P ). For each reflex vertex
x ∈ reflex(P ), define og(x) = 1, and howx(1) = (y, i) for some vertex s(y,i) ∈ S that sees
x. The existence of such a vertex s(y,i) follows from the assertion that S is a solution
to (P, k). For each convex region C ∈ C(P ), define og(C) and howC as follows. Let W
denote the set of vertices in S that see at least one vertex in C. Since W sees C, there
exists a vertex in W that sees the smallest vertex in C. Pick such a vertex arbitrarily and
denote it by w1. Now, if w1 does not see the largest vertex in C, then there exists a vertex
in W that sees the smallest vertex in C that is larger than the largest vertex seen by w1.
We pick such a vertex arbitrarily, and denote it by w2. Next, if w2 does not see the largest
vertex in C, then there exists a vertex in W that sees the smallest vertex in C that is
larger than the largest vertex seen by w2. We pick such a vertex arbitrarily, and denote it
by w3. Similarly, we define w4, w5, . . . , wp, for the appropriate p ∈ {1, . . . , k} (see Fig. 7).
Here, the supposition that p ≤ k follows from Lemma 8, which implies that wi 6= wj

for all distinct i, j ∈ {1, . . . , p}. We define og(C) = p, and for all t ∈ {1, . . . , og(C)}, we
define howC(t) = (y, i) for the pair (y, i) ∈ (C(P ) ∪ reflex(P ))× {1, . . . , k} that satisfies
wt = s(y,i).
Our definitions directly ensure that for each C ∈ C(P ), the following conditions hold:
1. first(showC(1), C) is the smallest vertex in C.
2. For every t ∈ {1, . . . , og(C) − 1}, denote i = last(showC (t), C), j = first(showC(t+1), C)

and q = last(showC (t+1), C). Then, (i) i ≥ j − 1, and (ii) i ≤ q − 1.
3. last(showC (og(C)), C) is the largest vertex in C.
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By the arguments above, I = (P, k, ig, og, {howx}|x∈C(P )∪reflex(P )) is an instance of Struc-
tured Art Gallery, and S is a solution to I. Since I ∈ reduction(P, k), the proof of
the forward direction is complete.

Reverse Direction. If k ≥ r, then we output Yes (or rather a trivial Yes-instance), and
by Proposition 1, indeed the input is a Yes-instance as well. Next, suppose that k < r,
and there is a Yes-instance I = (P, k, ig, og, {howx}|x∈C(P )∪reflex(P )) in reduction(P, k).
Accordingly, let S ⊆ V be a solution to I. Then, |S| ≤ k. Thus, to prove that (P, k) is a
Yes-instance of Art Gallery, it suffices to show that S sees V . For each x ∈ reflex(P ),
showx(1) sees x, and therefore S sees reflex(P ).
Now, we show that S sees convex(P ). To this end, we choose a convex region [i, j] ∈ C(P ),
and show that S sees [i, j]. Specifically, for each p ∈ {i, . . . , j}, we prove that there is
t ∈ {1, . . . , og([i, j])} such that show[i,j](t) (which is a vertex in S) sees p. The proof is
by induction on p. In the basis, where p = i, correctness follows from the assertion
that first(show[i,j](1), [i, j]) is the smallest vertex in [i, j]. Now, we suppose that the
claim is correct for p, and prove it for p+ 1. By the inductive hypothesis, there is
t ∈ {1, . . . , og([i, j])} such that show[i,j](t) sees p. If show[i,j](t) sees p+ 1, then we are done.
Thus, we now suppose that show[i,j](t) does not see p+ 1. Then, last(show[i,j](t), [i, j]) = p.
We have two cases:

First, consider the case where t < og([i, j]). Then, because S is a solution to I, the
vertex p = last(show[i,j](t), [i, j]) is larger or equal to d−1 for d = first(show[i,j](t+1), [i, j]).
This means that first(show[i,j](t+1), [i, j]) ≤ p+ 1. Moreover, p is smaller than the vertex
last(show[i,j](t+1), [i, j]). Thus, p+ 1 ≤ last(show[i,j](t+1), [i, j]). Then, first(show[i,j](t+1),

[i, j]) ≤ p+ 1 ≤ last(show[i,j](t+1), [i, j]). By Lemma 8, show[i,j](t+1) sees p+ 1.
Second, consider the case where t = og([i, j]). In this case, because S is a solution
to I, we have that last(show[i,j](og([i,j])), [i, j]) is the largest vertex in [i, j]. Thus,
p+ 1 ≤ last(show[i,j](og([i,j])), [i, j]), which is a contradiction. J

2.3 Karp Reduction to Monotone 2-CSP
We proceed to the second part of our proof, a reduction from Structured Art Gallery to
Monotone 2-CSP.9 (The analysis of this can be found in the full version of the paper [4]).

