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Abstract
Given two indeterminate equal-length strings p and t with a set of characters per position in both
strings, we obtain a determinate string pw from p and a determinate string tw from t by choosing
one character per position. Then, we say that p and t match when pw and tw match for some choice
of the characters. While the most standard notion of a match for determinate strings is that they
are simply identical, in certain applications it is more appropriate to use other definitions, with
the prime examples being parameterized matching, order-preserving matching, and the recently
introduced Cartesian tree matching. We provide a systematic study of the complexity of string
matching for indeterminate equal-length strings, for different notions of matching. We use n to
denote the length of both strings, and r to be an upper-bound on the number of uncertain characters
per position. First, we provide the first polynomial time algorithm for the Cartesian tree version
that runs in deterministic O(n log2 n) and expected O(n log n log log n) time using O(n log n) space,
for constant r. Second, we establish NP-hardness of the order-preserving version for r = 2, thus
solving a question explicitly stated by Henriques et al. [CPM 2018], who showed hardness for r = 3.
Third, we establish NP-hardness of the parameterized version for r = 2. As both parameterized and
order-preserving indeterminate matching reduce to the standard determinate matching for r = 1,
this provides a complete classification for these three variants.
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1 Introduction

String matching, in the sense of comparing two equal-length strings, is one of the fundamental
problems in computer science with multiple practical applications. While exact matching is
trivial to solve in optimal linear time by comparing the strings character-by-character, for
many of the applications it seems more appropriate to work with some kind of approximate
matching. Prime examples include string matching with swaps [2], parameterized string
matching [6], string matching with gaps [9], jumbled string matching [10], string matching
with don’t cares [29], and edit distance [32]. In all of such problems, one needs to first
precisely define when do two strings match.

Parameterized matching is a classical notion motivated by finding identical sections of
code [3, 4, 5, 6, 19, 34]. Formally, two strings p and t of length n are a parameterized match
when for every i, j ∈ {1, . . . , n}, p[i] = p[j] iff t[i] = t[j]. This is denoted by p ∼= t.
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14:2 On Indeterminate Strings Matching

Order-preserving matching is a more recent but already well-studied notion motivated by
stock price analysis and musical melody matching [11, 16, 17, 25, 26]. Formally, two strings
p and t of length n are a order-preserving match when for every i, j ∈ {1, . . . , n}, p[i] ≤ p[j]
iff t[i] ≤ t[j]. This is denoted by p ∼≤ t.

Very recently, a different notion called Cartesian tree matching has been proposed [28].
The Cartesian tree of a given string p (CT (p)), first defined in [31], is constructed according
to the following rules:

If p is an empty string, CT (p) is an empty tree.
If p[1...n] is not empty and p[i] is the leftmost minimum value in p, CT (p) is the tree
with p[i] being the root, CT (p[1...i− 1]) the left subtree, and CT (p[i+ 1...n]) the right
subtree.

Even though the most well-known applications of Cartesian trees are probably in designing
space-efficient structures for finding the minimum in a range, they can be also used to compare
strings. Similarly to order-preserving matching, this notion is motivated by applications
concerned with time-series data such as stock price analysis, and has gained considerable
attention during the last year [7, 18, 30]. Formally, two strings p and t of equal length n
are a Cartesian tree match when their Cartesian trees CT (p) and CT (t) are identical, i.e.
CT (P ) and CT (t) have the same shape while the labels on the nodes may differ. This is
denoted by p ∼C t.

We consider the complexity of string matching for indeterminate strings defined as follows.

I Definition 1. An indeterminate string is a sequence of sets of characters p[1]p[2]...p[n],
where p[i] ⊆ N. Each position is specified by writing p[i] = a1|...|ar, such that a` ∈ N, which
means that we can choose p[i] to be any a`.

Indeterminate strings were studied earlier, among others, covering problems for indeterm-
inate strings [1, 14] and indeterminate strings in graph theory [20, 12, 27]. Indeterminate
string matching was investigated lately from different angles [8, 13, 15, 23, 22, 24]. It
provides a convenient formalism for compactly capturing situations in which there are some
uncertainties concerning characters at some positions. Indeed, an indeterminate string p of
length n describes rn determinate strings. We write p̃ to denote the set of all such strings,
and pw when referring to a single determinate string described by p.

First, we consider the complexity of Cartesian tree matching for indeterminate strings
defined as follows.

Problem: Cartesian Tree Matching of Indeterminate Strings (CTMIS)
Input: Two indeterminate strings p and t of length n with up to r of uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw Cartesian tree
matches tw?

