
High-Quality Hierarchical Process Mapping
Marcelo Fonseca Faraj
Faculty of Computer Science, University of Vienna, Austria
marcelo.fonseca-faraj@univie.ac.at

Alexander van der Grinten
Humboldt-Universität zu Berlin, Germany
avdgrinten@hu-berlin.de

Henning Meyerhenke
Humboldt-Universität zu Berlin, Germany
meyerhenke@hu-berlin.de

Jesper Larsson Träff
Faculty of Informatics, TU Wien, Vienna, Austria
traff@par.tuwien.ac.at

Christian Schulz1

Faculty of Computer Science, University of Vienna, Austria
christian.schulz@univie.ac.at

Abstract
Partitioning graphs into blocks of roughly equal size such that few edges run between blocks is a
frequently needed operation when processing graphs on a parallel computer. When a topology of
a distributed system is known, an important task is then to map the blocks of the partition onto
the processors such that the overall communication cost is reduced. We present novel multilevel
algorithms that integrate graph partitioning and process mapping. Important ingredients of our
algorithm include fast label propagation, more localized local search, initial partitioning, as well
as a compressed data structure to compute processor distances without storing a distance matrix.
Moreover, our algorithms are able to exploit a given hierarchical structure of the distributed system
under consideration. Experiments indicate that our algorithms speed up the overall mapping process
and, due to the integrated multilevel approach, also find much better solutions in practice. For
example, one configuration of our algorithm yields similar solution quality as the previous state-of-
the-art in terms of mapping quality for large numbers of partitions while being a factor 9.3 faster.
Compared to the currently fastest iterated multilevel mapping algorithm Scotch, we obtain 16%
better solutions while investing slightly more running time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Process Mapping, Graph Partitioning, Algorithm Engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2020.4

Related Version http://arxiv.org/abs/2001.07134

Funding Austrian Science Fund (FWF, project P 31763-N31); DFG grant FINCA (ME-3619/3-2,
SPP 1736 Algorithms for Big Data); German Federal Ministry of Education and Research (BMBF,
project WAVE, grant 01|H15004B).

1 Corresponding author.

© Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jesper Larsson Träff,
and Christian Schulz;
licensed under Creative Commons License CC-BY

18th International Symposium on Experimental Algorithms (SEA 2020).
Editors: Simone Faro and Domenico Cantone; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-7100-236X
mailto:marcelo.fonseca-faraj@univie.ac.at
https://orcid.org/0000-0002-9709-9478
mailto:avdgrinten@hu-berlin.de
https://orcid.org/0000-0002-7769-726X
mailto:meyerhenke@hu-berlin.de
https://orcid.org/0000-0002-4864-9226
mailto:traff@par.tuwien.ac.at
https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@univie.ac.at
https://doi.org/10.4230/LIPIcs.SEA.2020.4
http://arxiv.org/abs/2001.07134
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 High-Quality Hierarchical Process Mapping

1 Introduction

The performance of applications that run on high-performance computing systems depends
on many factors such as the capability and topology of the underlying communication system,
the required communication between processes in the given applications, and the software
and algorithms used to realize the communication. For example, communication is typically
faster if communicating processes are located on the same physical processor node compared
to cases where processes reside on different nodes. This becomes even more pronounced
for large supercomputer systems where processing elements are hierarchically organized
(e.g., islands, racks, nodes, processors, cores) with corresponding communication links of
similar quality, and where differences in the process placement can have a huge impact on
the communication performance (latency, bandwidth, congestion). Often the communication
pattern between application processes is or can be known. Additionally, a hardware topology
description that reflects the capacity of the communication links is typically available. Hence,
it is natural to attempt to find a good mapping of the application processes onto the hardware
processors such that pairs of processes that frequently communicate large amounts of data
are located closely. Another typical application of process mapping can be found in data
allocation [33] problems where expensive optimization algorithms are used to assign jobs
to data centers in order to minimize expected wait times. Finding such best or just good
mappings is the objective of some usually hard optimization problems.

Previous work can be grouped into two categories. One line of research intertwines
process mapping with multilevel graph partitioning (see for example [37, 20]). To this
end, the objective of the partitioning algorithm – most commonly the number of cut
edges – is typically replaced by an objective function that considers the processor distances.
Throughout these algorithms, the distances are directly taken into consideration. The second
category decouples partitioning and mapping (see for example [29, 3, 12, 18]). First, a graph
partitioning algorithm is used to partition a large graph into k blocks, while minimizing some
measure of communication, such as edge-cut, and at the same time balancing the load (size
of the blocks). Afterwards, a coarser model of computation and communication is created in
which the number of nodes matches the number of processing elements (PEs) in the given
processor network. This model is then mapped to a processor network of k PEs with given
pair-wise distances.

Recently, process mapping algorithms have made two assumptions that are typically
valid for modern supercomputers and the applications that run on those: communication
patterns are sparse and there is a hierarchical communication topology where links on the
same level in the hierarchy exhibit the same communication speed. Using these assumptions,
better non-integrated mapping algorithms have been obtained [29]. Here, the model of
computation and communication is first partitioned using a standard graph partitioning
algorithm, and then a smaller model that has the same number of nodes as the underlying
network of processors is mapped. On the other hand, there has been a large body of work
on the multilevel (hyper-)graph partitioning problem, which led to enhanced partitioning
quality or faster local search [24, 25, 17, 27, 26]. The multilevel approach [4] is probably
the most prominently used algorithm. Here, the input is recursively contracted to obtain a
smaller instance which should reflect the same basic structure as the input. After applying
an initial partitioning algorithm to the smallest instance, contraction is undone and, at each
level, local search methods are used to improve the partitioning induced by the coarser level.

