
Path Query Data Structures in Practice
Meng He
Faculty of Computer Science, Dalhousie University, Halifax, Canada
mhe@cs.dal.ca

Serikzhan Kazi
Faculty of Computer Science, Dalhousie University, Halifax, Canada
skazi@dal.ca

Abstract
We perform experimental studies on data structures that answer path median, path counting, and
path reporting queries in weighted trees. These query problems generalize the well-known range
median query problem in arrays, as well as the 2d orthogonal range counting and reporting problems
in planar point sets, to tree structured data. We propose practical realizations of the latest theoretical
results on path queries. Our data structures, which use tree extraction, heavy-path decomposition
and wavelet trees, are implemented in both succinct and pointer-based form. Our succinct data
structures are further specialized to be plain or entropy-compressed. Through experiments on large
sets, we show that succinct data structures for path queries may present a viable alternative to
standard pointer-based realizations, in practical scenarios. Compared to naïve approaches that
compute the answer by explicit traversal of the query path, our succinct data structures are several
times faster in path median queries and perform comparably in path counting and path reporting
queries, while being several times more space-efficient. Plain pointer-based realizations of our data
structures, requiring a few times more space than the naïve ones, yield up to 100-times speed-up
over them.

2012 ACM Subject Classification Information systems → Data structures

Keywords and phrases path query, path median, path counting, path reporting, weighted tree

Digital Object Identifier 10.4230/LIPIcs.SEA.2020.27

Related Version https://arxiv.org/abs/2001.10567v3

Supplementary Material The source code is accessible at https://github.com/serkazi/tree_
path_queries.

Funding This work was supported by NSERC of Canada.

1 Introduction

Let T be an ordinal tree on n nodes, with each node x associated with a weight w(x) over
an alphabet [σ].1 A path query in such a tree asks to evaluate a certain given function on
the path Px,y, which is the path between two given query nodes, x and y. A path median
query asks for the median weight on Px,y. A path counting (path reporting) query counts
(reports) the nodes on Px,y with weights falling inside the given query weight range. These
queries generalize the range median problem on arrays, as well as the 2d orthogonal counting
and reporting queries in point sets, by replacing one of the dimensions with tree topology.
Formally, query arguments consist of a pair of vertices x, y ∈ T along with an interval Q.
The goal is to preprocess the tree T for the following types of queries:

Path Counting: return |{z ∈ Px,y |w(z) ∈ Q}|.
Path Reporting: enumerate {z ∈ Px,y |w(z) ∈ Q}.
Path Selection: return the kth (0 ≤ k < |Px,y|) weight in the sorted list of weights on
Px,y; k is given at query time. In the special case of k = b|Px,y|/2c, a path selection is a
path median query.

1 we set [n] , {1, 2, . . . ,n}.
© Meng He and Serikzhan Kazi;
licensed under Creative Commons License CC-BY

18th International Symposium on Experimental Algorithms (SEA 2020).
Editors: Simone Faro and Domenico Cantone; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mhe@cs.dal.ca
mailto:skazi@dal.ca
https://doi.org/10.4230/LIPIcs.SEA.2020.27
https://arxiv.org/abs/2001.10567v3
https://github.com/serkazi/tree_path_queries
https://github.com/serkazi/tree_path_queries
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Path Query Data Structures

Path queries is a widely-researched topic in computer science community [7, 15, 23, 32,
28, 13, 24]. Apart from theoretical appeal, queries on tree topologies reflect the needs of
efficient information retrieval from hierarchical data, and are gaining ground in established
domains such as RDBMS [2]. The expected height of T being

√
2πn [42], this calls for the

development of methods beyond naïve.
Previous work includes that of Krizanc et al. [32], who were the first to introduce path

median query problem (henceforth PM) in trees, and gave an O(lgn) query-time data structure
with the space cost of O(n lg2 n) words. They also gave an O(n logb n) words data structure
to answer PM queries in time O(b lg3 n/ lg b), for any fixed 1 ≤ b ≤ n. Chazelle [15] gave an
emulation dag-based linear-space data structure for solving path counting (henceforth PC)
queries in trees in time O(lgn).

While [32, 15] design different data structures for PM and PC, He et al. [26, 28] use tree
extraction to solve both PC and the path selection problem (henceforth PS), as well as the
path reporting problem (henceforth PR), which they were the first to introduce. The running
times for PS/PC were O(lg σ), while a PR query is answered in O((1 + κ) lg σ) time, with κ
henceforth denoting output size. Also given is an O(n lg lg σ)-words and O(lg σ + κ lg lg σ)
query time solution, for PR, in the RAM model.

Further, solutions based on succinct data structures started to appear. (In the interests
of brevity, the convention throughout this paper is that a data structure is succinct if its
size in bits is close to the information-theoretic lower bound.) Patil et al. [40] presented an
O(lgn · lg σ) query time data structure for PS/PC, occupying 6n+ n lg σ + O(n lg σ) bits of
space. Therein, the tree structure and the weights distribution are decoupled and delegated
to respectively heavy-path decomposition [43] and wavelet trees [37]. Their data structure
also solves PR in O(lgn lg σ + (1 + κ) lg σ) query time.

Parallel to [40], He et al. [26, 28] devised a succinct data structure occupying nH(WT) +
O(n lg σ) bits of space to answer PS/PC in O(lgσ

lg lgn + 1), and PR in O((1 + κ)(lgσ
lg logn + 1))

time. Here, WT is the multiset of weights of the tree T , and H(WT) is there entropy thereof.
Combining tree extraction and the ball-inheritance problem [14], Chan et al. [13] proposed
further trade-offs, one of them being an O(n lgε n)-word structure with O(lg lgn+ κ) query
time, for PR.

Despite the vast body of work, little is known on the practical performance of the data
structures for path queries, with empirical studies on weighted trees definitely lacking, and
existing related experiments being limited to navigation in unlabeled trees only [8], or to very
specific domains [5, 38]. By contrast, the empirical study of traditional orthogonal range
queries have attracted much attention [9, 12, 29]. We therefore contribute to remedying this
imbalance.