A naive solution to the CTMIS would be to apply the solution of [28] to each tw ∈ t̃ and
pw ∈ p̃ in O(n2rn) time. In Section 2 we provide the first polynomial algorithm for this
problem that works in O(n log2 n) time and O(n logn) space, assuming that r is constant.
Additionally, in the Word RAM model of computation we further improve the time complexity
to expected O(n logn log logn).
I Example 2. Consider the following indeterminate strings:

p = (2|4|7, 2|5|6, 1|4|8, 4|7|8, 3|10|16)
t = (2|7|10, 5|20|31, 10|17|25, 0|9|11, 1|8|18).
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Figure 1 The Cartesian trees of pw = (7, 2, 8, 4, 16) and tw = (10, 5, 17, 9, 18).

pw = (7, 2, 8, 4, 16) and tw = (10, 5, 17, 9, 18) define the same Cartesian tree, see Figure 1.
Therefore, we say that p ∼C t. Note that p and t define other matching or non-matching
Cartesian trees.

Second, we consider the complexity of order-preserving matching for indeterminate strings
defined as follows.

Problem: Order-Preserving Matching of Indeterminate Strings (OPMIS)
Input: Two indeterminate strings p and t of length n with up to r uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw order-preserving
matches tw?

Henriques et al. [21] proved that OPMIS is NP-hard for r = 3. As for r = 1 there is a simple
linear-time algorithm, this left r = 2 as the only open case (CPM version of the paper [21]
claims a polynomial time algorithm for this case, but this has been clarified in the arXiv
version [13]). In Section 4 we provide a different reduction that establishes NP-hardness of
OPMIS already for r = 2, thus fully resolving the complexity of this problem and answering
an open question explicitly stated by Costa et al [13]. In contrast with the previous work,
our reduction exploits the order between elements instead of just their equality, and is more
involved.

Third, we consider the complexity of parameterized matching for indeterminate strings
defined as follows.

Problem: Parameterized Matching of Indeterminate Strings (PMIS)
Input: Two indeterminate strings p and t of length n with up to r uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw parameterized
matches tw?

NP-hardness proof by Henriques et al. [21] implicitly shows hardness of PMIS for r = 3.
This, again, leaves r = 2 as the only open case. In Section 5 we provide a reduction that
establishes NP-hardness of PMIS for r = 2.

2 CTMIS in O(n3) Time and O(n2) Space

In this section, we describe a warm-up solution for the CTMIS problem. The input is two
equal-length indeterminate strings p and t with two uncertain characters per position, and
the output is whether p ∼C t or not. The solution can be generalized to any constant value
of r in a straightforward manner. We will assume that both p and t consists of distinct
values, which can be always ensured by an appropriate perturbation.

CPM 2020



14:4 On Indeterminate Strings Matching

First, note that for each index i, we have p[i] = ai|a′i and t[i] = bi|b′i, hence each i

defines a set consisting 4 pairs {(ai, bi), (ai, b
′
i), (a′i, bi), (a′i, b′i)} (called thresholds) denoted

by Thresholds(i). The main idea of the algorithm is to determine for each index i and a
threshold (xi, yi) ∈ Thresholds(i):
1. for which indices k we have p[k, i] ∼C t[k, i] with the roots xi and yi, respectively.
2. for which indices j we have p[i, j] ∼C t[i, j] with the roots xi and yi, respectively.
Consider an interval [k, i], the reasoning for an interval [i, j] is similar. We have p[k, i]∼C t[k, i]
with the roots xi and yi iff there exists an index ` and a threshold (x`, y`) ∈ Thresholds(`)
where k ≤ ` ≤ i−1, xi < x` and yi < y` such that p[k, `] ∼C t[k, `] and p[`, i−1] ∼C t[`, i−1].

We process all possible intervals [k, i] and [i, j] in an increasing order of their lengths
using dynamic programming. For each index i and a threshold (xi, yi) ∈ Thresholds(i) we
compute the answer for all left intervals [k, i− 1] and all right intervals [i+ 1, j], see Figure 2.
We define two types of states and associate a boolean value with each of them as follows:
Left states Lk,i(xi, yi) = true iff p[k, i] ∼C t[k, i] with the roots xi and yi, respectively.
Right states Ri,j(xi, yi) = true iff p[i, j] ∼C t[i, j] with the roots xi and yi, respectively.
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Figure 2 An interval [k, j] of the strings p and t with the root at index i, defining left and right
Cartesian subtrees.

I Example 3. Let p = (4|7, 2|6, 1|8, 3|20, 10|16) and t = (2|10, 20|31, 10|17, 0|11, 8|18). Con-
sidering index 3 as a possible root for the Cartesian tree in both strings, the thresholds defined
by index 3 are (x3, y3) ∈ {(1, 10), (8, 10), (1, 17), (8, 17)}. The right states are R3,4(x3, y3) and
R3,5(x3, y3). The left states are L2,3(x3, y3) and L1,3(x3, y3). Some of their corresponding
boolean values are as follows:
1. R3,4(1, 10) = true for p[3, 4] = (1, 3) and t[3, 4] = (10, 11).
2. R3,4(8, 10) = true for p[3, 4] = (8, 20) and t[3, 4] = (10, 11).
3. L2,3(1, 10) = true for p[2, 3] = (6, 1) and t[2, 3] = (31, 10).
4. L1,3(1, 10) = true for p[1, 3] = (4, 6, 1) and t[2, 3] = (2, 31, 10).

