
Finding Structurally and Temporally Similar
Trajectories in Graphs
Roberto Grossi
Dipartimento di Informatica, Università di Pisa, Italy
grossi@di.unipi.it

Andrea Marino
Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”, Università di Firenze, Italy
andrea.marino@unifi.it

Shima Moghtasedi
Dipartimento di Informatica, Università di Pisa, Italy
shima.moghtasedi@di.unipi.it

Abstract
The analysis of similar motions in a network provides useful information for different applications
like route recommendation. We are interested in algorithms to efficiently retrieve trajectories that
are similar to a given query trajectory. For this task many studies have focused on extracting the
geometrical information of trajectories. In this paper we investigate the properties of trajectories
moving along the paths of a network. We provide a similarity function by making use of both
the temporal aspect of trajectories and the structure of the underlying network. We propose an
approximation technique that offers the top-k similar trajectories with respect to a query trajectory
in an efficient way with acceptable precision. We investigate our method over real-world networks,
and our experimental results show the effectiveness of the proposed method.

2012 ACM Subject Classification Information systems → Similarity measures; Information systems
→ Nearest-neighbor search

Keywords and phrases Graph trajectory, approximated similarity, top-k similarity query

Digital Object Identifier 10.4230/LIPIcs.SEA.2020.24

Acknowledgements We are in debt with Ioanna Miliou for helping us with the Milan GPS dataset.

1 Introduction

Many papers in the literature have focused on extracting similarity information from sets
of trajectories [1, 4, 3, 5, 7, 9, 16, 11, 12, 13, 14, 8, 15, 16]. Looking at the trajectories
as sequences of nodes, the similarity among them can be related to the similarity among
sequences. In this paper, we study how to retrieve similar trajectories constrained to follow
paths in the graphs by taking into account both time and place. We aim at exploiting the
topology of the network, assessing that two trajectories are similar if they pass through
nearby nodes at roughly the same time. While there are measures such as the Fréchet
distance for the plane, not much has been done for graphs. Indeed distances on the plane
are fast to compute as we need to know just the coordinates of the points, so that measures
taking into account both time and place can be computed in a reasonable time.

On the other hand, when trajectories are topologically constrained, as it happens in
graphs, the distance computation between nodes is more challenging and the similarity
function can turn easily into measures that are costly to compute. For this reason, the
measures in the known literature that consider both time and place require that similar
trajectories should pass through the same nodes. Table 1 summarizes the state of the art
for the similarities of trajectories in graphs. As it can be noted, most of them require

© Roberto Grossi, Andrea Marino, and Shima Moghtasedi;
licensed under Creative Commons License CC-BY

18th International Symposium on Experimental Algorithms (SEA 2020).
Editors: Simone Faro and Domenico Cantone; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:grossi@di.unipi.it
mailto:andrea.marino@unifi.it
mailto:shima.moghtasedi@di.unipi.it
https://doi.org/10.4230/LIPIcs.SEA.2020.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Finding Structurally and Temporally Similar Trajectories in Graphs

Table 1 Graph-based similarity measures for trajectories of ` nodes.

Temporal Proximity Properties Input Complexity time

[15] × × Jaccard similarity
based

Two strings as
trajectories O(`2)

[16] X ×
Jaccard similarity
based on the edit

distance

Two strings as
trajectories O(`2)

[8] X X
Pair to pair distance
computation only at

specific predefined points

Two trajectories with
the same length, implicitly O(`)

[12] X X
Spatial and temporal distance
computation in separate way

(Liner combination)

Two trajectories with
the same length O(`)

[11] X X
LCSS based

Liner combination of spatial
and temporal distance

Two trajectories O(`2)

[13] X X
Linear combination of

spatial and temporal distance
A set of query points

and a trajectory O(`2)

This paper X X
Temporal and spatial aspect of
trajectories is combined in one

single distance

Two trajectories with
different length O(`)

quadratic time and those requiring linear time 1 have limitations: Hwang et al. [8] define the
spatial-temporal similarity function so that two trajectories are similar if they pass through
the same nodes at the same time. So they do not take into account the proximity of the
trajectories and the closure in time of the intervals. Tikas et al. [12] remove this limitation,
proposing a new similarity definition. However, their similarity works only when trajectories
have the same length. As far as we know, there is no linear-time similarity that considers
trajectories of different lengths and with a flexible notion of proximity in time and place.

In this paper, we show that it is possible to consider both time/structure for the trajectories
on the graph, thus overcoming the limitations of the current literature and achieving a good
compromise between time and precision. After defining our similarity function, we propose
an algorithm to find the topmost k trajectories, having the highest similarity with respect to
a given one. We do not put any constraint on the trajectories, and our similarity function
can be computed in linear time once the pairwise node distances are given.

