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Abstract
In the NP-hard Equality-Free String Factorization problem, we are given a string S and ask
whether S can be partitioned into k factors that are pairwise distinct. We describe a randomized
algorithm for Equality-Free String Factorization with running time 2k ·kO(1) +O(n) improving
over previous algorithms with running time kO(k) + O(n) [Schmid, TCS 2016; Mincu and Popa,
Proc. SOFSEM 2020]. Our algorithm works for the generalization of Equality-Free String Fac-
torization where equality can be replaced by an arbitrary polynomial-time computable equivalence
relation on strings. We also consider two factorization problems to which this algorithm does not
apply, namely Prefix-Free String Factorization where we ask for a factorization of size k such
that no factor is a prefix of another factor and Substring-Free String Factorization where we
ask for a factorization of size k such that no factor is a substring of another factor. We show that
these two problems are NP-hard as well. Then, we show that Prefix-Free String Factorization
with the prefix-free relation is fixed-parameter tractable with respect to k by providing a polynomial
problem kernel. Finally, we show a generic ILP formulation for R-Free String Factorization
where R is an arbitrary relation on strings. This formulation improves over a previous one for
Equality-Free String Factorization in terms of the number of variables.
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1 Introduction

In collision-aware string partitioning problems we are given a string S and want to compute
a factorization of S, that is, a partition of S into substrings, called factors, such that no
two factors of the factorization collide. Herein, two strings collide if they are too similar,
for example if they are equal or if one is a prefix of the other [8]. These problems have
applications in synthetic biology, where one important task is to assemble a DNA string S
from some of its factors. To allow for an assembly of S, the factors from which S is built need
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17:2 String Factorizations Under Various Collision Constraints

to be sufficiently different from each other, as otherwise the assembly process will produce
some unwanted string S′ 6= S. The demand for pairwise inequality or pairwise prefix-freeness
of the factors is an abstraction of the demand of sufficiently large differences [8]. Such
demands are always fulfilled by the trivial factorization which consists of the single factor S
but in the application described above, we aim to find small factors. Thus, the task is to
find a factorization with the desired property such that each factor has bounded length [7,8].
Another closely related variant of collision-aware string partitioning arises in the context of
pattern matching with variables [11]. Here, the additional restriction is not on the length of
the factors but instead on their number.

Equality-Free String Factorization
Input: A string S of length n and an integer k.
Question: Is there a factorization of S into k pairwise different factors?

Equality-Free String Factorization is NP-hard [11]. Motivated by this result,
Schmid [16] initiated a parameterized complexity analysis with respect to parameters such as
the alphabet size of S or the factorization size k. For the latter parameter, an algorithm with
running time O((k

2+k
2 − 1)k + n) was proposed [16]. This algorithm relies on a combination

of the brute-force algorithm with running time O(nk) with the observation that instances
with n ≥ k2+k

2 −1 are yes-instances. The running time was later improved to O(kk/2 +n) [15].
We continue the study of Equality-Free String Factorization with respect to the nat-
ural parameter k. Moreover, we consider several extensions and variants of Equality-Free
String Factorization and study their classical and parameterized complexity.

Our Results. We present an improved randomized fixed-parameter algorithm for Equality-
Free String Factorization with a running time of 2k · nO(1). This algorithm relies on
a reduction to the problem of finding a path with k different colors in a directed graph G
and on an algebraic algorithm for finding such a path. This is one of the few applications
of algebraic algorithms to NP-hard string problems, another application was provided for
Maximum Duo String Partitioning [13]. Curiously, in both applications the first step is
a reduction to a path-finding problem in an auxiliary graph. Unlike previous approaches
which are tailored to Equality-Free String Factorization since they use the fact that
strings with different length are unequal, our algorithm works for an arbitrary equivalence
relation R over strings and thus for further notions of collision. To formulate our result
precisely, we introduce the following generic problem.

R-Free String Factorization
Input: A string S of length n and an integer k.
Question: Is there a factorization (w1, w2, . . . , wk) of S such that wi 6R wj for
all i 6= j?

I Theorem 1.1. Let R be a polynomial-time computable equivalence relation over the set of
all strings. Then, R-Free String Factorization can be solved by a randomized algorithm
with one-sided error and running time 2k · nO(1).

Two natural examples for such an equivalence relation are to consider two strings as similar
when they use the same set of letters, we denote this relation by =Σ, and to consider
two strings w and w′ as similar when they have the same Parikh vector, we denote this
relation by =Σ,#. The Parikh vector of a string w over alphabet Σ = {a1, . . . , aσ} is the
length-σ vector pw where pw[i] is the number of occurrences of ai in w. This notion of
equivalence is used in Jumbled Pattern Matching [6]. Since =Σ and =Σ,# are equivalence
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relations, Theorem 1.1 directly implies an FPT algorithm for them. It is a priori not clear,
however, whether R-Free String Factorization is even NP-hard for these particular
special cases of R. To show NP-hardness of these two special cases, we revisit the NP-hardness
proof for Equality-Free String Factorization [11].

Motivated by the different notions of string collision that have been formulated previ-
ously [7, 8] we then consider three cases of R that are not equivalence relations: In the prefix
relation 4p we have w 4p w′ if w is a prefix of w′, in the suffix relation 4s we have w 4s w′

if w is a suffix of w′, and in the substring relation 4 we have w 4 w′ if w is a substring
of w′. By slightly adapting the known hardness reduction for Equality-Free String
Factorization [11], we obtain the following.