1.1 Our work
In this article, we provide an experimental study of data structures for path queries. The
types of queries we consider are PM, PC, and PR. The theoretical foundation of our work
are the data structures and algorithms developed in [26, 40, 27, 28]. The succinct data
structure by He et al. [28] is optimal both in space and time in the RAM model. However, it
builds on components that are likely to be cumbersome in practice. We therefore present a
practical compact implementation of this data structure that uses 3n lg σ + O(n lg σ) bits of
space as opposed to the original nH(WT) + O(n lg σ) bits of space in [28]. For brevity, we
henceforth refer to the data structures based on tree extraction as ext. Our implementation
of ext achieves the query time of O(lg σ) for PM and PC queries, and O((1 + κ) lg σ) time for
PR. Further, we present an exact implementation of the data structure (henceforth whp) by

M. He and S. Kazi 27:3

Patil et al. [40]. The theoretical guarantees of whp are 6n+ n lg σ + O(n lg σ) bits of space,
with O(lgn lg σ) and O(lgn lg σ + (1 + κ) lg σ) query times for respectively PM/PC and PR.
Although whp is optimal neither in space nor in time, it proves competitive with ext on
the practical datasets we use. Further, we evaluate time- and space-impact of succinctness
by realizing plain pointer-based versions of both ext and whp. We show that succinct data
structures based on ext and whp offer an attractive alternative for their fast but space-
consuming counterparts, with query-time slow-down of 30-40 times yet commensurate savings
in space. We also implement, in pointer-based and succinct variations, a naïve approach
of not preprocessing the tree at all but rather answering the query by explicit scanning.
The succinct solutions compare favourably to the naïve ones, the slowest former being 7-8
times faster than naïve PM, while occupying up to 20 times less space. We also compare the
performance of different succinct solutions relative to each other.

2 Preliminaries

This section introduces notation and main algorithmic techniques at the core of our data
structures.

Notation. The ith node visited during a preorder traversal of the given tree T is said
to have preorder rank i. We identify a node by its preorder rank. For a node x ∈ T ,
its set of ancestors A(x) includes x itself. Given nodes x, y ∈ T , where y ∈ A(x), we set
Ax,y , Px,y \{y}; one then has Px,y = Ax,zt{z}tAy,z, where z = LCA(x, y). The primitives
rank/select/access are defined in a standard way, i.e. rank1(B, i) is the number of 1-bits
in positions less than i, select1(B, j) returns the position of the jth 1-bit, and access(B, i)
returns the bit at the ith position, all with respect to a given bitmap B, which is omitted
when the context is clear.

Compact representations of ordinal trees. Compact representations of ordinal trees is a
well-researched area, mainstream methodologies including balanced parentheses (BP) [30,
35, 20, 33, 34], depth-first unary degree sequence (DFUDS) [11, 21, 31], level-order unary
degree sequence (LOUDS) [30, 17], and tree covering (TC) [21, 25, 18]. Of these, BP-based
representations “combine good time- and space-performance with rich functionality” in
practice [8], and we use BP in our solutions. BP is a way of linearising the tree by emitting

AT

B

C

D E

F

G

H

I

J

A’TX

C’

D’

F’

I’

J’

RTX̄

B”

E”

G”

H”

Figure 1 Tree extraction. Original tree (left), extracted tree TX (middle), and extraction of the
complement of X, tree TX̄ (right). The blue shaded nodes in T form the set X. In the tree TX ,
node C′ corresponds to node C in the original tree T , and node C′ in the extracted tree TX is the
TX -view of nodes C and E in the original tree T . Finally, node C in T is the T -source of the node C′

in TX . Extraction of the complement, TX̄ , demonstrates the case of adding a dummy root R.

SEA 2020

27:4 Path Query Data Structures

“(” upon first entering a node and “)” upon exiting, having explored all its descendants
during the preorder traversal of the tree. For example, (((()())())((())())) would be a
BP-sequence for the tree T in Figure 1.

As shown in [35, 33, 34], an ordinal tree T on n nodes can be represented in 2n+O(n) bits
of space to support the following operations in O(1) time, for any node x ∈ T : child(T ,x, i),
the i-th child of x; depth(T ,x), the number of ancestors of x; LCA(T ,x, y), the lowest common
ancestor of nodes x, y ∈ T ; and level_anc(T ,x, i), the ith lowest ancestor of x.

Tree extraction. Tree extraction [28] selects a subset X of nodes while maintaining the
underlying hierarchical relationship among the nodes in X. Given a subset X of tree
nodes called extracted nodes, an extracted tree TX can be obtained from the original tree
T through the following procedure. Let v /∈ X be an arbitrary node. The node v and all
its incident edges in T are removed from T , thereby exposing the parent p of v and v′s
children, v1, v2, . . . , vk. Then the nodes v1, v2, . . . , vk (in this order) become new children
of p, occupying the contiguous segment of positions starting from the (old) position of v.
After thus removing all the nodes v /∈ X, we have TX ≡ FX , if the forest FX obtained
is a tree; otherwise, a dummy root r holds the roots of the trees in FX (in the original
left-to-right order) as its children. (The symmetry between X and X̄ = V \X brings about
the complement TX̄ of the extracted tree TX .) An original node x ∈ X of T and its copy, x′,
in TX are said to correspond to each other; also, x′ is the TX-view of x, and x is the T-source
of x′. The TX -view of a node y ∈ T (y is not necessarily in X) is generally defined to be the
node y′ ∈ TX corresponding to the lowest node in A(y) ∩X. In this paper, tree extraction is
predominantly used to classify nodes into categories, and the labels assigned indicate the
weight ranges the original weights belong to.

Figure 1 gives an example of an extracted tree, views and sources.

3 Data Structures for Path Queries

This section gives the design details of the whp and ext data structures.

3.1 Data structures based on heavy-path decomposition
We now describe the approach of [40], which is based on heavy-path decomposition [43].

Heavy-path decomposition (HPD) imposes a structure on a tree. In HPD, for each non-leaf
node, a heavy child is defined as the child whose subtree has the maximum cardinality. HPD
of a tree T with root r is a collection of disjoint chains, first of which is obtained by always
following the heavy child, starting from r, until reaching a leaf. The subsequent chains are
obtained by the same procedure, starting from the non-visited nodes closest to the root (ties
broken arbitrarily). The crucial property is that any root-to-leaf path in the tree encounters
O(lgn) distinct chains. A chain’s head is the node of the chain that is closest to the root; a
chain’s tail is therefore a leaf.

Patil et al. [40] used HPD to decompose a path query into O(lgn) queries in sequences.
To save space, they designed the following data structure to represent the tree and its HPD.
If x is the head of a chain φ, all the nodes in φ have a (conceptual) reference pointing to x,
while x points to itself. A reference count of a node x (denoted as rcx) stands for the number
of times a node serves as a reference. Obviously, only heads feature non-zero reference counts
– precisely the lengths of their respective chain. The reference counts of all the nodes are
stored in unary in preorder in a bitmap B = 10rc110rc2 . . . 10rcn using 2n+ O(n) bits. Then,
one has that rcx = rank0(B, select1(B, x + 1))− rank0(B, select1(B, x)). The topology of
the original tree T is represented succinctly in another 2n + O(n) bits. In addition, they

M. He and S. Kazi 27:5

encode the HPD structure of T using a new tree T ′ that is obtained from T via the following
transformation. All the non-head nodes become leaves and are directly connected to their
respective heads; the heads themselves (except the root) become children of the references of
their original parents. All these connections are established respecting the preorder ranks of
the nodes in the original tree T . Namely, a node farther from the head attaches to it only
after the higher-residing nodes of the chain have done so. This transformation preserves the
original preorder ranks. On T ′, operation ref(x) is supported, which returns the head of
chain to which the node x in the original tree belongs.

