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Abstract
We consider the problem of preprocessing a text T of length n and a dictionary D in order to be
able to efficiently answer queries CountDistinct(i, j), that is, given i and j return the number of
patterns from D that occur in the fragment T [i . . j]. The dictionary is internal in the sense that each
pattern in D is given as a fragment of T . This way, the dictionary takes space proportional to the
number of patterns d = |D| rather than their total length, which could be Θ(n ·d). An Õ(n+d)-size 1

data structure that answers CountDistinct(i, j) queries O(log n)-approximately in Õ(1) time was
recently proposed in a work that introduced internal dictionary matching [ISAAC 2019]. Here we
present an Õ(n+d)-size data structure that answers CountDistinct(i, j) queries 2-approximately in
Õ(1) time. Using range queries, for any m, we give an Õ(min(nd/m, n2/m2) + d)-size data structure
that answers CountDistinct(i, j) queries exactly in Õ(m) time. We also consider the special case
when the dictionary consists of all square factors of the string. We design an O(n log2 n)-size data
structure that allows us to count distinct squares in a text fragment T [i . . j] in O(log n) time.
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8:2 Counting Distinct Patterns in Internal Dictionary Matching

1 Introduction

Internal Dictionary Matching was recently introduced in [5] as a generalization of Internal
Pattern Matching. In the classical Dictionary Matching problem, we are given a dictionary D
consisting of d patterns, and the goal is to preprocess D so that, presented with a text T , we
can efficiently compute the occurrences of the patterns from D in T . In Internal Dictionary
Matching, the text T is given in advance, the dictionary D is a set of fragments of T , and
the Dictionary Matching queries can be asked for any fragment of T .

The Internal Pattern Matching problem consists in preprocessing a text T of length n
so that we can efficiently compute the occurrences of a fragment of T in another fragment
of T . A data structure of nearly linear size that allows for sublogarithmic-time Internal
Pattern Matching queries was presented in [15], while a linear-size data structure allowing
for constant-time Internal Pattern Matching queries in the case that the ratio between the
lengths of the two factors is constant was presented in [18]. Other types of internal queries
have been also studied; we refer the interested reader to [17].

In [5], several types of Internal Dictionary Matching queries about fragments T [i . . j] in a
string T were considered: Exists(i, j), Report(i, j), ReportDistinct(i, j), Count(i, j),
CountDistinct(i, j). Data structures of size Õ(n+ d) and query time Õ(1 + output) were
shown for answering each of the first four queries, with Count queries requiring most
advanced techniques. For CountDistinct queries, only a data structure answering these
queries O(logn)-approximately was shown. In this work, we focus on more efficient data
structures for such queries. CountDistinct queries are formally defined as follows.

CountDistinct
Input: A text T of length n and a dictionary D consisting of d patterns, each given as a
fragment T [a . . b] of T (represented only by integers a, b).
Query: CountDistinct(i, j): Count all distinct patterns P ∈ D that occur in T [i . . j].

Observe that the input size is n+ d, while the total length of strings in D could be Θ(n · d).
We also consider a special case of this problem when the dictionary D is the set of all

squares (i.e., strings of the form UU) in T . The case that D is the set of palindromes in T
was considered by Rubinchik and Shur in [20].

I Example 1. Let us consider the following text:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T a d a a a a b a a b b a a c

For the dictionary D = {aa, aaaa, abba, c}, we have:

CountDistinct(5, 12) = 2, CountDistinct(2, 6) = 2, CountDistinct(2, 12) = 3.

In particular, T [5 . . 12] contains two distinct patterns from D: aa (two occurrences) and
abba. When the dictionary D represents all squares in T , we have

CountDistinct(5, 12) = 3, CountDistinct(2, 6) = 2, CountDistinct(2, 12) = 4.

In particular, T [5 . . 12] contains three distinct squares: aa (two occurrences), bb and aabaab.

Let us note that one could answer CountDistinct(i, j) queries in time O(j − i) by
running T [i . . j] over the Aho–Corasick automaton of D [1] or in time Õ(d) by performing
Internal Pattern Matching [18] for each element of D individually. Neither of these approaches
is satisfactory as they can require Ω(n) time in the worst case.
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Our results and a roadmap. We start with preliminaries in Section 2 and an algorithmic
toolbox in Section 3. Our results for the case of a static dictionary are summarized in Table 1.
Our solutions exploit string periodicity using runs and use data structures for variants of the
(colored) orthogonal range counting problem and for auxiliary internal queries on strings.

Table 1 Our results for CountDistinct queries. Here, m is an arbitrary parameter.