Our main contribution in this paper is the integration of process mapping into a multilevel
scheme with high-quality local search techniques and recently developed non-integrated
mapping algorithms. Additionally, we introduce faster techniques that avoid to store

M.F. Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz 4:3

distance matrices. The rest of this paper is organized as follows. In Section 2, we introduce
basic concepts and describe relevant related work in more detail. We present our main
contributions in Section 3. We present a summary of extensive experiments to evaluate
algorithm performance in Section 4. The experiments indicate that our new integrated
algorithm improves mapping quality over other state-of-the-art integrated and non-integrated
mapping algorithms. For example, one configuration of our algorithm yields similar solution
quality as the previous state-of-the-art in terms of mapping quality for large values of k while
being a factor 9.3 faster. Compared to the currently fastest iterated multilevel mapping
algorithm Scotch, we obtain 16% better solutions while investing slightly more running time.
Most importantly, hierarchical multisection algorithms that take the system hierarchy into
account for model creation improve the results of the overall process mapping significantly.

2 Preliminaries

The communication requirements between the components of a set of processes in (some
section of) an application can be represented by a weighted communication graph. The
underlying hardware topology can likewise be represented by a weighted graph, particularly a
complete graph since any two physical processors can communicate with each other facilitated
by the routing system. This complete graph can be represented by a topology cost matrix
reflecting the costs of routing along shortest or cheapest paths between physical processors.
Furthermore, it does not need to be explicitly expressed if the topology is organized as a
regular hierarchy of components with fixed communication cost per message inside each
level. We tackle the problem of embedding a communication graph onto a topology graph
under optimization criteria that we explain below. Unless otherwise mentioned, a processing
element (PE) represents a core of a machine.

2.1 Basic Concepts
Let G = (V = {0, . . . , n − 1}, E) be an undirected graph with edge weights ω : E → R>0,
vertex weights c : V → R≥0, n = |V |, and m = |E|. We generalize c and ω functions to
sets, such that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let Γ(v) = {u : {v, u} ∈ E}

denote the neighbors of a vertex v. Let I(v) denote the set of edges incident to v. A graph
S = (V ′, E′) is said to be a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′×V ′). When
E′ = E ∩ (V ′ × V ′), S is an induced subgraph.

The graph partitioning problem (GPP) consists of assigning each node of G to exactly one
of k distinct blocks respecting a balancing constraint in order to minimize the edge-cut. More
precisely, GPP partitions V into k blocks V1,. . . ,Vk (i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅
for i 6= j), which is called a k-partition of G. The balancing constraint demands that the
sum of node weights in each block does not exceed a threshold associated with some allowed
imbalance ε. More specifically, ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax :=

⌈
(1 + ε) c(V)

k

⌉
. Let a block

Vi be called λ-underloaded if c(Vi) + λ ≤ Lmax and overloaded if c(Vi) > Lmax. The edge-cut
of a k-partition consists of the total weight of the edges crossing blocks, i.e.,

∑
i<j ω(Eij),

where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. An abstract view of the partitioned graph is a
quotient graph Q, in which nodes represent blocks and edges are induced by the connectivity
between blocks. More precisely, there is an edge in the quotient graph if there is an edge
that runs between the blocks in the original, partitioned graph. We call neighboring blocks a
pair of blocks connected to each other by an edge in the quotient graph. If a node v ∈ Vi has
a neighbor w ∈ Vj , i 6= j, then it is called a boundary node. Let R(v) be the set of all blocks
containing at least one element from {v} ∪ Γ(v).

SEA 2020

4:4 High-Quality Hierarchical Process Mapping

Assume that we have n processes and a topology containing k PEs. Let C ∈ Rn×n
denote the communication matrix and let D ∈ Rk×k denote the (implicit) topology matrix
or distance matrix. In particular, Ci,j represents the required amount of communication
between processes i and j, while Dx,y represents the cost of each communication between PEs
x and y. Hence, if processes i and j are respectively assigned to PEs x and y, or vice-versa,
the communication cost between i and j will be Ci,jDx,y. Throughout this work, we assume
that C and D are symmetric – otherwise one can create equivalent problems with symmetric
inputs [3].

In this work, we deal with topologies organized as homogeneous hierarchies, even though
our algorithms could be extended to heterogeneous hierarchies in a straightforward way.
Let S = a1 : a2 : ... : a` be a sequence describing the hierarchy of a supercomputer. The
sequence should be interpreted as each processor having a1 cores, each node a2 processors,
each rack a3 nodes, and so forth, such that the total number of PEs is k = Π`

i=1ai. Let
D = d1 : d2 : . . . : d` be a sequence describing the communication cost inside each hierarchy
level, meaning that two cores in the same processor communicate with cost d1, two cores in
the same node but in different processors communicate with cost d2, two cores in the same
rack but in different nodes communicate with cost d3, and so forth.

Throughout the paper, we assume that the input communication matrix is already given
as a graph GC , i.e., no conversion of the matrix into a graph is necessary. More precisely, the
graph representation is defined as GC := ({1, . . . , n}, E[C]) where E[C] := {(u, v) | Cu,v 6= 0}.
In other words, E[C] is the edge set of the processes that need to communicate with each
other. Note that the set contains forward and backward edges, and that the weight of each
edge in the graph equals the corresponding entry in the communication matrix C.

Our main focus in this work is the general process mapping problem (GPMP). It consists
of assigning each node of a given communication graph to a specific PE in a communication
topology while respecting a balancing constraint (the same as in the graph partitioning
problem above) in order to minimize the total communication costs. Within the scope of this
work, the number of nodes (processes) n in the communication graph is much larger than the
number of PEs k in the topology graph which matches most real-world situations. Let the
mapping function that maps a node onto its block be Π : {1, . . . , n} 7→ {1, . . . , k}. Hence, the
objective function of GPMP is to minimize J(C,D,Π) :=

∑
i,j Ci,jDΠ(i),Π(j). Many authors

deal with the specific case in which n = k, resulting in the one-to-one process mapping
problem (OPMP), where each process i is assigned to a unique PE Π(i). Within the context
of OPMP, searching for the inverse permutation instead, i.e., assigning PE x to node Π−1(x),
results in the same problem since Π is a bijection.

GPP and OPMP are both NP-hard problems [8, 22]. Since GPP and OPMP are special
cases of GPMP, the latter is also NP-hard. Two of the most common methods to solve GPMP
are the two-phase approach and the integrated approach. In the two-phase approach, GPMP
is solved in two consecutive steps: (i) a heuristic for GPP is applied in the communication
graph, obtaining a balanced k-partition; (ii) a heuristic for OPMP is used to map the blocks of
the k-partition onto the topology of PEs. On the other hand, the integrated approach consists
of tackling GPMP directly, i.e., not decomposing the input problem into k independent
sub-problems first.