To encode weights they call Cx the weight-list of x if it collects, in preorder, all the nodes
for which x is a reference. Thus, a non-head node’s list is empty; a head’s list spells the
weights in the relevant chain. Define C = C1C2 . . . Cn. Then, in C, the weight of x ∈ T
resides at position

1 + select1(B, ref(x))− ref(x) + depth(x)− depth(ref(x)) (1)

(where depth(x) and ref(x) are provided by T and T ′, respectively). C is then encoded in
a wavelet tree (WT). To answer a query, T , T ′, B, and Equation (1) are used to partition
the query path into O(lgn) sub-chains that it overlaps in HPD; and for each sub-chain, one
computes the interval in C storing the weights of the nodes in the chain. Im denotes the set
of intervals computed. Precisely, for a node x, one uses B to find out whether x is the head
of its chain; if not, the parent of x in T ′ returns one (say, y). Then Equation (1) maps the
path Ax,y to its corresponding interval in C. One proceeds to the next chain by fetching the
(original) parent of y, using T . Then, the WT is queried with O(lgn) simultaneous (i) range
quantile (for PM); or (ii) orthogonal range 2d queries (for PC and PR).

Range quantile query over a collection of ranges is accomplished via a straightforward
extension of the algorithm of Gagie et al. [19]. One descends the wavelet treeWC maintaining
a set of current weights [a, b] (initially [σ]), the current node v (initially the root of WC),
and Im. When querying the current node v of WC with an interval [lj , rj] ∈ Im, one finds
out, in O(1) time, how many weights in the interval are lighter than the mid-point c of
[a, b], and how many of them are heavier. The sum of these values then determines which
subtree of WC to descend to. There being O(lg σ) levels in WC , and spending O(1) time for
each segment in Im, the overall running time is O(lgn lg σ). PC/PR proceed by querying each
interval, independently of the others, with the standard 2d search over WC .

3.2 Data structures based on tree extraction
The solution by He et al. [28] is based on performing a hierarchy of tree extractions, as follows.
One starts with the original tree T weighted over [σ], and extracts two trees T0 = T1,m and
T1 = Tm+1,σ, respectively associated with the intervals I0 = [1,m] and I1 = [m+ 1,σ], where
m = b 1+σ

2 c. Then both T0 and T1 are subject to the same procedure, stopping only when
the current tree is weight-homogeneous. We refer to the tree we have started with as the
outermost tree.

The key insight of tree extraction is that the number of nodes n′ with weights from
I0 on the path from u to v equals n′ = depth0(u0) + depth0(v0)− 2 · depth0(z0) + 1w(z)∈I0 ,
where depth0(·) is the depth function in T0, z = LCA(u, v), u0, v0, z0 are the T0-views of
u, v, and z, and 1pred is 1 if predicate pred is true, and 0 otherwise. The key step is then,
for a given node x, how to efficiently find its 0/1-parent, whose purpose is analogous to a
rank-query when descending down the WT. Consider a node x ∈ T and its T0-view x0. The
corresponding node x′ ∈ T of x0 ∈ T0 is then called 0-parent of x. The 1-parent is defined
analogously. Supporting 0/1-parents in compact space is one of the main implementation

SEA 2020

27:6 Path Query Data Structures

challenges of the technique, as storing the views explicitly is space-expensive. In [28], the
hierarchy of extractions is done by dividing the range not to 2 but f = O(lgε n) parts,
with 0 < ε < 1 being a constant. They classify the nodes according to weights using these
f = dlgε ne labels and use tree covering to represent the tree with small labels in order to find
Tα-views for arbitrary α ∈ [σ], in constant time. They also use this representation to identify,
in constant time, which extractions to explore. Therefore, at each of the O(lg σ/ lg lgn) levels
of the hierarchy of extractions, constant time work is done, yielding an O(lg σ/ lg lgn)-time
algorithm for PC. Space-wise, it is shown that each of the O(lg σ/ lg lgn) levels can be stored
in 2n + nH0(W) + O(n lg σ) bits of space in total (where W is the multiset of weights on
the level) which, summed over all the levels, yields nH0(WT) + O(n lg σ/ lg lgn) bits of
space. The components of this optimal result, however, use word-parallel techniques that are
unlikely to be practical. In addition, one of the components, tree covering (TC) for trees
labeled over [σ], σ = O(lgε n) has not been implemented and experimentally evaluated even
for unlabeled versions thereof. Finally, lookup tables for the word-RAM data structures may
either be rendered too heavy by word alignment, or too slow by the concomitant arithmetic
for accessing its entries. In practice, small blocks of data are usually explicitly scanned [8].
However, we can see no fast way to scan small labeled trees. At the same time, a generic
multi-parentheses approach [37] would spare the effort altogether, immediately yielding a
4n lg σ+ 2n+O(n lg σ)-bit encoding of the tree, with O(1)-time support for 0/1-parents. We
achieve instead 3n lg σ + O(n lg σ) bits of space, as we proceed to describe next.

We store 2n + O(n) bits as a regular BP-structure S of the original tree, in which a
1-bit represents an opening parenthesis, and a 0-bit represents a closing one, and mark in
a separate length-n bitmap B the types (i.e. whether it is a 0- or 1-node) of the n opening
parentheses in S. The type of an opening parenthesis at position i in S is thus given by
access(B, rank1(S, i)). Given S and B, we find the t ∈ {0, 1}-parent of v with an approach
described in [27]. For completeness, we outline in Algorithm 1 how to locate the Tt-view of a
node v.

Algorithm 1 Locate the view of v ∈ T in Tt, where Tt is the extraction from T of the t-nodes.

Require: t ∈ {0, 1}
1: function view_of(v, t)
2: if B[v] == t then . v is a t-node itself
3: return B.rankt(v)
4: λ ← rankt(B, v) . how many t-nodes precede v?
5: if λ == 0 then
6: return null
7: u ← selectt(B,λ) . find the λth t-node
8: if LCA(u, v) == u then
9: return B.rankt(u)
10: z ← LCA(u, v) . z is LCA of a t-node u and a non-t-node v
11: if z == null or B[z] == t then . z is a t-node ⇒ @ t-parent closer to v
12: return B.rankt(z) . or null

13: λ ← rankt(B, z) . how many t-nodes precede z?
14: r ← selectt(B,λ+ 1) . the first t-descendant of z
15: zt ← rankt(B, r) . zt is the Tt-view of r
16: p ← Tt.parent(zt) . p can be null if zt is 0
17: return p

M. He and S. Kazi 27:7

First, find the number of t-nodes preceding v (line 4). If none exists (line 5), we are done;
otherwise, let u be the t-node immediately preceding v (line 7). If u is an ancestor of v, it
is the answer (line 9); else, set z = LCA(u, v). If z is a t-node, or non-existent (because
the tree is actually a forest), then return z or null, respectively. Otherwise (z exists and
not a t-node), in line 14 we find the first t-descendant r of z (it exists because of u). This
descendant cannot be a parent of v, since otherwise we would have found it before. It must
share though the same t-parent with v. We map this descendant to a node zt in Tt (line 15).
Finally, we find the parent of zt in Tt (line 16).

