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Abstract
A proof of quantumness is a method for provably demonstrating (to a classical verifier) that a
quantum device can perform computational tasks that a classical device with comparable resources
cannot. Providing a proof of quantumness is the first step towards constructing a useful quantum
computer.

There are currently three approaches for exhibiting proofs of quantumness: (i) Inverting a
classically-hard one-way function (e.g. using Shor’s algorithm). This seems technologically out of
reach. (ii) Sampling from a classically-hard-to-sample distribution (e.g. BosonSampling). This
may be within reach of near-term experiments, but for all such tasks known verification requires
exponential time. (iii) Interactive protocols based on cryptographic assumptions. The use of a
trapdoor scheme allows for efficient verification, and implementation seems to require much less
resources than (i), yet still more than (ii).

In this work we propose a significant simplification to approach (iii) by employing the random
oracle heuristic. (We note that we do not apply the Fiat-Shamir paradigm.)

We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-
free function. In contrast to earlier proposals we do not need an adaptive hard-core bit property.
This allows the use of smaller security parameters and more diverse computational assumptions (such
as Ring Learning with Errors), significantly reducing the quantum computational effort required for
a successful demonstration.
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1 Introduction

Quantum computing holds a promise of a qualitative leap in our ability to perform important
computational tasks. These tasks include simulation of chemical and physical systems at
the quantum level, generating true randomness, algorithmic tasks such as factoring large
numbers, and more. However, constructing a quantum computer with capabilities beyond
those of existing classical computers is technologically challenging. Indeed, whether it is
possible or not remains to be proven; such a “proof” is the focus of the ongoing race to
construct a useful quantum device, with records for device size and functionality set at an
increasing rate by the likes of Google, IBM, and the increasing number of startups heavily
invested in this race. This notion, known as “proof of quantumness”,1 is generally viewed as
a major milestone towards unlocking the powers of quantum computing. We can classify
existing approaches towards proof of quantumness into three families:
1. There are tasks that are generally believed to be classically intractable, and for which

quantum algorithms are known; most notably the factoring and discrete logarithm
problems [16]. Constructing a quantum computer that can factor beyond our classical
capabilities would constitute a valid proof of quantumness. Alas, in order to implement
the factoring algorithm on relevant input sizes one requires fault-tolerant quantum
computation, which seems technologically out of reach (see e.g. [8] for recent and highly
optimized estimates ranging in the millions of qubits).

2. A different approach, introduced independently by Bremner, Josza and Shepperd [4] and
by Aaronson and Arkhipov [1], is to use a quantum device to sample from distributions
that are presumed to be hard to sample from classically. The intractability of classically
achieving the task has not stood the same test of time as more established problems
such as e.g. factoring, but can nonetheless be based on reasonable complexity-theoretic
conjectures, at least for the problem of exact sampling. While quantum devices that
can sample from these distributions appear to be “right around the corner”, the real
challenges are in (i) showing hardness of approximate sampling – the quantum device
will never be perfect – and (ii) the classical verification: verification for these methods
generally requires investing exponential classical computational resources, and can thus
only be performed for fairly small input lengths.

3. A new approach was recently proposed in [3]. They propose to use post-quantum
cryptography, namely to rely on cryptographic assumptions that cannot be broken even
by the quantum device. Rather than verifying that the quantum device has the ability to
break the assumption, cryptography is used to compel the device to generate a quantum
superposition in a way that can be efficiently verified using a secret key. This method
is inherently interactive, unlike the previous two, and requires at least four rounds of
communication. As a cryptographic building block it uses trapdoor claw-free function
families (recall that claw-freeness was originally introduced in the context of digital
signatures and constructed based on factoring [9]). In addition to claw freeness, the [3]
approach also requires an additional adaptive hardcore bit property which appears to be
hard to realize and is currently only known to be achievable based on the Learning with
Errors (LWE) assumption [15].

The third approach is compelling in its ability to verify quantumness even of large
quantum devices efficiently, but it still requires a large number of quantum operations.

1 The term “quantum supremacy” is also used in the literature.
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Furthermore, the interactive nature of the protocol requires the quantum device to retain a
superposition while waiting for the verifier’s second message (a single random bit).

In this work we simplify the [3] approach and allow for it to be based on a more diverse set
of computational assumptions. This marks a step towards a protocol that can be realistically
implemented on an actual quantum device, and can be efficiently verified on a classical
computer.