Space Preprocessing time Query time Variant Section
Õ(n + d) Õ(n + d) Õ(1) 2-approximation 4

Õ(n2/m2 + d) Õ(n2/m + d) Õ(m) exact 5.1
Õ(nd/m + d) Õ(nd/m + d) Õ(m) exact 5.2
O(n log2 n) O(n log2 n) O(log n) D = squares, exact 6

For the case of a dynamic dictionary, where queries are interleaved with insertions and
deletions of patterns in the dictionary, it was shown in [5] that the product of the time to
process an update and the time to answer an Exists(i, j) query cannot be O(n1−ε) for any
constant ε > 0, unless the Online Boolean Matrix-Vector Multiplication conjecture [13] is
false. In the full version of this paper, we outline a general scheme that adapts our data
structures for the case of a dynamic dictionary. In particular, we show how to answer
CountDistinct(i, j) queries 2-approximately in Õ(m) time and process each update in
Õ(n/m) time, for any m.

2 Preliminaries

We begin with basic definitions and notation. Let T = T [1]T [2] · · ·T [n] be a string of length
|T | = n over a linearly sortable alphabet Σ. The elements of Σ are called letters. By ε we
denote an empty string. For two positions i and j on T , we denote by T [i . . j] = T [i] · · ·T [j]
the fragment of T that starts at position i and ends at position j (the fragment is empty
if j < i). A fragment is called proper if i > 1 or j < n. A fragment of T is represented
in O(1) space by specifying the indices i and j. A prefix of T is a fragment that starts at
position 1 and a suffix is a fragment that ends at position n. By UV and Uk we denote the
concatenation of strings U and V and k copies of the string U , respectively. A cyclic rotation
of a string U is any string V such that U = XY and V = Y X for some strings X and Y .

Let U be a string of length m with 0 < m ≤ n. We say that U is a factor of T if there
exists a fragment T [i . . i+m− 1], called an occurrence of U in T , that is matches U . We
then say that U occurs at the starting position i in T .

A positive integer p is called a period of T if T [i] = T [i+ p] for all i = 1, . . . , n− p. We
refer to the smallest period as the period of the string, and denote it by per(T ). A string is
called periodic if its period is no more than half of its length and aperiodic otherwise. The
weak version of the periodicity lemma [9] states that if p and q are periods of a string T and
satisfy p+ q ≤ |T |, then gcd(p, q) is also a period of T . A string T is called primitive if it
cannot be expressed as Uk for a string U and an integer k > 1.

The elements of the dictionary D are called patterns. Henceforth, we assume that ε 6∈ D,
i.e., that the length of each P ∈ D is at least 1. We also assume that each pattern of D
is given by the starting and ending positions of its occurrence in T . Thus, the size of the
dictionary d = |D| refers to the number of patterns in D and not their total length. A compact
trie of D is the trie of D in which all non-terminal nodes with exactly one child become
implicit. The path-label L(v) of a node v is defined as the path-ordered concatenation of the
string-labels of the edges in the root-to-v path. We refer to |L(v)| as the string-depth of v.

CPM 2020



8:4 Counting Distinct Patterns in Internal Dictionary Matching

3 Algorithmic Tools

3.1 Modified Suffix Trees
A D-modified suffix tree [5], denoted as TT,D, of a given text T of length n and a dictionary D
is obtained from the trie of D ∪ {T [i . . n] : 1 ≤ i ≤ n} by contracting, for each non-terminal
node u other than the root, the edge from u to the parent of u. As a result, all the nodes of
TT,D (except for the root) correspond to patterns in D or to suffixes of T . For 1 ≤ i ≤ n, the
node representing T [i . . n] is labelled with i; see Figure 1. For a dictionary D whose patterns
are given as fragments of a text T , we can construct TT,D in O(|D|+ |T |) time [5].

6 13 1 7 11 10 2

abba

9
14

c

aa

4 5 8 12

aaaa

3

Figure 1 Example of a D-modified suffix tree for text T = adaaaabaabbaac and dictionary
D = {aa, aaaa, abba, c} (figure from [5]).

Let us denote by Occ(D) the set of all occurrences of dictionary patterns in T , that is,
the set of all fragments of T that match a pattern in D. Using TT,D, the set Occ(D) can be
computed in time O(n+ d+ |Occ(D)|).

We say that a tree is a weighted tree if it is a rooted tree with an integer weight on each
node v, denoted by ω(v), such that the weight of the root is zero and ω(u) < ω(v) if u is the
parent of v. We say that a node v is a weighted ancestor at depth ` of a node u if v is the
top-most ancestor of u with weight of at least `.

I Theorem 2 ([2, Section 6.2.1]). After O(n)-time preprocessing, weighted ancestor queries
for nodes of a weighted tree T of size n can be answered in O(log logn) time per query.

The D-modified suffix tree TT,D is a weighted tree with the weight of each node defined
as the length of the corresponding string. We define the locus of a fragment T [i . . j] in TT,D
to be the weighted ancestor of the leaf i at string-depth j − i+ 1.