The combined cost of S and B is 2n + n + O(n) = 3n + O(n) bits. At each of the
lg σ levels of extraction, we encode 0/1-labeled trees in the same way, so the total space is
3n lg σ + O(n lg σ) bits.

Query algorithms in the ext data structure proceed within the generic framework of
extracting T0 and T1. Let n′ = |Pu0,v0 |. In PM, we recurse on T0 if k < n′, for a query that
asks for a node with the kth smallest weight on the path Pu0,v0 ; otherwise, we recurse on T1
with k ← k − n′ and u1, v1. We stop upon encountering a tree with homogeneous weights.
This gives an O(lg σ)-time algorithm. We defer the details to the full version of the paper.

A procedure for the PC and PR is essentially similar to that for the PM problem. We
maintain two nodes, u and v, as the query nodes with respect to the current extraction
T , and a node z as the lowest common ancestor of u and v in the current tree T . Initially,
u, v ∈ T are the original query nodes, and T is the outermost tree. Correspondingly, z is the
LCA of the nodes u and v in the original tree; we determine the weight of z and store it in w,
which is passed down the recursion. Let [a, b] be the query interval, and [p, q] be the current
range of weights of the tree. Initially, [p, q] = [σ]. First, we check whether the current interval
[p, q] is contained within [a, b]. If so, the entire path Au,z ∪Av,z belongs to the answer. Here,
we also check whether w ∈ [a, b]. Then we recurse on Tt (t ∈ {0, 1}) having computed the
corresponding Tt-views of the nodes u, v, and z, and with the corresponding current range.
This algorithm’s running time is O(lg σ). The details are deferred to the full version.

To summarize, the variant of ext that we design here uses 3n lg σ + O(n lg σ) bits to
support PM and PC in O(lg σ) time, and PR in O((1 + κ) lg σ) time. Compared to the original
succinct solution [28] based on tree extraction, our variant uses about 3 times the space with
a minor slow-down in query time, but is easily implementable using bitmaps and BP, both
of which have been studied experimentally (see e.g. [8] and [37] for an extensive review).

4 Experimental Results

We now conduct experimental studies on data structures for path queries.

4.1 Implementation
For ease of reference, we outline the data structures implemented in Table 1.

Naïve approaches (both plain pointer-based nv/nvL and succinct nvc) resolve a query
on the path Px,y by explicitly traversing it from x to y. At each encountered node, we
either (i) collect its weight into an array (for PM); (ii) check if its weight is in the query
range (for PC); (iii) if the check in (ii) succeeds, we collect the node into a container (for PR).
In PM, we subsequently call a standard introspective selection algorithm [36] over the array
of collected weights. Depths and parent pointers, explicitly stored at each node, guide in
upwards traversal from x and y to their common ancestor. Plain pointer-based tree topologies
are stored using forward-star [6] representation. In nvL, we equip nv with the linear-space
and O(1)-time LCA-support structure of [10].

SEA 2020

27:8 Path Query Data Structures

Table 1 The implemented data structures and the abbreviations used to refer to them.

Symbol Description
po
in
te
r-
ba
se
d nv Naïve data structure in Section 4.1

nvL Naïve data structure in Section 4.1, augmented with O(1) query-time LCA
of [10]

ext† A solution based on tree extraction [28] in Section 2
whp† A non-succinct version of the wavelet tree- and heavy-path decomposition-

based solution of [40] in Section 3.

nvc Naïve data structure of Section 4.1, using succinct data structures to
represent the tree structure and weights

su
cc
in
ct

extc 3n lg σ + O(n lg σ)-bits-of-space scheme for tree extraction of Section 3.2,
with compressed bitmaps

extp 3n lg σ + O(n lg σ)-bits-of-space scheme for tree extraction of Section 3.2,
with uncompressed bitmaps

whpc Succinct version of whp, with compressed bitmaps
whpp Succinct version of whp, with uncompressed bitmaps

Succinct structures extc/extp/whpc/whpp are implemented with the help of the succinct
data structures library sdsl-lite of Gog et al. [22]. To implement whp and the practical
variant of ext we designed in Section 3.2, two types of bitmaps are used: a compressed
bitmap [41] (implemented in sdsl::rrr_vector of sdsl-lite) and plain bitmap (implemented
in sdsl::bit_vector of sdsl-lite). For nvc, the weights are stored using dlg σe bits each in
a sequence and the structure theoretically occupies 2n+n lg σ+O(n lg σ) bits. For uniformity,
across our data structures, tree navigation is provided solely by a BP representation based
on [21] (implemented in sdsl::bp_support_gg), chosen on the basis of our benchmarks.

Plain pointer-based implementation ext† is an implementation of the solution by He
et al. [28] for the pointer-machine model, which uses tree extraction. In it, the views
x0 ∈ T0, x1 ∈ T1 for each node that arises in the hierarchy of extractions, as well as the
depths in T , are explicitly stored. Similarly, whp† is a plain pointer-based implementation
of the data structure by Patil et al. [40]. The relevant source code is accessible at https:
//github.com/serkazi/tree_path_queries.

4.2 Experimental setup
The platform used is a 128GiB RAM, Intel(R) Xeon(R) Gold 6234 CPU 3.30GHz server
running 4.15.0-54-generic 58-Ubuntu SMP x86_64 kernel. The build is due to clang-8
with -g,-O2, -std=c++17,mcmodel=large,-NDEBUG flags. Our datasets originate from
geographical information systems (GIS). In Table 2, the relevant meta-data on our datasets
is given.