Our method is based on an indexing structure by using interval trees [2] to quickly
find the top-k similar trajectories. To further speed up the computations, we propose an
approximated similarity measure that shrinks the trajectories using the centers of the Voronoi
diagram for graphs [6]. Shrinking using centers is natural as, for example, a long trajectory
that goes along a road network can be reasonably represented with the most famous visited
places. Similarly, the trajectories on the communication networks could be represented with
respect to the nodes having more traffic.

We validate our measures and algorithms in the experimental part of the paper. Due to
the lack of competitors, as there are no linear-time similarities on trajectories for graphs that
use flexible proximity, we design a baseline approach to compare with. The approximation
methods have a good precision while the time needed to answer the query reduces significantly.

1 We are assuming for all of them that the pairwise distance among nodes is already given.

R. Grossi, A. Marino, and S. Moghtasedi 24:3

2 Preliminaries

Consider a network represented by a graph G(V,E), where V is the set of nodes and E is
the set of edges. Let T be a set of trajectories in G, where each trajectory is defined as
follows. We say that two intervals ti = [si, ei] and ti+1 = [si+1, ei+1], with integer endpoints,
are consecutive if si ≤ ei < si+1 ≤ ei+1 and ei + 1 = si+1.

I Definition 1. A trajectory T ∈ T is a sequence T = 〈(v1, t1), (v2, t2), · · · , (vl, tl)〉 such that
for each 1 ≤ i ≤ l − 1, we have that (vi, vi+1) ∈ E and ti and ti+1 are two consecutive time
intervals. We call |T | = l the length of T , which corresponds to the number of (non-distinct)
nodes traversed by T . Letting t1 = [s1, e1] and tl = [sl, el], we refer to s1 and el as the
starting time and ending time of T .

Given a trajectory T ∈ T , we denote by ti = [si, ei] the i-th time interval of T . Note that
a trajectory can pass through a node more than once.

For a trajectory T , let s and e be the starting and ending time of T . Given a time instant
i ∈ [s, e], the notation T (i) indicates the unique node u ∈ V such that there exists a pair
(u, t) ∈ T with i ∈ t. In the following, we use the standard notation for graphs. Given an
undirected graph G = (V,E), we denote by n and m the number of its nodes and edges. We
denote by DG the diameter of G and by d(u, v) the shortest path distance between nodes u
and v.

2.1 Trajectory Similarity Measure
This section is devoted to introducing our similarity function. It is arguably natural to
assess that two trajectories are similar if they are close to each other without necessarily
sharing common nodes or having the same length. Since the motion of trajectories in this
paper is constrained by the network, the similarity function will use the proximity between
trajectories. As the Euclidean distance is not appropriate to measure the distance between
the nodes on the graph, it is important to use the graph distance metric instead. Therefore,
the distance between nodes will be combined with the time intervals at which these have been
traversed. In this sense, our similarity measure will consider both aspects of the trajectories:
the temporal aspect and the location of trajectories over the graph, i.e the structural aspect.

In order to define the building blocks of our similarity measure, we need first to restrict
trajectories within a time interval, as shown in the following definition.

I Definition 2 (Time restricted Trajectory). Given a trajectory T and a time interval t = [s, e],
the time restricted trajectory T [t] is the sequence of pairs (vi, ti) ∈ T such that ti = [si, ei]
has overlap with t = [s, e] (i.e. ti ∩ t 6= 0).

Without loss of generality, we assume that
∑

(vi,ti)∈T [t] |ti| = |t|. We define the distance
between a node v and a trajectory T within a time interval t as follows:

dist(v, T, t) =
min(vi,ti)∈T [t] d(vi, v)

DG
(1)

I Proposition 3. The distance function dist(v, T, t) is always in the interval [0, 1].

We observe that the extreme values are achieved in the following cases.
dist(v, T, t) = 0 if and only if there exists at least one time instant i ∈ t such that node
T (i) = v.

SEA 2020

24:4 Finding Structurally and Temporally Similar Trajectories in Graphs

dist(v, T, t) = 1 if and only if for each time instant i ∈ t, node T (i) is at distance DG

from v. This corresponds to the case where T spends the whole time interval t on nodes
of G that are maximum distance from v.

We are now ready to introduce our similarity measure, using the distance function defined
in Equation 1. Taking inspiration from [5], we aim at assigning a larger contribution to those
parts of trajectories that are close for sufficiently long time intervals (while assigning lower
contribution to farther parts). These desired properties are satisfied as follows.

