
Storing Set Families More Compactly with Top
ZDDs
Kotaro Matsuda
Graduate School of Information Science and Technology, The University of Tokyo, Japan
kotaro_matsuda@mist.i.u-tokyo.ac.jp

Shuhei Denzumi
Graduate School of Information Science and Technology, The University of Tokyo, Japan
denzumi@mist.i.u-tokyo.ac.jp

Kunihiko Sadakane
Graduate School of Information Science and Technology, The University of Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

Abstract
Zero-suppressed Binary Decision Diagrams (ZDDs) are data structures for representing set families
in a compressed form. With ZDDs, many valuable operations on set families can be done in time
polynomial in ZDD size. In some cases, however, the size of ZDDs for representing large set families
becomes too huge to store them in the main memory.

This paper proposes top ZDD, a novel representation of ZDDs which uses less space than existing
ones. The top ZDD is an extension of top tree, which compresses trees, to compress directed acyclic
graphs by sharing identical subgraphs. We prove that navigational operations on ZDDs can be done
in time poly-logarithmic in ZDD size, and show that there exist set families for which the size of the
top ZDD is exponentially smaller than that of the ZDD. We also show experimentally that our top
ZDDs have smaller size than ZDDs for real data.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases top tree, Zero-suppressed Decision Diagram, space-efficient data structure

Digital Object Identifier 10.4230/LIPIcs.SEA.2020.6

Related Version A full version of the paper is available at [9], https://arxiv.org/abs/2004.04586.

1 Introduction

Zero-suppressed Binary Decision Diagrams (ZDDs) [10] are data structures which are derived
from Binary Decision Diagrams (BDDs) [3] and which represent a family of sets (combinatorial
sets) in a compressed form by Directed Acyclic Graphs (DAGs). ZDDs are data structures
specialized for processing set families and compress sparse set families well. ZDDs support
binary operations between two set families in time polynomial to the ZDD size. Due to these
advantages, ZDDs are used for combinatorial optimization and enumeration.

Though ZDDs can store set families compactly, their size may grow for some set families,
and we need further compression. DenseZDDs [5] are data structures for storing ZDDs in a
compressed form and supporting operations on the compressed representation. DenseZDDs
represent a ZDD by a spanning tree of the DAG representing it, and an array of pointers
between nodes on the spanning tree. Therefore its size is always linear to the original size
and to compress more, we need another representation.

Our basic idea for compression is as follows. In a ZDD, the identical sub-structures are
shared and replaced by pointers. However identical sub-structures cannot be shared if they
appear at different heights in ZDD. As a result, even if the DAG of a ZDD contains repetitive
structures in height direction, they cannot be shared.

© Kotaro Matsuda, Shuhei Denzumi, and Kunihiko Sadakane;
licensed under Creative Commons License CC-BY

18th International Symposium on Experimental Algorithms (SEA 2020).
Editors: Simone Faro and Domenico Cantone; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kotaro_matsuda@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-0794-4157
mailto:denzumi@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
mailto:sada@mist.i.u-tokyo.ac.jp
https://doi.org/10.4230/LIPIcs.SEA.2020.6
https://arxiv.org/abs/2004.04586
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Storing Set Families More Compactly with Top ZDDs

For not DAGs but trees, there exists a data structure called top DAG compression [2],
which can capture repetitive structures in height direction. We extend it for DAGs and apply
to compress ZDDs which support the operations on compressed ZDDs.

1.1 Our contribution
We propose top ZDDs, which partition the edges of a ZDD into a spanning tree and other
edges called complement edges, and store each of them in a compressed form. For the
spanning tree, we use the top DAG compression, which represents a tree by a DAG with
fewer number of nodes. For the complement edges, we store them in some nodes of the top
DAG by sharing identical edges. We show that basic operations on ZDDs can be supported
in O(log2 n) time where n is the number of nodes of the ZDD. For further compression we
use succinct data structures for trees [12] and for bitvectors [14, 8].

We show experimental results on the size and query time of our top ZDDs and existing
data structures. The results show that the top ZDDs use less space for most of input data.

2 Preliminaries

Here we explain notations and basic data structures.
Let C = {1, . . . , c} be the universal set. Any set in this paper is a subset of C. The empty

set is denoted by ∅. For a set S = {a1, . . . , as} ⊆ C (s ≥ 1), its size is denoted by |S| = s.
The size of the empty set is |∅| = 0. A subset of the power set of C is called a set family. If a
set family F satisfies either S ∈ F ⇒ ∀k ∈ S, S\{k} ∈ F or S ∈ F ⇒ ∀k ∈ C, S ∪ {k} ∈ F ,
F is said to be monotone. If the former is satisfied, F is monotone decreasing and the latter
monotone increasing.