2.2 Multilevel Approach
In this section, we characterize the multilevel approach within the scope of GPMP, although
the same basic structure is extensible to many other problems, such as GPP. Before describing
the multilevel scheme, we need to define the terms contraction and uncontraction. Contracting

M.F. Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz 4:5

an edge e = {u, v} consists of replacing the nodes u and v by a new node x connected
to the former neighbors of u and v and setting c(x) = c(u) + c(v). If replacing edges
of the form {u,w}, {v, w} would generate two parallel edges {x,w}, a single edge with
ω({x,w}) = ω({u,w}) + ω({v, w}) is inserted. Uncontracting undoes contraction.

A multilevel approach to solve GPMP consists of three main phases. In the contraction
(coarsening) phase, successive approximations of an original input graph are created. The
contractions quickly reduce the size of the graph and stop as soon as it becomes sufficiently
small to be partitioned and mapped by an expensive algorithm. In the construction phase, an
initial mapping is produced for the coarsest approximation of the input graph. Due to the way
we define contraction, every mapping of the coarsest level implies a corresponding mapping
of the input graph with equal objective function and balance. In the local improvement
(or uncoarsening) phase, we uncontract previously contracted nodes to go back through
each level, from the coarsest approximation to the original graph. After each uncoarsening,
local improvement algorithms move nodes between blocks in order to improve the objective
function or balance.

2.3 Related Work
There has been an immense amount of research on GPP – we refer to [2, 4, 28] for extensive
material. The most successful general-purpose methods to solve GPP for huge real-world
graphs are based on the multilevel approach. The most commonly used formulation of the
multilevel scheme was proposed in [13]. Among the most successful multilevel software
packages to solve GPP, we mention Jostle [36], Metis [14], Scotch [19], and KaHIP [23].

Systems like KaHIP [23] and Metis [14] typically compute a k-partition on the coarsest
level through a recursive bisection strategy or a direct k-way partitioning scheme. In recursive
bisection, the graph is recursively divided into two blocks until the number of blocks is
reached, i.e., a bisection algorithm is used to split the graph into two blocks. More precisely,
each bisection step itself uses a multilevel algorithm. To obtain a bipartition in the coarsest
level, KaHIP uses the greedy graph growing algorithm. In KaHIP, if k is not even, the graph
gets split into two blocks, V1 and V2, such that c(V1) ≤

⌊
k
2
⌋
Lmax, c(V2) ≤

⌈
k
2
⌉
Lmax. Block

V1 will be recursively partitioned in bk2 c blocks and block V2 will be recursively partitioned
in dk2 e blocks.

In addition to GPP, Jostle and Scotch can also solve GPMP. Jostle integrates local search
into a multilevel scheme to partition the model of computation and communication. In this
scheme, it solves the problem on the coarsest level and afterwards performs refinements
based on the user-supplied network communication model. Scotch performs dual recursive
bipartitioning to compute a mapping. More precisely, it starts the recursion considering all
given processes and PEs. At each recursion level, it bipartitions the communication graph
and also the distance graph with a graph bipartitioning algorithm. The first (resp., second)
block of the communication graph is then assigned to the first (resp., second) block of the
distance graph.

There is likewise a large literature on OPMP, often in the context of scientific applications
using the Message Passing Interface (MPI). Hatazaki [11] was among the first authors
to propose graph partitioning to solve the MPI process mapping of a virtual unweighted
topology onto a hardware topology organized in modules and sub-modules. In [31], a similar
approach was used to implement one of the first non-trivial mappings designed for the NEC
SX-series of parallel vector computers. In [15] and later [16], the mapping problem was
simplified to ignore the whole network topology except that inside each node. These works
also investigated multiple placement policies to enhance overall system performance. In [34],

SEA 2020

4:6 High-Quality Hierarchical Process Mapping

the authors proposed a gradient–based heuristic for OPMP that involves solving assignment
problems, and gave experimental evidence for better solution quality and speed compared to
other heuristics.

Müller-Merbach [18] proposed a greedy construction method to obtain an initial per-
mutation for OPMP. The method roughly works as follows: Initially compute the total
communication volume for each process and also the sum of distances from each core to all
the others. Afterwards, the algorithm proceeds in rounds. In each round, the process with
the largest communication volume is assigned to the core with the smallest total distance.
Glantz et al. [9] noted that the algorithm does not link the choices for the vertices and cores
and hence propose a modification of this algorithm called GreedyAllC (the best algorithm
in [9]). GreedyAllC links the mapping choices by scaling the distance with the amount of
communication to be done.

A method to improve an already given solution for OPMP was proposed in [12]. The
method repeatedly tries to perform swaps in the assignment in a pair-exchange neighborhood
N(Π) that contains all permutations that can be reached by swapping two elements in
Π. Here, swapping two elements means that Π−1(i) will be assigned to processor j and
Π−1(j) will be assigned to processor i after the swap is done. The algorithm then looks at
the neighborhood in a cyclic manner. A swap is performed if it reduces the objective. To
reduce the runtime, Brandfass et al. [3] introduced a couple of modifications to speed up
the algorithm, such as only considering pairs for swapping that can reduce the objective or
partitioning the search space into s consecutive blocks and only performing swaps inside
those blocks.

In [29], GPMP was tackled with a two-phase approach. First, the graph is partitioned
using KaHIP (which uses recursive bisection). Their best OPMP algorithm, hierarchy top
down, recursively partitions the communication graph into blocks defined by the given
hierarchy. A local search similar to that from [3] with faster data structures was also used to
improve the initially computed mapping. The authors experimentally showed that N10

C , which
restricts swapping to processes that have a distance smaller than 10 in the communication
graph, is an adequate choice to obtain good solutions with a moderate running time.

The OPMP algorithm proposed in [10] requires the hardware topology to be a partial
cube, i. e. an isometric subgraph of a hypercube. This requirement allows to label (i) the
PEs as well as (ii) the nodes of the application graph G with meaningful bit-strings along
convex cuts. These bit-strings facilitate (i) the fast computation of distances between PEs
and (ii) an effective hierarchical local search method to improve the mapping induced by
the labels. Subsequently, in [35], the graph partitioning step was modified to already use
hierarchical multisection itself. This yields better communication graphs for the second
OPMP mapping step.