Our Results

We propose to use the random oracle heuristic as a tool to reduce the round complexity of the
proof of quantumness protocol from [3], making it into a simple one-round message-response
protocol. We note that it is unlikely that a similar result can be achieved in the standard
model without introducing an additional hardness assumption. The reason is that a single-
round message-response protocol in the standard model (i.e. without oracles) immediately
implies that quantum samplers cannot be efficiently de-quantized (otherwise the protocol
will have no soundness). Such a result therefore implies a (weak) separation between the
BQP and BPP models. However, the LWE assumption does not appear to imply such a
separation, and the current state of the art suggests that it is equally intractable in the
quantum and classical settings.2

We show that using the random oracle heuristic, it is possible to implement the protocol
in a single round while at the same time eliminating the need for an adaptive hard-core bit
property, and thus relying on any family of claw-free functions. In particular, we propose a
construction of trapdoor claw free functions which is analogous to that of [3] but relies on
the Ring-LWE assumption [10, 11]. Ring-LWE based primitives are often regarded as more
efficient than their LWE-based counterparts since they involve arithmetic over polynomial
rings, which can be done more efficiently than over arbitrary linear spaces. Despite the
similarity between LWE and Ring-LWE, proving an adaptive hard-core theorem for the latter
appears to be a challenging task. This is since the LWE-based construction uses a so-called
lossiness argument that is not known to be replicable in the Ring-LWE setting. We note that
we can also instantiate our method using “pre-quantum” cryptography since soundness should
hold only with respect to classical adversaries. Using a back-of-the-envelope calculation we
estimate that it is possible to execute our protocol using superpositions over ∼ 8λ log2 λ

qubits, for security parameter λ and the adversary would have advantage negligible in λ.
While we allow the use of trapdoor claw-free families based on arbitrary assumptions,

which should allow for better security/efficiency trade-offs, our protocol still requires the
quantum device to evaluate the random oracle on a quantum superposition, which could
potentially create an additional burden. We point out that current and future heuristic
instantiations of the random oracle model using explicit hash functions are assumed to enjoy
efficient quantum implementation. Specifically, in evaluating the post-quantum security level
of cryptographic constructions (e.g. for the NIST competition [14]), security is evaluated
in the Quantum Random Oracle model where adversaries are assumed to evaluate hash
functions on superpositions as efficiently as they do classically. Granted, this is just a model
for an adversary, but it is customary to try to be as realistic as possible and not over-estimate
the power of the adversary. We therefore consider the evaluation of the random hash function
as a relatively lower-order addition to the cost of performing the quantumness test.

2 This insight is due to a discussion with Omer Paneth.
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Lastly, we compare our method to the most straightforward way to employ a random
oracle for the purpose of round reduction, the Fiat-Shamir transform [7]. The basic protocol
of [3] contains 4 messages, where the third message is simply a random bit. One can therefore
do parallel repetition of the protocol (though the soundness of this transformation needs to
be shown),3 and apply Fiat-Shamir to compress it into challenge-response form. Furthermore,
for proofs of quantumness soundness is only required to hold against a classical adversary, so
the standard security reduction for Fiat-Shamir should hold. This approach only requires
to apply the random oracle to a classical input. However, it still requires the adaptive
hard-core bit property and is therefore restricted to the LWE assumption. We believe that
our protocol, being of a somewhat modified form compared to prior works, may be useful for
future applications.

Our Technique

At a high level, a family of trapdoor claw free functions allows to sample a function
f : {0, 1} × {0, 1}n → {0, 1}n together with a trapdoor. The function has two branches
f(0, ·), f(1, ·) which are both injective, i.e. permutations (this is a simplified description,
actual protocols use a relaxed “noisy” notion). It is guaranteed that it is computationally
intractable to find a collision (“claw”) x0, x1 s.t. f(0, x0) = f(1, x1), however given the
trapdoor it is possible to find for all y the preimages x0, x1 s.t. f(0, x0) = f(1, x1) = y.

The [3] protocol sends a description of f to the quantum device, asks it to apply f on a
uniform superposition of inputs and measure the image register, call the value obtained y.
The quantum device is then left with a uniform superposition over the two preimages of y:
(0, x0) and (1, x1). The value y is sent to the verifier who challenges the quantum device to
measure the remaining superposition on inputs in either the standard or Hadamard basis. A
classical adversary that can answer each query independently must also be able to answer
both at the same time, which is ruled out by the adaptive hard core property.

