
Text Indexing and Searching in Sublinear Time
J. Ian Munro
Cheriton School of Computer Science, University of Waterloo, Canada
imunro@uwaterloo.ca

Gonzalo Navarro
CeBiB – Center of Biotechnology and Bioengineering, Department of Computer Science,
University of Chile, Santiago, Chile
gnavarro@dcc.uchile.cl

Yakov Nekrich
Department of Computer Science, Michigan Technological University, Houghton, MI, USA
yakov.nekrich@googlemail.com

Abstract
We introduce the first index that can be built in o(n) time for a text of length n, and can also be
queried in o(q) time for a pattern of length q. On an alphabet of size σ, our index uses O(n log σ)
bits, is built in O(n log σ/

√
logn) deterministic time, and computes the number of occurrences of the

pattern in time O(q/ logσ n+ logn logσ n). Each such occurrence can then be found in O(logn) time.
Other trade-offs between the space usage and the cost of reporting occurrences are also possible.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases data structures, string indexes

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.24

Funding J. Ian Munro: Funded with Canada Research Chairs Programme and NSERC Discovery
Grant.
Gonzalo Navarro: Funded with Basal Funds FB0001, Conicyt, Chile.

1 Introduction

We address the problem of indexing a text T [0..n− 1], over alphabet [0..σ − 1], in sublinear
time on a RAM machine of w = Θ(logn) bits. This is not possible when we build a classical
index (e.g., a suffix tree [42] or a suffix array [26]) that requires Θ(n logn) bits, since just
writing the output takes time Θ(n). It is also impossible when log σ = Θ(logn) and thus just
reading the n log σ bits of the input text takes time Θ(n). On smaller alphabets (which arise
frequently in practice, for example on DNA, protein, and letter sequences), sublinear-time
indexing becomes possible when the text comes packed in words of logσ n characters and
we build a compressed index that uses o(n logn) bits. For example, there exist various
indexes that use O(n log σ) bits [35] (which is asymptotically the best worst-case size we
can expect for an index on T) and could be built, in principle, in time O(n/ logσ n). Still,
only linear-time indexing in compressed space had been achieved [3, 6, 30, 32] until the very
recent result of Kempa and Kociumaka [24].

When the alphabet is small, one may also aim at RAM-optimal pattern search, that is,
count the number of occurrences of a (packed) string Q[0..q − 1] in T in time O(q/ logσ n).
There exist some classical indexes using O(n logn) bits and counting in time O(q/ logσ n+
polylog(n)) [36, 11], as well as compressed ones [32].

In this paper we introduce the first index that can be built and queried in sublinear time.
Our index, as explained, is compressed. It uses O(n log σ) bits and can be constructed in
deterministic time O(n log σ/

√
logn). Thus the construction time is O(n/

√
logn) when the

© J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:imunro@uwaterloo.ca
mailto:gnavarro@dcc.uchile.cl
mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs.CPM.2020.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Text Indexing and Searching in Sublinear Time

Table 1 Previous and our results for index construction on a text of length n and a search
pattern of length q, over an alphabet of size σ, on a RAM machine of w bits, for any constant ε > 0.
Grayed rows are superseded by a more recent result in all aspects we consider. Note that O(n)-time
randomized construction can be replaced by O(n(log logn)2) deterministic constructions [39].

Source Construction time Space (bits) Query time (counting)
Classical [42, 27, 41, 19] O(n) O(n logn) O(q log σ)
Cole et al. [17] O(n) O(n logn) O(q + log σ)
Fischer & Gawrychowski [21] O(n) O(n logn) O(q + log log σ)
Bille et al. [11] O(n) O(n logn) O(q/ logσ n+ log q + log log σ)
Classical + perfect hashing O(n) randomized O(n logn) O(q)
Navarro & Nekrich [36] O(n) randomized O(n logn) O(q/ logσ n+ logεσ n)
Barbay et al. [3] O(n) O(n log σ) O(q log log σ)
Belazzougui & Navarro [6] O(n) O(n log σ) O(q(1 + logw σ))
Munro et al. [30, 29] O(n) O(n log σ) O(q + log log σ)
Munro et al. [32] O(n) O(n log σ) O(q + log logw σ)
Munro et al. [32] O(n) O(n log σ) O(q/ logσ n+ logεσ n)
Belazzougui & Navarro [6] O(n) randomized O(n log σ) O(q(1 + log logw σ))
Belazzougui & Navarro [5] O(n) randomized O(n log σ) O(q)
Kempa and Kociumaka [24] O(n log σ/

√
logn) O(n log σ) O(q(1 + logw σ))

Ours O(n log σ/
√

logn) O(n log σ) O(q/ logσ n+ logn · logσ n)

alphabet size is a constant. Our index also supports counting queries in o(q) time: it counts
in optimal time plus an additive poly-logarithmic penalty, O(q/ logσ n+ logn logσ n). After
counting the occurrences of Q, any such occurrence can be reported in O(logn) time.

A slightly larger and slower-to-build variant of our index usesO(n(
√

logn log σ+log σ logεn))
bits for any constant 0 < ε < 1/2 and is built in time O(n log3/2 σ/ log1/2−ε n). This index
can report the occ pattern occurrences in time O(q/ logσ n+

√
logσ n log logn+ occ).

As a comparison (see Table 1), the other indexes that count in time O(q/ logσ n +
polylog(n)) use either more space (O(n logn) bits) and/or construction time (O(n)) [11, 36,
32]. The indexes using less space, on the other hand, use as little as O(n log σ) bits but are
slower to build and/or to query [30, 29, 32, 3, 5, 6, 24]. A recent construction [24] is the
only one able to build in sublinear time (O(n log σ/

√
logn)) and to use compressed space

(O(n log σ) bits), just like ours, but it is still unable to search in o(q) time.
Those compressed indexes can then deliver each occurrence in O(logε n) time, or even

in O(1) time if a structure of O(n log1−ε σ logε n) further bits is added, though there is no
sublinear-time construction for those extra structures either [38, 22].

Our technique is reminiscent to the Geometric BWT [15], where a text is sampled
regularly, so that the sampled positions can be indexed with a suffix tree in sublinear space.
In exchange, all the possible alignments of the pattern and the samples have to be checked
in a two-dimensional range search data structure. To speed up the search, we use a data
structure for LCE queries. An LCE data structure enables us to compute in constant time
the longest common prefix of any two text positions. Using this information we can efficiently
find the locus of each alignment from the previous one.

2 Preliminaries and LCE Queries

We denote by |S| the number of symbols in a sequence S or the number of elements in a
set S. For two strings X and Y , LCP (X,Y) denotes the longest common prefix of X and
Y . For a string X and a set of strings S, LCP (X,S) = maxY ∈S LCP (X,Y), where we

J. I. Munro, G. Navarro, and Y. Nekrich 24:3

compare lengths to take the maximum. We assume that the concepts associated with suffix
trees [42] are known. The longest common extension (LCE) query on S asks for the length
of the longest common prefix of suffixes S[i..] and S[j..], LCE(i, j) = |LCP (S[i..], S[j..])|.
LCE queries were introduced by Landau and Vishkin [25]. Several recent publications
demonstrate that LCE data structures can use o(n) space and/or can be constructed in o(n)
time [40, 31, 24, 12]. The following result will play an important role in our construction.