3 High-Quality Multilevel General Process Mapping

We engineered all the components of a multilevel algorithm to solve GPMP in an integrated
way, as illustrated in Figure 1. In this section, we present our algorithmic contributions and
discuss each of their components. This includes coarsening-uncoarsening schemes, methods
to obtain initial solutions, local refinement methods, and additional tools to explore trade-offs
in memory usage and performance.

M.F. Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz 4:7

3.1 Coarsening
We use a matching-based coarsening scheme. The matching–based coarsening is the most
common choice in multilevel partitioning algorithms due to its simplicity, speed, and generality.
It has two consecutive steps: An edge rating function and a matching algorithm. Based
on local information, the edge rating function scores each edge to estimate the benefit of
contracting it. We employ the same edge rating function exp*(e) = ω(e)/(|Γ(u)| ∗ |Γ(v)|) as
used in [24]. Then, the matching algorithm obtains a maximal match to maximize the sum
of the ratings of the contracted edges. As in [24], we computed matchings with the Global
Paths Algorithm [24], which is a 1

2 -approximate algorithm.

3.2 Initial Solution Algorithms
We compute the initial mapping using a two-phase approach. To solve GPP, we compare two
multilevel recursive bisection algorithms: (i) standard bisection setup, in which we perform a
recursive bisection to obtain k blocks; (ii) multisection setup, in which we perform recursive
bisections throughout the hierarchical structure of PEs. To construct a solution for OPMP,
we apply two different construction methods: (i) identity, which assigns each block to the PE
with the same ID to favor locality; (ii) hierarchy top down, which partitions the set of blocks
throughout the hierarchical structure of PEs. To refine the OPMP solution, we perform an
N10
C swap neighborhood local search. Hence, the resulting map Π of nodes to PEs becomes

our initial GPMP solution.
Our standard bisection setup for initial partition corresponds to the initial partition

step in KaHIP. Moreover, it is a canonical choice to produce initial solutions in multilevel
schemes tackling GPP. On the other hand, the multisection setup draws inspiration from the
scheme used in [35]. It is an attempt to specialize the initial partition for the particular case
tackled in this paper: a regularly hierarchical distribution of PEs in which the communication
cost between two processes (nodes) highly depends on the hierarchy level shared by their
corresponding PEs (blocks). Particularly, we apply a recursive partitioning scheme that
splits all the nodes in a` blocks, then splits the nodes in each block in a`−1 sub-blocks, then
splits the nodes in each sub-blocks in a`−2 sub-sub-blocks, and so forth. Observing that
the communication costs decrease as the communicating processes share lower hierarchy
levels, the multisection approach implies a hierarchy of sub-problems that directly reflects
the problem cost hierarchy.

In both setups of the partitioning step, we recursively assign consecutive IDs to blocks
throughout the process in order to maintain locality. Moreover, the PEs belonging to each
hierarchy module are labeled with consecutive IDs, which also promotes locality. Then, the

input
graph

... ...

initial

c
o
n
tra

c
tio

n
 p

h
a
s
e

local improvement

uncontractcontract

match

mapping

u
n
c
o
a
rs

e
n
in

g
 p

h
a
s
e

output

mapping

Figure 1 Multilevel scheme used to solve GPMP (Figure from [24]).

SEA 2020

4:8 High-Quality Hierarchical Process Mapping

identity method is a fast way to construct a solution for OPMP taking advantage of this
locality: it assigns each block Vi to the PE with the ID i. Note, the standard bisection setup
conveniently combines with the identity mapping approach when k is a power of 2 since the
recursive bisections will be automatically performed throughout the hierarchical topology.
For an analogous reason, the multisection setup is a good algorithm to create a coarse model
to be mapped by the identity mapping approach independently of k. The hierarchy top
down [29] is a more general approach to construct solutions for OPMP when the PEs are
hierarchically organized. Its mechanism is similar to the idea of multisection throughout the
hierarchy.

3.3 Uncoarsening

After obtaining an initial solution for GPMP at the coarsest level, we apply a sequence of
four local refinement methods to move nodes between blocks (which are already associated to
unique PEs). Then, we undo each of the contractions performed previously, from the coarsest
graph until the original input graph. After each uncoarsening step, we repeat our four local
refinement methods. The refinements run in a specific order based on their characteristics.
First, a quotient graph refinement exhaustively tries to improve solution quality and eliminate
imbalance by moving nodes between each pair of blocks connected by an edge in the quotient
graph. Second, a k-way Fiduccia-Mattheyses (FM) algorithm [7, 32] refinement greedily goes
through the boundary nodes trying to relocate them with a more global perspective in order
to improve the mapping. Third, a label propagation refinement randomly visits all nodes and
moves each one to the most appropriate block while not increasing the objective. Finally,
a multi-try FM refinement is exhaustively applied in rounds with random starting points
throughout the graph in order to escape local optima as many times as possible. Before
explaining the local search algorithms, we introduce the notion of gain for GPMP.

Gain. All our refinement methods are based on the concept of gain. We define Ψb(v)
as the partial contribution of a node v to the objective function J(C,D,Π) in case v is
assigned to the PE b. More precisely, Ψb(v) represents the total cost of the communications
involving v if Π(v) = b and the neighbors of v remain assigned to their current PEs. The
gain gb(v) represents the value that will be subtracted from J(C,D,Π) if a node v is moved
from its current PE Π(v) to PE b. More precisely, Ψb(v) :=

∑
{v,u}∈I(v) Cv,uDb,Π(u) and

gb(v) := ΨΠ(v)(v)−Ψb(v). Note that gΠ(v)(v) ≡ 0. Observe that a positive (resp., negative)
gain indicates improvement (resp., worsening) of the solution. Computing the gains of v
to all blocks in R(v) costs O

(
|R(v)||I(v)|

)
= O

(
|I(v)|2

)
. For comparison purposes, the

computation of the same corresponding gains in the context of GPP and edge-cut objective
function costs O

(
|I(v)|

)
.