I Definition 4 (Similarity Function). Given a query trajectory Q, a target trajectory T , and
a time interval t, the similarity of T with respect to Q within t is

Sim(Q,T, t) =
∑

(vi,ti)∈Q[t] |ti| × e−dist(vi,T [ti])

|t|
(2)

I Lemma 5. The similarity function Sim(Q,T, t) is always in the interval (0, 1].

Proof. By Proposition 3, for each (vi, ti) ∈ Q[t] we have that 0 ≤ dist(vi, T [ti]) ≤ 1, and
thus 1 ≥ e−dist(vi,T [ti]) ≥ e−1 > 0. If we multiply by |ti|, we get 0 < |ti|×e−dist(vi,T [ti]) ≤ |ti|.
By summation over each pair (vi, ti) ∈ Q[t] we get

0 <
∑

(vi,ti)∈Q[t]

|ti| × e−dist(vi,T [ti]) ≤
∑

(vi,ti)∈Q[t]

|ti| (3)

By assuming
∑

(vi,ti)∈Q[t] |ti| = |t| and dividing Equation 3 by |t| we get

0 <
∑

(vi,ti)∈Q[t] |ti| × e−dist(vi,T [ti])

|t|
≤ 1. J

It is worth remarking that whenever Q[t] = T [t] we have Sim(Q,T, t) = 1, where
Q[t] = T [t] means that for each i ∈ t we have Q(i) = T (i).

I Lemma 6. Given two trajectories Q and T , and a time interval t, where |Q[t]| = `1 and
|T [t]| = `2, computing Sim(Q,T, t) requires O(`1 + `2) time and pairwise node distances.

Proof. Looking at equations (1) and (2), it seems that O(`1× `2) time is needed. The cost is
instead O(`1 + `2) if we realize that the computation is conceptually a nested loop in which
the nodes in Q and T are scanned forward when a pairwise distance d(vi, v) is needed: in
each iteration at least one node is scanned, thus the total cost is O(`1 + `2). J

2.2 Top-k Most Similar Trajectories
We define the problem of retrieving, in a given set of trajectories T , the top-k similar
trajectories to a query in a specific time interval. More formally, this desires a set of
trajectories, referred to as k-MsTraj, corresponds to the following one.

I Definition 7 (k-Most Similar Trajectory (k-MsTraj)). Given a set of trajectories T , a
query trajectory Q, and a query time interval t, let k-MsTraj be the set T ′ ⊆ T with
|T ′| = k, such that Sim(Q,S, t) ≥ Sim(Q,T, t) for each trajectory S ∈ T ′ and T ∈ T − T ′.

To present a good intuition of our proposed similarity function, we provide an illustrative
example of four trajectories that are randomly chosen from a dataset of trajectories moving
in Milan (see Section 5.1 for more details about this dataset). By the similarity function in
Definition 4, using the red trajectory in Figure 1 as query trajectory, the green trajectory

R. Grossi, A. Marino, and S. Moghtasedi 24:5

has the maximum similarity among all the others, meaning that it is a solution for the
k-MsTraj problem with k = 1. Note that the trajectories having color red, green, yellow
and violet in Figure 1, start to move at time instances (in msec) 37237, 45964, 57354 and
26430, and stop the movement at 582313, 331565, 57872 and 564740, respectively.

Figure 1 An example including 4 random trajectories in a dataset of trajectories moving in
Milan. The trajectory with the red color is a query. The green trajectory is the most similar one by
Definition 4.

A straightforward approach to find k-MsTraj is to compute the similarity score for
each trajectory T ∈ T and Q, reporting the k trajectories with maximum scores. Clearly
we only consider those trajectories that are defined for all instants i ∈ t. This approach is
inefficient as it requires O(|T | ×max{|y|max, |Q|}) shortest path (precomputed) distances,
where |T | and |y|max are respectively the number of trajectories and the maximum length of
trajectories in T .

In the next two sections, we discuss how to accelerate this method and how to estimate
similarities.

3 Baseline: Exact Computation of k-MsTraj

In this section, we introduce a baseline method to solve exactly the k-MsTraj problem.
This is based on an indexing phase, described in Section 3.1, which aims at accelerating the
query processing, as described in Section 3.2. We will use this method as a baseline in the
experimental evaluation of our proposed methods.

3.1 NTrajI Indexing

The Neighborhood Trajectory Indexing (NTrajI) described here efficiently finds the closest
trajectories with respect to each node of the query and its corresponding time interval.

We use an interval tree, which is a binary tree storing a set of intervals based on the
median of the endpoints of the intervals. In this structure, all the intervals that intersect the
median point are stored in the root of the tree. The intervals lying completely to the left
and the right of the median point are, respectively, stored in the left subtree and the right
subtree of the root. The subtrees are constructed recursively in the same way. By using this
structure, we are able to find efficiently all intervals that overlap with any given interval or
point using the following well-known result.