3.2 Auxiliary Internal Queries
In a Bounded LCP query, one is given two fragments U and V of T and needs to return
the longest prefix of U that occurs in V ; we denote such a query by BoundedLCP(U, V ).
Kociumaka et al. [18] presented several tradeoffs for this problem, including the following.

I Lemma 3 ([18],[17, Corollary 7.3.4]). Given a text T of length n, one can construct in
O(n
√

logn) time an O(n)-size data structure that answers Bounded LCP queries in O(logε n)
time, for any constant ε > 0.

Recall that Count(i, j) returns the number of all occurrences of all the patterns of D in
T [i . . j]. The following result was proved in [5].

I Lemma 4 ([5]). The Count(i, j) queries can be answered in O(log2 n/ log logn) time with
an O(n+ d logn)-size data structure, constructed in O(n logn/ log logn+ d log3/2 n) time.
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3.3 Geometric Toolbox
For a set of n points in 2D, a range counting query returns the number of points in a given
rectangle.

I Theorem 5 (Chan and Pătraşcu [4]). Range counting queries for n integer points in 2D
can be answered in time O(logn/ log logn) with a data structure of size O(n) that can be
constructed in time O(n

√
logn).

A quarterplane is a range of the form (−∞, x1]× (−∞, x2]. By reversing coordinates we
can also consider quarterplanes with some dimensions of the form [xi,∞). Let us state the
following result on orthant color range counting due to Kaplan et al. [14] in the special case
of two dimensions.

I Theorem 6 ([14, Theorem 2.3]). Given n colored integer points in 2D, we can construct
in O(n logn) time an O(n logn)-size data structure that, given any quarterplane Q, counts
the number of distinct colors with at least one point in Q in O(logn) time.

We show how to apply geometric methods to a special variant of the CountDistinct
problem, where we are interested in a small subset of occurrences of each pattern.

Let D = {P1, P2, . . . , Pd} and S be a family of sets S1, . . . , Sd such that Sk ⊆ Occ(Pk),
where Occ(Pk) is the set of positions of T where Pk occurs. Let ‖S‖ =

∑
k |Sk|. For each

pattern Pk, we call the positions in the set Sk the special positions of Pk. Counting distinct
patterns occurring at their special positions in T [i . . j] is called CountDistinctS(i, j).

I Lemma 7. The CountDistinctS(i, j) queries can be answered in O(logn) time with a
data structure of size O(n+ ‖S‖ logn) that can be constructed in O(n+ ‖S‖ logn) time.

Proof. We assign a different integer color ck to every pattern Pk ∈ D. Then, for each
fragment T [a . . b] = Pk such that a ∈ Sk, we add point (a, b) with color ck in an initially
empty 2D grid G. A CountDistinctS(i, j) query reduces to counting different colors in the
range [i,∞)× (−∞, j] of G. The complexities follow from Theorem 6. J

3.4 Runs
A run (also known as a maximal repetition) is a periodic fragment R = T [a . . b] which can be
extended neither to the left nor to the right without increasing the period p = per(R), i.e.,
T [a− 1] 6= T [a+ p− 1] and T [b− p+ 1] 6= T [b+ 1] provided that the respective positions
exist. If R is the set of all runs in a string T of length n, then |R| ≤ n [3] and R can be
computed in O(n) time [19]. The exponent exp(R) of a run R with period p is |R|/p. The
sum of exponents of runs in a string of length n is O(n) [3, 19].

The Lyndon root of a periodic string U is the lexicographically smallest rotation of
its per(U)-length prefix. If L is the Lyndon root of a periodic string U , then U may be
represented as (L, r, a, b); here U = L[|L| − a+ 1 . . |L|]LrL[1 . . b], and r is called the rank of
U . Note that the minimal rotation of a fragment of a text can be computed in O(1) time
after an O(n)-time preprocessing [16].

For a periodic fragment U , let run(U) be the run with the same period that contains U .

I Lemma 8 ([3, 7, 17]). For a periodic fragment U , run(U) and its Lyndon root are uniquely
determined and can be computed in constant time after linear-time preprocessing.

We use runs in 2-approximate CountDistinct(i, j) queries and in counting squares.

CPM 2020



8:6 Counting Distinct Patterns in Internal Dictionary Matching

4 Answering CountDistinct 2-Approximately

4.1 CountDistinct for Extended or Contracted Fragments
For two positions ` and r, we define PrefD(`, r) as the longest prefix of T [` . . r] that matches
some pattern P ∈ D; the length of such prefix is at most r − ` + 1. Let us show how
to compute the locus of PrefD(`, r) in the D-modified suffix tree TT,D. To this end, we
preprocess TT,D for weighted ancestor queries and store at every node v of TT,D a pointer p(v)
to the nearest ancestor u (including v) of v such that L(u) ∈ D. To return PrefD(`, r), we
find the locus u of T [` . . r] in the D-modified suffix tree. We return p(u) if |L(u)| = |T [` . . r]|
and p(v), where v is the parent of u, otherwise.

