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Abstract
This paper provides upper bounds for several subsets of maximal repeats and maximal pairs in
compressed strings and also presents a formerly unknown relationship between maximal pairs and
the run-length Burrows-Wheeler transform.

This relationship is used to obtain a different proof for the Burrows-Wheeler conjecture which has
recently been proven by Kempa and Kociumaka in “Resolution of the Burrows-Wheeler Transform
Conjecture”.

More formally, this paper proves that the run-length Burrows-Wheeler transform of a string S

with zS LZ77-factors has at most 73(log2 |S|)(zS + 2)2 runs, and if S does not contain q-th powers,
the number of arcs in the compacted directed acyclic word graph of S is bounded from above by
18q(1 + logq |S|)(zS + 2)2.
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1 Introduction

A maximal repeat P of a string is a substring such that there are two occurrences of P in
the string which are preceded by different characters and succeeded by different characters.
Such a pair of occurrences is called a maximal pair.

Raffinot proves in [10] that there is a natural bijection from the internal nodes in a
Compacted Directed Acyclic Word Graph (CDAWG) to the maximal repeats, which is given
by the labels of the paths. Also, Furuya et al. present in [7] a relation between maximal
repeats and the grammar compression algorithm RePair, and they use this relation to design
MR-RePair, an improved variant of RePair.

Sometimes, maximal repeats are not sufficient, since they do not contain any information
about the surrounding string. Therefore, in [1], Belazzougui et al. introduce the number of
right extensions of maximal repeats as a measure for the repetitiveness of strings. They further
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27:2 On Extensions of Maximal Repeats in Compressed Strings

prove that the number of arcs in the CDAWG is equal to the number of right extensions of
maximal repeats and that the number of runs in the run-length Burrows-Wheeler transform
(RLBWT) is bounded from above by the number of right extensions of maximal repeats.

In earlier work, I proved in [9] that the number of maximal repeats in a string S with zS
(self-referential) LZ77-factors and without q-th powers is bounded from above by 3q(zS+1)3−2
and that this upper bound is tight up to a constant factor. This result implies that for a
string S over an alphabet Σ, the number of arcs in the CDAWG, and thereby the number rS
of runs in the RLBWT, is bounded from above by 3|Σ|q(zS + 1)3.

We should expect that of all the O
(
q(zS)3) maximal repeats some provide less information

than others. For example in the string

ba10ba20b$ = baaaaaaaaaabaaaaaaaaaaaaaaaaaaaab$,

we can derive all maximal pairs of the maximal repeats of ai from the maximal pairs of a9

and a19. In this way, highly-periodic maximal repeats with exponent close to the exponent
of the corresponding runs are more important than other maximal repeats which are powers
of the same base.

Blumer et al. have already shown in 1987 in [2] that the CDAWG cannot compress high
powers and that the CDAWG of an$ has size Θ (n). Contrary to the CDAWG, the RLBWT
does not suffer from high powers and we should expect that there are many right extensions
of maximal repeats which do not increase the number of runs. And in fact, if the string is
very structured, we expect that the output consists of few runs of single characters. For
example Christodoulakis et al. show in [4] that the Burrows-Wheeler transform of the n-th
Fibonacci string Fn is given by bfn−2afn−1 .

Yet, until recently, it remained an open question whether there is an upper bound for
the number of runs in the RLBWT which is polynomial in the number of LZ77-factors
and the logarithm of the length of the string only. This Burrows-Wheeler transform con-
jecture was resolved in October 2019 by Kempa and Kociumaka who prove in the first
version of their arXiv-article [8] that rS ∈ O

(
zS(logn)2) holds and promised that they

will show rS ∈ O
(
δS log δS max

(
1, log n

δS log δS

))
for a complexity measure δS ≤ zS in

an extended version. In April 2020 they uploaded the extended second version to their
arXiv-article [8]. In this extended version they do not only prove this tighter upper bound
rS ∈ O

(
δS log δS max

(
1, log n

δS log δS

))
, but they also prove that this upper bound is asymp-

totically tight for all values of n and δS .
This paper provides a different approach to the Burrows-Wheeler transform conjecture

and shows by using maximal repeats and their extensions that rS ≤ 73(log2 |S|)(zS + 2)2

holds.
On the way, this paper also shows that the number of arcs in the CDAWG is bounded from

above by 18q(1 + logq |S|)(zS + 2)2 and gives new insights into the combinatorial properties
of extensions of maximal repeats which are either non-highly-periodic or cannot be extended
by more than a period length.