I Theorem 1.2. For each R ∈ {=Σ,=Σ,#,4p,4s,4}, R-Free String Factorization is
NP-complete and cannot be solved in time 2o(n) unless the ETH fails.

Our second main technical result is a problem kernel for Prefix-Free String Factor-
ization, that is, for the special case where R is the prefix relation 4p. This kernel proves
that Prefix-Free String Factorization is fixed-parameter tractable for the parameter k
despite the fact that Theorem 1.1 does not apply. The main idea of the kernelization is to
shrink highly repetitive regions of the string S. Moreover, this result also implies that Suffix-
Free String Factorization, which is the special case of R-Free String Factorization
where R =4s, is fixed-parameter tractable for the parameter k. Finally, as a side result we
obtain an ILP formulation with O(n) variables for R-Free String Factorization for all
relations R that can be computed in polynomial time. This improves, in terms of the number
of variables, upon a previous formulation for Equality-Free String Factorization [15].

Related Work. Fernau et al. [11] introduced the problem of maximizing the number of
factors and showed that it is NP-hard. The NP-hardness reduction also implies that, assuming
the ETH, Equality-Free String Factorization cannot be solved in 2o(n) time (this uses
the fact that 3D Matching cannot be solved in 2o(q) time, where q is the instance size [12]).
Mincu and Popa [15] introduced a version of Equality-Free String Factorization in
which one allows gaps between the factors. That is, the aim is to find k disjoint factors of S
such that no two are equal. A further related NP-hard factorization problem is Diverse
Palindromic Factorization, where we ask whether a given string has an equality-free
factorization in which each factor is a palindrome [1].

Preliminaries. For i ∈ N, we let [i] denote the set {1, . . . , i}. For i ∈ N and j ∈ N,
where i ≤ j, we let [i, j] denote the set {i, . . . , j}.

The length of a string S is denoted by |S|. For a string S, we let S[i], 1 ≤ i ≤ |S|, denote
the character at position i and S[i, j], 1 ≤ i ≤ j ≤ |S|, denote the substring starting at
position i and ending at position j. Given a string S = S[1]S[2] . . . S[|S|], we define S1 := S

and Si := Si−1S for i > n. Moreover, we let←−S := S[|S|]S[|S|−1] . . . S[1] denote the reversed
string of S. A period of S is an integer p such that S[i] = S[i+ p] for all i ∈ [|S| − p]. The
string S[1, p] is also called period in this case. If a string S can be written as w′wiw′′ for
some i ≥ 1 and has period |w|, then we call w an internal period of S. A border of a string S
is a suffix of S that is also a prefix of S. If a string has a border of length b, then it has a
period of length |S| − b [9]. Two substrings S[i, j] and S[i′, j′] overlap if [i, j] ∩ [i′, j′] 6= ∅,
otherwise they are disjoint. A set P of substrings of a string S is a packing if all substrings
in P are disjoint. A set S of strings is prefix-free if no string in S is a prefix of another
string in S. To avoid confusion, we will use the term factor only in combination with a
factorization and not as a synonym of substring.

CPM 2020



17:4 String Factorizations Under Various Collision Constraints

We consider directed graphs D = (V,A) where V is a set of vertices and A ⊆ V × V is
a set of directed edges called arcs. A walk of length k in a directed graph D = (V,A) is a
k-tuple (v1, . . . , vk) such that vi ∈ V for each i ∈ [k] and (vi, vi+1) ∈ A for each i ∈ [k − 1].
A walk (v1, . . . , vk) is a (simple) path if vi 6= vj for all i 6= j. A walk (v1, . . . , vk) is a cycle
whenever v1 = vk.

For more details on parameterized algorithms and the Exponential Time Hypothesis
(ETH), we refer the reader to the standard monographs. For an overview of the parameterized
complexity of string problems, refer to the survey of Bulteau et al. [5]. For an introduction
to algebraic algorithms including evaluation of polynomials over finite fields, refer to the
monograph of Cygan et al. [10].

Due to lack of space, several proofs are deferred to the long version of this paper.

Lower-Bounding the Factorization Size. In the definition of R-Free String Factoriz-
ation we ask for a factorization into exactly k factors. An equally natural question would
be to ask for a factorization into at least k factors. It is known that for Equality-Free
String Factorization these two questions are equivalent: by merging a largest factor with
a neighboring factor, any equality-free factorization of size k′ can be transformed into one of
size k′ − 1. Such a property is also possible for the relations R under consideration in this
work: For =Σ, merge a factor with a maximal set of characters with one of its neighboring
factors. For =Σ,#, merge the factor with the lexicographically largest Parikh vector with one
of its neighboring factors. For 4p, we make use of the following observation which will also
be useful in the kernelization algorithm.

I Lemma 1.3. Let S be a prefix-free set of strings over an alphabet Σ and let u ∈ S be any
string of S and let v ∈ Σ∗. Then the set S \ {u} ∪ {uv} is prefix-free.

Proof. The string uv is not a prefix of any other string in S since the string u is not a prefix
of any other string in S. Moreover, no other string w is a prefix of uv: Otherwise, if |w| ≤ |u|,
then w is a prefix of u and if |w| > u, then u is a prefix of w. In both cases, we have a
contradiction to the fact that S is prefix-free. J

Lemma 1.3 can now be used to argue that asking for a prefix-factorization of size k is
equivalent to asking for one of size at least k: Given a prefix-free factorization (f1, . . . , fk′)
where k′ > 1, merge f1 and f2 into one factor. By Lemma 1.3 the factorization (f1f2, . . . , fk′)
is prefix-free and has size size k′ − 1.