We propose to enable the quantum device to generate a superposition over (0, x0, H(0, x0))
and (1, x1, H(1, x1)), where H is a one-bit hash function modeled as a random oracle. This
can be done in a straightforward manner, similar to the previous method. The device is then
asked to measure the resulting state in the Hadamard basis (always), and send the outcomes
obtained to the verifier.4 Since the device makes a single measurement, there is no need for a
challenge from the verifier, which effectively collapses the protocol to two messages. A quick
calculation shows that the verifier receives a bit m and vector d s.t. in the case of a honest
behavior the equation m = d · (x0 ⊕ x1) ⊕H(0, x0) ⊕H(1, x1) holds. Finally, the verifier
uses the trapdoor to recover x0, x1 from y and checks that the equation is satisfied. The
crux of the security proof is that a classical adversary cannot query the oracle at both (0, x0)
and (1, x1), otherwise it would have been able to find a claw and break the cryptographic
assumption. Therefore at least one value out of H(0, x0) and H(1, x1) remains random,
and thus the adversary cannot compute m, d that adhere to the required equation with
probability greater than 1/2. The proof thus follows from a simple extraction-style argument.
In our main protocol, we use parallel repetition to argue that no prover can succeed with
non-negligible probability.

3 Very recently, two concurrent works by Alagic et al. [2] and Chia et al. [6] showed that parallel repetition
of Mahadev’s protocol indeed achieves negligible soundness error.

4 In fact we use a slight variant of this protocol, since measuring the H part in Hadamard basis has
probability 1/2 of erasing the information on that bit. Instead we append the H values directly to the
phase. This is immaterial for the purpose of this exposition.
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Discussion on the “Random Oracle” Heuristic

As discussed above, the Fiat-Shamir heuristic can be used for the quantum supremacy
protocol of Brakerski et al. [3]. However, this would mean that the resulting scheme would
require stronger assumptions (in particular, it would require noisy TCFs with the adaptive
hardcore bit property). Secondly, starting with the work of Canetti et al. [5], many works
have shown uninstantiability of the random oracle. These works show certain cryptographic
primitives which are secure in the random oracle model, but are broken when instantiated
by any concrete hash function. However, these constructions are very contrived, and in
particular, do not apply to our protocol.

Efficiency of our Protocol, and Comparison to Previous Approaches

We would like to emphasize that at the current level of maturity of quantum technology, any
estimate of “practical advantage” would be educated guesswork at best. The technology for
any option is far from being available and it is hard to predict the direction that technology
will take, and as a consequence the practical cost of implementing certain operations.

This state of affairs, we believe, highlights the importance of developing multiple ap-
proaches to tasks such as proof of quantumness. This way, an assortment of solutions will be
ready to accommodate the different directions that technology may lead.

A second point that we wish to highlight before getting into technical calculations, is
that our approach allows to use any family of trapdoor claw free permutations (and as we
point out, for proofs of quantumness even “pre-quantum” candidates will suffice, e.g. if a
candidate can be devised based on DDH in EC groups). This means that our back of the
envelope calculation only refers to one specific way of using our scheme. Currently, we do
not know any candidates for trapdoor claw free permutations based on such “pre-quantum”
assumptions.

Our protocol can be executed using a quasi-linear number of qubits and, with the proper
choice of candidate for the hash function, has quasi-linear computational complexity.

Comparison with [3]: Since we do not require the hardcore bit property, our input
dimension n is smaller by a factor of at least 60 log(λ). This follows due to Lemma 4.2 in [3].
Also, note that the parameter q must also grow, hence the overall number of qubits required
to implement the protocol in [3] is O(λ log3(λ)), at least 100 log(λ) times more. Secondly,
since [3] is a four-round protocol, the prover must maintain its quantum state until it receives
a challenge from the verifier.

Comparison to discrete log via Shor’s algorithm: Let n denote the number of bits required
for representing the group elements. The current estimates for the number of qubits required
for discrete log are 3n, while the number of quantum gates required is 0.3n3 (see [8]).
Similar to Shor’s algorithm for factoring/discrete log, our protocol is also a non-interactive
one (that is, the verifier sends a challenge, and the prover responds with an answer).