SEA 2020

24:6 Finding Structurally and Temporally Similar Trajectories in Graphs

I Theorem 8 ([2]). Given a set of n intervals, an interval tree uses O(n) space, can be built
in O(n · logn) time and can report all intervals that overlap a query interval or point in
O(logn+ k) time, where k is the number of reported intervals.

In NTrajI, we build an Interval Tree ITu for each node u ∈ V . Each ITu stores the time
intervals of the trajectories in T spent in either u or the neighbors of u, and maintains the
corresponding trajectories. Specifically, we have the following.

I Definition 9 (Node Projection Set). The projection set Su of a node u stores the pairs
(t, T) of all trajectories T ∈ T that pass through the nodes in {u} ∪N(u) during interval t,
namely, Su = {(t, T) | (v, t) ∈ T and v ∈ {u} ∪N(u) and T ∈ T }, where N(u) is the set of
neighbors of u in the graph.

The Interval Tree ITu maintains all the pairs (t, T) ∈ Su for each node u ∈ V . Each
entry of ITu is of the form 〈t, id〉, where id is the trajectory identifier and t is the time
interval spent in {u} ∪N(u) by the trajectory id. Note that there can be more than one
pair associated with node u and the same trajectory id, since each trajectory can traverse u
multiple times.

By Theorem 8, we can derive that NTrajI uses O(|T | × |y|max ×∆) space, where ∆
denotes the maximum degree of G. For a given node u and a time interval t, let Γ(u,t) denote
the trajectories that traverse either u or N(u) within t.By searching over the NTrajI, we
are able to find Γ(u,t) efficiently by taking O(log |Γu|+ |Γ(u,t)|) time, where |Γu| is the size of
ITu and |Γ(u,t)| is the number of reported trajectories.

Algorithm 1 Baseline.

Input: Graph G, set of trajectories T , query trajectory Q, time interval t = [a, b],
integer k

Result: Top-k trajectories k-MsTraj

1 Heap H
2 for each (vi, ti) ∈ Q[t] do
3 Γ(vi,ti) ← NTrajI-search(vi, ti)
4 end for
5 Γ =

⋃
(vi,ti)∈Qt

Γ(vi,ti)

6 H ← the Sim scores for all trajectories in Γ
7 k-MsTraj ← top-k trajectories in H

3.2 Query Processing
We introduce a pruning technique as the baseline method to the k-MsTraj problem (see
Algorithm 1). The baseline method explores the set Γ of trajectories that are most promising
to be k-MsTraj. They are discovered by searching through the NTrajI index.

I Proposition 10. By construction, k-MsTraj ⊆ Γ ⊆ T .

By exploiting Γ, the baseline method computes the similarity score of each trajectory in
Γ and finds the trajectories having the highest similarity with Q within the time interval t.

Therefore, the main task is to construct the candidate set Γ using NTrajI. In particular,
for a given query trajectory Q, we first restrict query Q within the time query t, obtaining Q[t].
Then, for each (vi, ti) ∈ Q[t], we aim at finding the trajectories that are close to vi within

R. Grossi, A. Marino, and S. Moghtasedi 24:7

ti. To this aim, for each (vi, ti) ∈ Q[t], we search through ITvi , by NTrajI-search(vi, ti) in
Algorithm 1, to build Γ(vi,ti). So we have Γ =

⋃
(vi,ti)∈Q[t] Γ(vi,ti). We compute the similarity

score with respect to the function in Definition 4, for each trajectory in Γ. In order to
maintain the k trajectory ids with the highest similarity score during the search process, we
use a heap H, whose top-k entries represent k-MsTraj.

4 Approximated Computation of k-MsTraj

The baseline method described in Section 3 is costly when the number of trajectories in T is
large. To accelerate the searching process, we propose some approximated methods with
two-phase preprocessing as discussed in Section 4.1.

First, we partition G into disjoint groups of nodes, precomputing the distances among
the centers of each group. As the similarity function in Definition 4 uses the shortest
path distance between nodes of the graph, we aim at approximating distances inside the
graph using the distances from the centers of the groups.
Second, we adapt the NTrajI indexing so that we maintain trajectories among the
groups in a structure called VoTrajI.

For the query processing, given a query trajectory, we show how to estimate the similarity
scores for the trajectories in T using the partitioning and the new VoTrajI index in
Section 4.2

4.1 Two-phase Preprocessing
The partitioning takes into account node popularity by choosing the nodes having a higher
number of trajectories passing through them as the centers of the groups. To do this, it uses
Voronoi Diagrams for graphs (V DG), as explained next.