Problem Definition. The input of Monotone 2-CSP consists of a set X of variables,
denoted by X = {x1, x2, . . . , x|X|}, a set C of constraints, and N ∈ N given in unary. Each
constraint c ∈ C has the form [xi sign f(xj)] where i, j ∈ {1, . . . , |X|}, sign ∈ {≥,≤} and
f : {0, . . . , N} → {0, . . . , N} is a monotone function. An assignment α : X → {0, . . . , N}
satisfies a constraint c = [xi sign f(xj)] ∈ C if [α(xi) sign f(α(xj))] is true. The objective
of Monotone 2-CSP is to decide if there exists an assignment α : X → {0, . . . , N} that
satisfies all the constraints in C (see Fig. 8).

If the function f of a constraint c = [xi sign f(xj)] is constantly β (that is, for every
t ∈ {0, . . . , N}, f(t) = β), then we use the shorthand c = [xi signβ]. Moreover, we suppose
that every constraint represented by a quadruple is associated with two distinct variables.

Karp Reduction. Given an instance I = (P, k, ig, og, {howx}|x∈C(P )∪reflex(P )) of Struc-
tured Art Gallery, define an instance reduction(I) = (X,C,N) of Monotone 2-CSP
as follows. Let k? =

∑
e∈C(P )∪reflex(P ) ig(e), X = {x1, x2, . . . , xk?} and N = n + 1. (Here,

9 CSP is an abbreviation of Constraint Satisfaction Problem, and 2 is the maximum arity of a constraint.
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X = {x1, x2, x3} 

C = {[x1 ≥ f(x2)], [x1 ≤ g(x3)], [x2 ≤ h(x3)], [x2 ≥ 3]} 

N = 5 

 

Solution. (x1) = 2, (x2) = 3, (x3) = 5. 
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Figure 8 An input for Monotone 2-CSP that has a unique solution.

n = |V |.) Additionally, let bij be an arbitrary bijective function from X to {(e, i) : e ∈
C(P ) ∪ reflex(P ), i ∈ {1, . . . , ig(e)}}. Intuitively, for any variable x ∈ X with bij(x) = (e, i),
we think of x as the ith guard to be placed in region e. In particular, the value to be assigned
to x is the identity of this guard. The values 0 and n+ 1 are not identities of vertices in V ,
and we will ensure that no solution assignment assigns them; we note that these two values
are useful because they will allow us to exclude assignments that should not be solutions.
Next, we define our constraints and show that their functions are monotone.

Association. For each x ∈ X with bij(x) = (e, i), we need to ensure that the vertex assigned
to x is within the region e. To this end, we introduce the following constraints.

If e ∈ reflex(P ), then insert the constraint [x = e]. (That is, insert [x ≤ e] and [x ≥ e].)
Else, bij(x) = (e, j) for e ∈ C(P ). Let ` and h be the smallest and largest vertices in e,
respectively, and insert the constraints [x ≥ `] and [x ≤ h].

Let A denote this set of constraints.

Order in a convex region. For all x, x′ ∈ X where bij(x) = (C, i) and bij(x′) = (C, j) for
the same convex region C ∈ C(P ) and i < j, we need to ensure that the vertex assigned to
x′ is larger than the one assigned to x. To this end, we introduce the constraint [x′ ≥ f(x)]
where f is defined as follows. For all q ∈ {0, . . . , N − 1}, f(q) = q+ 1, and f(N) = N . Let O
denote this set of constraints. We note that the constraints in A ∪O together enforce each
variable x ∈ X with bij(x) = (C, i) for C ∈ C(P ) to be assigned the ith guard placed in C.

Guarding reflex vertices. For every reflex vertex y ∈ reflex(P ) with howy(1) = (e, i), we
need to ensure that the vertex assigned to x = bij−1(e, i) sees y. To this end, consider two
cases. First, suppose that e ∈ reflex(P ). Then, (i) if e does not see y, output No, and (ii)
else, no constraint is introduced. Second, suppose that e ∈ C(P ). Denote ` = first(y, e) and
h = last(y, e). Then, (i) if ` (and thus also h) is nil, then output No, and (ii) else, introduce
the constraints c1

y = [x ≥ `] and c2
y = [x ≤ h].

Guarding first vertices in convex regions. For every convex region C = [q, q′] ∈ C(P ) with
howC(1) = (e, i), we need to ensure that the vertex assigned to x = bij−1(e, i) sees q, the first
vertex of C. To this end, consider two cases. First, suppose that e ∈ reflex(P ). Then, (i) if e
does not see q, output No, and (ii) else, no constraint is introduced. Second, suppose that
e ∈ C(P ). Denote ` = first(q, e) and h = last(q, e). Then, (i) if ` is nil, then output No, and
(ii) else, insert the constraints c1

(C,1) = [x ≥ `] and c2
(C,1) = [x ≤ h].
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Guarding last vertices in convex regions. For every convex region C = [q, q′] ∈ C(P ) with
howC(og(C)) = (e, i), we need to ensure that the vertex assigned to x = bij−1(e, i) sees q′,
the last vertex of C. To this end, consider two cases. First, suppose that e ∈ reflex(P ). Then,
(i) if e does not see q′, output No, and (ii) else, no constraint is introduced. Second, suppose
that e ∈ C(P ). Denote ` = first(q′, e) and h = last(q′, e). Then, (i) if ` is nil, then output No,
and (ii) else, insert the constraints c1

(C,og(C)) = [x ≥ `] and c2
(C,og(C)) = [x ≤ h].