We generated query paths by choosing a pair uniformly at random (u.a.r.). To generate
a range of weights, [a, b], we follow the methodology of [16] and consider large, medium,
and small configurations: given K, we generate the left bound a ∈ [W] u.a.r., whereas b
is generated u.a.r. from [a, a+ dW−aK e]. We set K = 1, 10, and 100 for respectively large,
medium, and small. To counteract skew in weight distribution in some of the datasets, when
generating the weight-range [a, b], we in fact generate a pair from [n] rather than [σ] and
map the positions to the sorted list of input-weights, ensuring the number of nodes covered
by the generated weight-range to be proportional to K−1.

https://github.com/serkazi/tree_path_queries
https://github.com/serkazi/tree_path_queries

M. He and S. Kazi 27:9

Table 2 Datasets metadata. DEM stands for Digital Elevation Model, and MST for minimum
spanning tree. Weights are over {0, 1, . . . ,σ − 1}, and H0 is the entropy of the multiset of weights.
In DEM, elevation (in meters) is used as weights. For eu.mst.osm, distance in meters between
locations, and for eu.mst.dmcs, travel time between locations, for a proprietary “car” profile in
tenths of a second, are used as weights.

num nodes diameter σ log σ H0 Description

eu.mst.osm 27,024,535 109,251 121,270 16.89 9.52 An MST we constructed over
map of Europe [39]

eu.mst.dmcs 18,010,173 115,920 843,781 19.69 8.93 An MST we constructured over
European road network [1]

eu.emst.dem 50,000,000 175,518 5020 12.29 9.95 An Euclidean MST we construc-
ted over DEM of Europe [4]

mrs.emst.dem 30,000,000 164,482 29,367 14.84 13.23 An Euclidean MST we construc-
ted over DEM of Mars [3]

Table 3 (upper) Space occupancy of our data structures, in bits per node, when loaded into
memory; (lower) peak memory usage (m in bits per node) during construction and construction
time (t in seconds) shown as m/t.

Dataset nv nvL whp† ext† nvc extc extp whpc whpp

sp
ac

e

eu.mst.osm 406.3 972.1 3801 5943 21.71 59.85 75.74 21.71 34.42
eu.mst.dmcs 406.4 974.0 4274 6768 34.46 82.16 106.0 29.69 48.77
eu.emst.dem 394.1 988.5 3342 4613 19.64 45.41 59.15 19.64 31.66
mrs.emst.dem 386.7 1005 3579 5383 17.35 51.71 66.02 17.35 28.80

pe
ak

/t
im

e eu.mst.osm 491.0/1 987.9/5 3785/28 9586/47 21.71/1 295.0/23 295.0/23 1347/62 1347/61
eu.mst.dmcs 439.8/1 1002/4 4403/19 12382/37 29.69/1 399.7/18 399.7/18 1360/42 1360/42
eu.emst.dem 401.0/2 1021/10 3460/47 5286/67 19.64/1 287.6/32 287.6/32 1333/115 1333/115
mrs.emst.dem 392.4/1 1016/5 3719/30 6027/46 17.35/1 269.3/22 269.3/22 1337/69 1337/69

4.3 Space performance and construction costs
A single data structure we implement (be it ever nv-, ext-, or whp-family), taken individually,
answers all three types of queries (PM, PC, and PR). Hence, we consider space consumption
first.

The upper part of the Table 3 shows the space usage of our data structures. The structures
nv/nvL are lighter than ext†/whp†, as expected. Adding fast LCA support doubles the space
requirement for nv, whereas succinctness (nvc) uses up to 20 times less space than nv. The
difference between ext† and whp†, in turn, is in explicit storage of the 0-views for each of
the Θ(n lg σ) nodes occurring during tree extraction. In whp†, by contrast, rank0 is induced
from rank1 (via subtraction) – hence the difference in the empirical sizes of the otherwise
Θ(n lg σ)-word data structures.

The succinct nvc’s empirical space occupancy is close to the information-theoretic min-
imum given by lg σ + 2 (Table 2). The structures extc/extp occupy about three times
as much, which is consistent with the design of our practical solution (Section 3.2). It is
interesting to note that the data structure whpc occupies space close to bare succinct storage
of the input alone (nvc). Entropy-compression significantly impacts both families of succinct
structures, whp and ext, saving up to 20 bits per node when switching from plain bitmap
to a compressed one. Compared to pointer-based solutions (nv/nvL/whp†/ext†), we note
that extc/extp/whpc/whpp still allow usual navigational operations on T , whereas the former
shed this redundancy, to save space, after preprocessing.

SEA 2020

27:10 Path Query Data Structures

Table 4 Average time to answer a query, from a fixed set of 106 randomly generated path median
and path counting queries, in microseconds. Path counting queries are given in large, medium, and
small configurations.

Dataset nv nvL ext† whp† nvc extc extp whpc whpp
me

di
an

eu.mst.osm 658 475 4.22 6.10 7078 85.3 51.1 111 51.2
eu.mst.dmcs 566 412 5.16 6.28 6556 84.6 54.8 120 54.7
eu.emst.dem 710 436 4.44 5.10 9404 106 81.9 96.7 54.9
mrs.emst.dem 472 298 4.93 4.53 7018 124 97.0 88.3 49.5

co
un

ti
ng

eu.mst.osm 238 140 6.88 18.4 3553 247 167 139 56.9

la
rg

eeu.mst.dmcs 204 121 7.31 19.7 3300 253 178 142 57.3
eu.emst.dem 338 195 5.97 11.5 4835 215 168 105 55.9
mrs.emst.dem 232 174 5.25 8.40 3614 206 164 91 49.3

eu.mst.osm 244 143 5.47 17.8 3555 213 146 129 54.2

me
di

umeu.mst.dmcs 209 124 6.94 18.4 3297 224 160 133 56.5
eu.emst.dem 339 195 4.55 10.0 4840 178 140 100 54.9
mrs.emst.dem 237 143 5.91 8.74 3613 199 154 89.7 48.9

eu.mst.osm 239 139 5.25 15.4 3551 190 132 119 53.9

sm
al

leu.mst.dmcs 209 123 5.25 18.9 3300 206 148 126 55.2
eu.emst.dem 347 200 3.92 9.34 4832 154 124 94.9 53.2
mrs.emst.dem 238 144 4.82 7.41 3615 178 133 84.2 47.6

Overall, the succinct whpp/whpc/extp/extc perform very well, being all well-under 1
gigabyte for the large datasets we use. This suggests scalability: when trees are so large as
not to fit into main memory, it is clear that the succinct solutions are the method of choice.

The lower part in Table 3 shows peak memory usage (m, in bits per node) and construction
time (t, in seconds), as m/t. The structures extp/extc are about three times faster than
whpp/whpc to build, and use four times less space at peak. This is expected, as whp builds two
different structures (HPD and then WT). This is reversed for ext†/whp†; time-wise, as ext†

performs more memory allocations during construction (although our succinct structures are
flattened into a heap layout, ext† stores pointers to T0/T1; this is less of a concern for whp†,
whose very purpose is tree linearisation).

4.4 Path median queries

The upper section of Table 4 records the mean time for a single median query (in µs) averaged
over a fixed set of 106 randomly generated queries.