Quotient Graph Refinement. We implemented an adapted version of the quotient graph
refinement [24] to incorporate our definition of gains. Within this refinement, we visit each
pair of neighboring blocks in the quotient graph Q underlying the current k-partition. Then
we apply an FM algorithm [7] to move nodes between the two currently visited blocks,
keeping two respective gain–based priority queues of eligible nodes. Each queue is randomly
initialized with the boundary in its corresponding block. After a node is moved (which can
only happen once during an execution of the local search), its unmoved neighbors become
eligible.

M.F. Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz 4:9

K-Way FM Refinement. Our k-way FM refinement was adapted from the implementation
in [24]. Unlike the quotient graph refinement, the k-way FM does not restrict the movement
of a node to a certain pair of blocks, but performs global-aware movement choices. Our
implementation of k-way FM uses only one gain–based priority queue P , which is initialized
with the complete partition boundary in a random order. Then, the local search repeatedly
looks for the highest-gain node v and moves it to the best c(v)-underloaded neighboring
block. When a node is moved, we insert in P all its neighbors that were not in P and have
not been moved yet. The k-way local search stops if P is empty (i.e., each node was moved
once) or when a stopping criterion based on a random-walk model described in [24] applies.
To escape from local optima, this refinement allows some movements with negative gain or
to blocks that are not c(v)-underloaded. Afterwards local search is rolled back to the lowest
cut fulfilling the balance criterion that occurred.

Label Propagation Refinement. We propose a local search inspired by label propagation
[21]. The algorithm works in rounds. In each round, the algorithm visits all nodes in a
random order, starting with the labels being the current assignment of nodes to blocks.
When a node v is visited, it is moved to the c(v)-underloaded neighboring block with highest
positive gain. We consider only c(v)-underloaded blocks since this ensures that the target
block is not overloaded when the node is moved there. Ties are broken randomly and a 0-gain
neighboring block can be occasionally chosen with 50% probability if there is no neighboring
c(v)-underloaded block with positive gain. We perform at most ` rounds of the algorithm,
where ` is a tuning parameter.

Multi-Try FM Refinement. We also adapted our gain concept to a localized variant of the
k-way local search algorithm similar to that proposed in [24] under the name of multi-try
FM. Instead of being initialized with all boundary nodes, as in k-way FM, multi-try FM is
repeatedly initialized with a single boundary node. This introduces a higher diversification
to the search since it is not restricted to movements in boundary nodes with global largest
gain. As a result, this local search can escape local optima more easily than k-way FM.

3.4 Additional Techniques
Implicit Distance Matrix. When the topology matrix D is stored in memory, access time
to obtain the distance between a pair of PEs is O(1), but this requires O(k2) space. From
now on, we refer to the algorithm explicitly keeping D in memory as matrix–based approach.
We implement three alternative approaches to save memory by exploiting the fact that our
topology matrix is a hierarchy and the IDs of PEs in each of the hierarchy modules are
sequential. For simplification reasons, we call these approaches: (i) division–based; (ii) stored
division–based; and (iii) binary notation–based.

In the division–based approach, we perform O(`) successive integer divisions and compar-
isons in the ID of two PEs when we need to find out their distance. Here, ` is the number of
levels in the system hierarchy. As a preprocessing step to be executed only once, we create a
vector h =

(
k
/∏`

t=1 at, k
/∏`

t=2 at, . . . , k
/
a`

)
. To find the distance between PEs b and

b′ with b 6= b′, we loop through the hierarchy layers from i = ` to i = 1. In each iteration, we
perform the integer division of b and b′ by hi. Whenever the division results differ, then we
break the loop and return Db,b′ = di. This approach does not require any additional memory
other than a vector with O(`) integers and has time complexity O(`).

SEA 2020

4:10 High-Quality Hierarchical Process Mapping

The stored division–based approach works in a similar way as the division–based one. The
only difference is that we avoid repetitive integer divisions of IDs by elements of h by storing
the results of all possible divisions in a preprocessing step executed only once. Although we
still need O(`) running time to perform comparisons in order to obtain the distance between
a pair of PEs, the constant factors involved are much lower. This improvement in running
time comes at the cost of additional O(k`) memory.

The binary notation–based approach is a more compact way of decomposing the IDs of PEs.
Instead of storing ` numbers for each PE, we keep in memory a single binary number per PE.
This binary number r consists of ` sections ri, each containing s =

⌈
log2

(
max1≤t≤`(at)

)⌉
bits. To describe the construction of r for a PE b, let a variable t be initialized as t = b. Then,
we loop through the hierarchy layers, from i = 1 to i = `. In each iteration i, ri receives
the remainder of the division of t by ai and, then, t is updated to store the integer quotient
of t by ai. Afterwards, it is possible to precisely locate b at the hierarchy by sweeping the
sections of r from r` to r1. In particular, r` specifies its data center, r`−1 specifies its server
among those belonging to its data center, and so forth. Obtaining the distance between
distinct PEs b and b′ is equivalent to finding which section ri contains the leftmost nonzero
bit in the result of the bit-wise operation XOR(b,b′). The running-time complexity of finding
the section of the leftmost nonzero bit is O(log(`)). Furthermore, current processors often
implement a count leading zeros (CLZ) operation in hardware which allows the identification
of the leftmost nonzero bit in O(1) time, under the assumption that the size log r = O(log k)
of the binary numbers is smaller than the size of a machine word.

Delta-Gain Updates. Our local searches frequently need to compute gains involved in the
movement of nodes. A base approach to check these gains consists of computing them from
scratch whenever they are needed, which can yield many gain recomputations. For this
reason, we implement a technique to save running time called delta-gain updates [26].

In delta-gain updates, we store a vector R of length |R(v)| = O(|Γ(v)|) for each node v.
In this vector, we keep the gains gb(v) for all PEs b containing neighbors of v. Additionally,
we store an n-sized vector h to keep flags that indicate whether a node has up-to-date gains
in memory. Asymptotically speaking, these vectors represent O(n+m) extra memory. Each
flag is initialized with an inactive seed and is considered active if its value equals a counter
that is increased after each uncoarsening steps. When we need to check a gain of some node
v, we look at hv to verify if the gains of v are up-to-date. If they are not, we compute all
gains gb(v) from scratch, which costs O

(
|I(v)|2

)
, and activate hv. Otherwise, we just access

the required gain from memory in O(1) time.