Open Problems

Our work suggests a number of open problems in the context of utilizing random oracles in
the regime of classical verification of quantum computation. Most desirably, whether it is
possible to use the random oracle in order to eliminate the need for other assumptions, or at
least the need for a trapdoor. Obtaining a publicly verifiable protocol is a highly desirable
goal. We can also wonder whether our protocol can be used for the purposes of certifying
randomness or verifying quantum computation. In the plain model, the adaptation of the
proof of quantumness for these purposes was far from trivial and yet the protocol itself is
almost identical. Improving the state of the art in certifying randomness and in verifiability
using random oracles (or using other methods) is also an interesting open problem.

TQC 2020
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2 Preliminaries

2.1 Notations
For an integer n we write [n] for the set {1, . . . , n}. For any finite set X, let x← X denote
a uniformly random element drawn from X. Similarly, for any distribution D, let x ← D
denote a sample from D. For an element x ∈ X we write BitDecomp(x) for an arbitrarily
chosen but canonical (depending only on the implicit set X) binary representation of x.
For any density function f on domain X, let Supp(f) denote the support of f ; that is
Supp(f) = {x ∈ X : f(x) > 0}.

For density functions f1, f2 over the same finite domain X, the Hellinger distance between
f1 and f2 is

H2(f1, f2) = 1−
∑
x∈X

√
f1(x)f2(x).

The total variation distance between f1 and f2 is

‖f1 − f2‖TV = 1
2
∑
x∈X
|f1(x)− f2(x)| ≤

√
2H2(f1, f2).

The following lemma relates the Hellinger distance and the trace distance of superpositions.

I Lemma 1. Let X be a finite set and f1, f2 two density functions on X. Let

|ψ1〉 =
∑
x∈X

√
f1(x) |x〉 , and |ψ2〉 =

∑
x∈X

√
f2(x) |x〉 .

Then

‖|ψ1〉 − |ψ2〉‖tr ≤
√

1− (1−H2(f1, f2))2.

2.2 Ideal Lattices
In this section, we present some background on ideal lattices, the truncated discrete Gaussian
distribution and the Ring Learning with Errors problem. For a positive integer B, modulus q,
and dimension n, the truncated discrete Gaussian distribution is a distribution with support{
x ∈ Znq : ‖x‖ ≤ B

√
n
}
defined as follows:

DZnq ,B(x) =
exp
(
−π‖x‖2

/B2
)

∑
z∈Znq ,‖z‖≤B

√
n exp(−π|z|2/B2) .

The Ring Learning with Errors (RLWE) assumption[11] is parameterized by a ring R,
modulus q ∈ N and a noise distribution χ. Informally, the assumption states that given many
samples of the form (a, a · s+ e) where s is fixed for all samples, a is chosen uniformly at
random and e is chosen from the error distribution χ for each sample, it is hard to compute
s. The formal definition is given below. Here, we restrict ourselves to a special family of
cyclotomic rings.

I Assumption 1. Let n be a power of two, fn(X) = Xn + 1 an irreducible polynomial over
Q[X] and Rn = Z[X]/(fn(X)). Let q = {qn}n∈N be a family of moduli, Rn,qn = Rn/qnRn =
Zqn [X]/(fn(X)) the quotient space, and χ = {χn}n∈N a family of error distributions, where
χn is a distribution over Rn,qn . For any secret s in Rn,qn , let Os denote the oracle that, on
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each query, chooses a← Rn,qn , e← χn and outputs (a, a ·s+e mod qn). The Ring Learning
with Errors assumption RLWER,q,χ, parameterized by the family of rings {Rn}n=2k,k∈N,
moduli family q and distribution family χ, states that for any PPT adversary A, there exists
a negligible function negl(·) such that for all security parameters n = 2k, k ∈ N,

Pr
[
s← AOs()(1n) : s← Rn,qn

]
≤ negl(n).

Given many samples {ai, ai · s+ ei}i, one can efficiently find s using a trapdoor for the
public elements {ai}i. There exists a sampling algorithm that can sample {ai}i together with
a trapdoor τ , and an inversion algorithm that uses τ to extract s from the set of evaluations
{ai · s+ ei}i. Without the trapdoor, the public elements {ai}i look uniformly random.

I Theorem 2 (Theorem 5.1 of [13] in the Ring setting). Let n,m, q be such that n is a power
of 2, m = Ω(log q). There is an efficient randomized algorithm GenTrap that takes as
input (1n, 1m, q), and returns a = (ai)i ∈ Rmn,q and a trapdoor τ such that the distribution
of a is negligibly (in n) close to the uniform distribution over Rmn,q. Moreover, there is an
efficient algorithm Invert and a universal constant CT such that the following holds with
overwhelming probability over the choice of (a, τ)← GenTrap(1n, 1m, q):

for all s ∈ Rn,q, e such that ‖e‖ ≤ q

CT
√
n log q

, Invert(a, τ,a · s+ e) = s.