2 An Improved Parameterized Algorithm

A Reduction to a Rainbow Path Problem. The first step in the improved algorithm is to
reduce R-Free String Factorization to the following path problem.

Rainbow-(s, t)-Path
Input: A directed graph D = (V,A), two vertices s ∈ V and t ∈ V , and a vertex-
coloring c : V → {1, . . . , |V |}.
Question: Does G contain a rainbow (s, t)-path of length k, that is, a path on k

vertices from s to t such that all vertices on this path have pairwise different colors?

I Lemma 2.1. There is a parameterized polynomial-time reduction from R-Free String
Factorization parameterized by k to Rainbow-(s, t)-Path parameterized by k. Instances
with parameter value k are mapped to instances with parameter value k + 2 and the graph
produced by the reduction is a DAG.
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Proof. For each substring S[i, j], create a vertex vi,j . For each vertex vi,j add an arc to each
vertex vj+1,q, j + 1 ≤ q ≤ n. In other words, arcs are added between vertices that represent
neighboring substrings. For each equivalence class C of R that has at least one representative
in the set of substrings of S, we introduce one color cC . Each vertex vi,j is colored with the
color of its equivalence class c[vi,j ]. Finally, we add one vertex s with a unique color cs and a
vertex t with a unique color ct and the arcs (s, v1,j), 1 ≤ j ≤ n, and (vp,n, t), 1 ≤ p ≤ n.

The correctness of the reduction can be seen as follows. If S has a size-k factorization F
such that for all factors w and w′ of F we have w 6R w′, then D has a rainbow (s, t)-path of
length k+2: The vertices corresponding to the factors of F form a path of length k and s has
an arc to the first vertex of the path and the last vertex of the path has an arc to t. Moreover,
the vertices on the path have pairwise different colors since each color corresponds to an
equivalence class of R. Conversely, any (s, t)-path in D corresponds to a factorization of S.
Moreover, if the vertices of the factorization have a different color, then the corresponding
factors are in different equivalence classes and thus not in relation with respect to R. If the
length of the path is k + 2, then the number of factors in the factorization is k. J

Observe that one approach to obtain a parameterized algorithm for Rainbow-(s, t)-Path
parameterized by k is via color coding: randomly map the O(n2) colors in D to a set
of k labels and then find an (s, t)-path with k different labels, if it exists, via dynamic
programming. Using standard derandomization techniques [10], this algorithm can be
derandomized with a slight running time overhead, resulting in a deterministic algorithm
with running time (2e)k · kO(log k) · nO(1), improving over the previous fastest algorithm of
Mincu and Popa [15]. We omit the description of this algorithm in favor of a substantially
faster randomized algorithm.

Detecting Rainbow (s, t)-Paths. To solve Rainbow-(s, t)-Path, we reduce it to the
problem of testing whether a polynomial can be evaluated to zero in some finite field. This
technique has led to the currently fastest randomized algorithms for several longest path
problems parameterized by the path length [2, 3]. We adapt the technique to handle the
constraint that the path should be rainbow. Observe that there is a previous algorithm
for Rainbow-(s, t)-Path on undirected graphs [14] which uses the number of colors as
parameter. Since in our application the number of colors can be superlinear in n, we may
not use this algorithm to obtain a fixed-parameter algorithm for Equality-Free String
Factorization.

The algorithm to detect rainbow (s, t)-paths is a slight adaption of the algorithm for
Longest Path in directed graphs [10]: Associate a set of monomials (that is, a polynomial
with only one summand) with every walk of length k of the graph and then consider the
walk polynomial which is the sum of the walk monomials. More precisely, we will introduce
one monomial MW,` for each walk W = (v1, . . . , vk) and each bijective labeling ` : [k]→ [k].
The labeling ` will assign a label `(i) to the ith color occurring in the walk and is the main
trick to establish the canceling property for walks that are not rainbow. If we ensure that
nonsimple walks cancel out, then the polynomial will not be identically zero if and only if
there is at least one rainbow path of length k.

For each edge (u, v) we introduce a variable xu,v which represents that the edge (u, v)
is traversed in a walk. For each color c of G, we introduce k variables yc,i, i ∈ [k], each
representing that a vertex with color c receives the label i. The monomial associated with
the pair (W, `) is now

MW,`(x,y) :=
k−1∏
i=1

xvi,vi+1

k∏
i=1

yc(vi),`(i).

CPM 2020



17:6 String Factorizations Under Various Collision Constraints

To ensure that the path starts with s and ends in t, we consider only walks that start
in s and end in t. Accordingly, the polynomial is defined as

P (x,y) :=
∑

walk W=(s=v1,...,vk=t)

∑
bijective `:[k]→[k]

MW,`(x,y).

As mentioned above, the idea of the construction is that the monomials for walks which have
some label twice will cancel out. To enable this, the polynomial is evaluated over a field of
characteristic 2, that is, addition of some value to itself will give 0. Thus, the walks that
are not paths will cancel out if their monomials can be partitioned into pairs such that each
pair will have the same variables. Observe that the polynomial will never be constructed
explicitly but instead evaluated via dynamic programming.

I Lemma 2.2. P (x,y) is not identically zero in a finite field with characteristic 2 if and
only if there is a rainbow (s, t)-path of length k in G.