From the definition of a Cartesian tree we directly obtain the following proposition
illustrated in Figure 3.

I Proposition 4.
(a) Ri,j(xi, yi) = true iff ∃` ∈ [i+ 1, j] such that R`,j(x`, y`) = true and Li+1,`(x`, y`) =

true where x` > xi and y` > yi.
(b) Lk,i(xi, yi) = true iff ∃`′ ∈ [k, i− 1] such that R`′,i−1(x`′ ,y`′) = true and Lk,`′(x`′ , y`′) =

true where x`′ > xi and y`′ > yi.
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xi

x`

CT (p[`+ 1, j])CT (p[i+ 1, `+ 1])

x`′

CT (p[`′ + 1, i− 1])CT (p[k, `′ − 1])

Figure 3 The Cartesian tree CT (p[k, j]) with the root at index i. Note that, the Cartesian tree
CT (t[k, j]) is identical to the Cartesian tree above with the proper values yi, y`′ and y` on the
nodes, and with the proper subtrees CT (t[k, `′ − 1]), CT (t[`′ + 1, i − 1]), CT (t[i + 1, ` + 1]) and
CT (t[` + 1, j]). Moreover, in both Cartesian trees, the left Cartesian subtrees correspond to the left
state Lk,i(xi, yi), while the right Cartesian subtrees correspond to the right state Ri,j(xi, yi).

Recall that we apply dynamic programming in an increasing order of the lengths of
the intervals. Therefore, the states R`,j(x`, y`) and Li+1,`(x`, y`) from Proposition 4(a) are
computed before the state Ri,j(xi, yi). Similarly, the states R`′,i−1(x`′ , y`′) and Lk,`′(x`′ , y`′)
are computed before the state Lk,i(xi, yi). Therefore, for every interval we can simply consider
all relevant ` and `′, access their corresponding states, and update the answer. Finally, after
having processed all the intervals, we conclude that p ∼C t iff there exists an index i and a
threshold (xi, yi) ∈ Thresholds(i) such that L1,i(xi, yi) = true and Ri,n(xi, yi) = true.

I Example 5. Let p = (4|7, 2|6, 1|8, 3|20, 10|16) and t = (2|10, 20|31, 10|17, 0|11, 8|18) as
in the previous example above. We have L1,3(1, 10) = true for p[1, 3] = (4, 6, 1) and
t[2, 3] = (2, 31, 10), and R3,5(1, 10) = true for p[3, 5] = (1, 3, 16) and t[3, 5] = (10, 11, 18).
Hence, p ∼C t with the roots 1 and 10 respectively.

Time complexity. For each state Lk,i(xi, yi) and Ri,j(xi, yi) we consider O(n) relevant
indices ` and `′, respectively. Each such index is processed in constant time, thus the overall
time complexity is O(n3). The space complexity is bounded by the number of states processed
in the dynamic programming, which is O(n2).

3 CTMIS in O(n log2 n) Time and O(n log n) Space

In this section we present an efficient solution for the CTMIS problem that builds on the
slower algorithm presented in the previous section.

The input is two equal-length indeterminate strings p and t with 2 uncertain characters
per position, and the output is whether p ∼C t, or not. The solution can be generalized
to any constant value of r in a straightforward manner. The main idea of the algorithm
is to find, for each index i and a threshold (xi, yi) ∈ Thresholds(i), the largest matching
Cartesian trees with the root in both trees being xi and yi at index i, respectively. As in
the previous algorithm, we consider each index i and a threshold (xi, yi) ∈ Thresholds(i)
separately. However, now instead of computing the answer for all intervals [k, i] and [i, j] we
use the following definition.

I Definition 6. For an index i and a threshold (xi, yi) ∈ Thresholds(i):
minL(i,xi,yi) denotes the smallest index such that p[minL(i,xi,yi), i] ∼C t[minL(i,xi,yi), i],
maxR(i,xi,yi) denotes the largest index such that p[i,maxR(i,xi,yi)] ∼C t[i,maxR(i,xi,yi)],

with the root in both trees being xi and yi at index i, respectively.