If a node v moves from its current PE to another one, we have to update all delta gains
of v and u ∈ Γ(v) with hu being active. Assume that hv and hu are active and v moves from
PE 1 to PE 2 during some local refinement. After this movement, we should change the
delta gains of u and v in memory. For v, it suffices to subtract g2(v) from all other gains of
v and then set g2(v) to 0. For u, it is slightly trickier, but we do not need to recalculate all
its gains from scratch since their only source of change is the edge e that connects u and v.
Hence, we respectively subtract and add to gb(u) the corresponding contribution of e before
and after the movement of v. We end up doing the update in time O

(
|I(v)|+ |I(v)| ∗ |R(u)|

)
,

where |R(u)| is the average of |R(u)|,∀{v, u} ∈ I(v).

M.F. Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz 4:11

4 Experimental Evaluation

Methodology. We performed our implementations using the KaHIP framework (using
C++) and compiled them using gcc 8.3 with full optimization turned on (-O3 flag). All of
our experiments were run on a single core of a machine with four sixteen-core Intel Xeon
Haswell-EX E7-8867 processors running at 2.5 GHz, 1 TB of main memory, and 32768 KB
of L2-Cache. The machine runs Debian GNU/Linux 10 and Linux kernel version 4.19.67-2.

For experiments based on the two-phase approach for tackling GPMP, we solve GPP
using KaHIP [24]. We use its configurations fast, eco and strong which are described in [24] –
we respectively refer to them as K(Fast), K(Eco) and K(Strong). KaHIP also contains the
top down approach to solve OPMP. We also run Scotch [19] configured to only use recursive
bipartitioning methods using the quality setting. We contacted Christopher Walshaw, who
informed us that Jostle [36] is not available anymore. Lastly, we compare against global
multisection [35] in which the graph partitioning step is already using hierarchical multisection
itself. We use the configurations Gmsec(Strong), Gmsec(Eco) and Gmsec(Fast) which differ
in the configuration used for partitioning in a global multisection way.

To keep the evaluation simple, we use the following hierarchy configurations for all the
experiments: D = 1 : 10 : 100, S = 4 : 16 : r, with r ∈ {1, 2, 3, . . . , 128}. Hence, k = 64 · r.
Depending on the focus of the experiment, we measure running time and/or J(C,D,Π).
We perform ten repetitions of each algorithm using different random seeds for initialization
and calculate the arithmetic average of the computed objective functions and running time.
When further averaging over multiple instances, we use the geometric mean in order to give
every instance the same influence on the final score. Some of our plots are performance
profiles. These plots relate the running times of all algorithms to the slowest algorithm on
a per-instance basis. For each algorithm, these ratios are sorted in increasing order. The
plots show

(
σA

σslowest

)
on the y-axis. A point close to zero indicates that the algorithm was

considerably faster than the slowest algorithm.

Instances. Our instances come from various sources. We use the largest six graphs from
Chris Walshaw’s benchmark archive [30]. Graphs derived from sparse matrices have been
taken from the SuiteSparse Matrix Collection [5]. We also use graphs from the 10th DIMACS
Implementation Challenge [1] website. Basic properties of the graphs under consideration
can be found in Table 1 of the full version of the paper [6].

Algorithm Configuration. We performed a wide range of experiments to tune our algorithm
(on the tuning graphs from (Table 1, [6]). Due to space constraints, we refer the reader to the
full version of the paper [6] for details. After the tuning step, we have four configurations of
our algorithm: All of our algorithms use the binary notation algorithm to compute distances
between PEs as this is favorable over storing the distance matrix in terms of speed and
memory (see [6]). (i) fast uses multisection to compute initial solutions without additional
OPMP local search, label propagation with delta-gain updates; (ii) eco computes initial
solutions as the fast configuration and uses OPMP local search, quotient graph refinement,
k-way FM, label propagation; and (iii) strong applies multisection to compute initial solutions
with additional OPMP local search, and uses all available local search methods. To improve
speed even more, we include a configuration called fastest which is the same as the fast
configuration but does not use local search during uncoarsening.

SEA 2020

4:12 High-Quality Hierarchical Process Mapping

-20

 0

 20

 40

 60

 80

 100

2
10

2
11

2
12

2
13

Im
p
ro

v
em

en
t

in
 %

k

K(Strong)-TopDownN
K(Eco)-TopDownN
K(Fast)-TopDownN

K(Fast)-Identity

OurAlg(Strong)
OurAlg(Eco)
OurAlg(Fast)

OurAlg(Fastest)

Gmsec(Strong)
Gmsec(Fast)

Scotch
K(Fast)-Mueller

(a) Improvements in objective function over K(Fast)-
Müller-Merbach. Higher is better.

 0.001

 0.01

 0.1

 1

2
4

2
5

2
6

2
7

T
im

e
 R

a
ti

o

Index

K(Strong)-TopDownN
K(Eco)-TopDownN
K(Fast)-TopDownN

K(Fast)-Identity
OurAlg(Strong)

OurAlg(Eco)

OurAlg(Fast)
OurAlg(Fastest)
Gmsec(Strong)

Gmsec(Fast)
Scotch

(b) Performance profile for running time. Lower is
better.

Figure 2 Comparisons against state-of-the-art approaches for GPMP.