I Lemma 1. [24] Given a text T of length n over an alphabet of size σ, we can build an
LCE data structure using O(n log σ) bits of space in O(n/ logσ n) time. This data structure
supports LCE queries on T in O(1) time.

3 The General Approach

We divide the text T [0..n−1], over alphabet [0..σ−1], into blocks of r = O(logσ n) consecutive
symbols (to avoid tedious details, we assume that both r and logσ n are integers and that
n is divisible by both). The set S ′ consists of all the suffixes starting at positions ir, for
i = 0, 1, . . ., n/r − 1; these are called selected positions. Our data structure consists of the
following three components.

1. The suffix tree T ′ for the suffixes starting at the selected positions, using O((n/r) logn)
bits. Thus T ′ is a compacted trie for the suffixes in S ′. Suffixes are represented as
strings of meta-symbols where every meta-symbol corresponds to a substring of logσ n
consecutive symbols. Deterministic dictionaries are used at the nodes to descend by the
meta-symbols in constant time. Predecessor structures are also used at the nodes, to
descend when less than a metasymbol of the pattern is left. Given a pattern Q, we can
identify all selected suffixes starting with Q in O(|Q|/ logσ n) time, plus an O(log logn)
additive term coming from the predecessor operations at the deepest node.

2. A data structure on a set Q of points. Each point of Q corresponds to a pair (indi, revi)
for i = 1, . . . , (n/r) − 1 where indi is the index of the i-th selected suffix of T in the
lexicographically sorted set S ′ and revi is an integer that corresponds to the reverse block
preceding that i-th selected suffix in T . Our data structure supports two-dimensional
range counting and reporting queries on Q.

3. A data structure for suffix jump queries on T ′. Given a string Q[0..q − 1], its locus node
u, and a positive integer i ≤ r − 1, a (suffix) i-jump query returns the locus node of
Q[i..q − 1], or it says that Q[i..q − 1] does not prefix any string in S ′. The suffix jump
structure has essentially the same functionality as the suffix links, but we do not store
suffix links explicitly in order to save space and improve the construction time.

As described, T ′ is a compact trie over an alphabet of meta-symbols corresponding to
strings of length logσ n. Therefore, whenever we speak of a node u ∈ T ′, we refer indistinctly
to an explicit or an implicit node (i.e., in the middle of an edge, coming from compacting a
unary path). Further, we cannot then properly speak of the “locus node” of a string Q, even
if we identify meta-symbols with their forming strings, because |Q| might not be a multiple
of logσ n. Rather, the locus of Q will be denoted u[l..s], where u ∈ T ′, called its locus node,
is the deepest node whose string label is a prefix of Q and [l..s] is the maximal interval such
that the string labels of the children ul, . . . , us of u are prefixed by Q.

Using our structure, we can find all the occurrences in T of a pattern Q[0..q−1] whenever
q > r. Occurrences of Q are classified according to their positions relative to selected symbols.
An occurrence T [f..f + q − 1] of Q is an i-occurrence if T [f + i] (corresponding to the i-th
symbol of Q) is the leftmost selected symbol in T [f..f + q − 1].

CPM 2020

24:4 Text Indexing and Searching in Sublinear Time

First, we identify all 0-occurrences by looking for Q in T ′: We traverse the path corres-
ponding to Q in T ′ to find Q0 = LCP (Q,S ′), the longest prefix of Q that is in T ′, with
locus u0[l0..s0]. Let q0 = |Q0|; if q0 = q, then u0[l0..s0] is the locus of Q and we count or
report all its 0-occurrences as the positions of suffixes in the subtrees of u0[l0..s0].1 If q0 < q,
there are no 0-occurrences of Q.

Next, we compute a 1-jump from u0 to find the locus of Q0[1..] = Q[1..q0 − 1] in T ′.
If the locus does not exist, then there are no 1-occurrences of Q. If it exists, we traverse
the path in T ′ for Q1 starting from that locus, not redoing the path from the root. Let
Q1 = Q[1..q1 − 1] = LCP (Q[1..q − 1],S ′) be the longest prefix of Q[1..q − 1] found in T ′,
with locus u1[l1..s1]. If q1 < q, then again there are no 1-occurrences of Q. If q1 = q, then
u1[l1..s1] is the locus of Q[1..q − 1]. In this case, every 1-occurrence of Q corresponds to
an occurrence of Q1 in T that is preceded by Q[0]. We can identify them by answering
a two-dimensional range query [ind1, ind2]× [rev1, rev2] where ind1 (ind2) is the leftmost
(rightmost) leaf in the subtrees of u1[l1..s1] and rev1 (rev2) is the smallest (largest) integer
value of any reverse block that starts with Q[0].

We proceed and consider i-occurrences for i = 2, . . . , r−1 using the same method. Suppose
that we have already considered the possible j-occurrences of Q for j = 0, . . . , i− 1, so we
have computed all the loci uj [lj ..sj] of Qj = Q[j..qj − 1] = LCP (Q[j..q − 1],S ′). Further,
let q′j ≤ qj be j plus the string depth of uj , measured in symbols. This is the maximum
number of symbols we can read from Qj so that we reach a node of T ′. Let t be such that
q′t = max(q′0, . . . , q′i−1). We then compute the (i − t)-jump from ut. If Q[i..q′t − 1] is not
found in T ′, then it is enough for us to know that qi < q′t without actually finding the locus
of Qi. If Q[i..q′t − 1] is found with locus node u, we traverse from u downwards to complete
the path for Q[i..q− 1]. We then find the locus ui[li..si] of Q[i..qi− 1] = LCP (Q[i..q− 1],S ′).
If qi = q, then Q[i..q − 1] is found, so we count or report all i-occurrences by answering a
two-dimensional query as described above.

Analysis. The total query time is O(q/ logσ n+ r(log logn+ tq + ts)), where tq and ts are
the times to answer a range query and to compute a suffix jump, respectively.

All the downward steps in the suffix tree amortize to O(q/ logσ n+ r): we advance q′t by
logσ n units in each downward step, but q′t can be (logσ n)− 1 units less than the maximum
position qt we have reached up to now on Q (i.e., we take the suffix jump from ut, whereas
the actual locus with string depth qt is ut[lt..st]). In addition we perform a predecessor step
to find the ranges [lj ..sj] of the locus of each Qj , which adds O(r log logn) time. As said,
the suffix tree (point 1) uses O((n/r) logn) bits.