Succinct structures whpc/whpp/extc/extp perform well on these queries, with a slow-down
of at most 20-30 times from their respective pointer-based counterparts. Using entropy-
compression degrades the speed of whp almost twice. Overall, the families whp and ext seem
to perform at the same order of magnitude. This is surprising, as in theory whp should be
a factor of lgn slower. The discrepancy is explained partly by small average number of
segments in HPD, averaging 9± 2 for our queries. (The number of unary-degree nodes in our
datasets is 35%-56%, which makes smaller number of heavy-path segments prevalent. We did
not use trees with few unary-degree nodes in our experiments, as the height of such trees are
not large enough to make constructing data structures for path queries worthwhile.) When
the queries are partitioned by the number of chains in the HPD, the curves for extc/extp

stay flat whereas those for whpc/whpp grow linearly. In eu.mst.dmcs, if the query path is

M. He and S. Kazi 27:11

partitioned into 9 chains, extp is only slightly faster than whpp, whereas with the query path
containing 19 chains, extp is about 2.3 times so. (The details are given in the full version of
the paper.) This suggests to favour the ext family over whp whenever performance in the
worst case is important. Furthermore, navigational operations in extp/extc and whpp/whpc,
despite of similar theoretical worst-case guarantees, involve different patterns of using the
rank/select primitives. For one, whpp/whpc does not call LCA during the search – mapping
of the search ranges when descending down the recursion is accomplished by a single rank
call, whereas extp/extc computes LCA at each level of descent (for its its own analog of
rank – the view computation in Algorithm 1). Now, LCA is a non-trivial combination of
rank/select calls. The difference between extp/extc and whpp/whpc will therefore become
pronounced in a large enough tree; with tangible HPD sizes, the constants involved in (albeit
theoretically O(1)) LCA calls are overcome by lgn.

Naïve structures nv/nvL/nvc are visibly slower in PM than in PC (considered in Section 4.5),
as expected – for PM, having collected the nodes encountered, we also call a selection algorithm.
In PC, by contrast, neither insertions into a container nor a subsequent search for median
are involved. Navigation and weights-uncompression in nvc render it about 10 times slower
than its plain counterpart. The nvL being little less than twice faster than its LCA-devoid
counterpart, nv, is explained by the latter effectively traversing the query path twice – once
to locate the LCA, and again to answer the query proper. Any succinct solution is about
4-8 times faster than the fastest naïve, nvL.

4.5 Path counting queries
The lower section in Table 4 records the mean time for a single counting query (in µs)
averaged over a fixed set of 106 randomly generated queries, for large, medium, and small
setups.

Structures nv/nvL/nvc are insensitive to κ, as the bottleneck is in physically traversing
the path.

Succinct structures whpp/whpc and extp/extc exhibit decreasing running times as one
moves from large to small – as the query weight-range shrinks, so does the chance of
branching during the traversal of the implicit range tree. The fastest (uncompressed)
whpp and the slowest (compressed) extc succinct solutions differ by a factor of 4, which is
intrinsically larger constants in extc’s implementation compounded with slower rank/select
primitives in compressed bitmaps, at play. The uncompressed whpp is about 2-3 times faster
than extp, the gap narrowing towards the small setup. The slowest succinct structure,
extc, is nonetheless competitive with the nv/nvL already in large configuration, with the
advantage of being insensitive to tree topology.

In ext†-whp† pair, whp† is 2-3 times slower. This is predictable, as the inherent lgn-factor
slow-down in whp† is no longer offset by differing memory access patterns – following a
pointer “downwards” (i.e. 0/1-view in ext† and rank0/1() in whp†) each require a single
memory access.

4.6 Path reporting queries
Table 5 records the mean time for a single reporting query (in µs) averaged over a fixed set
of 106 randomly generated queries, for large, medium, and small setups.

Structures whpc/whpp/extc/extp recover each reported node’s weight in O(lg σ) time.
Thus, when lgn � κ, the query time for both ext and whp families become O(κ · log σ).
(At this juncture, a caveat is in order: design of whp’s in Section 3.1 allows a PR-query to

SEA 2020

27:12 Path Query Data Structures

Table 5 Average time to answer a path reporting query, from a fixed set of 106 randomly
generated path reporting queries, in microseconds. The queries are given in large, medium, and
small configurations. Average output size for each group is given in column κ.

Dataset κ nv nvL ext† whp† nvc extc extp whpc whpp

eu.mst.osm 9,840 356 256 184 70.7 3766

la
rg

eeu.mst.dmcs 9,163 309 224 147 66.8 3485
eu.emst.dem 14,211 389 241 140 77.5 4926
mrs.emst.dem 10,576 267 178 89.2 55.1 3668

eu.mst.osm 1,093 322 222 43.7 28.8 3706

me
di

umeu.mst.dmcs 1,090 277 196 34.0 29.7 3434
eu.emst.dem 1,464 354 206 32.1 20.1 4880
mrs.emst.dem 1,392 250 151 22.1 15.6 3639

eu.mst.osm 182 311 212 13.8 19.0 3685 1965 485 795 226

sm
al

leu.mst.dmcs 236 271 193 13.2 21.0 3529 2518 632 1043 292
eu.emst.dem 215 353 203 10.2 12.7 4873 1276 378 590 205
mrs.emst.dem 117 242 145 8.88 9.57 3632 881 278 475 162

only return the index in the array C – not the original preorder identifier of the node, as
does the ext.) When κ is large, therefore, these structures are not suitable for use in PR, as
nv/nvL/nvcare clearly superior (O((1 + κ) lgn) vs O(κ)), and we confine the experiments for
extc/extp/whpc/whpp to the small setup only (bottom-right corner in Table 5).

We observe that the succinct structures extp and whpp are competitive with nv/nvL, in
small setting: informally, time saved in locating the nodes to report is used to uncompress
the nodes’ weights (whereas in nv/nvL the weights are explicit). Between the succinct ext
and whp, clearly whp is faster, as select() on a sequence as we go up the wavelet tree tend
to have lower constant factors than the counterpart operation on BP.

Structures whp† and ext† exhibit same order of magnitude in query time, with the
former being sometimes about 2 times faster on non-small setups. Among two somewhat
intertwined reasons, one is that whp† returns an index to the permuted array, as noted above.
(Converting to the original id would necessitate an additional memory access.) Secondly, in
the implicit range tree during the 2d search in whp†, when the current range is contained
within the query interval, we start reporting the node weights by merely incrementing a
counter – position in the WT sequence. By contrast, in such situations ext† iterates through
the nodes being reported calling parent() for the current node, which is one additional
memory access compared to whp† (at the scale of µs, this matters). Indeed, operations on
trees tend to be little more expensive than similar operations on sequences.

Structures nv/nvL/nvc are less sensitive to the query weight range’s magnitude, since
they simply scan the path along with pushing into a container. The differences in running
time in Table 5 between the configurations are thus accounted for by container operations’
cost. Naïve structures’ query times for PR being dependent solely on the query path’s length,
they are unfeasible for large-diameters trees (whereas they may be suitable for shallow ones,
e.g. originating from “small-world” networks).