Proof. Consider an (s, t)-walk W = (s = v1, . . . , vk = t) that is not rainbow and any
monomial MW,`. Since W is not rainbow, there are two vertices vi and vj such that c(vi) =
c(vj). Take the lexicographically smallest pair of indices i and j for which this is true. Consider
the labeling `i↔j defined as follows: `i↔j(i) := `(j), `i↔j(j) := `(i), and `i↔j(q) := `(q) for
all q ∈ [k] \ {i, j}. In other words, `i↔j is obtained by swapping the ith and jth elements
in the permutation corresponding to `. The monomial MW,`i↔j

is the same as MW,` and,
hence,MW,`+MW,`i↔j is identically zero. Moreover, since (`i↔j)i↔j = `, we have a partition
of all monomials corresponding to walks that are not rainbow paths into pairs {`, `i↔j} such
that for each pair, the variables of the monomial are the same. Thus, these monomials cancel
out and P can be written as the sum over all walks that are in fact rainbow paths.

It remains to show that the monomials that correspond to rainbow (s, t)-paths do not
cancel out, by showing that they have pairwise different variable sets. This is obvious for
two monomials that correspond to different walks. Thus, consider a rainbow (s, t)-path W
and two monomials MW,` and MW,`′ where ` and `′ are two different labelings. Moreover,
choose i ∈ [k] such that `(i) 6= `′(i). Then, MW,` and MW,`′ differ in at least two variables:
the variable yc(vi),`(i) occurs inMW,`′ and not inMW,`′ : First, yc(vi),`′(i) is a different variable
since `(i) 6= `′(i) and each other y-variable in MW,`′ is of the form yc′,q for some c′ 6= c(vi)
since W is rainbow. J

The polynomial P (x,y) can be efficiently evaluated via dynamic programming.

I Lemma 2.3. The polynomial P (x,y) can be evaluated in 2k · kO(1) · |A| time over the
field GF(2dlog 4ke).

Proof. We follow the exposition of Cygan et al. [10] and present the details only for the
sake of completeness. Fix a walk W , then the sum of the monomials MW,` over all bijective
labelings ` can be written as∑

surjective `:[k]→[k]

MW,` =
∑

`∈
⋂

i∈[k]
Ai

MW,`(x,y)

where Ai is the set of labelings such that `(j) = i for some j ∈ [k]. Now, let U denote the
set of all mappings ` : [k]→ [k]. Using the inclusion–exclusion principle, the latter term can
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be rewritten as.∑
`∈
⋂

i∈[k]
Ai

MW,`(x,y) =
∑
X⊆[k]

(−1)|X| ·
∑

`∈
⋂

i∈X
U\Ai

MW,`(x,y)

=
∑
X⊆[k]

∑
`∈
⋂

i∈X
U\Ai

MW,`(x,y)

=
∑
X⊆[k]

∑
`:[k]→[k]\X

MW,`(x,y)

=
∑
X⊆[k]

∑
`:[k]→X

MW,`(x,y).

The equalities follow from the inclusion–exclusion principle, the fact that the field has
characteristic 2, the fact that

⋂
i∈X U \Ai is the set of all labelings ` : [k]→ [k] that do not

map to any element in X, and a replacement of X by its complement U \X in the sum,
respectively.

Thus, we have

P (x,y) =
∑

walk W=(s=v1,...,vk=t)

∑
bijective `:[k]→[k]

MW,`(x,y)

=
∑

walk W=(s=v1,...,vk=t)

∑
X⊆[k]

∑
`:[k]→X

MW,`(x,y)

=
∑
X⊆[k]

∑
walk W=(s=v1,...,vk=t)

∑
`:[k]→X

MW,`(x,y)

It is thus sufficient to show that
∑
`:[k]→X MW,`(x,y) can be computed in kO(1)·|A| time.

This can be done by dynamic programming, building up the domain of the labeling ` from [1]
to [k]. More precisely, one may fill a table with entries of the type TX [v, d] where v is a
vertex of D and d ∈ [k] such that

TX [v, d] :=
∑

walk W=(v=v1,...,vd=t)

∑
`:[d]→X

MW,`(x,y)

as follows. For each the vertex t, T [t, 1] = yc(t),i as the walk (t) does not contain any edges,
and we may consider all possible labels for yc(t),`. For d > 1, we have

TX [v, d] =
∑
i∈X

yc(v),i
∑

(v,w)∈A

xv,w · T [w, d− 1]

since this sum considers all possibilities for the label of c(v), all outgoing edges from v,
and multiplies each with the number of possibilities to continue the walk. Here, we exploit
that T [w, d] is not just the sum over all walks and all labelings ` : [d] → X but due to
symmetry, the sum over all walks and all labelings ` : X ′ → X for every X ′ ⊆ X such
that |X ′| = d.

CPM 2020
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The value of P (x,y) can thus be computed using O(2k · k|A|) field operations since

P (x,y) =
∑
X⊆[k]

∑
walk W=(s=v1,...,vk=t)

∑
`:[k]→X

MW,`(x,y) (1)

=
∑
X⊆[k]

TX [s, k]. (2)

Since the order of the field is 2dlog 4ke ≤ 8k, each field operation can be performed in
kO(1) time. J

Now we obtain a randomized algorithm for deciding whether D contains a rainbow
(s, t)-path by evaluating P at a random vector (x,y) of elements of the field GF(2dlog 4ke).
If P (x,y) = 0, then the algorithm returns that D has no rainbow (s, t)-path of length k,
otherwise it returns that D contains such a path. If the graph contains no rainbow (s, t)-path
of length k, then P is identically zero and the algorithm answers correctly. Otherwise, if the
graph contains a rainbow (s, t)-path of length k, then P is not identically zero. Since the
maximum degree of P is at most 2k − 1 and since the field has order at least 4k, the
Schwartz-Zippel Lemma now implies that (x,y) is a root with probability at most 1/2. Thus,
the error probability is at most 1/2. By repeating this procedure log(1/ε) times, we may
achieve an error probability of at most ε for any ε > 0.