2 Definitions

Let Σ be an alphabet. A string with length denoted by |S| is the concatenation of characters
S[1]S[2] · · ·S[|S|] of Σ. Since it will be useful to have a predecessor and a successor for every
character of the string, we also define S[0] = $ and S[|S|+ 1] = $ with $ /∈ Σ. The substring
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S[i..j] with 0 ≤ i ≤ j ≤ |S| + 1 is the concatenation S[i]S[i + 1] · · ·S[j]. For i > j the
substring S[i..j] is defined to be the empty string with length 0. A prefix is a substring of
the form S[1..j] and a suffix is a substring of the form S[i..|S|].

In this paper, we are not only interested in the substrings themselves but we are also
interested in their relationship to the underlying string. We therefore use positioned substrings.
Formally, a positioned substring is a pair (l, r) of indices and the content of the positioned
substring is the substring S[l..r]. In order to use positioned substrings as substrings, we
slightly abuse the notation in this paper and denote the positioned substrings like normal
substrings with S[l..r]. Therefore, the term “positioned” only indicates that we are not
allowed to forget the underlying indices.

An occurrence of a substring P is a positioned substring S[l..r] such that S[l..r] = P

holds for the underlying substrings.
For example in the string S = ababab, the positioned substrings S[1..3] = aba and

S[2..4] = bab overlap on the positioned substring S[2..3] = ba, but the positioned substrings
S[1..3] = aba and S[4..6] = bab don’t have a non-empty overlap. Also, in this string S, the
substring P = S[2..4] = bab has exactly two occurrences given by the positioned substrings
S[2..4] = bab = P and S[4..6] = bab = P .

The string S is lexicographically strictly smaller/larger than the string S′ if S is lexico-
graphically smaller/larger than S′ and there is a mismatch S[m] 6= S′[m].

A maximal pair of S is a triple (n,m, l) ∈ N3 with l ≥ 1 such that S[n..n+ l− 1] is equal
to S[m..m+ l − 1] and this property can not be extended to any side. More formally:
∀i ∈ N with 0 ≤ i < l : S[n+ i] = S[m+ i] but
S[n− 1] 6= S[m− 1] and
S[n+ l] 6= S[m+ l].

With this notation, the string S[n..n+ l− 1] = S[m..m+ l− 1] is the corresponding maximal
repeat.

Since for a maximal pair (n,m, l) the inequality S[n− 1] 6= S[m− 1] holds, the indices
n and m cannot be equal. Also, by construction, S[n..n + l − 1] and S[m..m + l − 1] are
contained in S and S[n..n+ l] and S[m..m+ l] are contained in S$.

For a positioned maximal repeat S[n..n + l − 1], the right-extension of this maximal
repeat is the substring S[n..n+ l] which is obtained by extending the maximal repeat by its
successor. Similarly, the double-sided extension is S[n− 1..n+ l].

Since maximal pairs are easier to handle than maximal repeats and their extensions, this
paper introduces the notion of “substantially different maximal pairs” which allows to give
an upper bound for the number of double-sided extensions:

Two maximal pairs (n,m, l) and (n′,m′, l′) are copies of each other if the two strings
S[n − 1..n + l] and S[m − 1..m + l] are equal to the two strings S[n′ − 1..n′ + l′] and
S[m′ − 1..m′ + l′]. In particular, the two maximal pairs (n,m, l) and (m,n, l) are always
copies of each other. However, it is not sufficient for two maximal pairs to have identical
corresponding maximal repeats in order to be copies of each other.

If two maximal pairs are not copies of each other, they are substantially different.
For each of the substantially different maximal pairs there can be at most two double-sided

extensions of the corresponding maximal repeat. Therefore, the number of double-sided
repeats is at most twice the number of substantially different maximal pairs.

A string S which is not of the form P q for an integer q ∈ N≥2 is primitive, and a square
S2 with a primitive root S is a primitively rooted square.

A period of a string S is an integer p such that all characters in S with distance p are
equal. A string with period length p is called p-periodic.

CPM 2020
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x a b a b y a b a b a b z

Figure 1 The string S = xababyabababz with two maximal periodic extensions of the substring ab

and nine extendable maximal substrings, all of them with root ab. The maximal periodic extensions
are the two green substrings and each extendable substring is represented by a line indicating the
underlying positions.

A string S is 1
≥q -highly-periodic, if it has a period with length 1

q |S| or smaller. A maximal
pair is 1

≥q -highly-periodic if the corresponding maximal repeat is 1
≥q -highly-periodic.

For example, the strings aaaa = a4, aaaaa = a5 and ababababa = (ab)4a = (ab)4.5 are
1
≥4 -highly-periodic, but aaaac = a4c and abababa = (ab)3.5 are not 1

≥4 -highly-periodic.
Let S[l..r] be a positioned p-periodic substring with |S[l..r]| ≥ p. The maximal p-periodic

extension of this occurrence is the positioned substring S[l′, r′] such that
l′ ≤ l ≤ r ≤ r′,
S[l′..r′] is p-periodic,
S[l′ − 1..r′] is not p-periodic and
S[l′..r′ + 1] is not p-periodic.