CPM 2020
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(I)

xi

CT (p[i+ 1,maxR(i, xi, yi)])CT (p[minL(i, xi, yi), i− 1])
(II)

ah

xi

CT (p[i+ 1,maxR(i, xi, yi)])CT (p[h+ 1, i− 1])

CT (p[minL(i, xi, yi), h− 1])

Figure 4 Consider the strings:

p = (a1|a′
1, ..., aminL(i,xi,yi)|a

′
minL(i,xi,yi), ..., ah|a′

h, ..., ai|a′
i, ..., amaxR(i,xi,yi)|a

′
maxR(i,xi,yi), ..., an|a′

n)
t = (b1|b′

1, ..., bminL(i,xi,yi)|b
′
minL(i,xi,yi), ..., bh|b′

h, ..., bi|b′
i, ..., bmaxR(i,xi,yi)|b

′
maxR(i,xi,yi), ..., bn|b′

n)

assuming ah < xi < a′
h, the figure illustrates (I) the Cartesian tree of the substring

p[minL(i, xi, yi), maxR(i, xi, yi)] with xi as a root when choosing a′
h at index h, and (II) the Cartesian

tree of the substring p[minL(i, xi, yi), maxR(i, xi, yi)] with ah as the root after changing a′
h to ah at

index h. Note that, assuming bh < yi < b′
h, the Cartesian trees of t[minL(i, xi, yi), maxR(i, xi, yi)]

are identical to the Cartesian trees in (I) and (II) above with the proper roots and the proper
Cartesian subtrees.

Computing minL(i, xi, yi) and maxR(i, xi, yi) fully describes the situation, as the above
definition together with the definition of a Cartesian tree matching directly imply the
following:

p[`, i] ∼C t[`, i] iff minL(i, xi, yi) ≤ ` ≤ i.
p[i, r] ∼C t[i, r] iff i ≤ r ≤ maxR(i, xi, yi).

We also note that p[minL(i, xi, yi),maxR(i, xi, yi)] ∼C t[minL(i, xi, yi),maxR(i, xi, yi)] due
to a Cartesian tree with the root in both trees being xi and yi at index i, respectively.
Consequently, p ∼C t iff there exists an index i and a threshold (xi, yi) ∈ Thresholds(i)
such that minL(i, xi, yi) = 1 and maxR(i, xi, yi) = n. Thus, in the remaining part of this
section we focus on efficiently computing the values of minL and maxR.

Our algorithm is based on the following observation. Consider an index i and a threshold
(xi, yi) ∈ Thresholds(i), and assume that minL(i, xi, yi) and maxR(i, xi, yi) have been
already computed. Then, the following holds:
1. for any index h ∈ [minL(i, xi, yi) − 1,maxR(i, xi, yi)] and a threshold (xh, yh) ∈

Thresholds(h) such that xh < xi and yh < yi, the index maxR(i, xi, yi) is a potential
candidate for maxR(h, xh, yh).

2. for any index h ∈ [minL(i, xi, yi),maxR(i, xi, yi) + 1] and a threshold (xh, yh) ∈
Thresholds(h) such that xh < xi and yh < yi, the index minL(i, xi, yi) is a potential
candidate for minL(h, xh, yh).

Each index h and a threshold (xh, yh) ∈ Thresholds(h) might be considered for several
indices i and thresholds (xi, yi) ∈ Thresholds(i) in the above statement, hence we might
have several potential candidates for minL(h, xh, yh) and maxR(h, xh, yh). By the definition
of a Cartesian tree, one of these potential candidates corresponds to the sought minL(h, xh, yh)
and maxR(h, xh, yh) as defined above if they are not equal to h. See Figure 4.
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The high-level description of the algorithm is as follows. Please see Algorithm 1 for
the pseudocode. We iterate over all indices i and thresholds (xi, yi) ∈ Thresholds(i)
in a specific order that will be precisely defined later. For each index i and a threshold
(xi, yi) ∈ Thresholds(i) we aim to:
Step 1 Compute efficiently the indices minL(i, xi, yi) and maxR(i, xi, yi) (See Definition 6

above).
Step 2 Add for all indices h ∈ [minL(i, xi, yi)− 1,maxR(i, xi, yi)] and a threshold (xh, yh) ∈

Thresholds(h) such that xh < xi and yh < yi, the index maxR(i, xi, yi) as a potential
candidate maxR(h, xh, yh). Add for all indices h ∈ [minL(i, xi, yi),maxR(i, xi, yi) + 1]
and a threshold (xh, yh) ∈ Thresholds(h) such that xh < xi and yh < yi, the index
minL(i, xi, yi) as a potential candidate minL(h, xh, yh).

We need to ensure that, for any index i and a threshold (xi, yi) ∈ Thresholds(i), and
any index h and a threshold (xh, yh) ∈ Thresholds(h) such that xh < xi and yh < yi,
minL(i, xi, yi) and maxR(i, xi, yi) are already computed when we are considering threshold
(xh, yh) ∈ Thresholds(h). This will be guaranteed by the algorithm as explained below.