The V DG is a generalization of the classic Voronoi diagram. For graph G = (V,E) and
a set of trajectory T , let C = {c1, c2, . . . ch} be a set of h (most popular) nodes in V , called
Voronoi sites i.e. center nodes. The V DG over the nodes in C is defined as a partition of V
into h groups g1, g2, · · · , gh, one for each center in C. Node u ∈ V is in group gi with center
ci (i.e. gi.C = ci) iff d(u, ci) ≤ d(u, cj) for each cj ∈ C with i 6= j (ties are broken arbitrarily).
We can divide G into h Voronoi groups in O(n logn) time when h = O(nε) for a positive
constant ε < 1 [6].

Once the Voronoi groups have been computed, we precompute and store the pairwise
distances among the center nodes of the groups. Our aim is using these distances as an
approximation for the distances required by the similarity function in Definition 4. By
running one BFS for each center node, we compute the distance between each pair ci, cj ∈ C
in O(m · n1/2) time, where we set h = n1/2. As a result, we obtain the following lemma.

I Lemma 11. Graph partitioning and centers distance precomputation require O(m · n1/2)
time. The space required by the centers distance table is O(n) space.

We now discuss how to build the Voronoi Trajectory Indexing (VoTrajI) by adapting
the NTrajI data structure. We use an interval tree ITc for each c ∈ C. Interval tree ITc
stores the time intervals of trajectories in T spent within the nodes in g, when g.C = c. The
VoTrajI maintains the corresponding trajectory ids of the time intervals. By modifying
Definition 9, we have:

SEA 2020

24:8 Finding Structurally and Temporally Similar Trajectories in Graphs

I Definition 12 (Group Projection Set). The projection set Sc of a center node c ∈ C stores
the pairs (t, T) of all trajectories T ∈ T that pass through the nodes in g, when g.C = c,
namely, Sc = {(t, T) | (v, t) ∈ T and v ∈ g and g.C = c and T ∈ T }.

The Interval Tree ITc for each node c ∈ C maintains all pairs (t, T) ∈ Sc. Each entry of
ITc is the form of 〈t, id〉, where id is the trajectory id, and t is the time interval that the
trajectory id spent at v ∈ g, where g.C = c.

To reduce the storage space used by ITc, for each c ∈ C, we consider a sequence of
consecutive time intervals with the same trajectory id in Sc as a single time interval with
the corresponding trajectory id.

I Lemma 13. The two-phase preprocessing takes O(m · n1/2) time and O(n) space.

4.2 Query Processing
Consider how a trajectory T ∈ T is represented with respect to the center nodes of the
Voronoi diagram. Let (vi, ti) ∈ T and vi ∈ g, where g is a Voronoi group of G. We represent
(vi, ti) ∈ T as (c, ti) where g.C = c. We obtain a new trajectory T ′ as a sequence of center
nodes and the corresponding time intervals. Note that T ′ can traverse a sequence of the
nodes belonging to the same Voronoi group within consecutive time intervals. To avoid the
duplication of nodes for consecutive time intervals, we define shrunk trajectories.

Given a trajectory T ′ = 〈(c1, t1), . . . , (cl, tl)〉, consider the operator shrink(T ′), which
recursively merges any pair (ci, ti), (ci+1, ti+1) ∈ T ′ as (ci, ti + ti+1) when ci = ci+1 and
ti, ti+1 are two consecutive time intervals (here operation ti + ti+1 gives [si, ei+1]).

I Definition 14 (Shrunk Trajectory). Let T = 〈(v1, t1), . . . , (vl, tl)〉 be a trajectory in T .
Consider the corresponding sequence T ′ = 〈(c1, t1), . . . , (cl, tl)〉 with respect to the Voronoi
groups. We define the shrunk trajectory of T as T̂ = shrink(T ′).

Note that it takes O(l) time to obtain T̂ , and that |T̂ | ≤ |T |. At this point, we consider
two variants for estimating k-MSTraj.

SHQ Shrunk Query: Shrinking trajectory Q during query time.

SHQT Shrunk Query and Target: Shrinking each trajectory in T during the preprocessing
and shrinking trajectory Q during query time.

Both variants perform a search on the VoTrajI index using the shrunk query trajectory Q̂.
The outcome of that search is a set Γ̃, which is defined as Γ in Section 3, except that we use
VoTrajI in place of NTrajI. This makes a difference, as the property in Proposition 10
does not necessarily hold anymore. Indeed there could be a trajectory T ∈ k-MsTraj such
that T 6∈ Γ̃ (whereas surely T ∈ Γ). This approximated version has the advantage of speed,
which motivates this study.