The data structure of point 2 is a wavelet tree [14, 23, 34] built on t = O(n/r) points.
Its height is the logarithm of the y-coordinate range, h = log(σr) = O(r log σ), and it uses
O(t · h) = O(n log σ) ⊆ O((n/r) logn) bits. Such structure answers range counting queries in
time tq = O(h) = O(r log σ), thus r · tq = O(r2 log σ), and reports each point in the range in
time O(h) = O(r log σ).

In Sections 4 and 5 we show how to implement all the r suffix jumps (point 3) in time
r · ts = O(q/ logσ n+ r log logn), with a structure that uses O((n/r) logn) further bits.

Section 6 shows that the deterministic construction time of the structures of point 1 is
O(n(log logn)2/r) and of point 3 is O(n/r). The wavelet tree of point 2 can be built in time
O(t · h/

√
log t) = O(n log σ/

√
logn) [33, 2].

1 For fast counting, each node may also store the cumulative sum of its preceding siblings.

J. I. Munro, G. Navarro, and Y. Nekrich 24:5

Finally, since a pattern shorter than r may not cross a block boundary and thus we
could miss occurrences, Section 7 describes a special index for small patterns. Its space and
construction time is within those of point 3 for r ≤ (1/4) logσ n. This yields our first result.

I Theorem 2. Let 0 < r < (1/4) logσ n be a parameter. Given a text T of length n over
an alphabet of size σ, we can build an index using O((n/r) logn) bits in deterministic time
O(n((log logn)2/r + log σ/

√
logn)), so that it can count the number of occurrences of a

pattern of length q in time O(q/ logσ n + r2 log σ + r log logn), and then report each such
occurrence in time O(r log σ).

If we set r = Θ(logσ n), we obtain a data structure with optimal asymptotic space usage.

I Corollary 3. Given a text T of length n over an alphabet of size σ, we can build an index
using O(n log σ) bits in deterministic time O(n log σ/

√
logn), so that it can count the number

of occurrences of a pattern of length q in time O(q/ logσ n + logn logσ n), and then report
each such occurrence in time O(logn).

We can improve the time of reporting occurrences by slightly increasing the construction
time. Appendix A shows how to construct a range reporting data structure (point 2) that,
after tq = O(log logn) time, can report each occurrence in constant time. The space of this
structure is O(n log σ logε n) bits and its construction time is O((n · r · log2 σ)/ log1−ε n), for
any constant 0 < ε < 1/2. If we plug in this range reporting data structure into our index
(i.e., replacing point 2 above), we obtain our second result.

I Theorem 4. Let 0 < r < (1/4) logσ n be a parameter. Given a text T of length n over
an alphabet of size σ, we can build an index using O((n/r) logn + n log σ logε n) bits in
deterministic time O(n((log logn)2/r + (r log2 σ)/ log1−ε n)), for any constant 0 < ε < 1/2,
so that it can count the occurrences of a pattern of length q in time O(q/ logσ n+ r log logn),
and then report each in O(1) time.

One interesting trade-off is when r=
√

logσ n. In this case the index uses O(n(
√

logn log σ+
log σ logε n)) bits, can be constructed in O((n log3/2 σ)/ log1/2−ε n) time, and reports the occ
occurrences of a pattern of length q in time O(q/ logσ n+

√
logσ n log logn+ occ).

4 Suffix Jumps

Now we show how suffix jumps can be implemented. The solution described in this section
takes O(logn) time per jump O((n/r) logn) extra bits of space; it is used when |Q| ≥ log3 n.
This already provides us with an optimal solution because, in this case, the time of the r
suffix jumps, O(logn logσ n), is subsumed by the time O(q/ logσ n) to traverse the pattern.
In the next section we describe an appropriate method for short patterns.

Given a substring Qt[0..qt − 1] of the original query Q, with known locus ut[lt..st], we
find the locus v[l..s] of Qt[i..] or determine that it does not exist.

We compute the locus of Qt[i..] by applying Lemma 1 O(logn) times; note that we
know the text position f1 of an occurrence of Qt because we know its locus ut[lt..st] in T ′;
therefore Qt[i..] = T [f1 + i..]. By binary search among the sampled suffixes (i.e., leaves of
T ′), we identify in O(logn) time the suffix Sm that maximizes |LCP (Qt[i..], Sm)|, because
this measure decreases monotonically in both directions from Sm. At each step of the binary
search we compute ` = |LCP (Qt[i..], S)| for some suffix S ∈ S ′ using Lemma 1 and compare
their (`+ 1)th symbols to decide the direction of the binary search. Once Sm is obtained
we find, again with binary search, the smallest and largest suffixes S1, S2 ∈ S ′ such that
|LCP (S1, Sm)| = |LCP (S2, Sm)| = |LCP (Qt[i..], Sm)|; note S1 ≤ Sm ≤ S2.

CPM 2020

24:6 Text Indexing and Searching in Sublinear Time

Finally let v be the lowest common ancestor of the leaves that hold S1 and S2 in T ′. It then
holds that LCP (Qt[i..],S ′) = LCP (Qt[i..], Sm), and v is its locus node. Further, the locus is
v[l..s], where S1 and S2 descend by the lth and sth children of v, respectively (we can find l
and s in O(1) time with level ancestor queries on T ′). If |LCP (Sm, Qt[i..])| = qt−i = |Qt[i..]|,
then v[l..s] is also the locus of Qt[i..]; otherwise Qt[i..] prefixes no string in S ′.

I Lemma 5. Suppose that we know Qt[0..qt − 1] and its locus in T ′. We can then compute
LCP (Qt[i..qt − 1],S ′) and its locus in T ′ in O(logn) time, for any 0 ≤ i ≤ r − 1.

5 Suffix Jumps for Short Patterns

In this section we show how r suffix jumps can be computed in O(|Q|/ logσ n+ r log logn)
time when |Q| ≤ log3 n. Our basic idea is to construct a set X0 of selected substrings with
length up to log3 n. These are sampled at polylogarithmic-sized intervals from the sorted set
S ′. We also create a superset X ⊃ X0 that contains all the substrings that could be obtained
by trimming the first i ≤ r − 1 symbols from strings in X0. Using lexicographic naming
and special dictionaries on X , we pre-compute answers to all suffix jump queries for strings
from X0. We start by reading the query string Q and trying to match Q, Q[1..], Q[2..] in
X0. That is, for every Q[i..q− 1] we find LCP (Q[i..q− 1],X0) and its locus in T ′. With this
information we can finish the computation of a suffix jump in O(log logn) time, because the
information on LCP s in X0 will narrow down the search in T ′ to a polylogarithmic sized
interval, on which we can use the binary search of Section 4.

Data Structure. Let S ′′ be the set obtained by sorting suffixes in S ′ and selecting every
(log10 n)th suffix. We denote by X the set of all substrings T [i + f1..i + f2] such that the
suffix T [i..] is in the set S ′′ and 0 ≤ f1 ≤ f2 ≤ log3 n. We denote by X0 the set of substrings
T [i..i+ f] such that the suffix T [i..] is in the set S ′′ and 0 ≤ f ≤ log3 n. Thus X0 contains all
prefixes of length up to log3 n for all suffixes from S ′′ and X contains all strings that could
be obtained by suffix jumps from strings in X0.