With this notation, the pair S[l′ − 1, r′ + 1] is the padded maximal p-periodic extension.
If p is the minimal period length of S[l..r], we will omit the p and simply write maximal

periodic extension and padded maximal periodic extension.
Similar to maximal pairs, two padded maximal periodic extensions S[l − 1, r + 1] and

S[l′ − 1, r′ + 1] are copies of each other if the corresponding strings are equal. If the two
padded maximal periodic extensions are not copies of each other, they are substantially
different.

A positioned substring S[l..r] with minimal period length p is extendable if the maximal
p-periodic extension is at least p + 1 characters longer than S[l..r]. A maximal pair is
extendable, if both occurrences of the corresponding maximal repeat are extendable.

For example, in Figure 1, we have the string S = xababyabababz. The positioned
substrings S[2..3] = ab, S[3..4] = ba and S[8..11] = baba, each with minimal period length
2, are not extendable, since their maximal periodic extensions S[2..5] = abab (for both
S[2..3] and S[3..4]) and S[7..12] = ababab (for S[8..11]) are only p characters longer. The
positioned substring S[8..8] = b has minimal period length 1 and therefore its maximal
periodic extension is S[8..8]. On the other hand, the positioned substring S[9..10] = ab with
minimal period length 2 has the maximal periodic extension S[7..12] = ababab which is 4
characters longer. Hence, the positioned substring S[9..10] is extendable.

Checking all substrings, one can see that the extendable substrings of S are exactly the 9
2-periodic positioned substrings of the positioned substring S[7..12] with length less than 4.
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Also, the maximal pair (7, 11, 2) is extendable even though both maximal periodic
extensions are the same positioned substring. Also, this is the only extendable maximal pair
of this string.

The (self-referential) LZ77-decomposition of a string S is a factorization S = F1F2 . . . FzS

in LZ77-factors, such that for all i ∈ {1, 2, . . . , zS} either
Fi is a character which does not occur in F1F2 . . . Fi−1 or
Fi is a the longest possible prefix of S[|F1F2 . . . Fi−1|+ 1..|S|] which occurs at least twice
in F1F2 . . . Fi.

Let πi ∈ {0, 1, 2, . . . , |S|} be given by the lexicographic order of the cyclic permutations
S[πi + 1..|S|+ 1]S[1..πi] of S$. The Burrows-Wheeler transform defined in [3] is given by
the last characters of those strings, and, since S[0] = $ = S[|S|+ 1] hold by definition, these
characters are given by S[πi].

3 Non-Highly-Periodic Maximal Pairs

The main goal of this section is to prove that in a string S the number of substantially different
non- 1

≥6 -highly-periodic maximal pairs is bounded from above by 41(log2 |S|)(zS + 1)(zS + 2).
Along the way, this section will also prove that if S does not contain q-th powers, its

CDAWG has at most 18q(1 + logq |S|)(zS + 2)2 arcs.
In Theorem 8 of [9], I counted the number of maximal pairs around the boundaries of

LZ77-factors which neither begin nor end with a power of a given exponent:

I Theorem 1 (Theorem 8 of [9]). Let S be a string. Let F1F2 . . . FzFz+1 = S$ be the
LZ77-decomposition of S$. Let s1, s2, . . . , sz, sz+1 be the starting indices of the LZ77-factors
in S$. Let q ∈ N≥2 and i, j ∈ {1, 2, . . . , z, z + 1} be natural numbers.
Then the number of different maximal pairs (nk,mk, lk) such that for all k

the substring S[nk..si − 1] is not a fractional power with exponent greater than or equal
to q,
the substring S[si..nk + lk − 1] is not a fractional power with exponent greater than or
equal to q,
the starting index si is contained in the interval [nk, nk + lk],
the starting index si+1 is not contained in the interval [nk, nk + lk] and
the starting index sj is contained in the interval [mk,mk + lk]

is bounded from above by 18q · dlogq(|F1F2 . . . Fi|)e.

This can be slightly simplified by ignoring the underlying LZ77-structure which is not
used in the proof:

I Corollary 2. Let S be a string. Let q ∈ N≥2 be a natural number and i, j be indices of two
characters in S$.

Then there are at most 18q · dlogq(|S$|)e different maximal pairs (nk,mk, lk) such that
for all k

neither the substring S[nk..i− 1] nor the substring S[i..nk + lk − 1] is 1
≥q -highly-periodic

and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

Following the proof of Theorem 8 in [9], the substring S[i..nk + lk − 1] naturally splits
into S[nk..i− 1] and S[i..nk + lk − 1] and we can even require that the longer part(s) is/are
not a high power(s). In order to have a unique longer part, we define the string S[nk..i− 1]
to be longer than S[i..nk + lk − 1], if both of these substrings have the same length.

