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Abstract
The graph fused lasso optimization problem seeks, for a given input signal y = (yi) on nodes i ∈ V
of a graph G = (V,E), a reconstructed signal x = (xi) that is both element-wise close to y in
quadratic error and also has bounded total variation (sum of absolute differences across edges),
thereby favoring regionally constant solutions. An important application is denoising of spatially
correlated data, especially for medical images.

Currently, fused lasso solvers for general graph input reduce the problem to an iteration over a
series of “one-dimensional” problems (on paths or line graphs), which can be solved in linear time.
Recently, a direct fused lasso algorithm for tree graphs has been presented, but no implementation
of it appears to be available.

We here present a simplified exact algorithm and additionally a fast approximation scheme for
trees, together with engineered implementations for both. We empirically evaluate their performance
on different kinds of trees with distinct degree distributions (simulated trees; spanning trees of road
networks, grid graphs of images, social networks). The exact algorithm is very efficient on trees
with low node degrees, which covers many naturally arising graphs, while the approximation scheme
can perform better on trees with several higher-degree nodes when limiting the desired accuracy to
values that are useful in practice.
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1 Introduction

The Fused Lasso Signal Approximator (FLSA), also known as Total Variation denoising [22],
was introduced by Tibshirani and colleagues [27]. A general formulation is as follows.

I Problem 1. Let G = (V,E) be an undirected graph. Let y = (yi)i∈V ∈ RV be a signal
measured in each node. Let µ = (µi) ≥ 0 be node weights, and let λ = (λij){i,j}∈E ≥ 0 be
edge weights. The problem is to find a minimizer x∗ of the convex function

f(x) := 1
2
∑
i∈V

µi (xi − yi)2 +
∑
ij∈E

λij |xi − xj | , (1)

i. e., an x∗ that is both element-wise close to the observation y (in squared error) and bounded
in total variation across edges.
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(a) Original (b) Noisy (c) Grid Solution (d) Tree Solution

Figure 1 Image Denoising: The Shepp–Logan Phantom [23] (a standard test image), rendered at
300 × 300 (1a), with added Gaussian noise of standard deviation σ = 0.25 (1b). The fused lasso
with parameter λ = 0.2 on a grid graph (1c) denoises while keeping most of the edges. The fused
lasso on a random spanning tree (1d) is an approximation to the grid solution.

The node weights µi ≥ 0 represent the degree of confidence or precision of the observation yi.
We explicitly allow nodes i with weight µi = 0, i. e. no observation yi is available. Such nodes
are called latent in contrast to visible nodes. The edge weights λij represent our degree of
belief that the signal does not change across edge {i, j}.

Important special cases of graphs for the FLSA are line graphs, where V = {1, . . . , n} and
edges exist between i and i+ 1 for 1 ≤ i ≤ n− 1. Here one aims to reconstruct a signal x∗
from observation y that is assumed to be piece-wise constant or of low total variation. For
line graphs there exists a practically and theoretically fast algorithm by Johnson [15].

Other cases of practical importance are given by grid graphs, where V = {(i, j) : 1 ≤
i ≤ n, 1 ≤ j ≤ m} with edges between (i, j) and (i′, j′) if and only if |i − i′|+ |j − j′| = 1
(grid neighbors). With such graphs, one models pixels of images, such as magnetic resonance
images (MRI) [12], and the FLSA is used for denoising these images without smoothing them,
because sharp edges are preserved using FLSA, in contrast to the application of convolutions
with kernels. Figure 1 shows an example using a common test image.

For general graphs (including grid graphs), so far only iterative approximations have
been proposed, e.g. [3]. Often, an efficient line graph solver is used as a subroutine for these
iterative methods [29], e. g. Consensus ADMM [25].