We assign unique integer names to all substrings in X : we sort X and then traverse the
sorted list assigning a unique integer num(S) to each substring S ∈ X . Our goal is to store
pre-computed solutions to suffix jump queries. To this end, we keep three dictionaries:

Dictionary D0 contains the names num(S) for all S ∈ X0, as well as their loci in T ′.
Dictionary D contains the names num(S) for all substrings S ∈ X . For every entry x ∈ D,
with x = num(S), we store (1) the length `(S) of the string S, (2) the length `(S′) and
the name num(S′) where S′ is the longest prefix of S satisfying S′ ∈ X0, (3) for each j,
1 ≤ j ≤ r− 1, the name num(S[j..]) of the string obtained by trimming the first j leading
symbols of S if S[j..] is in X .
Dictionary Dp contains num(Sα) for all pairs (x, α), where x is an integer and α is a
string, such that the length of α is at most logσ n, x = num(S) for some S ∈ X , and the
concatenation Sα is also in X . Dp can be viewed as a (non-compressed) trie on X .

Using Dp, we can navigate among the strings in X : if we know num(S) for some S ∈ X ,
we can look up the concatenation Sα in X for any string α of length at most logσ n. The
dictionary D enables us to compute suffix jumps between strings in X : if we know num(S[0..])
for some S ∈ X , we can look up num(S[i..]) in O(1) time.

The set S ′′ contains O(n
r log10 n

) suffixes. The set X contains O(log6 n) substrings for
every suffix in S ′′. The space usage of dictionary D is O(n/ log4 n) words, dominated by
item (3). The space of Dp is O(n logσ n/(r log4 n)) words, given by the number of strings in
X times logσ n. This dominates the total space of our data structure, O(n/ log3 n) bits.

J. I. Munro, G. Navarro, and Y. Nekrich 24:7

Suffix Jumps. Using the dictionary D, we can compute suffix jumps within X0.

I Lemma 6. For any string Q with r ≤ |Q| ≤ log3 n, we can find the strings Pi =
LCP (Q[i..],X0), their lengths pi and their loci in T ′, for all 1 ≤ i ≤ r − 1, in time
O(|Q|/ logσ n+ r log logσ n).

Proof. We find P0 = LCP (Q[0..q− 1],X0) in O(|P0|/ logσ n+ log logσ n) time: suppose that
Q[0..x] occurs in X0. We can check whether Q[0..x + logσ n] also occurs in X0 using the
dictionaries Dp and D0. If this is the case, we increment x by logσ n. Otherwise we find
with binary search, in O(log logσ n) time, the largest f ≤ logσ n such that Q[0..x+ f] occurs
in X0. Then P0 = Q[0..x+ f] ∈ X0, and its locus in T ′ is found in D0.

When P0, of length p0 = |P0|, and its name num(P0) are known, we find P1 =
LCP (Q[1..],X0): first we look up v = num(P0[1..]) in component (3) of D, then we look up
in component (2) of D the longest prefix of the string with name v that is in X0. This is the
1-jump of P0 in X0; now we descend as much as possible from there using Dp and D0, as
done to find P0 from the root. We finally obtain num(P1); its length p1 and locus in T ′ are
found in D (component (1)) and D0, respectively.

We proceed in the same way as in Section 3 and find LCP (Q[i..],X0) for i = 2, . . ., r− 1.
The traversals in Dp amortize analogously to O(|Q|/ logσ n+ r), and we have O(r log logσ n)
further time to complete the r traversals. J

With all LCP (Q[i..],X0) and their loci in T ′, we can compute suffix jumps in S ′.

I Lemma 7. Suppose that we know Pi = LCP (Q[i..q − 1],X0) and its locus in T ′ for all
0 ≤ i ≤ r − 1. Assume we also know that Qt[0..qt − 1] = Q[t..t+ qt − 1] prefixes a string in
S ′ and its locus node ut ∈ T ′. Then, given j ≤ r − 1, we can compute LCP (Qt[j..],S ′) and
its locus in T ′, in O(log logn) time.

Proof. Let v′[l′..s′] be the locus of LCP (Qt[j..],X0) = LCP (Q[t + j..],X0) in T ′ and let
` = |LCP (Qt[j..],X0)|. If ` = qt − j, then v′[l′..s′] is the locus of Qt[j..] in T ′. Otherwise
let v+ denote the child of v′ in T ′ that descends by Q[t+ j + `..t+ j + `+ logσ n− 1]. If
v+ does not exist, then v′ is the locus node v of LCP (Qt[j..],S ′). We only have to find its
children interval [l..s] (which could expand [l′..s′]) by a predecessor search on its children.

If v+ exists, then the locus of LCP (Qt[j..],S ′) is in the subtree Tv+ of T ′ rooted at v+.
By definition, Tv+ does not contain suffixes from X0. Hence Tv+ has O(log10 n) leaves. We
then find LCP (Qt[j..],S ′) among suffixes in Tv+ using the binary search method described
in Section 4: we find S1, Sm, and S2 in time O(log log10 n) = O(log logn). The locus v[l..s]
of LCP (Qt[j..],S ′) is then the lowest common ancestor of the leaves that hold S1 and S2; l
and s are the children S1 and S2 descend from. J

I Lemma 8. Suppose that |Q| ≤ log3 n. Then we can find all the existing loci of Q[i..] in
T ′, for 0 ≤ i ≤ r − 1, in time O(|Q|/ logσ n+ r log logn), using O(n/ log3 n) bits of space.

6 Construction

Sampled suffix tree. We can view T as a string T of length n/r over an alphabet of size σr.
Since T consists of O(n/r) meta-symbols and each meta-symbol fits in a Θ(logn)-bit word,
we can sort all meta-symbols in O(n/r) time using RadixSort [18]. Thus we can generate T
and construct its suffix tree T ′ in O(n/r) time [19]. Further, we need O((n/r)(log logn)2)
time to build the deterministic dictionaries and the predecessor data structures storing the
children of each node [39, 4].

CPM 2020

24:8 Text Indexing and Searching in Sublinear Time

Suffix jumps. The lowest common ancestor and level ancestor structures [10, 8], which are
needed in Section 4, are built in time O(|T ′|) = O(n/r).