2.1 Zero-suppressed Binary Decision Diagrams
Zero-suppressed Binary Decision Diagrams (ZDDs) [10] are data structures for manipulating
finite set families. A ZDD is a directed acyclic graph (DAG) G = (V, E) with a root node
satisfying the following properties. A ZDD has two types of nodes; branching nodes and
terminal nodes. There are two types of terminal nodes ⊥ and >. These terminal nodes have
no outgoing edges. Each branching node v has an integer label `(v) ∈ {1, . . . , c}, and also
has two outgoing edges 0-edge and 1-edge. The node pointed to by the 0-edge (1-edge) of v

is denoted by v0 = zero(v) (v1 = one(v)). If for any branching node v it holds `(v) < `(v0)
and `(v) < `(v1), the ZDD is said to be ordered. In this paper, we consider only ordered
ZDDs. For convenience, we assume `(v) = c + 1 for terminal nodes v. We divide the nodes
of the ZDD into layers L1, . . . , Lc+1 (i = 1, . . . , c + 1) according to the labels of the nodes.
Note that if i ≥ j there are no edges from layer Li to layer Lj . The number of nodes in ZDD
G is denoted by |G| and called the size of the ZDD. On the other hand, the data size of a
ZDD stands for the number of bits used in the data structure representing the ZDD.

The set family represented by a ZDD is defined as follows.

I Definition 1 (The set family represented by a ZDD). Let v be a node of a ZDD and
v0 = zero(v), v1 = one(v). Then the set family Fv represented by v is defined as follows.
1. If v is a terminal node: if v = >, Fv = {∅}, if v = ⊥, Fv = ∅.
2. If v is a branching node: Fv = {S ∪ {`(v)} | S ∈ Fv1} ∪ Fv0 .

For the root node r of ZDD G, Fr corresponds to the set family represented by the ZDD
G. This set family is also denoted by FG.

K. Matsuda, S. Denzumi, and K. Sadakane 6:3

All the paths from the root to the terminal > on ZDD G have one-to-one correspondence
to all the sets S = {a1, . . . , as} in the set family represented by G. Consider a traversal
of nodes from the root towards terminals so that for each branching node v on the path,
if `(v) 6∈ S we go to v0 = zero(v) from v, and if `(v) ∈ S we go to v1 = one(v) from v.
By repeating this process, if S ∈ FG we arrive at >, and if S 6∈ FG we arrive at ⊥ or the
branching node corresponding to ai ∈ S does not exist.

2.2 Succinct data structures
Succinct data structures are data structures whose size match the information theoretic lower
bound. A data structure is succinct if any element of a finite set U with cardinality L is
encoded in log2(L) + o(log2(L)) bits. In this paper we use the following data structures.

2.2.1 Bitvectors
Bitvectors are the most basic succinct data structures. A length-n sequence B ∈ {0, 1}n of
0’s and 1’s is called a bitvector. On this bitvector we consider the following operations:

access(B, i) (1 ≤ i ≤ n): returns B[i] ∈ {0, 1}, the i-th entry of B.
rankc(B, i) (1 ≤ i ≤ n, c = 0, 1): returns the number of c in the first i bits of B.
selectc(B, j) (1 ≤ j ≤ n, c = 0, 1): returns the position of the j-th occurrence of c in B.

The following result is known.

I Theorem 2 ([14]). For a bitvector of length n, using a n + O(n log log n/ log n)-bit data
structure constructed in O(n) time, access(B, i), rankc(B, i), selectc(B, j) are computed in
constant time on the word-RAM with word length Ω(log n).

Consider a bitvector of length n with m ones. For a sparse bitvector, namely, the one
with m = o(n/ log n), we can obtain a more space-efficient data structure.

I Theorem 3 ([8]). For a bitvector B of length n = 2w with m ones, select1(B, i) is computed
in constant time on the word-RAM with word length Ω(log n) using a m(2 + w − blog2 nc) +
O(m log log m/ log m)-bit data structure.

Note that on this data structure, rank0, rank1, select0 takes O(log m) time.

2.2.2 Trees
Consider a rooted ordered tree with n nodes. An information-theoretic lower bound of such
trees is 2n − Θ(log n) bits. We want to support the following operations: (1) parent(x):
returns the parent of node x, (2) firstchild(x), lastchild(x): returns the first/last child of
node x, (3) nextsibling(x), prevsibling(x): returns the next/previous sibling of node x (4)
isleaf(x): returns if node x is a leaf or not, (5) preorder_rank(x): returns the preorder of
node x, (6) preorder_select(i): returns the node with preorder i, (7) leaf_rank(x): returns
the number of leaves whose preorders are smaller than that of node x, (8) leaf_select(i):
returns the i-th leaf in preorder, (9) depth(x): returns the depth of node x, that is, the
distance from the root to x, (10) subtreesize(x): returns the number of nodes in the subtree
rooted at node x, (11) lca(x, y): returns the lowest common ancestor (LCA) between nodes
x and y.

I Theorem 4 ([12]). On the word-RAM with word length Ω(log n), the above operations are
done in constant time using a 2n + o(n)-bits data structure.

We call this the BP representation in this paper.

SEA 2020

6:4 Storing Set Families More Compactly with Top ZDDs

2.3 DenseZDD
A DenseZDD [5] is a static representation of a ZDD with attricuted edges [11] by using some
succinct data structures. In comparison to the ordinary ZDD, a DenseZDD provides a much
faster membership operation and less memory usage for most of cases. When we construct a
DenseZDD from a given ZDD, dummy nodes are inserted so that `(v0) = `(v) + 1 holds for
each internal node v for fast traversal. The spanning tree consisting of all reversed 0-edges is
represented by straight forward BP. The DenseZDD is a combination of this BP and other
succinct data structures that represent remaining information of the given ZDD.