Trees (connected acyclic graphs) represent an interesting intermediate class of graphs.
Recently, an exact O(n logn) time dynamic programming algorithm was presented for
trees [16]. To achieve this worst-case running time, it makes use of Fibonacci heaps [11], a
complex data structure that has a reputation of being hard to implement, and being more
efficient in theory than in practice. Perhaps this is also why we were unable to find any
implementation of this method: There exists neither a link in the paper nor on the websites
of V. Kolmogorov or T. Pock. We only found the code concerning their work on line graphs.
Padilla and colleagues [20] suggested that this algorithm is slow in practice and proposed to
use a heuristic instead:

“Their algorithm [16] is theoretically very efficient, with O(n logn) running time, but
the implementation that achieves this running time (we have found) can be practically
slow for large problem sizes, compared to dynamic programming on a chain graph.
Alternative implementations are possible, and may well improve practical efficiency,
but as far as we see it, they will all involve somewhat sophisticated data structures in
the ‘merge’ steps in the forward pass of dynamic programming.” [20]

https://en.wikipedia.org/wiki/Shepp%E2%80%93Logan_phantom
http://pub.ist.ac.at/~vnk/software.html
https://graz.pure.elsevier.com/en/persons/thomas-pock
http://pub.ist.ac.at/~vnk/software/TVTree-v1.0.tar.gz
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So they propose to replace the tree by a line graph of the tree nodes in depth-first search
(DFS) order and show that this yields a 2-approximation of the correct solution. We do not
believe that such a sacrifice in accuracy should be made for the sake of efficiency.

Contributions. In this work we present the first public implementation of a fused lasso tree
solver. We show that (except for adversarial generated instances) a carefully engineered tree
solver is only 5 to 20 times slower than a line solver on the same number of nodes.

We describe two algorithms, an exact one that runs in O(nq log q) time1, and an ap-
proximation scheme that iteratively refines an approximate solution and closes the gap to
the optimal x∗, with running time O(n log(1/δ)) for a solution x with ‖x∗ − x‖∞ ≤ δ. We
compare under which conditions the exact tree algorithm and the approximation scheme
yield better running time, up to double floating point precision, on different tree datasets
with varying node degree distributions.

Our methods handle latent nodes and arbitrary node and edge weights, while other
implementations use simplifying assumptions of µi = 1 for all nodes i ∈ V and λij = λ > 0
for all edges {i, j} ∈ E.

The code, an optimized C++ implementation, is available at github.com/eqt/treelas.
We provide bindings to Python using pybind11 [14]. Correctness of solutions was verified
via dual solutions on large graphs. The code was tested on Linux, Windows, and Mac OS to
make it useful for others beyond a proof-of-concept implementation.

2 Definitions, Notation and Preliminaries

On Trees. We consider undirected simple graphs G = (V,E). A tree is a connected acyclic
undirected simple graph.

A tree can be rooted by selecting one node as the root r and directed by pointing all
edges towards the root. The next node on the path from a node i to the root r is called
the parent node π(i) of i, and i is called a child of π(i). The set of children of a node i is
denoted as C(i). A node without children is called a leaf. The subtree Ti rooted at node i
(in the tree with root r) is the induced subgraph containing all nodes j such that i is on the
path from j to r, including i itself. This set of nodes is denoted by V (Ti).

A post-order on the nodes is any order that lists a parent after all of their children. A
pre-order is any order that lists a parent before any of their children. As the root node r is
treated in a special way, we exclude it from pre- and post-orders.

Merged Nodes. Let x∗ be a solution of the fused lasso problem on a tree. We say that two
nodes i and j are merged in the optimal solution x∗ if they are in a region of equal values,
i. e. x∗i = x∗j = x∗k for every k on the path from i to j.

The Clip Function and a Differentiability Lemma. The following clip function will be
used frequently: For real numbers a ≤ b, define the real-valued function

clipba(x) := min {b,max{a, x}} .

In other words, clipba(x) = x is the identity for x ∈ [a, b], and the value is “clipped” from
below to a for x < a and “clipped” from above to b for x > b.

1 Here q ≤ 2n is an upper bound on the length of a certain priority queue used in the algorithm; it is a
small two-digit constant in our experiments. This is further discussed below.
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The following result shows that a certain function defined as a parameterized minimum
is, perhaps surprisingly, differentiable in its parameter x. This is a fundamental result used
in most fused lasso methods and sometimes called a “Min-Convolution”.

I Lemma 1 (Min-Convolution [9, 16]). Let g : R→ R be a convex differentiable function and
λ ≥ 0. Then the function

h(x) := min
z

[g(z) + λ|z − x|]

is convex and differentiable in x with h′(x) = clip+λ
−λ [g′(x)]. Furthermore, for given x, we

obtain the minimizing z∗ = clipba(x) with a := inf{x | g′(x) ≥ −λ} and b := sup{x | g′(x) ≤
+λ}, where inf ∅ = −∞ and sup ∅ = +∞.