The algorithm considers all indices i and thresholds (xi, yi) ∈ Thresholds(i) in the
reverse lexicographical order, that is, the decreasing order of xi and, if there is a tie, the
decreasing order of yi. Before we explain how to implement Step 1 and Step 2 efficiently,
we define the necessary data structures. We maintain a balanced binary search tree Ty on
the values of yi, and identify yi with its corresponding node of Ty. In each node u of Ty we
have its associated secondary trees Tmin(u) and Tmax(u). Each Tmin(u) and Tmax(u) stores a
collection of intervals [`, r]. The update adds a new interval [`, r] to the collection. The query
in Tmin(u) for i finds the smallest ` such that [`, r] containing i belongs to the collection,
while the query in Tmax(u) finds the largest r. By symmetry, it is enough to explain how to
implement Tmin(u). We maintain the following invariant: there are no two intervals [`, r]
and [`′, r′] such that [`, r] ⊆ [`′, r′]. Clearly, such [`, r] is not an answer to any query. Note
that this implies that if we sort all the remaining intervals [`1, r1], [`2, r2], . . . , [`s, rs] so that
`1 < `2 < . . . < `s then we also have r1 < r2 < . . . < rs. This gives us a linear order on the
intervals, and so we can maintain them in any balanced binary search tree. After adding the
new interval [`, r] to the collection, we can check if it is not contained in any of the already
existing intervals, and if so find the already existing intervals that should be removed, with
standard operations on the balanced binary search tree.

Now we explain how to implement Step 1 and Step 2 efficiently using Ty and the
secondary structures associated with its nodes. Let i and (xi, yi) ∈ Thresholds(i) be the
index and the threshold we are currently considering. We begin our discussion with Step
2 and therefore assume that we already computed minL(i, xi, yi) and maxR(i, xi, yi) for
this threshold. Note that all thresholds (xh, yh) ∈ Thresholds(h) such that xi < xh and
yi < yh have been already processed. Moreover, all thresholds (xc, yc) ∈ Thresholds(c)
such that xi < xc have been already processed and will not be considered in the future, so
we don’t need to be concerned with updating their answer. Hence, in Step 2 we update all
thresholds (xh, yh) ∈ Thresholds(h) such that yh < yi, regardless of the value of xh. To
this end, we consider every ancestor yh of yi such that yh < yi, plus the node yi itself, and
add the interval [minL(i, xi, yi)− 1,maxR(i, xi, yi)] or [minL(i, xi, yi),maxR(i, xi, yi) + 1] to
their corresponding Tmax and Tmin, respectively. To implement Step 1, we consider every
ancestor yc of yi such that yc > yi, plus the node yi itself, and we query their corresponding
Tmin and Tmax. It can be readily verified that by the choice of which ancestors are updated,
this is enough to implicitly consider every yh > yi, as such yh must have updated one of the
ancestors yc.

CPM 2020
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Algorithm 1 CTMIS in O(n log2 n) time and O(n log n) space.

Data: indeterminate length-n strings p and t with 2 uncertain characters per
position.

Output: Does p ∼C t hold?
1 Thresholds← {(xi, yi) |xi ∈ p[i] and yi ∈ t[i] for some i = 1, 2, . . . , n}
2 Build a balanced binary search tree Ty on the values of yi

3 foreach node u ∈ Ty do
4 Create secondary balanced search trees Tmin(u) and Tmax(u) of intervals [`, r]

. Tmin(u) is ordered by ` while Tmax(u) is ordered by r

5 foreach (xi, yi) ∈ Thresholds by decreasing order of xi do
6 Let u ∈ Ty be the node satisfying Value(u) = yi

. Value(u) returns the corresponding yi of a node u ∈ Ty.
7 minL(i, xi, yi)← i

8 maxR(i, xi, yi)← i

. Step 1: Query the potential candidates structures.
9 foreach v an ancestor of u in Ty do . including u itself

10 if Value(v) > yi then
11 if min{` | [`, r] ∈ Tmin(v) and i ∈ [`, r]} < minL(i, xi, yi) then
12 minL(i, xi, yi)← min{` | [`, r] ∈ Tmin(v) and i ∈ [`, r]}
13 if max{r | [`, r] ∈ Tmax(v) and i ∈ [`, r]} > maxR(i, xi, yi) then
14 maxR(i, xi, yi)← max{r | [`, r] ∈ Tmax(v) and i ∈ [`, r]}

15 if minL(i, xi, yi) = 1 and maxR(i, xi, yi) = n then
16 return true

. Step 2: Update the potential candidates structures.
17 foreach v an ancestor of u in Ty do . including u itself
18 if Value(v) < yi then
19 if [minL(i, xi, yi),maxR(i, xi, yi) + 1] * [`, r] for all [`, r] ∈ Tmin(v) then
20 Add [minL(i, xi, yi),maxR(i, xi, yi) + 1] to Tmin(v)
21 Remove from Tmin(v) every [`′, r′] ⊆ [minL(i, xi, yi),maxR(i, xi, yi) + 1]
22 if [minL(i, xi, yi)− 1,maxR(i, xi, yi)] * [`, r] for all [`, r] ∈ Tmax(v) then
23 Add [minL(i, xi, yi)− 1,maxR(i, xi, yi)] to Tmax(v)
24 Remove from Tmax(v) every