Lemma 9 applies the D-modified suffix tree to the problem of maintaining the count of
distinct patterns occurring in a fragment subject to extending or shrinking the fragment.

I Lemma 9. For any constant ε > 0, given CountDistinct(i, j), one can compute
CountDistinct(i±1, j) and CountDistinct(i, j±1) in O(logε n) time with an O(n+d)-
size data structure that can be constructed in O(n

√
logn+ d) time.

Proof. We only present a data structure for CountDistinct(i ± 1, j) queries. Queries
CountDistinct(i, j ± 1) can be handled analogously by building the same data structure
for the reverses of all the strings in scope.

We show how to compute the number of patterns P ∈ D whose only occurrence in some
fragment T [` . . r] starts at position `. The computation of CountDistinct(i± 1, j) follows
directly by setting j = r and ` equal to i− 1 or i.

Data structure. We preprocess T for Bounded LCP queries (Lemma 3) and construct the
D-modified suffix tree TT,D of text T and dictionary D. In addition, we preprocess TT,D
for weighted ancestor queries and store at every node v of TT,D the number #(v) of the
ancestors u (including v) of v such that L(u) ∈ D.

T

` r

P0

P1

P2

P3

k

k

root

`

u = PrefD(`, `+ k − 1)

v = PrefD(`, r)

Figure 2 The setting of Lemma 9. Left: text T . Right: the path from the root of TT,D to the
leaf with path-label T [` . . n]. The nodes of the path whose path-labels match some patterns from D
are drawn in red. Here, P0 is the longest pattern that occurs at ` and also has an occurrence in
T [` + 1 . . r]; its locus in TT,D is u = PrefD(`, ` + k − 1). The patterns that occur in T [` . . r] only at
position ` are P1, P2 and P3. The locus of P3 is v = PrefD(`, r). Then, #(v)−#(u) = 5− 2 = 3.

Query. We want to count patterns longer than k = |BoundedLCP(T [` . . r], T [` + 1 . . r])|.
Let u = PrefD(`, `+ k − 1) and v = PrefD(`, r). The desired number of patterns is equal to
#(v)−#(u). See Figure 2 for a visualization. J
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4.2 Auxiliary Operation
Two fragments U = T [i1 . . j1] and V = T [i2 . . j2] are called consecutive if i2 = j1 + 1. We
denote the overlap T [max{i1, i2} . .min{j1, j2}] of U and V by U ∩ V .

3-Fragments-Counting
Input: A text T of length n and a dictionary D consisting of d patterns
Query: Given three consecutive fragments F1, F2, F3 in T such that |F1| = |F3| and
|F2| ≥ 8 · |F1|, count distinct patterns P from D that have an occurrence starting in F1
and ending in F3 and do not occur in either F1F2 or F2F3

Let us fix |F1| = |F3| = x and |F2| = y ≥ 8x. Additionally, let us call an occurrence of
P ∈ D that starts in fragment Fa and ends in fragment Fb an (Fa, Fb)-occurrence. We will
call an (F1, F3)-occurrence an essential occurrence.

We say that a string S is highly periodic if per(S) ≤ 1
4 |S|. We first consider the case that

all patterns in D are not highly periodic.

I Lemma 10. If each P ∈ D is not highly periodic, then

3-Fragments-Counting(F1, F2, F3) =
Count(F1F2F3)−Count(F1F2)−Count(F2F3) + Count(F2).

Proof. Let us start with the following claim.

B Claim 11. Any P ∈ D that has an essential occurrence occurs exactly once in F1F2F3.

Proof. We have |F1F2F3| = x + y + x = 2x + y. String P has an essential occurrence, so
|P | ≥ y. Therefore, if there are two occurrences of P in F1F2F3, then they overlap in

2|P | − (2x+ y) ≥ 2|P | − ( 1
4 |P |+ |P |) = 3

4 |P |

positions. This implies that P is highly periodic, which is a contradiction. C

Claim 11 shows that 3-Fragments-Counting(F1, F2, F3) is equal to the number of
essential occurrences. Let us prove that the stated formula does not count any (Fa, Fb)-
occurrences other than (F1, F3)-occurrences.