4.2.1 Variant SHQ
In this variant we compute the similarity scores for each trajectory T ∈ Γ̃ with respect to the
shrunk query Q̂. In particular, we make an estimate of Sim(Q,T, t) as Sim(Q̂, T, t), and
report the top-k trajectories with the highest estimated similarity score. To measure the
precision ratio of this estimation, the similarity function makes an estimate of d = d(v, u) as
d̄ = d(c, u), when v ∈ Q, u ∈ T , and c is the center node of a group that includes v.

R. Grossi, A. Marino, and S. Moghtasedi 24:9

I Lemma 15. For any given v, u ∈ V , u 6= v, the ratio between d = dist(v, u) and d̄ =
dist(c, u), where c is the center of Voronoi group containing v, is bounded as 1 ≤ d/d̄ ≤ 3.

Proof. Let dist(c, v) = r. We have two possibilities. If r ≤ 2d̄, then by triangle inequality
d ≤ r + d̄ and thus d ≤ 3d̄. Else if 2d̄ < r, then by triangle inequality r ≤ d+ d̄ and thus
d̄ < d. J

Although we reduce the number of nodes in the query trajectory which needs to be
processed, the number of distances involved is still large. As mentioned earlier, the cost of
distance computation depends on the length of the trajectories within the query time interval
t. In order to reduce this cost, we consider our second variant SHQT.

4.2.2 Variant SHQT
In this variant, we estimate Sim(Q,T, t) as Sim(Q̂, T̂ , t). Specifically, the similarity function
makes an estimate of d = d(v, u) as d̃ = d(ci, cj), when v ∈ Q, u ∈ T , and ci, cj are the
center nodes of the groups that include v ∈ Q and u ∈ T , respectively.

I Lemma 16. For any two distinct nodes v, u belonging to Voronoi groups with center nodes
ci, cj , respectively, the ratio between d̃ = dist(ci, cj) and d̄ = dist(ci, u) is bounded as d̃/d̄ ≤ 2.

Proof. As illustrated in Figure 2, let dist(v, ci) = r and dist(u, cj) = r′. We consider the
groups gi, gj containing the two centers ci, cj , respectively. By triangle inequality we have
d̃ ≤ r′ + d̄. Since u ∈ gj and u /∈ gi then r′ ≤ d̄. Thus, d̃ ≤ 2d̄. J

Using Lemma 15 and 16, we are able to conclude that d̃ ≤ 2d when r > 2d̄. If r > 2d̄ by
triangle inequality we have d̄ < d. Since d̃ ≤ 2d̄, we can obtain that d̃ ≤ 2d.

The similarity function in Definition 4 assigns a larger contribution to those nodes of the
trajectories that are closer to each other, rather than the farther ones. Thus, by Lemma 15
and 16, we expect that the estimated similarity score in both variants is larger than the
exact similarity score. We will evaluate this idea in our experiments.

Figure 2 ci ∈ gi and cj ∈ gj

such that ci, cj ∈ C.

Table 2 Summary of Datasets. Recall that DG is the
diameter of G.

Dataset
Name trajectories nodes edges DG

Facebook 1000 4039 88234 8
Milan 16166 3000 130071 5
Rome 7755 473 10524 6

5 Experimental Evaluation

This section is devoted to comparing the performances of SHQ and SHQT with respect to
the baseline method, hereafter called BASE. The evaluation aims at providing a response to
the following questions.
Q1: How fast is getting the answer for a query, i.e. how much is the query time?
Q2: How fast is the preprocessing phase?
Q3: How good is the quality of the solution found if compared with the exact solution?

SEA 2020

24:10 Finding Structurally and Temporally Similar Trajectories in Graphs

Table 3 The average time for answering
a query for each method (in sec).

Datasets BASE SHQ SHQT
Facebook 1.09 0.74 0.43
Milan 380.03 376.15 85.48
Rome 26.19 19.42 15.83

Table 4 The average number of trajectories
in the candidate set in each method. For the
Facebook dataset, refer to Figure 4.

Datasets BASE SHQ SHQT
Milan 9786.39 9968.98 9968.98
Rome 7504.37 6569.84 6569.84

We will respond to these questions by evaluating the performance of each method for
different value of k. In particular, we set k as 2i for i = 0, . . . , 6. Each experiment requires
a graph, a trajectory set, and a query trajectory. For each experiment, we choose 100
trajectories as query trajectories, randomly.

Our computing platform is a machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40GHz,
24 virtual cores, 128 Gb RAM, running Ubuntu Linux version 4.4.0-22-generic. The source
code has been written in Python3.

5.1 Datasets
We conduct our experiments on real-world graphs, using synthetic and real trajectories,
whose properties are shown in Table 2.