[`′, r′] ⊆ [minL(i, xi, yi)− 1,maxR(i, xi, yi)]

25 return false

Time complexity. The time complexity of the algorithm is O(n log2 n). First, we need to
sort the 4n thresholds in O(n logn) time. Each of these thresholds is processed by considering
O(logn) nodes of Ty. At each of these nodes u we spend O(logn) amortized time to update
and query Tmin(u) and Tmax(u). Furthermore, the space complexity is O(n logn), because
each interval appears in O(logn) secondary structures. Instead of using balanced binary
search trees with O(logn) query and update time for the secondary structures, we can plug
in any predecessor structure that stores a collection of s integers from {1, 2, . . . , n} in O(s)
space with expected O(log logn) query and update time [33].
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4 Order-Preserving Matching of Indeterminate Strings

Given two indeterminate strings p and t of equal-length n with at most 2 uncertain characters
per position, we want to check if there exist pw ∈ p̃ and tw ∈ t̃ such that pw ∼≤ tw. The
goal of this section is to prove that this is NP-hard by reducing checking satisfiability of a
3-CNF formula.

We start with rephrasing the question in a graph-theoretical language. Let Σp and Σt be
the sets of characters that occur in p and t, respectively. We consider a complete undirected
bipartite graph G with Σp corresponding to the nodes on the one side and Σt corresponding
to the nodes on the other side. We claim that there exist pw ∈ p̃ and tw ∈ t̃ such that
pw ∼≤ tw iff there exists a non-crossing matching M in G, where non-crossing means that
we cannot have two edges (x, y), (x′, y′) such that x < x′ but y′ < y, such that the following
holds for every position i = 1, 2, . . . , n:
p[i] = x and t[i] = y : (x, y) ∈M ,
p[i] = x1|x2 and t[i] = y : (x1, y) ∈M or (x2, y) ∈M
p[i] = x and t[i] = y1|y2 : (x, y1) ∈M or (x, y2) ∈M ,
p[i] = x1|x2 and t[i] = y1|y2 : (x1, y1) ∈ M or (x1, y2) ∈ M or (x2, y1) ∈ M or

(x2, y2) ∈M .
The proof is straightforward.

We consider a 3-CNF formula φ on n variables 1, 2, . . . , n and m clauses. We reduce
checking satisfiability of φ to finding a non-crossing matching M with some additional
constraints in a complete undirected bipartite graph G. Each constraint is of the form
M ∩X × Y 6= ∅, for some subsets of the nodes X and Y such that |X|, |Y | ≤ 2, or X × Y
for short. As long as the size of G and the number of constraints is polynomial, this will
establish NP-hardness of our problem, as we can create two strings p and t and encode each
constraint by setting up some p[i] and t[i] appropriately.

We start with creating nodes 1, 2, . . . , n on the left side and 1, 2, 3, 4, . . . , 2n on the right
side of G. We add a constraint {i}×{2i−1, 2i}, for every i = 1, 2, . . . , n. We add a constraint
{2n+ 1}×{2n+ 1}. For every k = 1, 2, . . . ,m, we consider the k-th clause (`k,1 ∨ `k,2 ∨ `k,3),
where `k,1, `k,2, `k,3 are literals. Let s = 2n+ 2 + 5(k − 1). We add the following constraints:
{s} × {s, s + 1}, {s + 2, s + 3} × {s + 3}, {s, s + 2} × {s + 1, s + 3}. This is illustrated in
Figure 5. Then we add a constraint for every literal:
1. If `k,1 = x then we add {x, s}×{2x, s}, and if `k,1 = ¬x then we add {x, s}×{2x− 1, s}.
2. If `k,2 = y then we add {y, s+ 1}× {2y, s+ 2}, and if `k,2 = ¬y then we add {x, s+ 1}×
{2y − 1, s+ 2}.

3. If `k,3 = z then we add {z, s+ 3} × {2z, s+ 3}, and if `k,3 = ¬z then we add {z, s+ 3} ×
{2z − 1, s+ 3}.

Due to the constraint {2n+ 1}×{2n+ 1}, a variable constraint {v, a}×{2v− 1, b} translates
into (v, 2v − 1) ∈M or (a, b) ∈M . Similarly, {v, a} × {2v, b} translates into (v, 2v) ∈M or
(a, b) ∈M .

We need to prove that φ is satisfiable iff there exists a non-crossing matching M in G
that respects all the constraints.