2.3 Noisy Trapdoor Claw-Free Hash Functions
In this section we introduce the notion of noisy trapdoor claw-free functions (NTCFs). Let
X ,Y be finite sets and K a set of keys. For each k ∈ K there should exist two (efficiently
computable) injective functions fk,0, fk,1 that map X to Y, together with a trapdoor tk
that allows efficient inversion from (b, y) ∈ {0, 1} × Y to f−1

k,b (y) ∈ X ∪ {⊥}. For security,
we require that for a randomly chosen key k, no polynomial time adversary can efficiently
compute x0, x1 ∈ X such that fk,0(x0) = fk,1(x1) (such a pair (x0, x1) is called a claw).

Unfortunately, we do not know how to construct such “clean” trapdoor claw-free functions.
Hence, as in previous works [3, 12], we will use “noisy” version of the above notion. For each
k ∈ K, there exist two functions fk,0, fk,1 that map X to a distribution over Y.

The following definition is taken directly from [3].

I Definition 3 (NTCF family). Let λ be a security parameter. Let X and Y be finite sets.
Let KF be a finite set of keys. A family of functions

F =
{
fk,b : X → DY

}
k∈KF ,b∈{0,1}

is called a noisy trapdoor claw free (NTCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm GenF
which generates a key k ∈ KF together with a trapdoor tk:

(k, tk)← GenF (1λ) .

2. Trapdoor Injective Pair.
a. Trapdoor: There exists an efficient deterministic algorithm InvF such that with over-

whelming probability over the choice of (k, tk)← GenF (1λ), the following holds:

for all b ∈ {0, 1}, x ∈ X and y ∈ Supp(fk,b(x)), InvF (tk, b, y) = x.

TQC 2020



8:8 Simpler Proofs of Quantumness

b. Injective pair: For all keys k ∈ KF , there exists a perfect matching Rk ⊆ X × X such
that fk,0(x0) = fk,1(x1) if and only if (x0, x1) ∈ Rk.

3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a
function f ′k,b : X → DY such that the following hold.
a. For all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,b(xb)), InvF (tk, b, y) = xb and InvF (tk, b ⊕

1, y) = xb⊕1.
b. There exists an efficient deterministic procedure ChkF that, on input k, b ∈ {0, 1},

x ∈ X and y ∈ Y, returns 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise. Note that ChkF is
not provided the trapdoor tk.

c. For every k and b ∈ {0, 1},

Ex←UX
[
H2(fk,b(x), f ′k,b(x))

]
≤ 1/50 .5

Here H2 is the Hellinger distance. Moreover, there exists an efficient procedure SampF
that on input k and b ∈ {0, 1} prepares the state

1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y) |x〉 |y〉 . (1)

4. Claw-Free Property. For any PPT adversary A, there exists a negligible function
negl(·) such that the following holds:

Pr
[
(x0, x1) ∈ Rk : (k, tk)← GenF (1λ), (x0, x1)← A(k)

]
≤ negl(λ)

3 Proof of Quantumness Protocol

We will now present our protocol. Throughout the protocol, we will ignore dependence on
the security parameter when clear from context. Let F be a NTCF family with domain X ,
range Y described by the algorithms GenF , InvF ,ChkF ,SampF . Let w denote the length
of bit decomposition of elements of X . Finally, let H be a hash function that maps X to
{0, 1}.

Proof of Quantumness Protocol

The protocol is parameterized by a hash function H : {0, 1}n → {0, 1} (which will be modeled as a
random oracle in the security proof).

1. The verifier generates (k, κ)← GenF (1λ) and sends k to the prover.
2. The prover sends λ tuples {(yi,mi, di)}i∈[λ]. The verifier initializes count = 0 and performs the

following checks:
a. It checks that all values in {yi}i are distinct.
b. It computes xi,b = InvF (κ, b, yi) for each i ∈ [λ], b ∈ {0, 1}. Next, it checks if mi =

dTi ·(BitDecomp(xi,0)+BitDecomp(xi,1))+H(xi,0)+H(xi,1). If this check passes, it increments
the value of count by 1.