The sets of substrings and dictionaries D, D0, and Dp described in Section 5 can be
constructed as follows. Let m = O(n/r) be the number of selected suffixes in S ′. The
number of suffixes in S ′′ is O(m/ log10 n). The number of substrings associated with each
suffix in S ′′ is O(log6 n) and their total length is O(log9 n). The total number of strings in
X0 is O(m/ log7 n) and their total length is O(m

log10 n
· log6 n) = O(m/ log4 n). The number

of strings in X is k = O((m/ log10 n) · log6 n) = O(m/ log4 n) and their total length is
t = O((m/ log10 n) · log9 n) = O(m/ logn). We can then collect all the strings S ∈ X from
T [i+ f1..i+ f2] for every sampled leaf of T ′ pointing to T [i], sort them in O(t) = o(m) time
with RadixSort (the metasymbols fit in O(logn) bits [18]), remove repetitions, and finally
assign them lexicographic names num(S). We keep a pointer to S in T for each S ∈ X .

Next, we construct the dictionary D0 that contains the names num(S) of those S ∈
X0. For every x = num(S) in D0 we compute its locus v[l..s] in T ′. The locus can be
found in O(|S|/ logσ n + log logn) time by traversing T ′ from the root. This adds up to
O(|X0| log3 n) = o(m) time. Finally, D0 is a deterministic dictionary on the keys num(S), so
it can be constructed in O(|X0|(log logn)2) = o(m) deterministic time [39].

Similarly, D is a deterministic dictionary on k keys, which can be built inO(k(log logn)2) =
o(m) time [39]. Since X is prefix-closed, we can use the pointers to the strings S and the
dictionary D0 to determine the longest prefix S′ ∈ X0 of S by binary search on `(S′), in
O(k log logn) total time. When we generate strings of X , we also record the information
about suffix jumps (e.g., we store a pointer from each S to S[1..] before sorting them, so
later we can obtain num(S[1..]) from S, then num(S[2..]) from S[1..], and so on). We can
then easily traverse those suffixes to compute all relevant suffix jumps for each string S ∈ X ,
in total time O(kr) = o(m). We then have items (1)–(3) for all the elements of D.

Finally, we construct the dictionary Dp by inserting all strings in X into a trie data
structure; at every node of this trie we store the name num(S) of the corresponding string S.
Once X is sorted, the trie is easily built in O(k) total time. Later, along a depth-first trie
traversal we collect, for each node representing name y, its ancestors x up to distance logσ n
and the strings α separating x from y. All the pairs (x, α)→ y are then stored in Dp. Since
X is prefix-closed, the trie contains O(k) nodes, and we include O(k logσ n) pairs in Dp. Since
Dp is also a deterministic dictionary, it can be built in time O(k logσ n(log logn)2) = o(m).

The total time to build the data structures for suffix jumps is then O(n/r+m) = O(n/r).

Range searches. As said, the wavelet tree can be built in time O(n log σ/
√

logn) [33, 2].
Appendix A shows that the time to build the data structure for faster reporting is O(n · r ·
log2 σ/ log1−ε n), for any constant 0 < ε < 1/2.

7 Index for Small Patterns

The data structure for small query strings consists of two tables. Assume r ≤ (1/4) logσ n. We
regard the text as an array A[0..n/r] of length-2r (overlapping) strings, A[i] = T [ir..ir+2r−1].
We build a table Tbl whose entries correspond to all strings of length 2r: Tbl[α] lists all
the positions i where A[i] = α. Further, we build tables Tblj , for 1 ≤ j ≤ r, containing all
the possible length-j strings. Each entry Tblj [β], with |β| = j, contains the list of length-2r
strings α such that Tbl[α] is not empty and β is a substring of α beginning within its first r
positions (i.e., β = α[i..i+ j − 1] for some 0 ≤ i < r).

J. I. Munro, G. Navarro, and Y. Nekrich 24:9

Table Tbl has σ2r = O(
√
n) entries, and overall contains n/r pointers to A, thus its

total space is O((n/r) logn) bits. Tables Tblj add up to O(σr) = O(n1/4) cells. Since
each distinct string α of length 2r produces O(r2) distinct substrings, there can be only
O(σ2rr2) = O(

√
n log2

σ n) pointers in all the tables Tblj , for a total space of o(n/r) bits.
To report the occurrences of Q[0..q−1], we examine Tblq[Q]. For each string α in Tblq[Q],

we visit the entry Tbl[α] and report all the positions of Tbl[α] in A (with their offset).
To build Tbl, we can traverse A and add each i to the list of Tbl[A[i]], all in O(n/r) time.

We then visit the slots of Tbl. For every α such that Tbl[α] is not empty, we consider all
the sub-strings β of α starting within its first half and add α to Tbl|β|[β], recording also the
corresponding offset of β in α (we may add the same α several times with different offsets).
The time of this step is, as seen for the space, O(σ2rr2) = O(

√
n log2

σ n) = o(n/r).
To support counting, Tblq[Q] also stores the number of occurrences in T of each string Q.

I Lemma 9. There exists a data structure that uses O((n/r) logn) bits and reports all occ
occurrences of a query string Q in O(occ) time if |Q| ≤ r, with r ≤ (1/4) logσ n. The data
structure also computes occ in O(1) time and can be built in time O(n/r).

8 Conclusion

We have described the first text index that can be built and queried in sublinear time.
On a text of length n and alphabet of size σ, the index is built in O(n log σ/

√
logn) time,

on a RAM machine of Θ(logn) bits. This is sublinear for log σ = o(
√

logn). An index
that is built in sublinear time must naturally use o(n logn) bits, hence our index is also
compressed: our data structure has the asymptotically optimal space usage, O(n log σ)
bits. Indeed, our index is the first one that simultaneously achieves three goals: sublinear
construction time, asymptotically optimal space usage, and substring counting in nearly
optimal time O(q/ logσ n+ logn logσ n) where q is the substring length. Previously described
data structures with optimal (or even O(n logn)) space usage either require Ω(n) construction
time or Ω(q) time to count the occurrences of a substring.

We know no lower bound that prevents us from aiming at an index using the least possible
space, O(n log σ) bits, the least possible construction time for this space in the RAM model,
O(n/ logσ n), and the least possible counting time, O(q/ logσ n). Our index is the first one
in breaking the Θ(n) construction time and Θ(q) query time barriers simultaneously, but it
is open how close we can get to the optimal space and construction time.

References
1 S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing.

Information and Computation, 136(1):25–51, 1997.
2 M. Babenko, P. Gawrychowski, T. Kociumaka, and T. Starikovskaya. Wavelet trees meet

suffix trees. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 572–591, 2015.

3 J. Barbay, F. Claude, T. Gagie, G. Navarro, and Y. Nekrich. Efficient fully-compressed
sequence representations. Algorithmica", !PUBLISHER = "Springer, 69(1):232–268, 2014.

4 D. Belazzougui, P. Boldi, and S. Vigna. Dynamic z-fast tries. In Proc. 17th International
Symposium on String Processing and Information Retrieval (SPIRE), pages 159–172, 2010.

5 D. Belazzougui and G. Navarro. Alphabet-independent compressed text indexing. ACM
Transactions on Algorithms, 10(4):article 23, 2014.

6 D. Belazzougui and G. Navarro. Optimal lower and upper bounds for representing sequences.
ACM Transactions on Algorithms, 11(4):article 31, 2015.