Facebook Synthetic trajectories from Facebook social network. 2
Milan Dataset based on GPS tracks of private cars in Milan. First, we build the graph

by making use of the GPS trajectories. Then, we cluster the close nodes with k-Means.
There is an edge between two clusters i and j if there exists at least one trajectory going
through i, j, consecutively. 3

Rome Dataset of Flickr geo-tagged photos provided by [10], containing tourist trajectories
covering Rome. We build the graph of the Points of Interest (in short, PoIs).

5.2 Query Time
In the following, we compare the query time of the three methods. Table 3 reports our
results, showing the average query time over 100 queries in each dataset. As it can be seen,
both SHQ and SHQT variants outperform BASE. The most evident benefit can be seen for
the biggest dataset that we considered, i.e. Milan dataset. In this case, SHQT spends less
than 23% of the time needed by BASE and SHQ.

We report in Table 4 the number of candidate trajectories for all the methods (i.e. |Γ|
and |Γ̃|). The table shows that SHQ and SHQT select more candidates than BASE. This is
not an issue as, even if we have to process these extra trajectories, they compute much fewer
query distances and consecutively spend less time than BASE, as shown in Table 3.

For the sake of completeness, we also analyzed the behavior of our method when the
length of the queried trajectories varies for the case of the Facebook dataset. As we can see
in Figure 3, SHQ and SHQT outperform BASE. Actually SHQT significantly outperforms
the other two, and the improvement becomes even more evident when the length of the query
trajectory increases. As the length of the query goes up to 80, the time needed by BASE

2 https://snap.stanford.edu/data/ego-Facebook.html
3 https://sobigdata.d4science.org/catalogue-sobigdata?path=/dataset/gps_track_milan_italy

https://snap.stanford.edu/data/ego-Facebook.html
https://sobigdata.d4science.org/catalogue-sobigdata?path=/dataset/gps_track_milan_italy

R. Grossi, A. Marino, and S. Moghtasedi 24:11

Figure 3 Average time vs
length of queried trajectories
in Facebook dataset.

Figure 4 The average num-
ber of trajectories in candidate
set in each method vs length
of query in Facebook dataset.
For both SHQ and SHQT the
candidate set Γ̃ is the same.

Figure 5 The comparison
between similarity scores of
each method.

and SHQ increases faster than the SHQT. This observation confirms that shrinking both
target and query trajectories reduces the number of distance computations and thus the time
reduced greatly.

Figure 4 shows the average number of trajectories in the candidate set for each method.
Note that the number of trajectories in the candidate set for both methods SHQ and SHQT
is the same since we use the same approach for specifying Γ̃. As it can be seen, by increasing
the length of the query up to 40, the number of trajectories in the candidate set for each
method increases quickly to more than 240, and then becomes the same for all of them. This
confirms the role of the precomputed distances among Voronoi centers to accelerate query
processing. The time cost of this precomputation is negligible. Moreover, by Lemmas 15
and 16, we would expect that the similarity score would be larger when we shrink trajectories:
looking at Figure 5, we observe that the similarity scores by shrinking trajectories behave as
we expected.

5.3 Preprocessing Time
As we mentioned before, between SHQT and SHQ, only the former uses the precomputed
distances. The cost of the precomputation is shown in Table 5.We also report the time
needed to index and shrink trajectories. In particular, columns NTrajI and VoTrajI report
the time needed for building respectively the indexing structures NTrajI and VoTrajI.
As expected, the time needed for building NTrajI over the trajectories in the Facebook
dataset is larger than the one required by other datasets. This is due to the presence of
longer trajectories with respect to other datasets. The column Distance Precomputing shows
that the time needed to precompute the distances is negligible. Finally, we can observe that
the time needed to perform the Voronoi partitioning and shrinking trajectories in the last
column is also negligible in comparison with the time needed for building NTrajI, which
clearly dominates the cost.

5.4 Quality and Evaluation Metrics
We evaluate the quality of the solution produced by the SHQ and SHQT methods with
respect to BASE. The effectiveness of the methods is assessed by means of the metrics that
we describe next, where the values close to 1 are more desirable. Let γ1 and γ2 be two output
sets containing top-k trajectories, e.g. the exact and approximated solutions.

SEA 2020

24:12 Finding Structurally and Temporally Similar Trajectories in Graphs

Table 5 Preprocessing time (in sec).

Dataset NTrajI VoTrajI Distance
precomputing

Shrinking trajectories
and building Voronoi diagram

Facebook 185.19 0.51 0.48 0.62
Milan 1716.44 13.50 0.27 10.21
Rome 69.25 0.24 0.005 0.56

1. We define the similarity score ratio as the ratio of the average similarity scores of

trajectories in γ1 and γ2. Namely, SSR(γ1, γ2) =
∑
T∈γ1

Sim(Q,T, t)∑
S∈γ2

Sim(Q,S, t) .