Proof. For the differentiability result, we refer to the literature [9, 16]. We derive the
minimizing z∗: For z being minimal the subgradient has to contain 0, i. e.

0 ∈ g′(z∗) + λ∂z|z∗ − x| . (2)

Let us first assume x < a. As g is convex, the derivative g′ is monotonically increasing,
i. e. g′(z) < −λ for all z ≤ x. That is why the only option to make (2) true is z∗ = a.
Analogously for x > b it follows z∗ = b. For the case x ∈ [a, b] we set z∗ = x and check
g′(z) = g′(x) ∈ [−λ,+λ] which shows that (2) is fulfilled. J

3 Algorithms

Before going into detail, we discuss the general idea of decomposing the problem on trees.

3.1 Dynamic Programming on Trees
We build solutions of subproblems (Problem 1 restricted to a subtree Ti with root i), while
fixing (or assuming) a certain solution value xi = x in the subtree root.

Therefore, we define fi(x) as the minimal objective value when optimizing over the
variables of the subtree Ti and fixing the subtree’s root value to xi = x. This way we obtain
a series of functions fi(x) to be optimized by dynamic programming (bottom-up). Finally,
we find the minimizer of fr when r is the tree root.

For leaf nodes i we have fi(x) = 1
2µi(x−yi)2 which is differentiable with f ′i(x) = µi(x−yi).

By induction over the tree we have the form

fi(x) = 1
2µi(x− yi)

2 +
∑
j∈C(i)

(
min
xj

λj |xj − x|+ fj(xj)︸ ︷︷ ︸
=:hj(x)

)
, (3)

where we abbreviated λi := λi,π(i).
Minimizing along an edge term hj(x) is a form of “Min-Convolution”. Applying Lemma 1

to Eq. (3), we obtain the main tool for the two algorithms described below.

I Theorem 2. Let fi(x) be defined as in (3), as a function of the subtree root’s value x.
Then fi is differentiable and

f ′i(x) = µi(x− yi) +
∑
j∈C(i)

clip+λj

−λj

[
f ′j(x)

]
. (4)
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The clip functions in Eq. (4) will be used as backtrace pointers in the dynamic programming
algorithms, similarly to Johnson’s algorithm on line graphs [15].

The key observation is the following one: While the derivatives f ′i : R→ R are “infinite”
objects, they have a finite representation, because they are piecewise linear (PWL) functions.
(Because fi is convex, f ′i is furthermore increasing.) This is seen by induction:
1. For a leaf node i, we minimize fi(x) = 1

2µi(x − yi)2 which has the PWL derivative
f ′i(x) = µi(x− yi).

2. Assuming that all children’s derivatives f ′j are PWL f ′i must also be PWL because the
sum of PWLs is PWL, and clipping a PWL function again results in a PWL function.

Hence we can represent f ′i as an ordered sequence of knots where the slope s and intercept t
of the PWL x 7→ sx+ t changes. Both algorithms described below make use of this fact and
the derivative recurrence in Eq. (4).

3.2 Exact Solver
The basic idea of the exact dynamic programming solver is to compute a suitable representa-
tion of the derivatives f ′i .

As all objective functions fi, i ∈ V are convex, the derivatives f ′i are monotonically
increasing. This is why the “back-pointers” ai and bi with f ′i(ai) = −λi and f ′i(bi) = λi are
of special interest: They define the interval Ii := [ai, bi] of points x such that f ′i(x) is not
clipped, and, according to Lemma 1, the parent’s value will be passed on (merged) later in
the back-tracing step to determine the optimal value x∗i . The exact solver first computes a
complete representation of the derivative f ′i to determine the (exact) back-pointer Ii = [ai, bi].
As Ii suffices to compute the optimum x∗i , the f ′i can be modified in place. In contrast, in
the approximation scheme, we apply binary search to update an approximate back-pointer
[a(k)
i , b

(k)
i ] containing x∗i at every iteration k.

Algorithm 1 shows the exact solver conceptually in pseudo-code; this is essentially
Algorithm 2 from [16]. Each PWL derivative f ′i is represented by a priority queue containing
information about its knots. There are two passes: first bottom-up (post-order) to compute
back-pointers [ai, bi] for each tree node i, then top-down (pre-order) to compute the optimal
solution x∗.