CPM 2020
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I Lemma 3. Let S be a string. Let q ∈ N≥2 be a natural number and i, j be indices of two
characters in S$.

Then there are at most 18q(1 + logq |S|) different maximal pairs (nk,mk, lk) such that
for all k

the longer string of the substrings S[nk..i−1] and S[i..nk+lk−1] is not 1
≥q -highly-periodic

and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

As proven in Lemma 4 of [9], each maximal pair has a copy such that both double-sided
extensions of the corresponding maximal repeats cross LZ77-boundaries. Also, each maximal
pair introduces at most two new right extensions of maximal repeats. Therefore, we can
deduce a bound similar to Theorem 1 of [9] for the right extensions of maximal repeats and
the arcs of the CDAWG:

I Theorem 4. Let S be a string. Let q be further a natural number such that S does not
contain q-th powers.

Then the number of right extensions of maximal repeats in S is bounded from above by
18q(1+logq |S|)(zS+2)2−(zS+1). Also, the CDAWG of S has at most 18q(1+logq |S|)(zS+2)2

arcs.

Proof. Summing up over the first indices i ≤ j of the zS + 1 LZ77-factors of S$ yields that
there are at most
zS+1∑
i=1

zS+1∑
j=i

18q(1+logq |S|) = 9q(1+logq |S|)(zS+1)(zS+2) ≤ 9q(1+logq |S|)(zS+2)2−(zS+1)

substantially different maximal pairs. And since each new substantially different maximal
pair introduces at most two new right extensions of maximal repeats, there are at most
18q(1 + logq |S|)(zS + 2)2 − (zS + 1) different right extensions of maximal repeats.

Since the number of right extensions of (non-empty) maximal repeats is equal to the
number of arcs in the CDAWG which start at internal nodes and since there are exactly
|Σ ∪ {$}| ≤ zS + 1 arcs starting at the root, there are at most 18q(1 + logq |S|)(zS + 2)2 arcs
in the CDAWG. J

Additionally, there might be maximal pairs, in which the longer part(s) is/are high
power(s) but the corresponding periodicity does not extend to the whole maximal repeat. In
order to find a good upper bound for those maximal pairs, we need an additional lemma to
limit the number of possible period lengths of prefixes and suffixes with high powers.

I Lemma 5. Let S be a string. Let further P1, P2 be two substrings of S such that
P1 and P2 are both either prefixes or suffixes of S,
the length of P2 fulfills the inequality |P1| ≤ |P2| ≤ 2|P1| and
both P1 and P2 are 1

≥3 -highly-periodic.
Then P1 and P2 have the same minimal period length.

Proof. Without loss of generality assume that P1 and P2 are both prefixes of S. Let p1 and
p2 be the minimal period lengths of P1 and P2, respectively.

Since the inequalities p1 ≤ 1
3 |P1| and p2 ≤ 1

3 |P2| ≤ 2
3 |P1| hold, the periodicity lemma

from [6] of Fine and Wilf proves, that P1 is gcd(p1, p2)-periodic. Since p1 is the minimal
period length of P1, this implies that p2 is a multiple of p1.

However, since P1 ⊂ P2 and p2 ≤ 2
3 |P1| hold, a p2-periodic base of P2 is also p1-periodic.

Therefore p1 = p2 holds. J
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I Theorem 6. Let S be a string. Let i, j be indices of two characters in S$.
Then there are at most 12 log2 |S| different maximal pairs (nk,mk, lk) such that for all k
the longer string of the substrings S[nk..i− 1] and S[i..nk + lk − 1] is 1

≥3 -highly-periodic
with period length p, but
the substring S[nk..nk + lk − 1] is not p-periodic and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

Proof. By contradiction:
It is sufficient to prove that there are at most 6 log2 |S| different maximal pairs with the

restrictions given by the prerequisites which fulfill |S[nk..i − 1]| ≥ |S[i..nk + lk − 1]|. By
symmetry, the maximal pairs which fulfill the inequality |S[nk..i− 1]| < |S[i..nk + lk − 1]|
can be bounded with an identical argument.

Assume there are at least b6 log2(|S|)c + 1 different maximal pairs (nk,mk, lk) with
|S[nk..i− 1]| ≥ |S[i..nk + lk − 1]| and the restrictions given by the prerequisites.

Since for all maximal pairs 1 ≤ nk holds, the inequality i− nk ≤ |S$| − 1 holds as well.
On the other hand, since S[nk..i− 1] is 1

≥3 -highly-periodic, this substring has to contain at
least three characters. Therefore, the inequality 3 ≤ i− nk holds.