2. We define the intersection ratio as IR(γ1, γ2) = |γ1 ∩ γ2|
k

.

It is worth remarking that the running time of the methods does not change for the
different values of k.

Our results are shown in Figures 6 and 7, where the IR and SSR ratios are reported as a
function of k. In particular, Figure 6 represents the IR ratio for increasing k values in the
three datasets. The IR ratio goes up to more than 0.80 quickly, by increasing the value of
k on the Facebook network. On the other hand, this value in Milan and Rome networks
becomes close to 0.3. However, we observe that the lower values of IR correspond to SSR
values that are close to 1. Indeed, Figure 7 shows SSR which is almost always very close to 1
and that gets more close to 1, while increasing k.

(a) Facebook (b) Milan (c) Rome

Figure 6 The quality of the results returned by the competitors in terms of IR ratio vs k.

(a) Facebook (b) Milan (c) Rome

Figure 7 The quality of the results returned by the competitors in terms of SSR ratio vs k.

R. Grossi, A. Marino, and S. Moghtasedi 24:13

References
1 Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in sequence

databases. In International conference on foundations of data organization and algorithms,
pages 69–84. Springer, 1993.

2 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
geometry: algorithms and applications. Springer-Verlag TELOS, 2008.

3 Lei Chen and Raymond Ng. On the marriage of Lp-norms and edit distance. In Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30, pages 792–803.
VLDB Endowment, 2004.

4 Lei Chen, M Tamer Özsu, and Vincent Oria. Robust and fast similarity search for moving
object trajectories. In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 491–502. ACM, 2005.

5 Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing Xie. Searching trajectories
by locations: an efficiency study. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 255–266. ACM, 2010.

6 Martin Erwig. The graph Voronoi diagram with applications. Networks: An International
Journal, 36(3):156–163, 2000.

7 Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos. Fast subsequence
matching in time-series databases. In Proceedings of ACM SIGMOD, pages 419–429, Min-
neapolis, MN, 1994.

8 Jung-Rae Hwang, Hye-Young Kang, and Ki-Joune Li. Searching for similar trajectories on
road networks using spatio-temporal similarity. In East European Conference on Advances in
Databases and Information Systems, pages 282–295. Springer, 2006.

9 Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic time warping.
Knowledge and information systems, 7(3):358–386, 2005.

10 Cristina Ioana Muntean, Franco Maria Nardini, Fabrizio Silvestri, and Ranieri Baraglia. On
learning prediction models for tourists paths. ACM Transactions on Intelligent Systems and
Technology (TIST), 7(1):1–34, 2015.

11 Shuo Shang, Ruogu Ding, Kai Zheng, Christian S Jensen, Panos Kalnis, and Xiaofang Zhou.
Personalized trajectory matching in spatial networks. The VLDB Journal, 23(3):449–468,
2014.

12 Eleftherios Tiakas, Apostolos N Papadopoulos, Alexandros Nanopoulos, Yannis Manolopoulos,
Dragan Stojanovic, and Slobodanka Djordjevic-Kajan. Trajectory similarity search in spatial
networks. In null, pages 185–192. IEEE, 2006.

13 Eleftherios Tiakas and Dimitrios Rafailidis. Scalable trajectory similarity search based on
locations in spatial networks. In Model and Data Engineering, pages 213–224. Springer, 2015.

14 Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering similar multidimen-
sional trajectories. In Data Engineering, 2002. Proceedings. 18th International Conference on,
pages 673–684. IEEE, 2002.

15 Jung-Im Won, Sang-Wook Kim, Ji-Haeng Baek, and Junghoon Lee. Trajectory clustering in
road network environment. In Computational Intelligence and Data Mining, 2009. CIDM’09.
IEEE Symposium on, pages 299–305. IEEE, 2009.

16 Ying Xia, Guo-Yin Wang, Xu Zhang, Gyoung-Bae Kim, and Hae-Young Bae. Spatio-temporal
similarity measure for network constrained trajectory data. International Journal of Compu-
tational Intelligence Systems, 4(5):1070–1079, 2011.

SEA 2020

	Introduction
	Preliminaries
	Trajectory Similarity Measure
	Top-k Most Similar Trajectories

	Baseline: Exact Computation of k-MsTraj
	NTrajI Indexing
	Query Processing

	Approximated Computation of k-MsTraj
	Two-phase Preprocessing
	Query Processing
	Variant SHQ
	Variant SHQT

	Experimental Evaluation
	Datasets
	Query Time
	Preprocessing Time
	Quality and Evaluation Metrics