3 Top Tree and Top DAG

We explain top DAG compression [2] to compress labeled rooted trees.
Top DAG compression is a compression scheme for labeled rooted trees by converting

the input tree into top tree [1] and then compress it by DAG compression [4, 6, 7]. DAG
compression is a scheme to represent a labeled rooted tree by a smaller DAG obtained
by merging identical subtrees of the tree. Top DAG compression can compress repeated
sub-structures (not only subtrees). For example, a path of length n with identical labels can
be represented by a top DAG with O(log n) nodes. Also, for a tree with n nodes, accessing
a node label, computing the subtree size, and tree navigational operations such as first
child and parent are done in O(log n) time. Here we explain the top tree and its greedy
construction algorithm. We also explain operations on top DAGs.

The top tree [1] for a labeled rooted tree T is a binary tree T representing the merging
process of clusters of T defined as follows. We assume that all edges in the tree are directed
from the root towards leaves, and an edge (u, v) denotes the edge from node u to node v.
Clusters are subsets of T with the following properties.

A cluster is a subset F of the nodes of the original tree T such that nodes in F are
connected in T .
F forms a tree and we regard the node in F closest to the root of T as the root of the
tree. We call the root of F as the top boundary node.
F contains at most one node having directed edges to outside of F . If there is such a
node, it is called the bottom boundary node.

A boundary node is either a top boundary node or a bottom boundary node.
By merging two adjacent clusters, we obtain a new cluster, where merge means to take

the union of node sets of two clusters and make it as the node set of the new cluster. There
are five types of merges, as shown in Figure 1.

(a) (b) (c) (d) (e)

Figure 1 Types of merging of clusters. Ellipses are clusters before merge, black circles are
boundary nodes of new clusters, and white circles are not boundary nodes in new clusters.

K. Matsuda, S. Denzumi, and K. Sadakane 6:5

These five merges are divided into two.
1. (a)(b) Vertical merge: two clusters can be merged vertically if the top boundary node of

one cluster coincides with the bottom boundary node of the other cluster, and there are
no edges from the common boundary node to nodes outside the two clusters.

2. (c)(d)(e) Horizontal merge: two clusters can be merged horizontally if the top boundary
nodes of the two clusters are the same and at least one cluster does not have the bottom
boundary node.

The top tree of the tree T is a binary tree T satisfying the following conditions.
Each leaf of the top tree corresponds to a cluster with the endpoints of an edge of T .
Each internal vertex of the top tree corresponds to the cluster made by merging the
clusters of its two children. This merge is one of the five types in Figure 1.
The cluster of the root of the top tree is T itself.

We call the DAG obtained by DAG compression of the top tree T as top DAG T D, and
the operation to compute the top DAG T D from tree T is called top DAG compression [2].

We define labels of vertices in the top tree to apply DAG compression as follows. For a leaf
of the top tree, we define its label as the pair of labels of both endpoints of the corresponding
edge in T . For an internal vertex of the top tree, its label must have the information about
the cluster merge. It is enough to consider three types of merges, not five as in Figure 1. For
vertical merges, it is not necessary to store the information that the merged cluster has the
bottom boundary node or not. For horizontal merges, it is enough to store if the left cluster
has a bottom boundary node or not. From this observation, we define labels of internal
vertices as follows.

For vertices corresponding to vertical merge: we set their labels as V.
For vertices corresponding to horizontal merge: we set their labels as HL/HR if the
left/right child cluster has the bottom boundary node, respectively. If both children do
not have bottom boundary nodes, the label can be arbitrary.

Top trees created by a greedy algorithm satisfy the following.

I Theorem 5 ([2]). Let n be the number of nodes of a tree T . Then the height of top tree
T created by a greedy algorithm is O(log n).

Consider to support operations on a tree T which is represented by top DAG. From now
on, a node x in T stands for the preorder of x in T . By storing additional information to
each vertex of the top DAG, many operations can be supported [2]. For example, Access(x)
returns the label of x and Decompress(x) returns the subtree T (x) rooted at x. For a tree
with n nodes, many operations in [2] are done in O(log n) time, and Decompress(·) is done
in O(log n + |T (x)|) time. A pseudo code of Access(·) is in the full version [9].

4 top ZDD

We explain our top ZDD, which is a representation of ZDD by top DAG compression.
Though it is easy to apply our compression scheme for general rooted DAGs, we consider
only compression of ZDDs.

A ZDD G = (V, E) is a directed acyclic graph in which nodes have labels `(·) (terminal
nodes have ⊥ and >) and edges have labels 0 or 1. We can regard it as a graph with only
edges being labeled. For each edge (u, v) of ZDD G, we define its label as a pair (edge label
0/1, `(u)− `(v)) if v is a branching node, or a pair (edge label 0/1, ⊥/>) if v is a terminal

SEA 2020

6:6 Storing Set Families More Compactly with Top ZDDs

node. In practice, we can use c + 1 instead of ⊥ and c + 2 instead of > for the second element,
where c + 1 = `(⊥) = `(>). Below we assume ZDDs have labels for only edges, and 0-edge
comes before 1-edge for each node.