Algorithm 1 TreeOpt. [16, Algorithm 2]

Input : Signal y ∈ Rn, Weights µ ∈ Rn, λ ∈ Rn, Tree T : Root r,
Parent/child functions π,C

Output : Optimal solution x∗ ∈ Rn.
1 Initialize empty queues f ′i for each i ∈ V
2 Compute λ̂i =

∑
j∈C(i) λi for each i ∈ V

3 for each node i in post-order(T ) do
4 ai ← Clip↑

(
f ′i , µi, −µiyi − λ̂i, −λi

)
5 bi ← Clip↓

(
f ′i , µi, −µiyi + λ̂i, +λi

)
6 f ′π(i) ← f ′π(i) ∪ f

′
i

7 x∗r ← Clip↑
(
f ′r, µr,−µryr + λ̂r, 0

)
8 for each node i in pre-order(T ) do
9 x∗i ← clipbi

ai
(x∗π(i))

SEA 2020
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In terms of running time, most work is done in the Clip↑ function (Algorithm 2). In
line 4 of Algorithm 1 we start with slope s = µi and intercept of t = −µiyi− λ̂i: This reflects
the situations where the argument to the clip-function in Eq. (4) are when all summands
f ′j(x) evaluate to its minimum −λj . Then we step through the PWL f ′i , updating slope s
and intercept t at every knot, until the position x̂ is found where f ′i(x̂) = t0 = sx̂+ t.

Algorithm 2 Clip↑.

Input : Queue q, Slope s, Intercept t, Target t0
Output : Position x̂ (q is modified)

1 while q not empty and s× q.min + t < t0 do
2 knot ← extract min from q

3 s← s+ knot.s
4 t← t+ knot.t
5 x̂← (t0 − t)/s
6 Insert new knot with slope s, intercept t at position x̂ into q

One has to be careful when processing latent nodes because in this case slope s = 0 can
occur and Line 5 is undefined. In this case the solution of the current node is ambiguous and
thus it is feasible to return −∞ and not insert a new knot.

The algorithm for the counterpart Clip↓ works analogously: Iterate the loop in Line 1
while s× q.max + t > t0 and subtract slope s and intercept t accordingly.

3.2.1 Double-Ended Mergable Queues
Algorithm 1 makes use of double-ended priority queues that are merged into the queues of
their parent’s queues (Line 6). For the theoretical worst-case running time the choice of the
queue type defines the bottleneck.

I Theorem 3. There is an O(n logn) solver for fused lasso on trees.

In their proof [16, Sec. 4.2] Kolmogorov et al. make use of two Fibonacci Heaps [11], a
min-heap and a max-heap. The performance of Fibonacci Heaps in practical applications is
controversially discussed [18, 5, 4]. Different types of double-ended priority queues as (Rank)
Pairing Heaps [10, 24, 8, 13] or other sophisticated heap data structures are conceivable.

We believe that such complicated data structures are not necessary. Consider the
algorithm processing node i: The decisive question for determining the running time is how
many nodes are there in the queue in the forward pass when starting in Line 3? We found
that the queues always contained not more than some hundred elements, independent of the
number of nodes n.

I Observation 4 (Queue Size). The knot of a descendant j ∈ V (Ti) is contained in the queue
f ′i only if there exists an input yπ(i) such that in the corresponding optimum x∗(y) the nodes
i and j are merged.

Proof. According to Algorithm 1, nodes i and j can only be merged if none of the “back-
pointers” [ak, bk] on the way between them is clipped in Line 9. J

Note that a node j can be merged to i without having a knot in the priority queue f ′i , i. e. the
observation gives only an upper bound for the number of elements in the queue.
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Figure 2 Queue layout: How to store the queues in memory such that every queue contains (the
remaining) elements of its children’s queues (separated by “:”).

All in all we conjecture that in practice, the running time of the exact solver is more
strongly affected by memory-related issues (e.g., cache effects) than by the actual queue data
structure.