Taking the logarithm yields

1 < log2(3) ≤ log2(i− nk) ≤ log2(|S$| − 1) ≤ dlog2(|S|)e.

For each maximal pair, the number log2(i − nk) lies in at least one of the dlog2(|S|)e − 1
intervals [h, h+ 1] with 1 ≤ h < dlog2(|S|)e.

Using dlog2(|S|)e − 1 ≤ blog2(|S|)c, the pigeonhole principle now yields that there has to
be a natural number L′ such that⌈

b6 log2(|S|)c+ 1
blog2(|S|)c

⌉
= 7

of these maximal pairs have a starting index with L′ ≤ log2(i− nk) ≤ 1 + L′.
Therefore, for L = 2L′ this gives a natural number L such that L ≤ i− nk ≤ 2L holds

for each of these 7 maximal pairs.
Since the index i is contained in the interval [nk, nk+lk] and |S[nk..i−1]| ≥ |S[i..nk+lk−1]|

holds, the index i is also contained in the interval [nk + lk
2 , nk + lk]. Hence, the inequalities

nk + lk
2 ≤ i and thereby lk

2 ≤ i− nk ≤ 2L hold. Therefore, the length lk is at most 4L.
Since the index j is contained in the interval [mk,mk+ lk], this implies that the inequality

mk ≥ j − lk ≥ j − 4L holds. On the other hand mk ≤ j so the mk are in an interval of
length 4L.

Using the pigeonhole principle again, there are⌈
7
6

⌉
= 2

of these maximal pairs (na,ma, la), (nb,mb, lb) such that the distance |ma−mb| is at most 2
3L.

According to Lemma 5, both S[na..i− 1] and S[nb..i− 1] have the same minimal period
length. Hence, the corresponding maximal repeats are of the form paP

3sara and pbP 3sbrb
where paP 3 and pbP

3 are the |P |-periodic parts left of i, the substrings sa and sb are
the maximal |P |-periodic extensions of paP 3 and pbP 3 to the right and ra and rb are the
remaining characters of the maximal repeats.

Since the two |P |-periodic strings paP 3sa and pbP 3sb starting at na and nb overlap at
least by 3|P | and since sa and sb are the maximal |P |-periodic extensions of paP 3 and pbP 3,
respectively, this implies that sa = sb. Therefore, the maximal repeats are of the form
paP

3sra and pbP 3srb.

CPM 2020
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Since |ma −mb| ≤ 2
3L holds, we can show that the |P |-periodic strings paP 3s and pbP 3s

starting at the indices ma and mb have at least an overlap of length |P |:
The strings paP 3s and pbP 3s have at least the length 3|P |. Therefore, if P ≥ L

3 holds,
the overlap is at least 3|P | − 2

3L ≥ |P |.
The strings paP 3s and pbP 3s also have at least the length L. Therefore, if P ≤ L

3 holds,
the overlap is at least L− 2

3L = L
3 ≥ |P |.

In either case, the overlap is at least as long as P .
Therefore, the union of the occurrences of paP 3s and pbP 3s starting at ma and mb is

|P |-periodic. This implies that these two occurrences end with the same character.
If the lengths of paP 3s and pbP 3s are different, this implies that both occurrences of the

smaller string starting at the indices na and ma or at the indices nb and mb are preceded by
the same character which is given by the |P |-periodic extension to the left. This, however,
implies that either (na,ma, la) or (nb,mb, lb) is not a maximal pair.

If, on the other hand, the lengths of paP 3s and pbP 3s are equal, the starting indices na
and nb are equal and the starting indices ma and mb are equal as well. This, however, is
only possible if either (na,ma, la) or (nb,mb, lb) is not a maximal pair or if both maximal
pairs are identical.

Since both cases contradict the assumption, the assumption is wrong and the theorem is
therefore true. J

I Corollary 7. Let S be a string. Let q ∈ N≥3 be a natural number and i, j be indices of two
characters in S$.

Then there are at most 12
(

1 + 3 q
log2 q

)
log2 |S| different maximal pairs (nk,mk, lk) such

that for all k
the corresponding maximal repeat S[nk..nk + lk − 1] is not 1

≥2q -highly-periodic and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

Also, there are at most 12
(

1 + 3 q
log2 q

)
(log2 |S|)(zS + 1)(zS + 2) different double-sided

extensions of non- 1
≥2q -highly-periodic maximal repeats.

Proof. Without loss of generality, the inequality q ≤ |S| holds.
If a maximal repeat S[nk..nk + lk] is not 1

≥2q -highly-periodic, then either the longer of
the parts S[nk..i− 1] and S[i..nk + lk − 1] is

not 1
≥q -highly-periodic or

1
≥q -highly-periodic but the corresponding periodicity does not extend to the whole
maximal repeat S[nk..nk + lk].