Next we consider top trees for edge-labeled trees. The difference from node-labeled trees
is only how to store the information for single edge clusters. In top trees, we stored labels
for both endpoints of edges. We change this for storing only edge labels.

The top ZDD is constructed from a ZDD G = (V, E) as follows.
1. We perform a depth-first traversal from the root of G and obtain a spanning tree T of

all branching nodes. During the process, we do not distinguish 0-edges and 1-edges, and
terminal nodes are not included in the tree. Nodes of the tree are identified with their
preorders in T . If we say node u, it means the node in T with preorder u. We call edges
of G not included in T as complement edges.

2. We convert the spanning tree T to a top tree T by the greedy algorithm.
3. For each complement edge (u, v), we store its information in a node of T as follows. If v

is a terminal, let a be the vertex of the top tree corresponding to the cluster of single edge
between u and its parent in T . Note that a is uniquely determined. Then we store a triple
((u, v), edge label 0/1, ⊥/>) in a. If v is a branching node, we store the information of
the complement edge to a vertex of T corresponding to a cluster containing both u and
v. The information to store is a triple ((u, v), edge label 0/1, `(u) − `(v)). We decide
a vertex to store it as follows. Let a, b be the vertices of the top tree corresponding to
the clusters of single edges towards u, v in T , respectively. Then we store the triple in
the lowest common ancestor lca(a, b) in T . Here the information (u, v) represents local
preorders inside the cluster corresponding to lca(a, b). Note that lca(a, b) may not be the
minimal cluster including both u and v.

4. We create a top DAG T D by DAG compression by sharing identical clusters. To
determine identicalness of two clusters, we compare them together with the information
of complement edges in the clusters stored in step 3. Complement edges which do not
appear in multiple clusters are moved to the root of T .

Figure 2 shows an example of a top ZDD. The left is the original ZDD and the right is
the corresponding top ZDD. Red and green edges show edges in the spanning tree and
complement edges, respectively. In this figure we show for each vertex of the top DAG, the
corresponding cluster, but they are not stored explicitly.

To achieve small space, it is important to use what data structure for representing each
information. For example, we explained that each vertex of the top DAG stores the cluster
size etc., this is redundant and the space can be reduced. Next we explain our space-efficient
data structure which is enough to support efficient queries in detail.

4.1 Details of the data structure
We need the following information to recover the original ZDD from a top ZDD.

Information about the structure of top DAG T D.
Information about each vertex of T D. There are three types of vertices: vertices
corresponding to a leaf of the top tree, vertices representing vertical merge, and vertices
representing horizontal merge. For each type we store different information.
Information about complement edges. The root or other vertices of T D store them.

We show space-efficient data structures for storing these information. In theory, we use
the succinct bitvector with constant time rank/select support [14]. In practice, we use the
SparseArray [13] to compress a bitvector if the ratio of ones in the bitvector is less than 1

4 ,

K. Matsuda, S. Denzumi, and K. Sadakane 6:7

HL HL

V

V1

2

3

4 4

2

3

⊥ Τ

Original ZDD top ZDD

Figure 2 An example of a top ZDD. 0-edges and 1-
edges are depicted by dotted and solid lines, respectively.
Red edges are spanning tree edges and green edges are
complement edges. For each vertex of the top DAG,
the corresponding cluster and the information stored
in the vertex are shown.

2

2𝑚

1

V

V

V

Τ

𝑚

ZDD top ZDD

Figure 3 A top ZDD with O(log n)
vertices, where n = 2m.

and use the SparseArray for the bitvector whose 0/1 are flipped if the ratio of zeros is less
than 1

4 . To store an array of non-negative integers, we use blog2 mc bits for each entry where
m is the maximum value in the array. Let n denote the number of internal nodes of a ZDD.
We use n + 1, n + 2 to represent terminals ⊥,>, respectively.

4.1.1 The data structure for the structure of top DAG
We store top DAG T D after converting it to a tree. We make tree T ′ by adding dummy
vertices to T D. For each vertex x of T D whose in-degree is two or more, we do the following.
1. Let a1, · · · , at be the vertices of T D from which there are edges towards x. Note that

there may exist identical vertices among them corresponding to different edges. We create
t− 1 dummy vertices d1, · · · , dt−1.

2. For each 1 ≤ i ≤ t− 1, remove edge (ai, xi) and add edge (ai, di).
3. For each dummy vertex di, we store information about a pointer to x. In our implemen-

tation, we store the preorder of x in T ′ from which the dummy vertices are removed.
Then we can convert the top DAG to the tree T ′ and the pointers from the dummy vertices.