3.2.2 Implementation
We decided to replace the Fibonacci Heaps of [16], whose usage guarantees a O(n logn)
time algorithm, with simple plain sorted arrays. Sorting the queue in every step yields a
(theoretically) suboptimal algorithm needing O(nq log q) time, when q is an upper bound on
the queue size. As the queue size could theoretically be Θ(n), we obtain an O

(
n2 logn

)
time

algorithm in the worst case. However, our experiments show that in practice q behaves as a
constant; giving an O(n) time algorithm in practice.

Observe that every node inserts exactly two knot elements, that define the new min
and max, into the queue. This enclosing property makes it possible to pre-allocate the
elements and store them in an order such that merging into the parent’s queue (Line 6)
is always possible and recently used elements are often in the cache (see Figure 2): For
node i we allocate space for two elements at the position of its parenthesis in the parenthesis
representation of the tree. To obtain the parenthesis form, walk the tree in depth-first search
(DFS) [7]: Open a parenthesis when a node is discovered and close it when it is finished.

3.3 Approximation Scheme
The second algorithm we present is simpler but needs to be iterated to approximate the
optimal solution. At every iteration k we refine for every node i ∈ V the interval [a(k)

i , b
(k)
i ],

such that we can guarantee that the optimal solution x∗i is contained.
The update is done by computing φi = f ′i(xi) for a probing point xi ∈ [a(k)

i , b
(k)
i ]: Recall

that objective functions fi are convex, hence f ′i are monotonically increasing. Because of
Lemma 1 this means that if φi = f ′i(xi) ≥ −λi then x∗i ≥ x; analogously φi = f ′i(xi) ≤ +λi
implies x∗i ≤ xi. To compute φi for all i ∈ V in linear time, we again apply the recursive
Eq. (4). Algorithm 3 shows the pseudo-code.

It is best to set the next probing point as the middle point of the current interval,
i. e. x(k)

i := (a(k)
i + b

(k)
i )/2, such that

[a(k)
i , b

(k)
i ] = [x(k)

i − δ
(k), x

(k)
i + δ(k)]

for some component-wise error δ(k). So the next interval [a(k+1)
i , b

(k+1)
i ] will be half the size

δ(k+1) = δ(k)/2, independent of what happened in the loop in Lines 3–9.

SEA 2020
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Algorithm 3 TreeApx.

Input : Probe values xi ∈ Ii, Bounds Ii = [ai, bi] for i ∈ V ; Tree T
Output : Improved bounds [âi, b̂i] ⊂ [ai, bi]

1 for each node i in post-order(T ) do
2 φi ← µi(xi − yi) +

∑
j∈C(i) clip+λj

−λj
[φj ]

3 for each node i in pre-order(T ) do
4 if φi ≥ −λi then
5 [âi, b̂i]← [xi, bi]
6 else if φi ≤ +λi then
7 [âi, b̂i]← [ai, xi]
8 else
9 [âi, b̂i]← [aπ(i), bπ(i)]

In the beginning, without apriori knowledge, we set δ0 “big enough” such that it contains
all possible solutions, e.g. δ0 = 1

2 (maxi yi −mini yi); further on we set the initial solutions
all to the mean input signal x(0)

i = y. We obtain the following result.

I Theorem 5. Algorithm 3 correctly updates the bounds I(k)
i = [a(k)

i , b
(k)
i ] such that after k

iterations, one has x∗i ∈ I
(k)
i and b(k)

i − a
(k)
i = δ0 2−k for every node i ∈ V .

In other words, every interval Ii converges to the optimal solution x∗i as k → ∞. More
precisely, to achieve component-wise accuracy of

∥∥x∗ − x(k)
∥∥
∞ ≤ δ we need at least k ≥

log2 δ0 + log2 1/δ iterations.

Engineering Memory Layout. Naively implemented, the approximation scheme (Algo-
rithm 3) is not at all competitive to the exact solver (Algorithm 1): The reason is that
walking a tree in pre- and post-order can cause a lot of memory cache misses as the next
element is hard to predict for the hardware prefetcher.

To overcome this, we re-labeled the nodes such that memory layout is the pre-order
(which is a reversed post-order). This way the next element will likely already be in the
cache. The breadth first search (BFS) is a cache-friendly pre-order: Firstly the summands in
Line 2 will all be adjacent in memory and secondly the parent’s bounds in Line 9 will be
accessed in a row for each child.