3. If count > 0.75λ, the verifier outputs 1, else it outputs ⊥.

Figure 1 Protocol for Proof of Quantumness.
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I Theorem 4. Let F be a family of NTCF functions satisfying Definition 3. Then Protocol
1 satisfies the following properties:
- Completeness: There exists a quantum polynomial-time prover P and a negligible function

negl(·) such that for all λ ∈ N and hash functions H, P succeeds in the protocol with
probability at least 1− negl(λ).

- Proof of Quantumness: For any PPT (classical) adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, A succeeds in the protocol with probability at
most negl(λ) where H is modeled as a random oracle.

3.1 Completeness
In this section, we show that the honest (quantum) prover is accepted by the verifier.

The honest prover receives NTCF key k. It does the following:
1. It starts with λ copies of the state |0〉 |0〉 |0〉 |−〉. For each i ∈ [λ], let |ψi〉 = |0〉 |0〉 |0〉 |−〉.

It then applies SampF to the first three registers of |ψi〉 for each i, resulting in the state∣∣∣ψ′(1)
i

〉
, where

∣∣∣ψ′(1)
1

〉
=

 1√
2|X |

∑
x∈X ,y∈Y,b∈{0,1}

√
(f ′k,b(x))(y) |b〉 |x〉 |y〉

 |−〉 . (2)

This quantum state is at distance at most 0.2 from the following quantum state:∣∣∣ψ(1)
i

〉
=

 1√
2|X |

∑
x∈X ,y∈Y,b∈{0,1}

√
(fk,b(x))(y) |b〉 |x〉 |y〉

 |−〉 . (3)

2. Next, it measures the third register, obtaining measurement y ∈ Y. Let x0, x1 ∈ X be
the unique elements such that y is in the support of fk,b(xb). Applying this operation to
the state in (3), the resulting state (ignoring the measured register) is∣∣∣ψ(2)

i

〉
=
(

1√
2

(|0〉 |x0〉+ |1〉 |x1〉)
)
|−〉 . (4)

3. Let UH be a unitary that maps |a〉 |b〉 to |a〉 |b+H(a)〉. The prover applies UH to the
second and third register. On applying this operation to the state in (4), the new state is∣∣∣ψ(3)

i

〉
= 1

2

∑
b,b′

(−1)b
′
|b〉 |xb〉 |b′ +H(xb)〉

 . (5)

4. The prover then evaluates the function BitDecomp on the second register. Applying this
to (5), the resulting state is∣∣∣ψ(4)

i

〉
= 1

2

∑
b,b′

(−1)b
′
|b〉 |BitDecomp(xb)〉 |b′ +H(xb)〉

 . (6)

5. Finally, the prover applies the Hadamard operator to all registers. On applying this to
(6), this produces the state (where hb = H(xb) and xb = BitDecomp(xb))∣∣∣ψ(5)

i

〉
= 1√

2w+4

∑
b,b′∈{0,1}

∑
m,m′∈{0,1},
d∈{0,1}w

(−1)m·b+d
T ·xb+m′·b′+m′·hb+b′ |m〉 |d〉 |m′〉

= 1√
2w+2

∑
m∈{0,1},d∈{0,1}w

|m〉 |d〉 |1〉
(

(−1)d
T ·x0+h0 + (−1)m+dT ·x1+h1

)
(7)
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Upon measurement of the state in (7), the output tuple (m, d, 1) satisfies m = dT · (x0 +
x1) + h0 + h1 (with probability 1). As a result, applying the above operations to

∣∣∣ψ′(1)
i

〉
results in a tuple (y,m, d) that is accepted with probability at least 0.8. Using a Chernoff
bound it is straightforward to argue that there exists a negligible function negl(·) such that
with probability at least 1− negl(λ), at least 3/4 fraction of the tuples in {(yi,mi, di)}
pass the verification.

3.2 Proof of Quantumness : Classical Prover’s Advantage in the
Random Oracle Model

Here, we will show that if the function H is replaced with a random oracle, then any classical
algorithm that has non-negligble advantage in Protocol 1 can be used to break the claw-free
property of F . Consider the following security experiment which captures the interaction
between a (classical) prover and a challenger in the random oracle model; the challenger
represents the verifier in the protocol.