Next we explain how to store T ′ and the information about the dummy vertices. The
structure of T ′ is represented by the BP sequence [12]. There are two types of leaves in T ′:
those which exist in the original top DAG, and those for the dummy vertices. To distinguish
them, we use a bitvector. Let m be the number of leaves in T ′. We create a bitvector
Bdummy of length m whose i-th bit corresponds to the i-th leaf of T ′ in preorder. We set
Bdummy[i] = 1 if the i-th leaf is a dummy vertex, and we set Bdummy[i] = 0 otherwise.

We add additional information to dummy vertices to support efficient queries. We
define an array clsize of length D where D is the number of dummy vertices. For the i-th
dummy vertex in preorder, let si be the vertex pointed to by the dummy vertex. We define
clsize[k] =

∑k
i=1(the number of vertices in the cluster represented bysi). That is, clsize[k]

stores the cumulative sum of cluster sizes up to k. This array is used to compute the cluster
size for each vertex efficiently.

SEA 2020

6:8 Storing Set Families More Compactly with Top ZDDs

4.1.2 Information on vertices
We explain how to store information on vertices of T ′ except for dummy vertices.

Each vertex corresponding to a leaf in the original top tree is a cluster for a single edge
in the spanning tree, and it is a non-dummy leaf in T ′. We sort these vertices in preorder
in T ′, and store information on edges towards them in the following two arrays. One is
array label_span to store differences of levels between endpoints of edges. Let u and v be
the starting and the ending points of the edge corresponding to the i-th leaf, respectively.
Then we set label_span[i] = `(v)− `(u). The other is array type_span to store if an edge is
0-edge or 1-edge. We set type_span[i] = 0 if the edge corresponding to the i-th vertex is a
0-edge, and type_span[i] = 1 otherwise.

Each vertex of T ′ corresponding to vertical merge or horizontal merge is an internal
vertex. We sort internal vertices of T ′ in their preorder. Then we make a bitvector BH so
that BH[i] = 0 if the i-th vertex stands for vertical merge, and BH[i] = 1 if it stands for
horizontal merge. For vertices corresponding to horizontal merge, we do not store additional
information. For vertices corresponding to vertical merge, we use arrays preorder_diff and
label_diff to store the differences of preorders and levels between the top and the bottom
boundary nodes of the merged cluster. Let xi be the i-th vertex in preorder corresponding to
vertical merge, cli be the cluster corresponding to xi, ti be the top boundary node of cli, and
bi be the bottom boundary node of cli. Note that ti and bi are nodes of the ZDD. Then we set
preorder_diff[i] = (the local preorder of bi inside cluster cli) and label_diff[i] = `(bi)− `(ti).

4.1.3 Information on complement edges
Complement edges are divided into two: those stored in the root of the top DAG and those
stored in other vertices. We represent them in a different way.

First we explain the data structure for storing complement edges in the root of the top
DAG. Let Eroot be the set of all complement edges stored in the root. We sort edges of
Eroot in the preorder of their starting point. Orders between edges with the same starting
point are arbitrary. For complement edges stored in the root, we store the preorders of their
starting point using a bitvector Bsrc_root, the preorders of their ending point using an array
dst_root, and edge labels 0/1 using an array type_root. The cluster corresponding to the
root of top DAG is the spanning tree of the ZDD. For each node v of the spanning tree, we
represent the number of complement edges in Eroot whose starting point is v, using a unary
code. We concatenate and store them in preorder in the bitvector Bsrc_root. For edges in
Eroot sorted in preorder of the starting points, we store the preorder of the ending point
of the i-th edge in dst_root[i], and set type_root[i] = 0 if the i-th edge is a 0-edge, and set
type_root[i] = 1 otherwise.

Next we explain the data structure for storing complement edges in vertices other than
the root. Let Ein be the set of those edges. We sort the edges as follows.
1. We divide the edges of Ein into groups based on the clusters having the edges. These

groups are sorted in preorder of vertices for the clusters.
2. Inside each cluster cl(x), we sort the edges of Ein in preorder of starting points of the

edges. For edges with the same starting point, their order is arbitrary.
We store the sorted edges of Ein using a bitvector Bedge and three arrays src_in, dst_in,
and type_in. The bitvector Bedge stores the numbers of complement edges in vertices of T ′

by unary codes. The arrays src_in, dst_in, and type_in are defined as: src_in[i] = (the
local preorder of the starting point of the i-th edge inside the cluster), dst_in[i] = (the local
preorder of the ending point of the i-th edge inside the cluster), type_in[i] = 0 if the i-th
edge is a 0-edge, and type_in[i] = 1 otherwise.