Therefore, the number of different maximal pairs which fulfill the prerequisites can be
bound by Lemma 3 and Theorem 6 and there are at most

18q(1 + logq |S|) + 12(log2 |S|) ≤ 36q(logq |S|) + 12(log2 |S|) = 12
(

1 + 3 q

log2 q

)
log2 |S|

of those maximal pairs.
Summing up over the first indices i ≤ j of the zS + 1 LZ77-factors of S$ yields that there

are at most
zS+1∑
i=1

zS+1∑
j=i

12
(

1 + 3 q

log2 q

)
log2 |S| = 6

(
1 + 3 q

log2 q

)
log2 |S|(zS + 1)(zS + 2)

substantially different non- 1
≥2q -highly-periodic maximal pairs.

Hence, there are at most 12
(

1 + 3 q
log2 q

)
(log2 |S|)(zS + 1)(zS + 2) different double-sided

extensions of maximal repeats that are not 1
≥2q -highly-periodic. J



J. Pape-Lange 27:9

For q = 3 this proves that the number of substantially different non- 1
≥6 -highly-periodic

maximal pairs is bounded from above by 41(log2 |S|)(zS + 1)(zS + 2).

4 Highly-Periodic Maximal Pairs

The goal of this section is to prove that in a string S the number of substantially different non-
extendable 1

≥4 -highly-periodic maximal pairs bounded from above by 32(log2 |S|)(zS + 1)2.
Both occurrences of those maximal pairs, including the corresponding maximal repeat

as well as the preceding and succeeding characters, are inside of the two padded maximal
periodic extensions of the corresponding positioned maximal repeats.

Therefore, we will first count the number of substantially different padded maximal
periodic extensions of fourth powers and the number of substantially different padded
maximal periodic extensions of a given fourth power. Afterwards, we will show that each
pair of padded maximal periodic extensions gives rise to at most 4 substantially different
non-extendable 1

≥4 -highly-periodic maximal pairs.
We will need the “Three Squares Lemma” of Crochemore and Rytter presented in [5].

I Lemma 8. Let u, v and w be primitive and let u2, v2 and w2 be prefixes/suffixes of S
with |u| < |v| < |w|.

Then |w| > |u|+ |v| holds.

I Lemma 9. Let S be a string and i be an index of a character in S$.
Then there are at most 4 blog2 |S|c substantially different padded maximal periodic exten-

sions S[l − 1..r + 1] of fourth powers such that l − 1 < i ≤ r + 1.

Proof. In this proof we will only count the number of padded maximal periodic extensions
S[l − 1..r + 1] of fourth powers such that at least half of the interval [l, r] is smaller than i,
i.e. l + r−l+1

2 ≤ i. The other case l + r−l+1
2 ≥ i is symmetrical.

Since S[l..r] is at least a fourth power, the string S[l..i− 1] is at least a square. Therefore,
two maximal periodic extensions S[l, r] and S[l′, r′] of fourth powers have an overlap of least
twice the smaller minimal period length. Therefore, if their minimal period lengths are equal,
the padded maximal periodic extensions S[l− 1, r + 1] and S[l′ − 1, r′ + 1] are copies of each
other. Conversely, if S[l − 1, r + 1] and S[l′ − 1, r′ + 1] are substantially different, then they
have different minimal period lengths as well.

This implies that the number of substantially different padded maximal periodic extensions
S[l − 1, r + 1] of fourth powers such that at least half of the interval [l, r] is smaller than i is
bounded from above by the number of different primitively rooted squares that are suffixes
of S[1..i− 1].

The three squares lemma implies that for three primitively rooted squares which are
suffixes of each other, the largest square is more than twice as long as the smallest square.

Since the smallest square has at least two characters and the largest square has at most
|S| characters, there are at most 2 blog2 |S|c primitively rooted squares which are suffixes of
S[1..i− 1].

Therefore, there are at most 2 blog2 |S|c padded maximal periodic extensions S[l−1, r+1]
of fourth powers such that at least half of the interval [l, r] is smaller than i, i.e. l+ r−l+1

2 ≤ i.
This implies that the number of padded maximal periodic extensions of fourth powers

S[l − 1, r + 1] such that l − 1 < i ≤ r + 1 is bounded from above by 4 blog2 |S|c. J

The proof also allows another useful conclusion.
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x a b a b a b a b y a b a b a b a z

Figure 2 The string S = xababababyabababaz with two maximal periodic extensions of the
substring ab and the three non-extendable maximal pairs with the root ab. The maximal periodic
extensions are the two green substrings and each maximal pair is represented by the two occurrences
of its maximal repeat.

I Corollary 10. Let S be a string and i be an index of a character in S$. Furthermore, let
P be a 1

≥4 -highly-periodic substring of S.
Then there are at most 2 substantially different padded maximal periodic extensions

S[l − 1, r + 1] of cyclic permutations of P such that l − 1 < i ≤ r + 1.