CPM 2020

24:10 Text Indexing and Searching in Sublinear Time

7 D. Belazzougui and S. J. Puglisi. Range predecessor and Lempel-Ziv parsing. In Proc. 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2053–2071, 2016.

8 M. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoretical Computer
Science, 321(1):5–12, 2004.

9 M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th Latin American
Symposiumon Theoretical Informatics (LATIN), pages 88–94, 2000. doi:10.1007/10719839_9.

10 M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common
ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.

11 P. Bille, I. L. Gørtz, and F. R. Skjoldjensen. Deterministic indexing for packed strings. In
Proc. 28th Annual Symposium on Combinatorial Pattern Matching (CPM), pages 6:1–6:11,
2017.

12 O. Birenzwige, S. Golan, and E. Porat. Locally consistent parsing for text indexing in small
space. In Proc. 31st ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 607–626,
2020.

13 T. M. Chan, K. G. Larsen, and M. Patrascu. Orthogonal range searching on the RAM,
revisited. In Proc. 27th ACM Symposium on Computational Geometry (SoCG), pages 1–10,
2011.

14 B. Chazelle. A functional approach to data structures and its use in multidimensional searching.
SIAM Journal on Computing, 17(3):427–462, 1988. doi:10.1137/0217026.

15 Y.-F. Chien, W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Geometric BWT:
Compressed text indexing via sparse suffixes and range searching. Algorithmica, 71(2):258–278,
2015.

16 D. R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.
17 R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists: Structures for faster

text indexing. Algorithmica, 72(2):450–466, 2015.
18 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press, 3rd edition, 2009.
19 M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix

tree construction. Journal of the ACM, 47(6):987–1011, 2000.
20 G. Feigenblat, E. Porat, and A. Shiftan. Linear time succinct indexable dictionary construction

with applications. In Proc. 26th Data Compression Conference (DCC), pages 13–22, 2016.
21 J. Fischer and P. Gawrychowski. Alphabet-dependent string searching with wexponential

search trees. In Proc. 26th Annual Symposium on Combinatorial Pattern Matching (CPM),
pages 160–171, !series = "LNCS 9133", 2015.

22 R. González, G. Navarro, and H. Ferrada. Locally compressed suffix arrays. ACM Journal of
Experimental Algorithmics, 19(1):article 1, 2014.

23 R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.

24 D. Kempa and T. Kociumaka. String synchronizing sets: Sublinear-time BWT construction
and optimal LCE data structure. In Proc. 51st Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 756–767, 2019.

25 G. M. Landau and U. Vishkin. Fast string matching with k differences. Journal of Computer
and System Sciences, 37(1):63–78, 1988.

26 U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

27 E. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,
23(2):262–272, 1976.

28 J. I. Munro. Tables. In Proc. 16th FSTTCS, pages 37–42, 1996.
29 J. I. Munro, G. Navarro, and Y. Nekrich. Space-efficient construction of compressed indexes

in deterministic linear time. CoRR, abs/1607.04346, 2016.

https://doi.org/10.1007/10719839_9
https://doi.org/10.1137/0217026

J. I. Munro, G. Navarro, and Y. Nekrich 24:11

30 J. I. Munro, G. Navarro, and Y. Nekrich. Space-efficient construction of compressed indexes in
deterministic linear time. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 408–424, 2017.

31 J. I. Munro, G. Navarro, and Y. Nekrich. Text indexing and searching in sublinear time.
CoRR, abs/1712.07431, 2017.

32 J. I. Munro, G. Navarro, and Y. Nekrich. Fast compressed self-indexes with deterministic
linear-time construction. Algorithmica, 82(2):316–337, 2020.

33 J. I. Munro, Y. Nekrich, and J. S. Vitter. Fast construction of wavelet trees. Theoretical
Computer Science, 638:91–97, 2016", !note = "Preliminary version appeared in SPIRE’14.

34 G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.
35 G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,

39(1):article 2, 2007.
36 G. Navarro and Y. Nekrich. Time-optimal top-k document retrieval. SIAM Journal on

Computing, 46(1):89–113, 2017.
37 Y. Nekrich. Orthogonal range searching in linear and almost-linear space. Computational

Geometry, 42(4):342–351, 2009.
38 S. S. Rao. Time-space trade-offs for compressed suffix arrays. Information Processing Letters,

82(6):307–311, 2002.
39 M. Ruzic. Constructing efficient dictionaries in close to sorting time. In Proc. 35th International

Colloquium on Automata, Languages and Programming (ICALP A), pages 84–95 (part I),
2008, !series = "LNCS 5125".

40 Y. Tanimura, T. Nishimoto, H. Bannai, S. Inenaga, and M. Takeda. Small-space LCE data
structure with constant-time queries. In Proc. 42nd International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 10:1–10:15, 2017.

41 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
42 P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE Symposium on Foundations

on Computer Science (FOCS), pages 1–11, 1973.

A Range Reporting

In this section we prove a result on two-dimensional orthogonal range reporting queries.
Our method builds upon previous work on wavelet tree construction [33, 2], applications of
wavelet trees to range predecessor queries [7], and compact range reporting [14, 13].

I Theorem 10. For a set of t = O(n/r) points on a t× σO(r) grid, where r ≤ (1/4) logσ n,
and for any constant 0 < ε < 1/2, there is an O(n log σ logε n)-bit data structure that can
be built in O(n · r · log2 σ/ log1−ε n) time and supports orthogonal range reporting queries in
time O(log log t+ pocc) where pocc is the number of reported points.

A.1 Base data structure
We are given a set Q of t = O(n/r) points in [0..t− 1]× [0..σO(r)]. First we sort the points
by x-coordinates (this is easily done by scanning the leaves of T ′, which are already sorted
lexicographically by the selected suffixes), and keep the y-coordinates of every point in a
sequence Y . Each element of Y can be regarded as a string of length O(r) over an alphabet
of size σ, or equivalently, an h-bit number where h = O(r log σ). Next we construct the
range tree for Y using a method similar to the wavelet tree [23] construction algorithm.
Let Y (uo) = Y for the root node uo. We classify the elements of Y (uo) according to
their highest bit and generate the corresponding subsequences of Y (uo), Y (ul) (highest bit
zero) and Y (ur) (highest bit one), that must be stored in the left and right children of
u, ul and ur, respectively. Then nodes ul and ur are recursively processed in the same

CPM 2020

24:12 Text Indexing and Searching in Sublinear Time

manner. When we generate the sequence for a node u of depth d, we assign elements to
Y (ul) and Y (ur) according to their d-th highest bit. We can exploit bit parallelism and
pack (logn)/h y-coordinates into one word; therefore we can produce Y (ul) and Y (ur) from
Y (u) in O(|Y (u)| · h/ logn) time. The total time needed to generate all sequences Y (u) is
O(t · h · (h/ logn)) = O((n · r · log2 σ)/ logn).