K. Matsuda, S. Denzumi, and K. Sadakane 6:9

A top ZDD is composed of the following data structures:
bp: a BP sequence representing the structure of T ′

Bdummy: a bitvector showing i-th leaf is a dummy vertex or not
clsize: an array storing cumulative sum of cluster sizes of the first to the i-th dummy
leaves
label_span: an array storing differences of labels of ending points of i-th non-dummy leaf
type_span: an array showing the edge corresponding to the i-th non-dummy leaf is 0-edge
or not
BH: a bitvector showing i-th internal vertex is a vertical merge or not
preorder_diff: an array storing differences of preorders between the top and the bottom
boundary nodes of the vertex corresponding to i-th vertical merge
label_diff: an array storing differences of labels between the top and the bottom boundary
nodes of the vertex corresponding to i-th vertical merge
Bsrc_root: a bitvector storing in unary codes the number of complement edges from each
vertex
dst_root: an array storing preorders of ending points of the i-th complement edge stored
in root
type_root: an array showing the i-th complement edge stored in the root is a 0-edge or
not
Bedge: a bitvector storing in unary codes the number of complement edges from each
vertex stored in the root
src_in: an array storing local preorders of starting points of i-th complement edge stored
in non-root
dst_in: an array storing local preorders of ending points of i-th complement edge stored
in non-root
type_in: an array showing the i-th complement edge stored in non-root is 0-edge or not

4.2 The size of top ZDDs
The size of top ZDDs heavily depends on not only the number of vertices in the spanning
tree after top DAG compression, but also the number of complement edges for which we
store some information. Therefore the size of top ZDDs becomes small if the number of
nodes is reduced by top DAG compression and many common complement edges are shared.

In the best case, top ZDDs are exponentially smaller than ZDDs.

I Theorem 6. There exists a ZDD with n nodes to which the corresponding top ZDD has
O(log n) vertices.

A detailed proof is in the full version [9]. A ZDD for a power set with n = 2m elements
satisfies the claim. Figure 3 shows such a ZDD.

4.3 Operations on top ZDDs
We give algorithms for supporting operations on the original ZDD using the top ZDD. We
consider the following three basic operations. We identify a node x of the ZDD with the
vertex in the spanning tree T used to create the top ZDD whose preorder is x.

`(x): returns the label of a branching node x.
zero(x): returns the preorder of x0, or returns ⊥ or > if the node is a terminal.
one(x): returns the preorder of x1, or returns ⊥ or > if the node is a terminal.

SEA 2020

6:10 Storing Set Families More Compactly with Top ZDDs

We show `(x) is done in O(log n) time and other operations are done in O(log2 n) time where
n is the number of nodes of the ZDD. Below we denote the vertex of T ′ stored in the top
ZDD with preorder x by “vertex x of T ′”.

First we explain how to compute `(x) in O(log n) time. We can compute `(x) recursively
using a similar algorithm to those on the top DAG. A difference is that we assumed that
each vertex of the top DAG stores the cluster size, while in the top ZDD it is not stored to
reduce the space requirement. Therefore, we have to compute it using the components of the
top ZDD.

To work the recursive computation, we need to compute the cluster size size(x′) repre-
sented by vertex x′ of T ′ efficiently. We can compute size(x′) by the number of non-dummy
leaves in the subtree of T ′ rooted at x′, and the sizes of the clusters corresponding to dummy
leaves in the subtree rooted at x′. If we merge two clusters of size a and b, the resulting
cluster has size a + b− 1. Therefore if we merge k clusters whose total size is S, the resulting
cluster after k − 1 merges has size S − k + 1. These values can be computed from the BP
sequence bp of T ′, the array clsize, and the bitvector Bdummy. By using bp, we can compute
the interval [l, r] of leaf ranks in the subtree rooted at x′. Then, using Bdummy, we can find
the number c of non-dummy leaves and the interval [l′, r′] of non-dummy leaf ranks, in the
subtree of x′. Because clsize is the array for storing cumulative sums of cluster sizes for
dummy leaves, the summation of sizes of clusters corresponding to l′-th to r′-th dummy
leaves is obtained from clsize[r′]−clsize[l′−1]. Because the size of a cluster for a non-dummy
leaf is always 2, the summation of cluster sizes for non-dymmy leaves is also obtained. This
can be done in constant time. A pseudo code for computing size(x′) is in the full version [9].

Using the function size(x′), we can compute a recursive function similar to the algorithm
of Access(·). Instead of D(·) in Algorithm 1 [9], we use preorder_diff. When we arrive at a
dummy leaf, we use a value in dst_dummy to move to the corresponding internal vertex of
T ′ and restart the recursive computation. Then for the vertex of the original ZDD whose
preorder in T is x, we can obtain the leaf of T ′ corresponding to the cluster of a single edge
containing x.

To compute `(x), we traverse the path from the root to the leaf corresponding to the cluster
containing x. First we set s = 1. During the traversal, if the current vertex is for vertical
merge and the next vertex is its right child, that is, the next cluster is in the bottom, we add
the label_diff value of the top cluster to s. The index of label_diff is computed from BH and
bp. When we reach the leaf p′, if x is its top boundary node, it holds `(x) = s, otherwise, let
k = leaf_rank(p′), then we obtain `(x) = s + label_span[k − rank1(Bdummy, k)]. Because
each operation is O(1) time and the height of the top DAG is O(log n), `(x) is O(log n) time.

Next we show how to compute y = zero(x). We can compute one(x) in a similar way.
We do a recursive computation as operations on top DAG, A difference is how to process
complement edges. There are two cases: if the 0-edge from x is in the spanning tree or not.
If the 0-edge from x is in the spanning tree, the edge is stored in a cluster with a single edge
(x, y). The top boundary node of such a cluster is x. Therefore we search clusters whose
top boundary node is x. If the 0-edge from x is not in the spanning tree, it is a complement
edge and it is stored in some vertex on the path from a cluster C with a single edge whose
bottom boundary node is x to the root. Therefore we search for C.