Overall evaluation. We visualize in Figure 2 some typical entries in Table 4 to illustrate
the structures clustering along the space/time trade-offs: nv/nvL (upper-left corner) are
lighter in terms of space, but slow; pointer-based ext†/whp† are very fast, but space-heavy.
Between the two extremes of the spectrum, the succinct structures extc/extp/whpc/whpp,
whose mutual configuration is shown magnified in inner rectangle, are space-economical and
yet offer fast query times.

M. He and S. Kazi 27:13

0 1,000 2,000 3,000 4,000 5,000

0
20

0
40

0
60

0

4µs5µs

bits-per-node

av
er

ag
e

qu
er

y
ti

me
,

µs
Median queries for eu.emst.dem dataset

nv
nvL

ext†

whp†

whpc

whpp

extc

extp

0 1,000 2,000 3,000 4,000 5,000

0
10

0
20

0
30

0

3µs9µs

bits-per-node

Counting queries for eu.emst.dem dataset

nv
nvL

ext†

whp†

whpc

whpp

extc

extp

0 1,000 2,000 3,000 4,000 5,000

0
20

0
40

0
60

0
4µs5µs

bits-per-node

av
er

ag
e

qu
er

y
ti

me
,

µs

Median queries for eu.emst.dem dataset

nv
nvL

ext†

whp†

whpc

whpp

extc

extp

0 1,000 2,000 3,000 4,000 5,000

0
10

0
20

0
30

0

3µs9µs

bits-per-node

Counting queries for eu.emst.dem dataset

nv
nvL

ext†

whp†

whpc

whpp

extc

extp

Figure 2 Visualization of some of the entries in Table 4. Inner rectangle magnifies the mutual
configuration of the succinct data structures whpp,whpc,extp, and extc. The succinct naïve structure
nvc is not shown.

5 Conclusion

We have designed and experimentally evaluated recent algorithmic proposals in path queries
in weighted trees, by either faithfully replicating them or offering practical alternatives. Our
data structures include both plain pointer-based and succinct implementations. Our succinct
realizations are themselves further specialized to be either plain or entropy-compressed.

We measure both query time and space performance of our data structures on large
practical sets. We find that the succinct structures we implement offer an attractive alternative
to plain pointer-based solutions, in scenarios with critical space- and query time-performance
and reasonable tolerance to slow-down. Some of the structures we implement (whpc) occupy
space equal to bare compressed storage (nvc) of the object and yet offer fast queries on
top of it, while another structure (extc/extp) occupies space comparable to nvc, offers fast
queries and low peak memory in construction. While whp succinct family performs well in
average case, thus offering attractive trade-offs between query time and space occupancy,
ext is robust to the structure of the underlying tree, and is therefore recommended when
strong worst-case guarantees are vital.

Our design of the practical succinct structure based on tree extraction (ext) results in
a theoretical space occupancy of 3n lg σ + O(n lg σ) bits, which helps explain its somewhat
higher empirical space cost when compared to the succinct whp family. At the same time,
verbatim implementation of the space-optimal solution by He et al. [28] draws on components
that are likely to be cumbersome in practice. For the path query types considered in this
study, therefore, realization of the theoretically time- and space-optimal data structure – or
indeed some feasible alternative thereof – remains an interesting open problem in algorithm
engineering.

SEA 2020

27:14 Path Query Data Structures

References
1 KIT roadgraphs. https://i11www.iti.kit.edu/information/roadgraphs. Accessed:

07/12/2018.
2 ltree module for PostreSQL RDBMS.

https://www.postgresql.org/docs/current/ltree.html. Accessed: 10/01/2020.
3 MOLA Mars Orbiter Laser Altimeter data from NASA Mars Global Surveyor.

https://planetarymaps.usgs.gov/mosaic/Mars_MGS_MOLA_DEM_mosaic_global_463m.tif.
Accessed: 10/01/2019.

4 SRTM Shuttle Radar Topography Mission. http://srtm.csi.cgiar.org/srtmdata/.
Accessed: 10/01/2019.

5 Andrés Abeliuk, Rodrigo Cánovas, and Gonzalo Navarro. Practical compressed suffix trees.
Algorithms, 6(2):319–351, 2013. doi:10.3390/a6020319.

6 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

7 Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.
Technical report, Tel-Aviv University, 1987.

8 Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko Sadakane. Succinct trees
in practice. In Proceedings of the Twelfth Workshop on Algorithm Engineering and
Experiments, ALENEX 2010, Austin, Texas, USA, January 16, 2010, pages 84–97, 2010.
doi:10.1137/1.9781611972900.9.

9 Diego Arroyuelo, Francisco Claude, Reza Dorrigiv, Stephane Durocher, Meng He, Alejandro
López-Ortiz, J. Ian Munro, Patrick K. Nicholson, Alejandro Salinger, and Matthew Skala.
Untangled monotonic chains and adaptive range search. Theor. Comput. Sci.,
412(32):4200–4211, 2011. doi:10.1016/j.tcs.2011.01.037.

10 Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005. doi:10.1016/j.jalgor.2005.08.001.

11 David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.
doi:10.1007/s00453-004-1146-6.

12 Nieves R. Brisaboa, Guillermo de Bernardo, Roberto Konow, Gonzalo Navarro, and Diego
Seco. Aggregated 2d range queries on clustered points. Inf. Syst., 60:34–49, 2016.
doi:10.1016/j.is.2016.03.004.

13 Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou. Succinct indices for path
minimum, with applications. Algorithmica, 78(2):453–491, 2017.
doi:10.1007/s00453-016-0170-7.

14 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching on
the ram, revisited. In Computational Geometry, 27th ACM Symposium, SoCG 2011, Paris,
France, June 13-15, 2011. Proceedings, pages 1–10, 2011. doi:10.1145/1998196.1998198.

15 Bernard Chazelle. Computing on a free tree via complexity-preserving mappings.
Algorithmica, 2(1):337–361, November 1987. doi:10.1007/BF01840366.

16 Francisco Claude, J. Ian Munro, and Patrick K. Nicholson. Range queries over untangled
chains. In String Processing and Information Retrieval - 17th International Symposium,
SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceedings, pages 82–93, 2010.
doi:10.1007/978-3-642-16321-0_8.

17 O’Neil Delpratt, Naila Rahman, and Rajeev Raman. Engineering the LOUDS succinct tree
representation. In Experimental Algorithms, 5th International Workshop, WEA 2006, Cala
Galdana, Menorca, Spain, May 24-27, 2006, Proceedings, pages 134–145, 2006.
doi:10.1007/11764298_12.