For every sequence Y (u) we also construct an auxiliary data structure that supports
three-sided queries. If u is a right child, we create a data structure that returns all elements
in a range [x1, x2]× [0, h] stored in Y (u). To this end, we divide Y (u) into groups Gi(u) of
g = (1/2) logn consecutive elements (the last group may contain up to 2g elements). Let
mini(u) denote the smallest element in every group and let Y ′(u) denote the sequence of
all mini(u). We construct a data structure that supports three-sided queries on Y ′(u); it
uses O(|Y ′(u)| logn) = O((|Y (u)|/g) logn) = O(|Y (u)|) bits and reports the k output points
in O(log logn+ k) time; we can use any range minimum data structure for this purpose [9].
We can traverse Y (u) and identify the smallest element in each group in O(|Y (u)|h/ logn)
time, by using small precomputed tables that process (logn)/2 bits in constant time. This
adds up to O(t · h2/ logn) = O(n · r · log2 σ/ logn) time.

Since the number of points in Y ′(u) is O(|Y (u)|/g), the data structure for Y ′(u) can be
created in O(|Y (u)|/g) time and uses O((|Y (u)|/g) logn) = O(|Y (u)|) bits, which adds up
to O((n log σ)/ logn) construction time and O(n log σ) bits of space.

In order to save space, we do not store the y-coordinates of points in a group. The
y-coordinate of each point in G = Gi(u) is replaced with its rank, that is, with the number of
points in G that have smaller y-coordinates. Each group G is divided into (log σ)/(2 log logn)
subgroups, so that each subgroup contains 2r log logn consecutive points from G. We keep
the rank of the smallest point from each subgroup of G in a sequence Gt. Since the ranks of
points in a group are bounded by g and thus can be encoded with log g ≤ log logn bits, each
subgroup can be encoded with less than 2r(log logn)2 bits. Hence we can store precomputed
answers to all possible range minimum queries on all possible subgroups in a universal table
of size O(22r(log logn)2 log2 g) = o(n) bits. We can also store pre-computed answers for range
minima queries on Gt using another small universal table: Gt is of length (log σ)/(2 log logn)
and the rank of each minimum is at most g, so Gt can be encoded in at most (log σ)/2 bits.
This second universal table is then of size O(2(logσ)/2 log2 g) = o(n) bits.

A three-sided query [x1, x2]× [0, y] on a group G can then be answered as follows. We
identify the point of smallest rank in [x1, x2]. This can be achieved with O(1) table look-ups
because a query on G can be reduced to one query on Gt plus a constant number of queries
on sub-groups. Let x′ denote the position of this smallest-rank point in Y (u). We obtain
the real y-coordinate of Y (u)[x′] using the translation method that will be described below.
If the real y-coordinate of Y (u)[x′] does not exceed y, we report it and recursively answer
three-sided queries [x1, x

′ − 1]× [0, y] and [x′ + 1, x2]× [0, y]. The procedure continues until
all points in [x1, x2]× [0, y] are reported.

If u is a left child, we use the same method to construct the data structure that returns
all elements in a range [x1, x2]× [y,+∞) from Y (u).

An orthogonal range reporting query [x1, x2]× [y1, y2] is then answered by finding the
lowest common ancestor v of the leaves that hold y1 and y2. Then we visit the right child
vr of v, identify the range [x′1, x′2] and report all points in Y (vr)[x′1..x′2] with y-coordinates
that do not exceed y2; here x′1 is the index of the smallest x-coordinate in Y (vr) that is
≥ x1 and x′2 is the index of the largest x-coordinate of Y (vr) that is ≤ x2. We also visit the
left child vl of v, and answer the symmetric three-sided query. Finding x′1 and x′2 requires
predecessor and successor queries on x-coordinates of any Y (vr); the needed data structures
are described in Section A.3.

J. I. Munro, G. Navarro, and Y. Nekrich 24:13

In total, the basic part of the data structure requires O(n log σ) bits of space and is built
in time O((n · r log2 σ)/ logn).

A.2 Translating the answers
An answer to our three-sided query returns positions in Y (vl) (resp. in Y (vr)). We need an
additional data structure to translate such local positions into the points to be reported.
While our wavelet tree can be used for this purpose, the cost of decoding every point would
be O(h). A faster decoding method [14, 37, 13] enables us to decode each point in O(1) time.
Below we describe how this decoding structure can be built within the desired time bounds.

Let us choose a constant 0 < ε < 1/2 and, to simplify the description, assume that logεσ n
and log σ are integers. We will say that a node u is an x-node if the height of u is divisible
by x. For an integer x the x-ancestor of a node v is the lowest ancestor w of v, such that
w is an x-node. Let dk = hkε for k = 0, 1, . . . , d1/εe. We construct sequences UP(u) in
all nodes u. UP(u) enables us to move from a dk-node to its dk+1-ancestor: Let k be the
largest integer such that u is a dk-node and let v be the dk+1-ancestor of u. We say that
Y (u)[i] corresponds to Y (v)[j] if Y (u)[i] and Y (v)[j] represent the y-coordinates of the same
point. Suppose that a three-sided query has returned position i in Y (u). Using auxiliary
structures, we find the corresponding position i1 in the d1-ancestor u1 of u. Then we find i2
that corresponds to i1 in the d2-ancestor u2 of u1. We continue in the same manner, at the
k-th step moving from a dk-node to its dk+1-ancestor. After O(1/ε) steps we reach the root
node of the range tree.

It remains to describe the auxiliary data structures. To navigate from a node v to its
ancestor u, v stores for every i in Y (v) the corresponding position i′ in Y (u) (i.e., Y (v)[i]
and Y (u)[i′] are y-coordinates of the same point). In order to speed up the construction
time, we store this information in two sequences. The sequence Y (u) is divided into chunks;
if u is a dk-node, then the size of the chunk is Θ(2dk). For every element in Y (v) we store
information about the chunk of its corresponding position in Y (u) using the binary sequence
C(v): C(v) contains a 1 for every element Y (v)[i] and a 0 for every chunk in Y (u) (0 indicates
the end of a chunk). We store in UP(v)[i] the relative value of its corresponding position
in Y (u). That is, if the element of Y (u) that corresponds to Y (v)[i] is in the jth chunk of
Y (u), then it is at Y (u)[j · 2dk + UP(v)[i]]. In order to move from Y (v)[i] in a node v to the
corresponding position Y (u)[ik] in its dk-ancestor u, we compute the target chunk in Y (u),
j = select1(C(v), i)− i, and set ik = j · 2dk + UP(v)[i]. Here select1 finds the ith 1 in C(v),
and can be computed in constant time using o(|C(v)|) bits on top of C(v) [16, 28].