This algorithm in combination with the reduction from R-Free String Factorization
to Rainbow-(s, t)-Path gives Theorem 1.1. Observe that Theorem 1.1 only refers to
the decision version of the problem but in the applications we may want to output the
factorization if it exists. This can be done via applying the framework of Björklund et al. [4]
which only relies on two facts: The witness which we wish to extract has size k and the
decision algorithm has one-sided error; the running time overhead is a factor of O(k logn).

As a final remark, in our framework of solving R-Free String Factorization via
reduction to Rainbow-(s, t)-Path, we may put any further polynomial-time computable
restriction on the factors: the only additional step is to add only those vertices that fulfill
this restriction to the graph D. For example, we may demand that every factor has length
at least q and at most r for some integers q and r, or we may demand that it contains
every letter of the alphabet. Thus, we may apply the algorithm also when we search for
length-bounded factorizations [8] when the parameter is the factorization size k. We can
also use this framework to solve Diverse Palindromic Factorization where each factor
should be a palindrome [1].

I Corollary 2.4. There is a randomized algorithm with one-sided error that decides in
time 2k · nO(1) whether a string has a palindromic factorization with exactly k factors.

3 Further String Relations

Hardness Results. First, we prove Theorem 1.2 . That is, we show that for each R ∈ {=Σ
,=Σ,#,4p,4s,4}, R-Free String Factorization is NP-complete and cannot be solved
in time 2o(n) unless the ETH fails.

First, we show this result for R ∈ {4p,4}.

I Lemma 3.1. For each R ∈ {4p,4}, R-Free String Factorization is NP-complete
and cannot be solved in time 2o(n) unless the ETH fails.
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Observe that the hardness result for R =4p also implies hardness for R =4s by the
following simple reduction: Let (S, k) be an instance of R-Free String Factorization
for R =4p. Then, the instance (←−S , k) is an equivalent instance for R =4s. The equivalence
can be seen as follows: (f1, f2, . . . , fk) is a prefix-free string factorization of S if and only
if (
←−
fk, . . . ,

←−
f2,
←−
f1) is a suffix-free string factorization of ←−S . Hence, the following holds.

I Lemma 3.2. If R =4s, then R-Free String Factorization is NP-complete and cannot
be solved in time 2o(n) unless the ETH fails.

Next, we show NP-hardness for each R ∈ {=Σ,=Σ,#}; altogether this shows Theorem 1.2.

I Lemma 3.3. For each R ∈ {=Σ,=Σ,#}, R-Free String Factorization is NP-complete
and cannot be solved in time 2o(n) unless the ETH fails.

Prefix-Free String Factorization. In this paragraph we provide a problem kernel for Prefix-
Free String Factorization parameterized by the number k of factors. Recall that Prefix-
Free String Factorization is the special case of R-Free String Factorization,
where R =4p. For Equality-Free String Factorization, it is very easy to obtain a
problem kernel: since factors with different length are trivially unequal, one may simply
choose strings of increasing length starting with length 1. This implies that instances
with n ≥ k2+k

2 are yes-instances and thus we have a quadratic kernel for Equality-Free
String Factorization. For Prefix-Free String Factorization, this argument does
not hold. Consider for example the string an. The maximum prefix-free factorization has
size one because of the periodicity of an.

To describe the kernelization we first need to establish some notation. Let (S, k) be an
instance of Prefix-Free String Factorization. For any string w, a substring S[i, j]
of S is called w-periodic if S[i, j] = wt for some integer t ≥ 0 and if |w| is the shortest period
of S[i, j]. Moreover, S[i, j] is called maximal w-periodic if there is no substring S[i′, j′] = wt

′

with [i, j] ( [i′, j′]. We define R(w) := {t | wt is a maximal w-periodic substring of S}. The
central rule of this kernelization reduces the length of maximal w-periodic substrings of S.
For fixed w, the maximal w-periodic substrings of S are uniquely defined since each begins
with w and |w| is the shortest period. Hence, for each w we can find all maximal w-periodic
substrings in linear time. We first show that we may assume that for every w the size of R(w)
is bounded, which we need to give a bound for the kernel size.

I Lemma 3.4. Let (S, k) be an instance of Prefix-Free String Factorization. If there
exists a string w such that |R(w)| ≥ 2k + 3, then (S, k) is a yes-instance.

Proof. Let w be a substring of S such that |R(w)| ≥ 2k + 3. Then, there are dis-
tinct t1, t2, . . . , t2k+2 ∈ R(w) such that ti ≥ 2 for each i ∈ [2k + 1]. We show that we
can use maximal w-periodic occurrences of the wti to find at least k prefix free-factors. To
this end, let X = {(p1, q1), . . . , (p2k+2, q2k+2)} be a set containing the start positions pi and
the end positions qi of one maximal w-periodic occurrence of wti for each i ∈ {1, . . . , 2k+ 2}.
By the definition of maximal w-periodic substrings no element S[pi, qi] includes another
element S[pj , qj ] in S. Hence, pi 6= pj if i 6= j. Without loss of generality we assume
that p1 < p2 < · · · < p2k+2.