4 Experiments

We apply the exact algorithm TreeOpt and the O(n log(1/δ)) approximation scheme
TreeApx to differently structured tree datasets. The approximation is run for 20 iterations,
for an an accuracy of δ = 2−20 < 10−6. In most practical applications probably fewer
iterations are needed.

As there is no established library of test instances, we generate several ones. We use both
randomly generated trees and random spanning trees of real-world datasets, as described in
each section below. Table 1 gives an overview of the properties of different datasets.

For the sake of reproducibility the benchmarks are written as a Snakemake workflow [17]
and included in the source code2.

2 https://github.com/EQt/treelas/tree/master/data

https://github.com/EQt/treelas/tree/master/data
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Figure 3 Running time per input node on line graphs of different size.

Table 1 Characteristics of the tree graphs used for experiments: Relevant for the experiments
are the percentage of “leaf” nodes and the degree distribution deg0 of the non-leaf nodes; mean ±
standard deviation are reported.

Name n leaf mean deg0

Binary 100 000 000 50.0 % 3± 0
Europe 50 912 018 11.3 % 2.128± 0.367

HighDeg/LowDeg 50 000 000 37.2 % 2.592± 71.323
com-Orkut 3 072 441 48.6 % 2.944± 3.308

Phantom 1 000 000 33.6 % 2.506± 0.640

The benchmark system has an Intel® Core™ i7-5500U processor with cache sizes of
32 KB+32 KB (L1), 256 KB (L2) and 4096 KB (L3), and sufficient RAM (16 GB) to store
each dataset plus auxiliary data structures in memory at all times. The code was compiled with
GCC (g++) version 9.2.1, optimization level -O3 with -mtune=native. All time measurements
are averaged over 10 runs.

Input data y = (yi) is randomly drawn from a standard normal distribution N (0, 1)
independently in each node. Node weights are set to µi = 1 and edge weights are constant
λij = λ. To examine the effect of weak, intermediate and strong regularization, we run each
algorithm with three different values λ ∈ {0.01, 0.1, 1}.

4.1 Line Graphs
For line graphs, efficient exact implementations exist. We here compare against the frequently
used implementation GlmGen [1], which is algorithmically equivalent to our exact tree
algorithm restricted to line graphs, and against an algorithm by Laurent Condat3, an
improvement of his earlier work [6], which is based on a dual formulation of the problem.

We measure running time per input node across a wide range of graph sizes between 5000
and 100 000 000 nodes. Overall, the time spent per node is in a narrow range between 18
and 28 nanoseconds, essentially independently of input size n. The small differences indicate
that our implementation (LineLas) provides more optimization possibilities to the compiler
than GlmGen, which uses the same algorithm. For large instances, Condat’s algorithm is
slightly faster. In 2016, Condat’s implementation was considered to be the fastest one for
line graphs [16]; for n ≤ 106, our implementation is as fast.

3 https://lcondat.github.io/download/Condat_TV_1D_v2.c; version v2, accessed January 2020
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(a) BinaryTree n = 108
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(b) HighDeg/LowDeg n = 50 000 000
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(d) Belgium n = 1 441 295
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(e) Phantom n = 1 000 000
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(f) com-Orkut n = 3 072 441
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Figure 4 Violin plots of running times per node (nanoseconds) for the exact tree solver (blue) and
the approximation scheme (orange) with δ = 2−20, averaged over 10 runs and 10 different random
spanning trees when the data is a network.
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4.2 Random Binary Trees
We started with a simple, regular tree: In a (full) binary tree every node has exactly two
children except for the leaf nodes which constitute half of the nodes (see Table 1).

Neither algorithm is challenged by this instance (see Figure 4a): Even for n = 108 nodes
the running time is roughly 4 times as slow as for a line graph.

4.3 Random High/Low Degree Trees
To challenge the exact solver, we included an instance HighDeg/LowDeg having an
abundance of high-degree nodes because we expect a drop in performance, as the queue size
obviously depends on the node degree. High degree nodes inevitably lead to more leaf nodes,
i. e. low degree nodes. In the generated tree with n = 5× 107 nodes this is reflected in a
relatively high standard deviation of the node degrees of 71 .