Comparison with State of the Art. In this section, we compare our algorithms against the
best alternative algorithms in the literature. We report experiments on all graphs listed in
(Table 1, [6]) – excluding the graph used to tune our algorithm. We select the most successful
algorithms from [29] and also Scotch for our comparison: (i) Top down with Nd

C local search
(TopDownN), which represent the state-of-the-art for OPMP when k is not a power of 2;
(ii) identity mapping, which (when coupled with the KaHIP multilevel partitioning algorithm)
represents the state-of-the-art for GPMP via two-phase approach when k is a power of 2;
(iii) the algorithm of Müller-Merbach [18] (Müller-Merbach), whose results are also used
as a reference algorithm to calculate solution improvements in [29]; and (iv) Scotch [19].
We run the two-phase approches TopDownN, Identity, and Müller-Merbach coupled with
K(Fast), K(Eco) and K(Strong) as a partitioning algorithm. We also compare against
global multisection [35], in which the graph partitioning step is already using hierarchical
multisection itself. Additionally, we use the algorithms Gmsec(Strong), Gmsec(Eco) and
Gmsec(Fast). Recall that these algorithms are non-integrated: they use different quality
configurations of KaHIP to partition the graph, compute the coarser communication model,
and then apply TopDownN to solve OPMP. Scotch is among the algorithms with best running
times in our experiments. Hence, we add an algorithm (ScotchTC) which reports the best
solution out of multiple runs of Scotch with different random seeds when given the same
amount of time to compute a solution as our strong configuration has used. Figure 2 gives
an overview over our results.

Overall, Scotch has the lowest average running time, directly followed by our algorithm
fastest, K(Fast)-Identity, and our algorithm fast (respectively 9%, 10%, and 73% slower than
Scotch on average). Next, the average running time of K(Fast)-TopDownN and Gmsec(Fast)
are respectivelly a factor 2.3 and 3.1 higher than Scotch. For our algorithms eco and strong,
this factor is respectively 3.3 and 5.4. By definition ScotchTC is also a factor 5.4 higher
than Scotch. Next, Gmsec(Eco) and K(Eco)-TopDownN have much higher running times
(9.3 and 20.4 times slower than Scotch, respectively). Finally, Gmsec(Strong) and K(Strong)-
TopDownN are the slowest ones (62 and 107 times slower than Scotch, respectively).

We now highlight the comparison of various configurations/algorithms. Gmsec(Strong) is
the algorithm with best overall mapping quality. It is 2.5% on average better compared to our
strong configuration, however our strong configuration is more than an order of magnitude
faster on average – a factor 11.5 faster. Better quality of Gmsec(Strong) stems from the fact

M.F. Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz 4:13

that global multisection itself already takes the system hierarchy into account and hence
yields good models to be mapped. Moreover, the graph partitioning approach itself which is
used to compute a communication graph also uses more (time-consuming) sophisticated local
search algorithms. This includes methods such as flow-based methods which particularly
work well for small values of k as well as global search methods such as V-cycles. In particular
for k > 211, our strong has the same average quality as Gmsec(Strong) but is 9.3 times faster.
Our algorithm computes similar solutions in much less time since the multilevel algorithm
directly optimizes the correct objective. For k > 211, our eco is 2.4% better and 2.8 times
faster than Gmsec(Eco), and our fast is 9% better and 2.6 times faster than Gmsec(Fast).
Overall, our strong configuration improves solution quality over K(Strong)-TopDownN by
5.1% while being a factor 20 on average faster. Our eco configuration has roughly 3.6% better
quality than K(Strong)-TopDown but is a factor 32 faster on average. Our fast configuration
still yields 1.3% better solutions than K(Strong)-TopDown on average, and is a factor 62
faster. Here, improvements stem from the fact that the new algorithms are integrated and
not two-phase as well as the fact that these algorithms do not perform multisections. Lastly,
our fastest algorithm is on average 9% slower than Scotch but also improves solution quality
over Scotch by 16%. Our strong algorithm is 40% better than Scotch and consumes a factor
5.4 more running time.

5 Conclusion

We tackled the general process mapping problem, which is to assign a larger set of processes
to a smaller set of processing elements such that total communication cost between cores is
minimzed. Our algorithms integrate graph partitioning and process mapping. Important
ingredients of our algorithm include fast label propagation, more localized local search, initial
partitioning, as well as a compressed data structure to compute processor distances without
storing a distance matrix.

Experimental results indicate that our algorithms are the new state-of-the-art for general
process mapping. In particular, our algorithms generate much better or similar overall
solutions in comparison to any of the competitors while being an order of magnitude faster
than the previous best algorithm in terms of quality. Our improvements are mostly due to
the integrated multilevel approach combined with high-quality local search algorithms and
initial mapping algorithms that split the initial network along the specified system hierarchy.

Important future work includes parallelization as well as the integration of global search
schemes and different types of coarsening to improve solution quality further. Moreover, we
plan to investigate the impact on the real performance of applications such as sparse
matrix vector multiplications. Lastly, we plan to release the proposed algorithms in
the VieM (http://viem.taa.univie.ac.at/) and KaHIP (http://algo2.iti.kit.edu/
kahip/) frameworks.

SEA 2020

http://viem.taa.univie.ac.at/
http://algo2.iti.kit.edu/kahip/
http://algo2.iti.kit.edu/kahip/

4:14 High-Quality Hierarchical Process Mapping

References
1 D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner. Benchmarking

for graph clustering and partitioning. In Encyclopedia of Social Network Analysis and Mining,
pages 73–82. Springer, 2014.

2 C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
3 B. Brandfass, T. Alrutz, and T. Gerhold. Rank reordering for MPI communication optimization.

Computers & Fluids, 80:372–380, 2013.
4 A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph

Partitioning, pages 117–158. Springer International Publishing, Cham, 2016. doi:10.1007/
978-3-319-49487-6_4.

5 T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1–1:25, 2011. doi:10.1145/2049662.2049663.

6 M. Fonseca Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz. High-quality
hierarchical process mapping. CoRR, abs/2001.07134, 2020. arXiv:2001.07134.

7 C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In Proc. of the 19th Conference on Design Automation, pages 175–181, 1982.

8 M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some Simplified NP-Complete Problems. In
Proc. of the 6th ACM Symposium on Theory of Computing, (STOC), pages 47–63. ACM, 1974.

9 R. Glantz, H. Meyerhenke, and A. Noe. Algorithms for mapping parallel processes onto grid
and torus architectures. In 23rd Euromicro Intl. Conference on Parallel, Distributed, and
Network-Based Processing, pages 236–243, 2015.

10 R. Glantz, M. Predari, and H. Meyerhenke. Topology-induced enhancement of mappings. In
Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018, pages
9:1–9:10. ACM, 2018. doi:10.1145/3225058.3225117.