18 Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various families of
trees. Algorithmica, 68(1):16–40, 2014. doi:10.1007/s00453-012-9664-0.

https://i11www.iti.kit.edu/information/roadgraphs
https://www.postgresql.org/docs/current/ltree.html
https://planetarymaps.usgs.gov/mosaic/Mars_MGS_MOLA_DEM_mosaic_global_463m.tif
http://srtm.csi.cgiar.org/srtmdata/
https://doi.org/10.3390/a6020319
https://doi.org/10.1137/1.9781611972900.9
https://doi.org/10.1016/j.tcs.2011.01.037
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1016/j.is.2016.03.004
https://doi.org/10.1007/s00453-016-0170-7
https://doi.org/10.1145/1998196.1998198
https://doi.org/10.1007/BF01840366
https://doi.org/10.1007/978-3-642-16321-0_8
https://doi.org/10.1007/11764298_12
https://doi.org/10.1007/s00453-012-9664-0

M. He and S. Kazi 27:15

19 Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range quantile queries: Another virtue
of wavelet trees. In String Processing and Information Retrieval, 16th International
Symposium, SPIRE 2009, Saariselkä, Finland, August 25-27, 2009, Proceedings, pages 1–6,
2009. doi:10.1007/978-3-642-03784-9_1.

20 Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A simple optimal
representation for balanced parentheses. Theor. Comput. Sci., 368(3):231–246, 2006.
doi:10.1016/j.tcs.2006.09.014.

21 Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with
level-ancestor queries. ACM Trans. Algorithms, 2(4):510–534, 2006.
doi:10.1145/1198513.1198516.

22 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Experimental Algorithms - 13th International
Symposium, SEA 2014, Copenhagen, Denmark, June 29 - July 1, 2014. Proceedings, pages
326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

23 Torben Hagerup. Parallel preprocessing for path queries without concurrent reading. Inf.
Comput., 158(1):18–28, 2000. doi:10.1006/inco.1999.2814.

24 Meng He and Serikzhan Kazi. Path and ancestor queries over trees with multidimensional
weight vectors. In 30th International Symposium on Algorithms and Computation, ISAAC
2019, December 8-11, 2019, Shanghai University of Finance and Economics, Shanghai, China,
pages 45:1–45:17, 2019. doi:10.4230/LIPIcs.ISAAC.2019.45.

25 Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct ordinal trees based on tree
covering. ACM Trans. Algorithms, 8(4):42:1–42:32, 2012. doi:10.1145/2344422.2344432.

26 Meng He, J. Ian Munro, and Gelin Zhou. Path queries in weighted trees. In Algorithms and
Computation - 22nd International Symposium, ISAAC 2011, Yokohama, Japan, December 5-8,
2011. Proceedings, pages 140–149, 2011. doi:10.1007/978-3-642-25591-5_16.

27 Meng He, J. Ian Munro, and Gelin Zhou. A framework for succinct labeled ordinal trees over
large alphabets. Algorithmica, 70(4):696–717, 2014. doi:10.1007/s00453-014-9894-4.

28 Meng He, J. Ian Munro, and Gelin Zhou. Data structures for path queries. ACM Trans.
Algorithms, 12(4):53:1–53:32, 2016. doi:10.1145/2905368.

29 Kazuki Ishiyama and Kunihiko Sadakane. A succinct data structure for multidimensional
orthogonal range searching. In 2017 Data Compression Conference, DCC 2017, Snowbird,
UT, USA, April 4-7, 2017, pages 270–279, 2017. doi:10.1109/DCC.2017.47.

30 Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October
- 1 November 1989, pages 549–554, 1989. doi:10.1109/SFCS.1989.63533.

31 Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct representation of
ordered trees with applications. J. Comput. Syst. Sci., 78(2):619–631, 2012.
doi:10.1016/j.jcss.2011.09.002.

32 Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range mode and range median queries
on lists and trees. Nord. J. Comput., 12(1):1–17, 2005.

33 Hsueh-I Lu and Chia-Chi Yeh. Balanced parentheses strike back. ACM Trans. Algorithms,
4(3):28:1–28:13, 2008. doi:10.1145/1367064.1367068.

34 J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
representations of permutations and functions. Theor. Comput. Sci., 438:74–88, 2012.
doi:10.1016/j.tcs.2012.03.005.

35 J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. Comput., 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

36 David R. Musser. Introspective sorting and selection algorithms. Softw., Pract. Exper.,
27(8):983–993, 1997.
doi:10.1002/(SICI)1097-024X(199708)27:8\%3C983::AID-SPE117\%3E3.0.CO;2-\%23.

37 Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University
Press, 2016. URL: http://www.cambridge.org/de/academic/subjects/computer-science/

SEA 2020

https://doi.org/10.1007/978-3-642-03784-9_1
https://doi.org/10.1016/j.tcs.2006.09.014
https://doi.org/10.1145/1198513.1198516
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1006/inco.1999.2814
https://doi.org/10.4230/LIPIcs.ISAAC.2019.45
https://doi.org/10.1145/2344422.2344432
https://doi.org/10.1007/978-3-642-25591-5_16
https://doi.org/10.1007/s00453-014-9894-4
https://doi.org/10.1145/2905368
https://doi.org/10.1109/DCC.2017.47
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1016/j.jcss.2011.09.002
https://doi.org/10.1145/1367064.1367068
https://doi.org/10.1016/j.tcs.2012.03.005
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8%3C983::AID-SPE117%3E3.0.CO;2-%23
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB

27:16 Path Query Data Structures

algorithmics-complexity-computer-algebra-and-computational-g/
compact-data-structures-practical-approach?format=HB.

38 Gonzalo Navarro and Alberto Ordóñez Pereira. Faster compressed suffix trees for repetitive
collections. ACM Journal of Experimental Algorithmics, 21(1):1.8:1–1.8:38, 2016.
doi:10.1145/2851495.

39 OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org, 2017.

40 Manish Patil, Rahul Shah, and Sharma V. Thankachan. Succinct representations of weighted
trees supporting path queries. J. Discrete Algorithms, 17:103–108, 2012.
doi:10.1016/j.jda.2012.08.003.

41 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007. doi:10.1145/1290672.1290680.

42 A. Rényi and G. Szekeres. On the height of trees. Journal of the Australian Mathematical
Society, 7(4):497–507, 1967.

43 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, June 1983. doi:10.1016/0022-0000(83)90006-5.

http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
https://doi.org/10.1145/2851495
 https://www.openstreetmap.org
https://doi.org/10.1016/j.jda.2012.08.003
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1016/0022-0000(83)90006-5

	Introduction
	Our work

	Preliminaries
	Data Structures for Path Queries
	Data structures based on heavy-path decomposition
	Data structures based on tree extraction

	Experimental Results
	Implementation
	Experimental setup
	Space performance and construction costs
	Path median queries
	Path counting queries
	Path reporting queries

	Conclusion