Note that in S two strings S[pi, qi] and S[pj , qj ] with i 6= j overlap with less than |w| char-
acters, since otherwise this contradicts the fact that these strings are maximal w-periodic.
To obtain the prefix-free factors from X, we first show the following.
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B Claim 3.5. In S, every string S[pi, qi] overlaps with at most two other strings S[pj , qj ],
and S[pt, qt].

Proof. Let S[pi, qi] overlap with S[pj , qj ], and S[pt, qt]. To prove the claim we show that this
implies that S[pj , qj ] and S[pt, qt] do not overlap in S.

Without loss of generality assume pj < pi < pt. Since S[pi, qi] overlaps with S[pj , qj ]
and S[pt, qt], and do not overlap in at least |w| characters as discussed above, we have 0 ≤
qj − pi < |w| − 1 and 0 ≤ qi − pt < |w| − 1. Since t2 ≥ 2 by the definition of X it also
holds that qi − pi ≥ 2|w| − 1 and therefore qi − pi > qj − pi + qi − pt. Consequently it holds
that qj < pt and therefore S[pj , qj ] and S[pt, qt] do not overlap in S. C

We next use Claim 3.5 to define the factors. We define k + 1 disjoint substrings of S at
follows: f0 := S[1, p2 − 1], fi := S[p2i+1, p2i+3 − 1] for all i ∈ [k − 1], and fk := S[p2k+1, |S|].
Claim 3.5 guarantees that wt2i+1 is a prefix of fi if i ≥ 1. Then, for every distinct f, f ′ ∈
{f1, . . . , fk}, the substring f is not a prefix of f ′ since f and f ′ start with substrings of
period |w| that have distinct lengths. Next, consider the following cases for f0.

Case 1: There exists no fi with i ≥ 1 such that f0 is a prefix of fi or vice versa. Then,
(f0, . . . , fk) is a prefix-free string factorization of size k + 1 and nothing more needs to be
shown.

Case 2: There exists some fi with i ≥ 1 such that f0 is a prefix of fi or vice versa.
Then, f0 starts with a maximal w-periodic substring wt2i+1 . Hence, for every j 6= i it holds
that f0 is not a prefix of fj and vice versa. We then discard fi−1 and fi and instead consider
their concatenation fi−1fi. We end up with a prefix-free factorization of S containing at
least k factors. Hence, (S, k) is a yes-instance. J

For the rest of this section, we assume that, given an instance (S, k), we have |R(w)| ≤
2k + 3 for each substring w of S since otherwise (S, k) is a trivial yes-instance due to
Lemma 3.4. The main idea of the kernelization is thus to reduce the number of maximum
repetitions of every substring of the input string S.

I Rule 3.1. Let w be a substring in S such that S has
1. at least one maximal w-periodic substring S[q, r] = wd with d ≥ 2k2 + 2 and
2. for each ψ ∈ [k2] no maximal w-periodic substring S[q′, r′] = wd−ψ.
Then, for each p ≥ d, replace each maximal w-periodic substring S[q, r] = wp by wp−1.

The rule can be applied in polynomial time by checking for each substring w of S whether it
fulfills the conditions of the rule. The correctness proof of the rule is quite technical and due
to lack of space deferred to the long version. The proof idea is as follows. When the rule
shortens a maximal w-periodic substring wp, one of the k factors that overlaps with this factor
must be shortened by one occurrence of w. This may, however, lead to a factorization that is
not prefix-free. To reestablish prefix-freeness, we may need to remove w from another factor f
that overlaps some other maximal w-periodic substring wp′ . Since wp′ is not necessarily
shortened by the rule, we must add w to some other factor f ′ that overlaps wp′ in order
to reestablish that we have a factorization. Due to Lemma 1.3, we may add w safely to
the factor f ′ that starts before wp′ and ends either right before the first position of wp′ or
overlaps with wp′ .

Let w be a substring of S. According to Lemma 3.4, there are at most 2k + 2 different
repetition numbers in R(w). Let d ≥ 2k2+1 be a repetition number of w such that for each ψ ∈
[k2] we have d−ψ /∈ R(w). Then Reduction Rule 3.1 reduces each repetition number p ≥ d by
1. Hence, the largest repetition number of w is at most (2k2 +1)+k2 · (2k+2) = 2k3 +4k2 +1
if Reduction Rule 3.1 has been applied exhaustively.



N. Grüttemeier, C. Komusiewicz, N. Morawietz, and F. Sommer 17:11

I Corollary 3.6. Let S be an instance to which Reduction Rule 3.1 has been applied ex-
haustively and let w be a substring of S. Then the maximal repetition number of w in S

is 2k3 + 4k2 + 1.

We now show that bounding the number of repetition numbers and their size for all substrings
of S results in an instance that is a yes-instance if |S| is too big. This implies the problem
kernel.

I Theorem 3.7. Prefix-Free String Factorization has a problem kernel of size O(k10).

Proof. Let (S, k) be an instance of Prefix-Free String Factorization that is reduced
exhaustively with respect to Rule 3.1. We show that if |S| > 12k(k + 1)(2k4 + 4k3 + 2k)2,
then (S, k) is a yes-instance.

Let (S, k) be a no-instance. Let d(w) be the maximum size of disjoint occurrences of
a substring w in S. To show |S| ≤ 12k(k + 1)(2k4 + 4k3 + 2k)2 we prove that for every
substring with length 2k4 + 4k3 + 2k we have d(w) ≤ 2k. Afterwards, we use this upper
bound on the number of occurrences to give an upper bound for the size of S.