Since the tree contains h/dk−1 levels of t dk−1-nodes, and the UP (v) sequences of
dk−1-nodes v store numbers up to 2dk , the total space used by all UP (v) sequences for all
dk−1-nodes v is O(t · (h/dk−1) · dk) = O(t · h1+ε) bits, because dk/dk−1 = hε. For any such
node v, with dk-ancestor u, the total number of bits in C(v) is |Y (v)|+ |Y (u)|/2dk . There
are at most 2dk nodes v with the same dk-ancestor u. Hence, summing over all dk−1-nodes
v, all C(v)s use t(h/dk−1) + t(h/dk) = O(t(h/dk−1)) bits. These structures are stored for all
values k − 1 ∈ {0, . . . , d1/εe − 1}. Summing up, all sequences C(v) use O(t · h) bits. The
total space needed by auxiliary structures is then O(t · h1+ε) = O(n log1+ε/2 σ logε/2 n) bits,
dominated by the sequences UP (v). This can be written as O(n log σ logε n) bits.

To produce the auxiliary structures, we need essentially that each dk-node u distributes
its positions in the corresponding C(v) and UP (v) structures in each of the next hε− 1 levels
of dk−1-nodes below u. Precisely, there are 2l·dk−1 dk−1-nodes v at distance l · dk−1 from u,
and we use l · dk−1 bits from the coordinates in Y (u)[i] to choose the appropriate node v
where Y (u)[i] belongs. Doing this in sublinear time, however, requires some care.

CPM 2020

24:14 Text Indexing and Searching in Sublinear Time

Let us first consider the root u, the only dk-node for k = d1/εe. We consider all the
dk−1-nodes v (thus, u is their only dk-ancestor). These are nodes of height l · dk−1 for
l = 1, 2, . . . , hε − 1. In order to construct sequences UP(v) in all nodes v on level l · dk−1 for
a fixed l, we proceed as follows. The sequence Y [u] is divided into chunks, so that each chunk
contains 2h consecutive elements. The elements Y (u)[i] within each chunk are sorted with
key pairs (bits((hε − l) · dk−1, Y (u)[i]),pos(i, u)) where pos(i, u) = i mod 2h is the relative
position of Y (u)[i] in its chunk and bits(`, x) is the number that consists of the highest `
bits of x. We sort integer pairs in the chunk using a modification of the algorithm of Albers
and Hagerup [1, Thm. 1] that runs in O(2h h2

logn) time. Our modified algorithm works in the
same way as the second phase of their algorithm, but we merge words in O(1) time. Merging
can be implemented using a universal look-up table that uses O(

√
n) words of space and can

be initialized in O(
√
n log3 n) time.

We then traverse the chunks and generate the sequences UP(v) and C(v) for all the nodes
v on level l · dk−1. For each bit string of length l · dk−1, we say that v is the q-descendant
of u if the path from u to v is labeled with q. The sorted list of pairs for each chunk of u
is processed as follows. All the pairs (q,pos(i, u)) (i.e., q = bits((hε − l)dk−1, Y (u)[i])) are
consecutive after sorting, so we scan the list identifying the group for each value of q; let n(q)
be its number of pairs. Precisely, the points with value q must be stored at the q-descendant
v of u (the consecutive values of q correspond, left-to-right, to the nodes v on level l · dk−1).
For each group q, then, we identify the q-descendant v of u and append n(q) 1-bits and one
0-bit to C(v). We also append n(q) entries to UP(v) with the contents pos(i, u), in the same
order as they appear in the chunk of u.

We need time O(2h · h/ logn) to generate the pairs (bits(·),pos(·)) for the 2h coordinates
of each chunk, and to store the pairs in compact form, that is, O(log(n)/h) pairs per
word. We can then sort the chunks in time O(2h · h2/ logn). We can generate the parts of
sequences C(v) and UP(v) that correspond to a chunk for all nodes v on level l · dk−1 in
O(2h + 2h · h/ logn) = O(2h). Thus the total time needed to generate UP(v) and C(v) for
all nodes v on level l · dk−1 and some fixed l is O(t log σ), where we remind that t is the total
number of elements in the root node. The total time needed to construct UP(v) and C(v)
for all dk−1-nodes v is then O(th2+ε/ logn).

Now let u be an arbitrary dk-node. Using almost the same method as above, we can
produce sequences UP(v) and C(v) for all (dk−1)-nodes v, such that u is a dk-ancestor of v.
There are only two differences with the method above. First, we divide the sequence Y (u)
into chunks of size 2dk . Second, the sorting of elements in a chunk is not based on the highest
bits, but on a less significant chunk of bits: the pairs are now (bitval(Y (u)[i]),pos(i, u)). If
the bit representation of Y (u)[i] is b1b2 . . . bd, then bitval(Y (u)[i]) is the integer with bit
representation bf+1bf+2 . . . bf+dk

where f is the depth of the node u in the range tree. The
total time needed to produce C(v) and UP(v) is O(|Y (u)|dk/ logn + |Y (u)|d2

k/ logn), the
first term to create the pairs and the second to sort the chunks and produce C(v) and
UP(v). The number of different elements in all dk-nodes is O(t · h/dk), and each produces
the sequences of hε levels of dk−1-nodes. Hence the time needed to produce the sequences
for all dk−1-nodes is O((t · h)/dk · hε · d2

k/ logn) = O(t · h1+ε · dk/ logn) = O(t(h2/ logn)hε).
The complexity stays the same after adding up the 1/ε values of k: O(t · h2+ε/ logn) =
O((n/r)r2 log2 σ logε n/ logn) = O((n · r · log2 σ/ log1−ε n).

The data structure supporting select queries on C(v) can be built in O(|C(v)|/ logn)
time [33, Thm. 5]. This amounts to O(th/ logn) = O(n/ logσ n) further time.

J. I. Munro, G. Navarro, and Y. Nekrich 24:15

A.3 Predecessors and successors of x-coordinates
Now we describe how predecessor and successor queries on x-coordinates of points in Y (u)
can be answered for any node u in time O(log logn).

We divide the sequence Y (u) into blocks, so that each block contains logn points. We
keep the minimum x-coordinate from every block in a predecessor data structure Y b(u). In
order to find the predecessor of x in Y (u), we first find its predecessor x′′ in Y b(u); then we
search the block of x′′ for the predecessor of x in Y (u).

The predecessor data structure finds x′′ in O(log logn) time. We compute the x-coordinate
of any point in Y (u) in O(1) time as shown above. Hence the predecessor of x in a block is
found in O(log logn) time too, using binary search. We find the successor analogously.

The sampled predecessor/successor data structures store O((n/r)(r log σ)/ logn) =
O(n/ logσ n) elements over all the levels. An appropriate construction [20, Thm. 4.1] builds
them in linear time (O(n/ logσ n)) and space (O(n log σ) bits), once they are sorted.

CPM 2020

	Introduction
	Preliminaries and LCE Queries
	The General Approach
	Suffix Jumps
	Suffix Jumps for Short Patterns
	Construction
	Index for Small Patterns
	Conclusion
	Range Reporting
	Base data structure
	Translating the answers
	Predecessors and successors of x-coordinates