Each (F1, F2)-occurrence is registered when we add Count(F1F2F3) and unregistered
when we subtract Count(F1F2). Similarly for (F2, F3)-occurrences.
Each (F2, F2)-occurrence is registered when we add Count(F1F2F3), Count(F2) and
unregistered when we subtract Count(F1F2), Count(F2F3).
Each (F1, F1)-occurrence is registered when we add Count(F1F2F3) and unregistered
when we subtract Count(F1F2). Similarly for (F3, F3)-occurrences. J

We now proceed with answering 3-Fragments-Counting queries for the dictionary of
highly periodic patterns.

I Lemma 12. If F2 is aperiodic, then there are no essential occurrences of highly periodic
patterns. Otherwise, all essential occurrences of highly periodic patterns are generated by the
same run, that is, run(F2).

CPM 2020



8:8 Counting Distinct Patterns in Internal Dictionary Matching

Proof. The first claim follows from the fact that such an occurrence of a pattern P ∈ D has
an overlap of length at least 2per(P ) with F2 and hence per(P ) ≤ 1

2 |F2| is a period of F2.
As for the second claim, it suffices to show that, for any pattern P ∈ D that has an essential

occurrence, we have per(P ) = per(F2). The inequalities |F2| ≥ 2per(F2) and |F2| ≥ 2per(P )
imply |F2| ≥ per(F2) + per(P ). Hence, by the periodicity lemma, q = gcd(per(P ), per(F2)) is
a period of F2. As q ≤ per(F2), we conclude that q = per(F2). Thus, per(F2) divides per(P ),
and therefore per(P ) = per(F2). This concludes the proof. J

For a periodic factor U of T , let Periodic(U) denote the set of distinct patterns from D
that occur in U and have the same shortest period. Let us make the following observation.

I Observation 13. If all P ∈ D are highly periodic, F2 is periodic, and R = run(F2), then

3-Fragments-Counting(F1, F2, F3) =
|Periodic(F1F2F3 ∩R)| − |Periodic(F1F2 ∩R) ∪ Periodic(F2F3 ∩R)|.

Next we now show how to efficiently evaluate the right-hand side of the formula in the
observation above, using Theorem 5 for efficiently answering range counting queries in 2D.

We group all highly periodic patterns by Lyndon root and rank; for a Lyndon root L
and a rank r, we denote by DpL,r the corresponding set of patterns. Then, we build the data
structure of Theorem 5 for the set of points obtained by adding the point (a, b) for each
(L, r, a, b) ∈ DpL,r. We refer to the 2D grid underlying this data structure as GL,r. Note that
the total number of points in the data structures over all Lyndon roots and ranks is O(d).

Each occurrence of a pattern (L, r, a, b) lies within some run in R with Lyndon root L.
Let us state a simple fact.

I Fact 14. A periodic string (L, r, a, b) occurs in a periodic string (L, r′, a′, b′) if and only if
at least one of the following conditions is met:
(1) r = r′, a ≤ a′, and b ≤ b′;
(2) r = r′ − 1 and a ≤ a′;
(3) r = r′ − 1 and b ≤ b′;
(4) r ≤ r′ − 2.

I Lemma 15. One can compute |Periodic(U)| for any periodic fragment U in time
O(logn/ log logn) using a data structure of size O(n + d) that can be constructed in time
O(n+ d

√
logn).

Proof. For U = (L, r, a, b), we count points contained in at least one of the rectangles
(1) (−∞, a]× (−∞, b] in GL,r,
(2) (−∞, a]× (−∞, |L|] in GL,r−1,
(3) (−∞, |L|]× (−∞, b] in GL,r−1,
and we add to the count the number of patterns of the form (L, r′, a, b) with r′ < r − 1. For
the latter term, it suffices to store an array XL[1 . . t] such that XL[r] =

∑r
i=1 |D

p
L,i|, where

t is the maximum rank of a pattern with Lyndon root L. The total size of these arrays is
O(n) by the linearity of the sum of exponents of runs in a string [3, 19]. J

I Remark 16. In particular, in the proof of the above lemma, we count points that are
contained within at least one out of a constant number of rectangles. Therefore, not only we
can easily compute |Periodic(U)|, but similarly we are able to compute |Periodic(U1) ∪
Periodic(U2)| for some periodic factors U1, U2 of T .

We are now ready to prove the main result of this subsection.
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I Lemma 17. The 3-Fragments-Counting(F1, F2, F3) queries can be answered in time
O(log2 n/ log logn) with a data structure of size O(n + d logn) that can be constructed in
O(n logn/ log logn+ d log3/2 n) time.

Proof. By Lemma 10, in order to count the patterns that are not highly periodic, it suffices
to perform three Count queries. To this end, we employ the data structure of Lemma 4
which answers Count queries in O(log2 n/ log logn) time, occupies space O(n + d logn),
and can be constructed in time O(n logn/ log logn+ d log3/2 n).