First we recursively find a non-dummy leaf of T ′ whose top boundary node is x. During
this process, if there is a vertex whose top boundary is x and its cluster contains more than
one edge and corresponds to horizontal merge, we move to the left child, because the 0-edge
from x must exist in the left cluster. If we find a non-dummy leaf of T ′ which corresponds to
a cluster with a single edge and its top boundary node is x, its bottom boundary node is

K. Matsuda, S. Denzumi, and K. Sadakane 6:11

y = zero(x). We climb up the tree until the root to compute the global preorder of y. If there
does not exist such a leaf, the 0-edge from x is not in the spanning tree. We find a cluster
with a single edge whose bottom boundary node is x. From the definition of the top ZDD,
the 0-edge from x is stored in some vertices visited during the traversal. Because complement
edges stored in a cluster are sorted in local preorders inside the cluster of starting points, we
can check if there exists a 0-edge whose starting point is x in O(log n) time. If it exists, we
obtain the local preorder of y inside the cluster. By going back to the root, we obtain the
global preorder of y. Note that complement edges for all clusters are stored in one array, and
therefore we need to obtain the interval of indices of the array corresponding to a cluster.
This can be done using Bedge. In the worst case, we perform a binary search in each cluster
on the search path. Therefore the time complexity of zero(x) is O(log2 n).

5 Experimental Comparison

We compare our top ZDD with existing data structures. We implemented top ZDD with
C++ and measured the required space for storing the data structure. For comparison, we
used the following three data structures.

top ZDD (proposed): we measured the space for storing the all components of a top ZDD.
DenseZDD [5]: data structures for representing a ZDD using succinct data structures.
Two data structures are proposed; one support constant time queries and the other has
O(log n) time complexity. We used the latter that uses less space.
a standard ZDD: ZDDs that are implemented naively. We store for each node its label and
two pointers corresponding to a 0-edge and a 1-edge. The space is 2nblog nc+ nblog cc
bits where n is the number of nodes of a ZDD and c is the size of the universal set.

We constructed ZDDs for various data with different settings. The results are shown in
Table 1. The unit of size is bytes.

We found that for all data sets, the top ZDD uses less space than the naive representation
of the standard ZDD. We also confirmed that the data 1, 2, and 3 can be compressed very
well by top ZDDs. For any settings on the data 4, the top ZDD uses less space than the
DenseZDD, and for some cases the memory usage of the top ZDD is almost 1

2–
2
3 of that of

the DenseZDD. For the data 5 and 6, There are a few case that the DenseZDD uses less
space than the top ZDD.

The results above are for monotone set families, that is, any subset of a set a the family
also exists in the family. The data 7 and 8 are non-monotone set families. For the families of
paths on n× n grid graphs, the top ZDD uses less space than the DenseZDD, and for n = 9,
the top ZDD uses about 1

3 the memory of DenseZDD. On the other hand, for the data 8,
the top ZDD uses about 10 % more space than the DenseZDD. From these experiments we
confirmed that the top ZDD uses less space than the DenseZDD for many set families.

The experiments to compare construction time and edge traversal time of top ZDDs
and DenseZDDs are conducted in the full version [9]. The results show that DenseZDDs
are several times faster on construction and several dozens faster on traversal than top
ZDDs. Note that the traversal time is Θ(log n) on top ZDDs, but is linear to a query size on
DenseZDDs.

6 Concluding Remarks

We have proposed top ZDD to compress a ZDD by regarding it as a DAG. We compress a
spanning tree of a ZDD by the top DAG compression, and compress other edges by sharing
them as much as possible. We proved that the size of a top ZDD can be logarithmic of that

SEA 2020

6:12 Storing Set Families More Compactly with Top ZDDs

Table 1 Results of experiments.

Data Setting top ZDD DenseZDD ZDD
1. The power set A = 1000 2,297 4,185 3,750
of {1, . . . , A} A = 50000 2,507 178,764 300,000

2. For C = {1, . . . , A}, A = 500, B = 250 2,471 227,798 321,594
{S ⊆ C | max

a∈S
a−min

a∈S
a ≤ B} A = 1000, B = 500 2,551 321,594 1,440,375

3. For C = {1, . . . , A}, A = 100, B = 50 3,863 9,544 9,882
the family of sets A = 400, B = 200 13,654 146,550 206,025
{S ⊆ C | |S| ≤ B} A = 1000, B = 500 43,191 966,519 1,440,375

4. Knapsack set families with (100, 1000, 10000) 1,659,722 1,730,401 2,444,405
random weights. A is the (200, 100, 5000) 1,032,636 1,516,840 2,181,688
number of elements, W is (1000, 100, 1000) 2,080,965 2,929,191 4,491,025
the maximum weight of an (5000, 100, 200) 1,135,653 1,740,841 2,884,279
element, C is the capacity. (1000, 10, 1000) 1,383,119 2,618,970 3,990,350