Let w be a substring of S such that |w| = 2k4 + 4k3 + 2k. Moreover, let P :=
{S[p1, q1], S[p2, q2], . . . , S[p|P|, q|P|]} with p1 < q1 < p2 < · · · < p|P| < q|P| be a maximum
packing of occurrences of w in S. Without loss of generality, we also assume that S[p1, q1] is
the first occurrence of w in S, since otherwise, we can replace p1 and q1 by the start and
endpoint of the first occurrence. Assume towards a contradiction that |P| ≥ 2k + 1. We
define the subpacking

P ′ := {S[p2i+1, q2i+1] | i ∈ [0, k]} ⊆ P

containing k+1 elements from P . For every i ∈ {1, . . . , k−1} we define the substring V2i+1 :=
S[p2i+1 − k, p2i+1 − 1] which contains the last k characters before p2i+1. Since |w| =
2k4 + 4k3 + 2k and P ′ contains every second element of P it holds that no V2i+1 overlaps
with S[p2i−1, q2i−1] ∈ P ′.

We first show that no occurrence of w starts in some V2i+1. Assume towards a contradiction
that there is one such occurrence starting in some V2i+1. Then, since |w| = 2k4 + 4k3 + 2k
and |V2i+1| = k, the string w has a border of size at least 2k4 + 4k3 + k. Hence, w has
a period of length at most k [9] and therefore there exists some z such that there is a
maximum z-periodic substring zp with p ≥ 2k3 + 4k2 + 2 of S. Together with Corollary 3.6,
this contradicts the fact that (S, k) is reduced exhaustively regarding Rule 3.1. Hence, we
can assume that no occurrence of w starts in some V2i+1. In the following case distinction
we consider the possible values of p1 and show that in each case we can define a prefix-free
string factorization of size at least k for S, which then contradicts the fact that (S, k) is a
no-instance.

Case 1: p1 ≥ k + 1. We define the factors fstart := S[1, p3 − 2], fi := S[p2i+1 − i, p2i+3 −
(i + 2)] for all i ∈ [k − 1], and fend := S[p2k+1 − k, |S|]. Note that these k + 1 factors
cover all of S and w is a substring of each such factor. We next show that none of these
factors is the prefix of another factor. To this end, we consider the first occurrence of w
in all factors.
Since p1 ≥ k+1 and we assumed that S[p1, q1] is the first occurrence of w in S we conclude
that in fstart there is no occurrence of w starting in the first k positions of fstart. Next,
the fact that no occurrence of w starts in some V2i+1 implies that the first occurrence
of w starts at position i+ 1 of each fi, i ∈ [k − 1]. Moreover, in fend, the first occurrence
of w starts at position k + 1 by the same argument. Since the first occurrence of w starts
at distinct positions in each of the factors, no factor is a prefix of one of the other factors.
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Hence, S has a prefix-free factorization with k+1 factors contradicting the fact that (S, k)
is a no-instance.

Case 2: p1 ∈ {1, 2}. We define the factors fstart := S[1, p5 − 3], fi := S[p2i+1 − i, p2i+3 −
(i+ 2)] for all i ∈ [2, k − 1], and fend := S[p2k+1 − k, |S|]. Intuitively, these are the k + 1
factors we defined in Case 1, but we concatenated the first two factors. We obtain k

factors that cover all of S and w is a substring of each of the factors. Again we prove
prefix-freeness by showing that in each pair of factor the first occurrence of w starts at
different positions.
In fstart, the first occurrence of w starts at position 1 or 2 since p1 ∈ {1, 2}. Since no
occurrence of w starts in some V2i+1, the first occurrence of w starts at position i + 1
in each fi and at position k + 1 in fend. Observe that since i ∈ [2, . . . , k − 2] it holds
that i+ 1 ≥ 3. Again, this contradicts the fact that (S, k) is a no-instance.

Case 3: p1 ∈ [3, k − 1]. We define the factors fstart := S[1, p3−2], fi := S[p2i+1−i, p2i+3−
(i+ 2)] for all i ∈ [k− 1] \ {p1− 2, p1− 1}, fmerge := S[p2p1−3− (p1− 2), p2p1+1− (p1 + 1)],
and fend := S[p2k+1 − k, |S|]. Again, these are k factors covering S containing w as
substring. It remains to check for each factor, when the first occurrence of w starts.
In fstart, the first occurrence of w starts at p1. In each fi the first occurrence of i starts
at position i + 1. Note that i + 1 6∈ {p1, p1 − 1}. In fmerge, the first occurrence of w
starts at position p1− 1. Finally, in fend, the first occurrence of w starts at position k+ 1.
Again, this contradicts the fact that (S, k) is a no-instance.

Case 4: p1 = k. We define fstart := S[1, p3 − 2], fi := S[p2i+1 − i, p2i+3 − (i + 2)] for
all i ∈ [k−3], fi := S[p2(k−2)+1−(k−2), p2(k−2)+3−(k−1)], and fend := S[p2k−1−k, |S|].
Again, these are k factors covering S containing w as substring. It remains to check for
each factor, when the first occurrence of w starts.
The first occurrence of w in fstart starts in position k. The first occurrence of w in each fi
starts in position i+ 1 and the first occurrence of w in fend starts at position k+ 1. Again,
this contradicts the fact that (S, k) is a no-instance.