We now proceed to counting highly periodic patterns. First, we check whether F2 is
periodic; this can be done in O(1) time after an O(n)-time preprocessing of T [18, 17]. If F2
is not periodic, then by Lemma 12 no highly periodic pattern has an essential occurrence, and
we are thus done. If F2 is periodic, three |Periodic(U)| queries suffice to obtain the answer
due to Observation 13. They can be efficiently answered due to Lemma 15 and Remark 16; the
complexities are dominated by those for building the data structure for Count queries. J

4.3 Approximation Algorithm
Let us fix δ = 1

9 . A fragment of length b(1 + δ)pc for any positive integer p will be called a
p-basic fragment. Our data structure stores CountDistinct(i, j) for every basic fragment
T [i . . j]. Using Lemma 9, these values can be computed in O(n log1+ε n + d) time with a
sliding window approach. The space requirement is O(n logn+ d).

i j′ i′ j

F1 F2 F3

Figure 3 A 2-approximation of CountDistinct(i, j) is achieved using precomputed counts for
basic factors T [i . . i′] and T [j′ . . j].

In order to answer an arbitrary CountDistinct(i, j) query, let T [i . . i′] and T [j′ . . j]
be the longest prefix and suffix of T [i . . j] being a basic factor; see Figure 3. We sum
up CountDistinct(i, i′) and CountDistinct(j′, j) and the result of a 3-Fragments-
Counting query for F1 = T [i . . j′ − 1], F2 = T [j′ . . i′], F3 = T [i′ + 1 . . j]. (Note that
(|F1|+ |F2|) · (1 + δ) > |F1|+ |F2|+ |F3| implies δ(|F1|+ |F2|) > |F3|, and since |F1| = |F3|,
we have that |F1| = |F3| ≤ 1

8 |F2|.) Now, a pattern P ∈ D is counted at least once if and
only if it occurs in T [i . . j]. Also, a pattern P ∈ D is counted at most twice (exactly twice if
and only if it occurs in both F1F2 and F2F3). The above discussion and Lemma 17 yield the
following result.

I Theorem 18. The CountDistinct(i, j) queries can be answered 2-approximately in time
O(log2 n/ log logn) with a data structure of size O((n+ d) logn) that can be constructed in
time O(n log1+ε n+ d log3/2 n) for any constant ε > 0.

5 Time-Space Tradeoffs for Exact Counting

5.1 Tradeoff for Large Dictionaries
The following result is yet another application of Lemma 9.
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8:10 Counting Distinct Patterns in Internal Dictionary Matching

I Theorem 19. For any m ∈ [1, n] and any constant ε > 0, the CountDistinct(i, j)
queries can be answered in O(m logε n) time using an O(n2/m2 + n+ d)-size data structure
that can be constructed in O((n2 logε n)/m+ n

√
logn+ d) time.

Proof. A fragment of the form T [c1m+1 . . c2m] for integers c1 and c2 will be called a canonical
fragment. Our data structure stores CountDistinct(i′, j′) for every canonical fragment
T [i′ . . j′] and the data structure of Lemma 9. Hence the space complexity O(n2/m2 + n+ d).

We can compute in O(n logε n) time CountDistinct(i′, j) for a given i′ and all j using
Lemma 9. There are O(n/m) starting positions of canonical fragments and hence the
counts for all canonical fragments can be computed in O((n2 logε n)/m) time. Additional
preprocessing time O(n

√
logn+ d) originates from Lemma 9.

i ji′ j′

canonical fragmentextend extend

Figure 4 An illustration of the setting in the query algorithm underlying Theorem 19.

We can answer a CountDistinct(i, j) query in O(m logε n) time as follows. Let T [i′ . . j′]
be the maximal canonical fragment contained in T [i . . j]. We retrieve CountDistinct(i′, j′)
for T [i′ . . j′]. Then, we apply Lemma 9 O(m) times; each time we extend the fragment for
which we count, until we obtain CountDistinct(i, j). See Figure 4. J

5.2 Tradeoff for Small Dictionaries
We call a set of strings H a path-set if all elements of H are prefixes of its longest element.
We now show how to efficiently handle dictionaries that do not contain large path-sets.

I Lemma 20. If D does not contain any path-set of size greater than k, then we can construct
in O(kn logn) time an O(kn logn)-size data structure that answers CountDistinct(i, j)
queries in O(logn) time.

Proof. Let D = {P1, . . . , Pd} and S = {Occ(P1), . . . ,Occ(Pd)}. Every position of T contains
at most k occurrences of patterns from D. This implies that ‖S‖ ≤ kn. We can obviously
treat a CountDistinct(i, j) query as a CountDistinctS(i, j) query. The complexities
follow from Lemma 7. J

A proof of the following lemma is rather standard and is included in the full version of
the paper.