First, assume that φ is satisfiable and fix a satisfying valuation of all the variables. We
obtain M by first adding (v, 2v − 1) or (v, 2v) to M depending on whether v is set to false
or true, respectively. We also add (2n+ 1, 2n+ 1) to M . Then, we proceed as follows for
the k-th clause. For concreteness assume that the clause is (x ∨ y ∨ z), the argument is
symmetric for the other cases. If x is set to false then we add (s, s) to M . If y is set to false
then we add (s+ 1, s+ 2) to M . Finally, if z is set to false then we add (s+ 3, s+ 3) to M .
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Because at least one of x, y, z is set to true, at least one of these three edges is not in M . If
(s+ 1, s+ 2) /∈M then we add (s+ 2, s+ 1) to M . If (s, s) /∈M then we add (s, s+ 1) to M .
Finally, if (s+ 3, s+ 3) /∈M then we add (s+ 2, s+ 3) to M . In all cases, the constraints
corresponding to the k-clause are fulfilled. Due to how we compose the gadgets, M being
a non-crossing matching in every gadget implies that M is a non-crossing matching in the
whole G.

Second, assume that we have a non-crossing matching M in G. For every v = 1, 2, . . . , n,
M contains exactly one of the edges (v, 2v − 1), (v, 2v). We set v to false if (v, 2v − 1) ∈M
and to true if (v, 2v) ∈M . We must have (2n+ 1, 2n+ 1) ∈M . We need to verify that every
clause is satisfied by the obtain valuation of the variables. Again, for concreteness assume
that the clause is (x ∨ y ∨ z). We cannot have all edges (s, s), (s+ 1, s+ 2), (s+ 3, s+ 3) in
M , as in such case the constraint {s, s+ 2} × {s+ 1, s+ 3} cannot be fulfilled. If (s, s) /∈M
then due to the constraint {x, s} × {2x, s} we must have (x, 2x) ∈ M , so x is set to true.
If (s + 1, s + 2) /∈ M then due to the constraint {y, s + 1} × {2y, s + 2} we must have
(y, 2y) ∈ M , so y is set to true. Finally, if (s + 3, s + 3) /∈ M then due to the constraint
{z, s+ 3} × {2z, s+ 3} we must have (z, 2z) ∈M , so y is set to true. So, one of the variable
x, y, z is set to true, making the clause satisfied.

x y z

2x− 1 2x 2y − 1 2y 2z − 1 2z

2n+ 1

2n+ 1

s s+ 1 s+ 2 s+ 3

s s+ 1 s+ 2 s+ 3

Figure 5 Gadget created for the k-th clause concerning variables x, y, z.

5 Parameterized Matching of Indeterminate Strings

Given two indeterminate strings p and t of equal-length n with at most 2 uncertain characters
per position, we want to check if there exist pw ∈ p̃ and tw ∈ t̃ such that pw ∼= tw. The goal
of this section is to prove that this is NP-hard by reducing checking if a given undirected
graph has a vertex cover consisting of at most k vertices.

As in the previous section, we start with rephrasing the question in a graph-theoretical
language. Let Σp and Σt be the sets of characters that occur in p and t, respectively. We
consider a complete undirected bipartite graph G with Σp corresponding to the nodes on
the one side and Σt corresponding to the nodes on the other side. We claim that there exist
pw ∈ p̃ and tw ∈ t̃ such that pw ∼= tw iff there exists a matching M in G, such that the
following holds for every position i = 1, 2, . . . , n:
p[i] = x and t[i] = y : (x, y) ∈M ,
p[i] = x1|x2 and t[i] = y : (x1, y) ∈M or (x2, y) ∈M
p[i] = x and t[i] = y1|y2 : (x, y1) ∈M or (x, y2) ∈M ,
p[i] = x1|x2 and t[i] = y1|y2 : (x1, y1) ∈ M or (x1, y2) ∈ M or (x2, y1) ∈ M or

(x2, y2) ∈M .
The proof is straightforward.

We consider an undirected graph H on n vertices V = {1, 2, . . . , n} and m edges E
together with a parameter k ≤ n. We reduce checking if there is a subset S of k vertices
of H such that for every edge (u, v) ∈ E we have u ∈ S or v ∈ S to finding a matching M
in a complete undirected bipartite graph G that respects a number of constraints of the
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form M ∩X × Y 6= ∅, for |X|, |Y | ≤ 2, or X × Y for short. As long as the size of G and the
number of constraints is polynomial, this will establish NP-hardness of our problem, as we
can create two strings p and t and encode each constraint by setting up some p[i] and t[i]
appropriately.

We start with creating nodes 1, 2, . . . , n on the left side and 1, 2, . . . , n on the right side
of G. We add a constraint {u, v} × {u, v} for every (u, v) ∈ E. For every i = 1, 2, . . . , n,
(i, j) ∈ M for some j ∈ {1, 2, . . . , n} corresponds to including i in the sought vertex cover.
The remaining part of H is constructed as to guarantee that there are at least k nodes
i ∈ {1, 2, . . . , n} such that (i, j) ∈ M for some j 6= {1, 2, . . . , n}. To this end, we design a
gadget G2s with the following property:
1. there are distinguished 2s nodes v1, v2, . . . , v2s on the left side, each vi is incident to a

unique edge ei,
2. there are also some additional internal nodes on the left and on the right and some

constraints that concern both the internal and the distinguished nodes,
3. if none of the edges ei belongs to M then it is not possible to satisfy the constraints of

G2s,
4. for any nonempty subset S of distinguished nodes, it is possible to select some of the

edges with both endpoints being internal nodes in such a way that, together with the
edges ei for i ∈ S, they satisfy all constraints of G2s.