Combining the previous corollary with the lemma before gives rise to an upper bound of
the pairs of corresponding maximal periodic extensions.

I Lemma 11. Each pair of padded maximal periodic extensions of fourth powers which are
up to cyclic rotation identical gives rise to at most 4 substantially different non-extendable

1
≥4 -highly-periodic maximal pairs.

Proof. Each maximal pair has to be a prefix of the one padded maximal periodic extension
and a suffix of the other padded maximal periodic extension, otherwise both corresponding
positioned maximal repeats would be preceded or succeeded by the same character. There
are two choices of which padded maximal periodic extension the corresponding positioned
maximal repeat is a prefix.

For a fixed choice, the length of the maximal repeat is fixed, up to a multiple of the
period length. Therefore there are only two possible lengths such that at least one of the
positioned maximal repeat is not extendable.

Figure 2 shows a string with two maximal periodic extension of the substring ab and the
3 different non-extendable maximal pairs which arise from these extensions. J

Multiplying these upper bounds leads to the wanted upper bound:

I Corollary 12. Let S be a string.
Then there are at most 8(log2 |S|)(zS +1)2 substantially different pairs of padded maximal

periodic extensions of fourth powers which are up to cyclic rotation identical.
Also, there are at most 32(log2 |S|)(zS + 1)2 substantially different non-extendable 1

≥4 -
highly-periodic maximal pairs.

5 RLBWT and Maximal Pairs

The goal of this section is to prove that the runs of the RLBWT of a string S correspond to
a subset of the maximal pairs, whose size can be bound from above by 73(log2 |S|)(zS + 2)2.

Since we are interested in the number of runs, it is useful to observe the indices i where a
new run starts. These are exactly the index 1 and the indices i with S[πi−1] 6= S[πi].

Since $ occurs exactly once in S$, the strings S[πi−1 + 1..|S|+ 1] and S[πi + 1..|S|+ 1]
have a mismatch. Also, since S[πi−1 + 1..|S|+ 1]S[1..πi−1] is lexicographically smaller than
S[πi + 1..|S|+ 1]S[1..πi], the string S[πi−1 + 1..|S|+ 1] is lexicographically strictly smaller
than S[πi + 1..|S|+ 1].
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Let m be the index of the first mismatch of these two strings. With this notation, the
strings S[πi−1 + 1..πi−1 +m− 1] and S[πi + 1..πi +m− 1] are equal and their predecessors
as well as their successors are different. Therefore, if m > 0, they form a maximal pair. If
m = 0, then S[πi−1 + 1] < S[πi + 1]. This, however can only occur |Σ| times.

On the other hand, since S[πi−1 + 1..πi−1 +m] is smaller than S[πi + 1..|S|+ 1]S[1..πi]
and S[πi + 1..πi +m] is larger than S[πi−1 + 1..|S|+ 1]S[1..πi−1], this maximal pair can only
correspond to this pair (πi−1, πi) of lexicographically neighbored cyclic permutations and
the maximal pairs corresponding to different pairs (πj−1, πj) of lexicographically neighbored
cyclic permutations are substantially different.
I Remark 13. Belazzougui et al. show in Theorem 1 of [1] that the number of runs in the
Burrows-Wheeler transform is even bounded in the number of right extensions of the maximal
repeats. However, maximal pairs are easier to handle then right extensions of maximal
repeats and we only lose a factor Σ in the worst-case by not using the right extensions.

However, while the number of maximal repeats and thereby the number of nodes in the
CDAWG can be Θ(qz3) for a suitable set of strings, the Burrows-Wheeler transform does
not suffer from high powers as the CDAWG does:

I Lemma 14. Let S be a string and let i be an index at which a new run in the Burrows-
Wheeler transform starts.

Then the maximal pair corresponding to the pair (πi−1, πi) of lexicographically neighbored
cyclic permutations is not extendable.

Proof. Since a maximal pair is not extendable if at least one of its corresponding positioned
maximal repeats is not extendable, we have to prove that at least one of the positioned
maximal repeats S[πi−1 + 1..πi−1 +m− 1] and S[πi + 1..πi +m− 1] is not extendable. Let
p be the minimal period length of this maximal repeat.

Assume that the maximal p-periodic extensions of both occurrences S[πi−1+1..πi−1+m−1]
and S[πi+1..πi+m−1] contain at least p+1 additional characters. In this proof, we will show
that under this assumption that there is a cyclic permutation S[w + 1..|S|+ 1]S[1..w] of S$
which is lexicographically between S[πi−1 + 1..|S|+ 1]S[1..πi−1] and S[πi + 1..|S|+ 1]S[1..πi].