I Lemma 21. For any k ∈ [1, n], we can compute a maximal family F of pairwise-disjoint
path-sets in D, each consisting of at least k elements, in O(n+ d) time.

We now combine Lemmas 3, 20 and 21 to get the main result of this section.

I Theorem 22. For any m ∈ [1, n] and any constant ε > 0, the CountDistinct(i, j)
queries can be answered in O(m logε n+ logn) time using an O((nd logn)/m+ d)-size data
structure that can be constructed in O((nd logn)/m+ d) time.

Proof. We first apply Lemma 21 for k = dd/me. We then have a decomposition of D
to a family F of at most m path-sets and a set D′ with no path-set of size greater than
bd/mc. We directly apply Lemma 20 for D′. In order to handle path-sets, we build the data
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structure of Lemma 3. Then, upon a CountDistinct(i, j) query, for each path-set H ∈ F ,
we compute the longest pattern in H that occurs in T [i . . j] using a Bounded LCP query
followed by a predecessor query [24] in a structure that stores the lengths of the elements
of H, with the lexicographic rank in H stored as satellite information. The data structure
of [24] is randomized, but it can be combined with deterministic dictionaries [21] using a
simple two-level approach (see [23]), resulting in a deterministic static data structure. J

I Remark 23. Let us fix the query time to be O(m logε n) form = Ω(logn). Then, Theorem 22
outperforms Theorem 19 in terms of the required space for d = o(n/(m logn)). For example,
for m = d = n1/4, the data structure of Theorem 22 requires space Õ(n) while the one
of Theorem 19 requires space Õ(n

√
n).

6 Internal Counting of Distinct Squares

The number of occurrences of squares could be quadratic, but we can construct a much
smaller O(n logn)-size subset of these occurrences (called boundary occurrences) that, from
the point of view of CountDistinct queries, gives almost the same answers. This is the
main trick in this section. Distinct squares with a boundary occurrence in a given fragment
can be counted in O(logn) time due to Lemma 7. The remaining squares can be counted
based on their structure: we show that they are all generated by the same run.

Now, the dictionary D is the set of all squares in T . By the following fact, d = O(n) and
D can be computed in O(n) time.

I Fact 24 ([7, 8, 10, 12]). A string T of length n contains O(n) distinct square factors and
they can all be computed in O(n) time.

We say that an occurrence of a square U2 is induced by a run R if it is contained in R
and the shortest periods of U and R are the same. Every occurrence of a square is induced
by exactly one run.

We need the following fact (note that it is false for the set of all runs; see [11]).

I Fact 25. The sum of the lengths of all highly periodic runs is O(n logn).

Proof. We will prove that each position in T is contained in O(logn) highly periodic runs. Let
us consider all highly periodic runs R containing some position i, such that m ≤ per(R) < 3

2m

for some even integer m. Suppose for the sake of contradiction that there are at least 5 such
runs. Note that each such run fully contains one of the fragments T [i− 3m+ 1 + t . . i+ t]
for t ∈ {0,m, 2m, 3m}. By the pigeonhole principle, one of these four fragments is contained
in at least two runs, say R1 and R2. In particular, the overlap of these runs is at least
3m ≥ per(R1) + per(R2), which is a contradiction by the periodicity lemma. J

We define a family of occurrences B = B1, . . . , Bd such that, for each square U2
i , the set

Bi contains the leftmost and the rightmost occurrence of U2
i in every run. We call these

boundary occurrences. Boundary occurrences of squares have the following property.

I Lemma 26. ‖B‖ = O(n logn) and the set family B can be computed in O(n logn) time.

Proof. Let us define the root of a square U2 to be U . A square is primitively rooted if its
root is a primitive string. Let p-squares be primitively rooted squares, np-squares be the
remaining ones. The number of occurrences of p-squares in a string of length n is O(n logn)
and they can all be computed in O(n logn) time; see [6, 22].
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We now proceed to np-squares. Note that for any highly periodic run R, the leftmost
occurrence of each np-square induced by R starts in one of the first per(R) positions of R; a
symmetric property holds for rightmost occurrences and last per(R) positions. In addition,
it can be readily verified that such a position is the starting (resp. ending) position of at
most exp(R) squares induced by R. It thus suffices to bound the sum of exp(R) · per(R) over
all highly periodic runs R. The fact that exp(R) · per(R) = |R| concludes the proof of the
combinatorial part by Fact 25.

For the algorithmic part, it suffices to iterate over the O(n) runs of T . J

I Lemma 27. If T [i . . j] is non-periodic, CountDistinct(i, j) = CountDistinctB(i, j).