11 T. Hatazaki. Rank reordering strategy for MPI topology creation functions. In 5th European
PVM/MPI User’s Group Meeting, volume 1497 of LNCS, pages 188–195, 1998.

12 C. H. Heider. A computationally simplified pair-exchange algorithm for the quadratic assign-
ment problem. Technical report, DTIC Document, 1972.

13 B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In Proc. of
the ACM/IEEE Conference on Supercomputing’95. ACM, 1995.

14 G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

15 G. Mercier and J. Clet-Ortega. Towards an efficient process placement policy for MPI
applications in multicore environments. In 16th European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, volume 5759 of LNCS, pages 104–115. Springer, 2009.

16 G. Mercier and E. Jeannot. Improving MPI applications performance on multicore clusters
with rank reordering. In 18th European MPI Users’ Group Meeting, volume 6960 of LNCS,
pages 39–49. Springer, 2011.

17 H. Meyerhenke, P. Sanders, and C. Schulz. Partitioning Complex Networks via Size-constrained
Clustering. In 13th Int. Symp. on Exp. Algorithms, volume 8504 of LNCS. Springer, 2014.

18 H. Müller-Merbach. Optimale reihenfolgen, volume 15 of Ökonometrie und Unternehmens-
forschung. Springer-Verlag, 1970.

19 F. Pellegrini. Scotch Home Page. http://www.labri.fr/pelegrin/scotch.
20 François Pellegrini and Jean Roman. SCOTCH: A software package for static mapping by dual

recursive bipartitioning of process and architecture graphs. In High-Performance Computing
and Networking, volume 1067 of Lecture Notes in Computer Science, pages 493–498. Springer,
1996. doi:10.1007/3-540-61142-8_588.

21 U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community
structures in large-scale networks. Physical Review E, 76(3):036106, 2007.

22 S. Sahni and T. F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–565,
1976. doi:10.1145/321958.321975.

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1145/2049662.2049663
http://arxiv.org/abs/2001.07134
https://doi.org/10.1145/3225058.3225117
http://www.labri.fr/pelegrin/scotch
https://doi.org/10.1007/3-540-61142-8_588
https://doi.org/10.1145/321958.321975

M.F. Faraj, A. van der Grinten, H. Meyerhenke, J. L. Träff, and C. Schulz 4:15

23 P. Sanders and C. Schulz. KaHIP – Karlsruhe High Qualtity Partitioning Homepage. http:
//algo2.iti.kit.edu/documents/kahip/index.html.

24 P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In Proc. of
the 19th European Symp. on Algorithms, volume 6942 of LNCS, pages 469–480. Springer, 2011.

25 P. Sanders and C. Schulz. Think Locally, Act Globally: Highly Balanced Graph Partitioning.
In 12th Intl. Sym. on Experimental Algorithms (SEA), LNCS. Springer, 2013.

26 S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. k-way hypergraph
partitioning via n-level recursive bisection. In Proceedings of the Eighteenth Workshop on
Algorithm Engineering and Experiments, ALENEX, pages 53–67, 2016. doi:10.1137/1.
9781611974317.5.

27 C. Schulz. High Quality Graph Partititioning. PhD thesis, Karlsruhe Institute of Technology,
2013.

28 C. Schulz and D. Strash. Graph partitioning: Formulations and applications to big data. In
Sherif Sakr and Albert Y. Zomaya, editors, Encyclopedia of Big Data Technologies. Springer,
2019. doi:10.1007/978-3-319-63962-8_312-2.

29 C. Schulz and J. L. Träff. Better process mapping and sparse quadratic assignment. In 16th
International Symposium on Experimental Algorithms, volume 75 of LIPIcs, pages 4:1–4:15,
2017. doi:10.4230/LIPIcs.SEA.2017.4.

30 A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and Multilevel
Optimisation Approach to Graph-Partitioning. Global Optimization, 29(2):225–241, 2004.

31 J. L. Träff. Implementing the MPI process topology mechanism. In ACM/IEEE Supercomputing,
pages 40:1–40:14, 2002.

32 Jesper Larsson Träff. Direct graph k-partitioning with a Kernighan-Lin like heuristic. Opera-
tions Research Letters, 34(6):621–629, 2006.

33 R. Vamosi, M. Lassnig, and E. Schikuta. Data allocation based on evolutionary data pop-
ularity clustering. In Yong Shi, Haohuan Fu, Yingjie Tian, Valeria V. Krzhizhanovskaya,
Michael Harold Lees, Jack J. Dongarra, and Peter M. A. Sloot, editors, Computational Science
- ICCS 2018 - 18th International Conference, Wuxi, China, June 11-13, 2018, Proceedings,
Part I, volume 10860 of Lecture Notes in Computer Science, pages 153–166. Springer, 2018.
doi:10.1007/978-3-319-93698-7_12.

34 J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E.
Fishkind, R. J. Vogelstein, and C. E. Priebe. Fast approximate quadratic programming for
graph matching. PLOS One, April 2015.

35 K. von Kirchbach, C. Schulz, and J. L. Träff. Better process mapping and sparse quadratic
assignment. CoRR, 2019. URL: http://arxiv.org/abs/1702.04164v2.

36 C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel Balancing and Refinement
Algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

37 C. Walshaw and M. Cross. Multilevel mesh partitioning for heterogeneous communication
networks. Future Generation Comp. Syst., 17(5):601–623, 2001. doi:10.1016/S0167-739X(00)
00107-2.

SEA 2020

http://algo2.iti.kit.edu/documents/kahip/index.html
http://algo2.iti.kit.edu/documents/kahip/index.html
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.4230/LIPIcs.SEA.2017.4
https://doi.org/10.1007/978-3-319-93698-7_12
http://arxiv.org/abs/1702.04164v2
https://doi.org/10.1016/S0167-739X(00)00107-2
https://doi.org/10.1016/S0167-739X(00)00107-2

	Introduction
	Preliminaries
	Basic Concepts
	Multilevel Approach
	Related Work

	High-Quality Multilevel General Process Mapping
	Coarsening
	Initial Solution Algorithms
	Uncoarsening
	Additional Techniques

	Experimental Evaluation
	Conclusion