Guarding middle vertices in convex regions. For every convex region C ∈ C(P ) and
t ∈ {2, . . . , og(C)}, we introduce four constraints based on the following notation.

(e, γ) = howC(t) and x = bij−1(e, γ). Intuitively, the tth vertex to guard C should be the
γth guard to be placed in e, and its precise identity should be assigned to x. If no vertex
in e sees at least one vertex in C, then return No.10 Let ` and h be the smallest and
largest vertices in e that see at least one vertex in C, respectively.
(e′, γ′) = howC(t− 1) and x′ = bij−1(e′, γ′). Intuitively, the (t− 1)th vertex to guard C
should be the γ′th guard to be placed in e′, and its precise identity should be assigned to
x′. If no vertex in e′ sees at least one vertex in C, then return No. Let `′ and h′ be the
smallest and largest vertices in e′ that see at least one vertex in C, respectively.

Now, insert the constraints c̃1
(C,t) = [x ≥ `] and c̃2

(C,t) = [x ≤ h]. Intuitively, these two
constraints help to ensure that x will be assigned a vertex that sees at least one vertex in C.
However, these constraints alone are insufficient for this task – ensuring that we pick a guard
between two vertices that see vertices in C does not ensure that this guard sees vertices in
C.11 Nevertheless, combined with our final constraints, this task is achieved.

Lastly, we consider two sets of four cases. The first set introduces a constraint to ensure
that x, which stands for the tth vertex to guard C, should satisfy that the first vertex in
C seen by x is smaller or equal than the vertex larger by 1 than the last vertex in C seen
by x′, which stands for the (t− 1)th vertex to guard C. On the other hand, the second set
introduces a constraint to ensure that the last vertex in C seen by x is larger than the last
vertex in C seen by x′. Together, because views have no “gaps”, this would imply that x
sees the vertex in C that is larger by 1 than the last vertex in C seen by x′. Due to lack of
space, we only present the first case of each set. (Omitted details can be found in the full
version [4]). To unify notation, if e (or e′) is a reflex vertex, we say that the way e (or e′)
views C is non-decreasing with respect to both first and last.

First, consider the case where the way e′ views C is non-decreasing with respect to
last, and the way e views C is non-decreasing with respect to first. We insert a constraint
[x ≤ f(x′)], where f (having domain and range {0, . . . , N}) is defined as follows.

For all i < `′: f(i) = 0. Intuitively, we forbid x to be assigned a vertex smaller than the
first vertex in e that can see C.
For i = `′, `′ + 1, . . . , h′: Denote a = last(i, C). We have two subcases.

If (i) a = nil, (ii) a+ 1 /∈ C, or (iii) first(j, C) ≤ a+ 1 for no j ∈ e, let f(i) = f(i− 1).
Roughly speaking, given that x′ sees C, a 6= nil (in cases we will care about). Moreover,
a+ 1 ∈ C will be ensured by the second set of cases and the way we guard the last
vertex of a convex region. Lastly, first(j, C) ≤ a+ 1 for some j ∈ e will be ensured
using that f(i− 1) (unless f(i− 1) = 0) is a vertex that sees a+ 1.

10 In case e ∈ reflex(P ), we mean that e itself does not see any vertex in C.
11For example, in Fig. 4, neither first(4, [8, 19]) nor first(6, [8, 19]) is nil, but first(5, [8, 19]) = nil.
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Else, let j be the largest vertex in e such that first(j, C) ≤ a+ 1. Define f(i) = j.
Intuitively, by enforcing x to be smaller or equal than j – the largest vertex in e that
might see a+ 1 – we ensure that the following condition holds: the first vertex x sees
in C, under the assumption that it is not nil,12 is smaller or equal to a+ 1 (because
the way e views C is non-decreasing with respect to first).

For all i > h′: f(i) = N .

Second, consider the case where the ways e′ and e view C are both non-decreasing with
respect to last. We insert a constraint [x ≥ f(x′)], where f is defined as follows.

For all i > h′: f(i) = N .
For i = h′, h′ − 1, . . . , `′: Denote a = last(i, C). We have two subcases.

If (i) a = nil, (ii) a+ 1 /∈ C, or (iii) last(j, C) ≥ a+ 1 for no j ∈ e, let f(i) = f(i+ 1).
Else, let j be the smallest vertex in e such that last(j, C) ≥ a+ 1. Define f(i) = j.

For all i < `′: f(i) = 0.

Here, as the sign is ≥ and f is monotonically non-decreasing, f must be defined first for N ,
then for N − 1, and so on. Then, as long as i is such that last(j, C) ≥ a+ 1 for no j ∈ e (a
case that we want to avoid), f(i) = N and hence [x ≥ f(i)] cannot be satisfied.
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