We will first show that G4 exists, and then explain how to obtain G2(s+1) from G2s.

I Lemma 7. G4 with the sought properties exists.

Proof. G4 consists of nodes v1, v2, v3, v4 and internal nodes v′1, v′2, v′3, v′4 and x, y, z. We
set ei = (vi, v

′
i) for i = 1, 2, 3, 4 and create the following constraints: {v1, x} × {v′1, y},

{v2, x} × {v′2, y}, {v3, z} × {v′3, y}, {v4, z} × {v′4, y} and {y} × {x, z}. See Figure 6.
Assume that none of the edges ei belongs to M . By symmetry, we can assume that

(x, y) ∈M . But then we must have (v′3, z), (v′4, z) ∈M , which is impossible.
Let S be a nonempty set of distinguished nodes. By symmetry, we can assume that

v1 ∈ S. Then, we include (y, z) ∈M and if e2 /∈ S we also include (v′2, x) ∈M . J

I Lemma 8. G2(s+1) with the sought properties can be obtained in polynomial time from
G2s with the sought properties.

Proof. We take a copy of G2s, let its distinguished nodes and their corresponding edges
be v1, v2, . . . , v2s and e1, e2, . . . , e2s. We also take a copy of G4, let its distinguished nodes
and their corresponding edges be u1, u2, u3, u4 and f1, f2, f3, f4. To obtain G2(s+1) we
identify v2s with u1 and add a constraint that enforces including e2s or f1. in M . The
distinguished nodes and their corresponding edges of G2(s+1) are v1, v2, . . . , v2s−1, u2, u3, u4
and e1, e2, . . . , e2s−1, f2, f3, f4.

Assume that none of the edges e1, e2, . . . , e2s−1, f2, f3, f4 belongs to M . Either e2s /∈M
and we obtain that none of the edges e1, e2, . . . , e2s belongs to M , or f1 /∈M and none of the
edges f1, f2, f3, f4 belongs to M . In either case we obtain a contradiction by the construction
of G2s or G4.

Let S be a nonempty set of distinguished nodes and assume that v1 ∈ S (other cases are
essentially the same). We set S′ = S ∩ {v1, v2, . . . , v2s−1} and S′′ = (S ∩ {u2, u3, u4})∪ {u1}.
Then S′, S′′ 6= ∅, and by assumption we can select some of the edges with both endpoints
being internal nodes of G2s or G4 in such a way that, together with the edges ei for i ∈ S′
and fj for j ∈ S′′, they satisfy all constraints of G2s and G4. Additionally, the constraint
that enforces including e2s or f1 is satisfied by taking f1. So, by selecting the edges with
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both endpoints being internal nodes of G2s or G4 together with f1 we obtain a set of edges
with both endpoints being internal nodes of G2(s+1) that, together with the edges associated
with the nodes in S, satisfy all constraints of G2(s+1) as required. J

v1 v2

v3 v4

e1 e2

e3 e4

v′1

v′3 v′4

v′2

x

y

z

v1

v3 v4

e1

e3 e4

v2

v5 v6

e2

e5 e6

Figure 6 Gadgets G4 (left) and G8 (right).

With the gadget G2s in hand, we are ready to complete the reduction. By duplicating
the graph H we can assume that n = 2s. We add n− k copies of the gadget G2s to G. Let
v1, v2, . . . , v2s be the distinguished nodes of one such copy. We identify vi with the node i
on the left side of G. This guarantees that for each gadget we must have a unique node i
such that (i, 1), (i, 2), . . . , (i, n) /∈M . We claim that the resulting graph G has a matching
that satisfies all the constrains if and only if H admits a vertex cover of cardinality at most
k. In one direction, consider the set C consisting of all nodes i ∈ {1, 2, . . . , n} such that
(i, 1), (i, 2), . . . , (i, n) /∈M . By the properties of G2s, |C| ≤ k. We need to argue that C is a
vertex cover. Consider any (u, v) ∈ E. Due to the constraint {u, v}×{u, v}, one of the edges
(u, u), (u, v), (v, u), (v, v) must belong to M . But then either u or v cannot be matched to
any node not belonging to {1, 2, . . . , n}, so u ∈ C or v ∈ C as required. In other direction,
let C be a vertex cover of H of cardinality at most k. For every i ∈ C, we include the edge
(i, i) in M . This clearly satisfies every constraint {u, v} × {u, v} by C being a vertex cover.
Then, for every copy of G2s we choose a unique node i /∈ C (that is not matched to any other
node yet) and use the properties of G2s to add its internal edges to M in such a way that,
together with the edge associated to i, they satisfy all the constraints.
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