Proof. Let us consider an occurrence of a square U2 inside T [i . . j]. Let R be the run that
induces this occurrence. By the assumption of the lemma, R does not contain T [i . . j]. Then
at least one of the boundary occurrences of U2 in R is contained in T [i . . j]. J

For a periodic fragment F of T , by RunSquares(F ) we denote the number of distinct
squares that are induced by F (being a run if interpreted as a standalone string). The value
RunSquares(F ) can be computed in O(1) time, as it was shown in e.g. [7].

Let F1 be a prefix and F2 be a suffix of a periodic fragment F , such that each of F1 and
F2 is of length at most per(F ) – and hence they are disjoint. By BSq(F, F1, F2) (“bounded
squares”) we denote the number of distinct squares induced by F which have an occurrence
starting in F1 or ending in F2.

I Lemma 28. Given per(F ), the BSq(F, F1, F2) queries can be answered in O(1) time.

Proof. We are to count distinct squares induced by F that start in F1 or end in F2.
We introduce an easier version of BSq queries. Let BSq′(F, F1) = BSq(F, F1, ε) be the

number of squares induced by F which start in its prefix F1 of length at most p := per(F ).

Reduction of BSq to BSq′. First, observe that the set of squares induced by F starting
at some position q ∈ [1, p] and the set of squares induced by F ending at some position
q′ ∈ [|F | − p+ 1, |F |] are equal if q ≡ q′ + 1 (mod p) and disjoint otherwise. Also note that
F2 = UV for some prefix V and some suffix U of F [p]F [1 . . p− 1]; we consider this rotation
of F [1 . . p] to offset the +1 factor in the above modular equation. Let |U | = a and |V | = b.

Then, by the aforementioned observation, we are to count distinct squares that start in
some position in the set [1, |F1|] ∪ [1, b] ∪ [p− a+ 1, p]; see Figure 5.

F

b a a b

|F2|

per(R)

Figure 5 Reduction of BSq to BSq′; the case that |F1| ≤ b.

Hence the computation of BSq(F, F1, F2) is reduced to at most two instances of the
special case when F2 is the empty string.
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Computation of BSq′(F, F1). The number of squares induced by F starting at F [i] is
b(|F | − i+ 1)/(2p)c. Consequently, BSq′(F, F1) =

∑|F1|
i=1b(|F | − i+ 1)/(2p)c = |F1| · t −

max{0, |F1| − k − 1}, where t = b|F |/(2p)c and k = |F | mod (2p). J

I Lemma 29. Assume that F = T [i . . j] is periodic and R = T [a . . b] = run(T [i . . j]). Let
F1 = T [i . . a+ p− 1] and F2 = T [b− p+ 1 . . j], where per(R) = p. Then:

CountDistinct(i, j) = CountDistinctB(i, j) + RunSquares(F )−BSq(F, F1, F2). (1)

Proof. In the sum CountDistinctB(i, j) + RunSquares(F ), all squares are counted once
except for squares whose boundary occurrences are induced by R, which are counted twice.
They are exactly counted in the term BSq(F, F1, F2); see Figure 6. J

T

i

F1

j

F2

F

R
a b

per(R) per(R)

Figure 6 The setting in Lemma 29. Note that F1 is empty if i ≥ a + per(R); similarly for F2.

I Theorem 30. If D is the set of all square factors of T , then CountDistinct(i, j) queries
can be answered in O(logn) time using a data structure of size O(n log2 n) that can be
constructed in O(n log2 n) time.

Proof. We precompute the set B in O(n logn) time using Lemma 26 and perform O(n log2 n)
time and space preprocessing for CountDistinctB(i, j) queries.

In order to answer a CountDistinct(i, j) query, first we ask a run(T [i . . j]) query of
Lemma 8 to check if T [i . . j] is periodic.

We compute CountDistinctB(i, j) which takes O(logn) time due to Lemma 7. If
T [i . . j] is non-periodic, then it is the final result due to Lemma 27.

Otherwise T [i . . j] is periodic. Let F, F1, F2 be as in Lemma 29. We answer RunSquares(F )
and BSq(F, F1, F2) queries in O(1) time using the algorithm from [7] and Lemma 28,
respectively. Finally, CountDistinct(i, j) is computed using (1). J

7 Final Remarks

The general framework for dynamic dictionaries, presented in the full version of this paper,
essentially consists in rebuilding a static data structure after every k updates. We return
correct answers by performing individual queries for the patterns inserted or deleted from the
dictionary since the data structure was built. In particular, we show that an application of
this framework – with some tweaks – to the data structure of Section 4 yields the following.

I Theorem 31. For any k ∈ [1, n], we can construct a data structure in Õ(n+d) time, which
processes each update to the dictionary in Õ(n/k) time and answers CountDistinct(i, j)
queries 2-approximately in Õ(k) time.

We leave open the problem of whether an Õ(n + d)-size data structure answering
CountDistinct(i, j) queries exactly in time Õ(1) exists.
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