Since all cases are contradictory we know that every substring of size 2k4 + 4k3 + 2k in S
has at most 2k disjoint occurrences in S. We next use this fact to prove |S| ≤ 12k(k+1)(2k4 +
4k3 + 2k)2. To this end, let X := {w | w is a substring of S and |w| = 2k4 + 4k3 + 2k}.
We first show that |X| ≤ 2(k + 1)(2k4 + 4k3 + 2k). Assume towards a contradiction
that |X| > 2(k + 1)(2k4 + 4k3 + 2k). Let w ∈ X. Observe that, since |w| = 2k4 + 4k3 + 2k,
every occurrence of w in S overlaps with at most 2(2k4 + 4k3 + 2k − 1) occurrences of
other strings in X. Then, since |X| > 2(k + 1)(2k4 + 4k3 + 2k), there exists a packing
of k + 1 elements of X. Let X := {w1, . . . , wk+1} be such packing and for each i ∈ [k + 1],
let pi be the position in S where wi starts. We then define k + 1 disjoint substrings of S
as follows: f1 := S[1, p2 − 1], fi := S[pi, pi+1 − 1] for i = 2, . . . , k, and fk+1 := S[pk, |S|].
Clearly, for every distinct f, f ′ ∈ {f2, f3, . . . fk, fk+1}, the substring f is not a prefix of f ′
since f and f ′ start with distinct words of length 2k4 + 4k3 + 2k. Consider f1 and fi
for i > 1. If f1 is a prefix of fi or vice versa, we discard fi−1 and fi and instead consider their
concatenation fi−1fi. Since |f1| ≥ 2k4 + 4k3 + 2k we end up with a prefix-free factorization
of S containing at least k factors which contradicts the fact that (S, k) is a no-instance.
Hence, |X| ≤ 2(k + 1)(2k4 + 4k3 + 2k).

We can now give a bound for |S|. Recall that d(w) is the maximum size of disjoint
occurrences of w in S and that d(w) ∈ [2k] for every w ∈ X. Given a fixed w ∈ X, for
each of the d(w) disjoint occurrences S[j, j + |w| − 1] of w in S there can be occurrences
of w in S[j − |w|, j + 2|w|] that overlap with S[j, j + |w| − 1]. Hence, for every w ∈ X,
the number of symbols of S in occurrences of w is at most 3|w| · d(w). It then holds
that |S| ≤

∑
w∈X 3|w| · d(w) ≤ 12k(k + 1)(2k4 + 4k3 + 2k)2 ∈ O(k10). J
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The above problem kernelization for Prefix-Free String Factorization also implies
a problem kernelization for Suffix-Free String Factorization. To compute a problem
kernel for an instance (S, k), we first apply the problem kernelization for Prefix-Free
String Factorization on (←−S , k). Reversing the string of the resulting instance once more
gives an instance of the original problem of size O(k10).

I Corollary 3.8. Suffix-Free String Factorization has a problem kernel of size O(k10).

4 An ILP formulation with O(n) variables

As a side result, we provide an ILP formulation which is better than a previous one in
terms of the number of variables. Mincu and Popa [15] described a 0/1-ILP with O(n

√
n)

variables based on the following idea: Introduce a binary variable xi,j for each candidate
factor S[i, j] of S such that xi,j = 1 precisely if the factor S[i, j] is one of the factors of the
factorization. The goal is to maximize

∑
1≤i≤j≤n xi,j . The constraints of the ILP ensure that

no two equal factors are chosen, no two overlapping factors are chosen, and that if we choose
some factor xi,j where j < n, then a factor xj+1,` must be chosen as well. The number of
variables is O(n

√
n) since, due to an observation of Mincu and Popa [15], there is an optimal

equality-free string factorization with factors of length O(
√
n). The latter observation does

not hold for other equivalence relations. For example, if we consider =Σ on binary strings,
then we may have at most three factors and thus some factor must have length Ω(n).

We provide an alternative 0/1-ILP that has O(n) variables and works for all string
relations. For each i ∈ {1, . . . , n+ 1}, we introduce one variable xi. This variable will have
the value 1 if some factor starts at S[i], that is, the factorization cuts between positions i− 1
and i. The variable x1 will correspond to the start of the first factor and the variable xn+1
will correspond to the end of the last factor, these variables will be set to 1 and we just
introduce them to make the formulation more concise. The whole ILP reads as follows.

max.
∑

i∈[n+1]

xi subject to (3)

− xi − xj+1 − xp − xq+1 +
∑

`∈[i+1,j]∪[p+1,q]

x` > −4 ∀i < j < p < q where
(
S[i, j] R S[p, q]

)
(4)

xi ∈ {0, 1} ∀i ∈ [2, n] (5)
xi = 1 ∀i ∈ {1, n+ 1} (6)

Every assignment to the variables directly corresponds to the factorization of the input string
where xi = 1 means that some factor starts at position i. The number of factors is one less
than the objective function value. It remains to show that no two factors of the factorization
are in relation. This is ensured by Constraint 4. Let S[i, j] and S[p, q] be nonoverlapping
equivalent candidate factors. Then Constraint 4 for this index set is fulfilled when either one
of xi, xj+1, xp, and xq+1 has value 0, or when one of the variables in the sum has value 1.
In the first, case one of the two strings S[i, j] and S[p, q] is not a factor of the factorization,
since one of the four factor endpoints is not selected by the solution. In the second case, one
of the two candidate factors is not part of the solution since some factor starts after i and
before j or after p and before q. Thus, the factorization produced by the ILP is equality-free.
Conversely, any equality-free factorization corresponds to a feasible solution of the ILP.
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