We generated the graph by means of a Prüfer sequence [21]: Thereto we find a sequence
S ∈ {1, . . . , n}n−2 of length n − 2, whereby Si = j indicates that some node has parent j.
From the Prüfer sequence we can reconstruct the tree in linear time [28]. We generated S
as the sum of a normal distribution (high degree nodes), mixed with uniform distribution
(some low degree nodes to make it more realistic):

S ∼ |N (0, 0.01)|+ U(1, n)

rounded to the closest integer in {1, . . . , n}.
The results in Figure 4b show that indeed the approximation scheme performs better, as

was expected.

4.4 Spanning Trees of Road Networks
There are a lot of applications of spatial data, like some noisy data on a map [26]. We
include two graphs, Belgium (1.4 M nodes) and Europe (50 M nodes), generated out of
OpenStreetMap data as provided by the “10th DIMACS Implementation Challenge: Street
Networks” [2]. To obtain trees from the street graphs we computed 10 random spanning
trees.

The experiments illustrate how efficiently the exact solver can process these low degree
trees (see Figure 4c–4d).

4.5 Spanning Trees of Image Grid Graph
As a grid graph example we chose the Shepp–Logan Phantom [23] standard test image as
shown in the introductory example (Figure 1). To be realistic as a model of a real photograph,
we rendered the graph to n = 1000 × 1000 nodes and added Gaussian noise of standard
deviation σ = 0.25.

Interestingly the running time varies more than in the other cases (see Figure 4e). One
explanation could be that this is the only instance that has a real input signal y.

4.6 Social Media Network
Cluster analysis becomes more important nowadays. Here we include the graph com-Orkut
of a the free online social-media platform www.orkut.com which is part of the Stanford
Network Analysis Project (SNAP) [19].
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Although the tree with n = 3 072 441 nodes4 is small, compared to the other graphs, the
running time per node is larger as for e.g. Europe (see Figure 4f). With O(nq log q) we
would expect longer running times for larger trees. Again, the variety of node degrees (on
average 2.94± 3.3) suits the approximation scheme better.

4.7 Summary of Observations

We see that either algorithm can be faster, depending on degree properties. As expected,
the existence of nodes with high degree, i. e. high variation in node degrees, slows down the
exact algorithm more than the approximation scheme. The number of nodes n is secondary
for predicting the running time.

We further observe that the running times of both algorithms increase slightly with the
weakening of regularization (i. e. increasing edge weight λ).

Compared to the times in Figure 3, we see that solving fused lasso on trees takes 5 times
(Phantom) to 30 times (HighDeg/LowDeg) longer, but the latter may be an unrealistic
example in practice. On typical datasets, the factor is less than 20 (com-Orkut).

We found that about 40 % of the time of TreeApx is used for initialization, i. e. to
compute a child index and to permute the input memory. Without the memory re-ordering
(re-labeling of the nodes), the running time of TreeApx is about 10 to 20 times slower
(excluding initialization).

In general both algorithms perform slightly slower with increasing tuning parameter λ: For
TreeOpt this reflects Observation 4 that the sizes of the queues depends on the (potential)
size of segments size. For TreeApx the increase in running time stems from the fact that
if i and π(i) are separated in the solution, i. e. x∗i 6= x∗π(i), the computation can be done
independently.

5 Conclusion and Discussion

We presented the first implementations of fused lasso solvers on trees. We engineered both,
an exact algorithm that runs in O(nq log q) time and an approximation scheme that runs in
O(n log(1/δ)) time for a given target accuracy δ, such as δ = 2−20. Depending on the node
degree distribution, either algorithm can be faster.

Instead of theoretically optimal data structures like Fibonacci heaps for the central
priority queue in the algorithm, in practice we find that their length q is short on most
natural datasets, and considerations about cache efficiency and memory layout are more
important for the running time than asymptotic considerations.

Our next goal is to examine whether an iterative fused lasso solver for general graphs
can be developed efficiently on the basis of one of the tree solvers presented here. Currently,
general graph solvers partition the graph into overlapping paths (line graphs), solve many
line graph problems and iteratively integrate the obtained solutions until they converge
towards a global solution. It is reasonable to expect that by using spanning trees instead of
random paths as subproblems, much fewer iterations may be necessary, which may lead to
general graph solvers that converge much faster, even though each iteration on trees takes
longer than an iteration on lines.

4 Before processing the graph we had to exclude 185 nodes which are not connected to the largest
connected component.
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