If the maximal p-periodic extension of S[πi−1 + 1..πi−1 +m− 1] extends this occurrence
to the left, the equation S[πi−1] = S[πi−1 + p] and thereby

S[πi] 6= S[πi−1] = S[πi−1 + p] = S[πi + p]

holds. Therefore, the maximal p-periodic extension of S[πi + 1..πi +m− 1] does not extends
this string to the left. This implies that at most one of the two maximal p-periodic extensions
of the occurrences S[πi−1 + 1..πi−1 + m − 1] and S[πi + 1..πi + m − 1] does extend the
occurrence to the left.

Similarly, at most one of those occurrences is extended to the right by the maximal
p-periodic extension.

Since, by assumption, both occurrences are p-periodically extendable, exactly one oc-
currence has to be p-periodically extendable to the left and exactly one occurrence has to
be p-periodically extendable to the right. By symmetry we can assume without loss of
generality that S[πi−1 + 1..πi−1 + m − 1] is p-periodically extendable to the left and that
S[πi + 1..πi +m− 1] is p-periodically extendable to the right.

Hence, S[πi−1 − p..πi−1 + m − 1] and S[πi + 1..πi + m + p] are p-periodic. Also, by
definition of the Burrows-Wheeler transform, the inequality S[πi−1 +m] < S[πi +m] holds.

Combining the periodicity with this inequality yields

S[πi−1 + 1..πi−1 +m− 1] = S[πi−1 + 1− p..πi−1 +m− 1− p]

CPM 2020
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and

S[πi−1 +m] < S[πi +m] = S[πi +m− p] = S[πi−1 +m− p]

which imply

S[πi−1 + 1..|S|+ 1]S[1..πi−1] < S[πi−1 + 1− p..|S|+ 1]S[1..πi−1 − p].

Similarly, we get

S[πi−1 + 1− p..πi−1 +m− 1] = S[πi + 1..πi +m− 1 + p]

and

S[πi−1 +m] < S[πi +m] = S[πi +m+ p]

which imply

S[πi−1 + 1− p..|S|+ 1]S[1..πi−1 − p] < S[πi + 1..|S|+ 1]S[1..πi].

Since S[πi−1 + 1−p..|S|+ 1]S[1..πi−1−p] is lexicographically between the cyclic permuta-
tions S[πi−1 + 1..|S|+ 1]S[1..πi−1] and S[πi + 1..|S|+ 1]S[1..πi], these two strings are not
neighbors with regard to the Burrows-Wheeler transform. This contradicts the assumption
and thereby concludes the proof. J

Therefore, the positioned maximal repeats of the associated maximal pairs corresponding
to the RLBWT are either not highly-periodic or, if they are highly-periodic, the period
cannot be extended by more than a period length. This implies the following corollary and
thereby leads to another proof of the Burrows-Wheeler conjecture:

I Corollary 15. Let S be a string.
Then, there are at most 73(log2 |S|)(zS + 2)2 runs in the RLBWT.

Proof. We count the number of index-pairs (πi−1, πi) where a new run starts.
Either (πi−1, πi) corresponds to
the empty maximal pair (there are at most |Σ| of such (πi−1, πi)),
a non- 1

≥6 -highly-periodic maximal pair (there are at most 41(log2 |S|)(zS + 1)(zS + 2) of
such (πi−1, πi)) or
a 1
≥4 -highly-periodic non-extendable maximal pair (there are at most 32(log2 |S|)(zS +1)2

of such (πi−1, πi)).
We also have to count one additional run for i = 0.

Summing up shows that there are at most 73(log2 |S|)(zS + 2)2 runs in the RLBWT. J

6 Conclusion

This paper proved that of the potentially O(qz3) substantially different maximal pairs in a
string, it is sufficient to understand a subset containing at most 73(log2 |S|)(zS +2)2 maximal
pairs.

It seems therefore likely that it is possible to merge the nodes of the CDAWG which
correspond maximal repeats of the same base and get a new data structure which is almost
as universal and intuitive as the CDAWG but only contains O((log |S|)(zS)2) arcs.
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Also, the proofs presented in this paper do not use the underlying structure of the string.
If the substrings of S and the reversed string Srev are also highly compressible and have less
than z′ LZ77-factors each, it should be possible to prove that the number of runs in the
RLBWT is bounded from above by O(z′(zS)2).

Thereby, it might be possible to derive an upper bound for the runs in the RLBWT
which is only dependent on the number of LZ77-factors. Since the strings used to prove the
asymptotic tightness for the upper bound rS ∈ O

(
δS log δS max

(
1, log n

δS log δS

))
in [8] have

zS ∈ Ω
(
δS log2

n
δS

)
LZ77-factors, such a result does not violate the asymptotic tightness.
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