(Setting is given as (A, W, C).) (1000, 100, 1000) 565,740 656,728 1,056,907
5. The family of edge sets 8× 8 grid 12,246 16,150 18,014

which are matching complete graph K12 23,078 16,304 25,340
of a given graph Interoute 30,844 39,831 50,144
6. Set families of mushroom (0.1%) 104,774 91,757 123,576

frequent item sets with retail (0.025%) 59,894 65,219 62,766
a minimum frequency T40I10D100K (0.5%) 177,517 188,400 248,656

7. Families of edge sets in n = 6 17,194 28,593 37,441
n× n grid graph which n = 7 49,770 107,529 143,037

are paths from the bottom n = 8 157,103 401,251 569,908
left to the top right n = 9 503,265 1,465,984 2,141,955

8. Families of n = 11 40,792 35,101 45,950
solutions of n = 12 183,443 167,259 229,165

the n-queen problem n = 13 866,749 799,524 1,126,295

of the ZDD. We also showed that navigational operations on a top ZDD are done in time
polylogarithmic to the original ZDD size. Experimental results show that the top ZDD is
always smaller than the ZDD, and uses less space than the DenseZDD for most of the data.

Future work will be as follows. First, in the current construction algorithm, we create a
spanning tree of ZDD by a depth-first search, but this may not produce the smallest top ZDD.
For example, if we choose all 0-edges, we obtain a spanning tree whose root is the terminal
>, and this might be better. Next, in this paper we considered only traversal operations
and did not give advanced operations such as choosing the best solution among all feasible
solutions based on an objective function. Lastly, we considered only compressing ZDDs, but
our compression algorithm can be used for compressing any DAG. We will find applications
of our compression scheme.

References
1 Stephen Alstrup, Jacom Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining

information in fully dynamic trees with top trees. ACM Transactions on Algorithms, 1(2):243–
264, 2005. doi:10.1145/1103963.1103966.

2 Philip Bille, Inge Li Gørtz, Gad M.Landau, and Oren Weimann. Tree compression with top
trees. Information and Computation, 243:166–177, 2015. doi:10.1016/j.ic.2014.12.012.

3 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35:677–691, 1986. doi:10.1109/TC.1986.1676819.

https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1016/j.ic.2014.12.012
https://doi.org/10.1109/TC.1986.1676819

K. Matsuda, S. Denzumi, and K. Sadakane 6:13

4 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML. In
Proceedings of the 29th International Conference on Very Large Data Bases, pages 141–152.
Morgan Kaufmann, 2003. doi:10.1016/B978-012722442-8/50021-5.

5 Shuhei Denzumi, Jun Kawahara, Koji Tsuda, Hiroki Arimura, Shin ichi Minato, and Kunihiko
Sadakane. Densezdd: A compact and fast index for families of sets. In Proceedings of the 13th
International Symposium on Experimental Algorithms, pages 187––198. Springer Verlag, 2014.
doi:10.1007/978-3-319-07959-2_16.

6 Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. Journal of ACM, 27(4):758–771, 1980. doi:10.1145/322217.322228.

7 Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees. In
Proceedings of 18th Annual IEEE Symposium of Logic in Computer Science, LICS 2003, pages
188–197. IEEE Computer Society, 2003. doi:10.1109/LICS.2003.1210058.

8 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Computing, 35(2):378–407,
2005. doi:10.1137/S0097539702402354.

9 Kotaro Matsuda, Shuhei Denzumi, and Kunihiko Sadakane. Storing set families more compactly
with top zdds, 2020. arXiv:2004.04586.

10 Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In
Proceedings of the 30th International Design Automation Conference, pages 272–277. ACM,
1993. doi:10.1145/157485.164890.

11 Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary decision diagram with
attributed edges for efficient boolean function manipulation. In Proceedings of the 27th
ACM/IEEE Design Automation Conference, pages 52–57, 1990. doi:10.1145/123186.123225.

12 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Transactions on Algorithms, 10(3), 2014. doi:10.1145/2601073.

13 Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/select dictio-
nary. In Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments, 2007.
doi:10.1137/1.9781611972870.6.

14 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4):43–es, 2007. doi:10.1145/1290672.1290680.

SEA 2020

https://doi.org/10.1016/B978-012722442-8/50021-5
https://doi.org/10.1007/978-3-319-07959-2_16
https://doi.org/10.1145/322217.322228
https://doi.org/10.1109/LICS.2003.1210058
https://doi.org/10.1137/S0097539702402354
http://arxiv.org/abs/2004.04586
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/123186.123225
https://doi.org/10.1145/2601073
https://doi.org/10.1137/1.9781611972870.6
https://doi.org/10.1145/1290672.1290680

	Introduction
	Our contribution

	Preliminaries
	Zero-suppressed Binary Decision Diagrams
	Succinct data structures
	Bitvectors
	Trees

	DenseZDD

	Top Tree and Top DAG
	top ZDD
	Details of the data structure
	The data structure for the structure of top DAG
	Information on vertices
	Information on complement edges

	The size of top ZDDs
	Operations on top ZDDs

	Experimental Comparison
	Concluding Remarks