Experiment 1

In this experiment, the challenger represents the verifier in Protocol 1 and also responds to
the random oracle queries issued by the prover.
1. The challenger (verifier) chooses an NTCF key (k, κ)← GenF (1λ) and sends k to the

prover. The prover and challenger have access to a random oracle H : {0, 1}n → {0, 1}.
2. The prover sends {(yi,mi, di)}i∈[λ]. For each i ∈ [λ], the challenger computes xi,b ←

InvF (κ, b, yi) for b ∈ {0, 1}, queries the random oracle H on xi,0, xi,1 and receives hi,0, hi,1
respectively. Next, it checks if mi = dTi · (BitDecomp(xi,0) +BitDecomp(xi,1)) +hi,0 +hi,1.
If at least 0.75λ tuples satisfy the check, it outputs 1, else it outputs ⊥.

Experiment 2

This experiment is similar to the previous one, except that the challenger implements the
random oracle, and does not use the trapdoor for performing the final λ checks.

1. The challenger (verifier) chooses an NTCF key (k, κ)← GenF (1λ) and sends k to the
prover. The challenger also implements the random oracle as follows. It maintains a
database which is initially empty. On receiving a query x, it checks if there exists a tuple
(x, h) in the database. If so, it outputs h, else it chooses a random bit h← {0, 1}, adds
(x, h) to the database and outputs h.

2. The prover sends {(yi,mi, di)}i∈[λ]. On receiving this set from the prover, the challenger
does not compute the inverses of yi. Instead, it initializes count = 0, and for each i,
it looks for tuples (xi,0, hi,0) and (xi,1, hi,1) in the table such that ChkF (yi, 0, xi,0) =
ChkF (yi, 1, xi,1) = 1. If such (xi,0, xi,1) do not exist, then the challenger chooses a
random bit ri and sets count = count + ri. Else, it checks if mi = dTi · (BitDecomp(xi,0) +
BitDecomp(xi,1)) + hi,0 + hi,1. If so, it increments count.
Finally, it checks if count > 0.75λ. If so, it outputs 1, else outputs ⊥.

Experiment 3

This experiment is identical to the previous one, except that the challenger, after receiving
{(yi,mi, di)}i, outputs ⊥ if for all i ∈ [λ], there does not exist two entries (xi,0, hi,0), (xi,1, hi,1)
in the database such that ChkF (yi, 0, xi,0) = ChkF (yi, 1, xi,1) = 1.
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3.2.1 Analysis

For any classical PPT prover A, let pA denote the probability that the verifier outputs 1 in
Protocol 1 (when H is replaced with a random oracle), and for w ∈ {1, 2, 3}, let pA,w denote
the probability that the challenger interacting with A in Experiment w outputs 1. From the
definition of Experiment 1 it follows that pA = pA,1.

B Claim 5. For any prover A, pA,1 = pA,2.

Proof. The main differences between Experiment 1 and Experiment 2 are that the challenger
implements the random oracle, and secondly, after receiving {(yi,mi, di)}i, the challenger
does not use the trapdoor for checking. Note that in Experiment 1, if either xi,0 or xi,1 are not
queried to the random oracle H, then H(xi,0) +H(xi,1) is a uniformly random bit. Moreover,
since the yi values are distinct, if there exist two indices i, j such that both the preimages of
yi and yj are not queried, then H(xi,0) +H(xi,1) is independent of H(xj,0) +H(xj,1). As a
result, for each index i such that the preimages of yi are not queried, the value of count is
incremented with probability 1/2.

In Experiment 2, the challenger checks for pairs corresponding to xi,0 and xi,1 in the
database, and if either of them is missing, it increments count with probability 1/2. As a
result, the probability of count > 0.75λ is identical in both experiments. C

B Claim 6. There exists a negligible function negl(·) such that for any prover A and any
security parameter λ ∈ N, pA,2 ≤ pA,3 + negl(λ).

Proof. The only difference between these two experiments is that the challenger, at the end
of the experiment, outputs ⊥ if for all i ∈ [λ], either xi,0 or xi,1 has not been queried to the
random oracle. The only case in which the challenger outputs 1 in Experiment 2 but outputs
⊥ in Experiment 3 is when for all i ∈ [λ], either xi,0 or xi,1 has not been queried, but there
exist t ≥ 0.75λ indices {i1, . . . , it} such that count was incremented. Using Chernoff bounds,
we can show that this happens with negligible probability. C

B Claim 7. Assuming F is a secure claw-free trapdoor family, for any PPT prover A, there
exists a negligible function negl(·) such that for all λ ∈ N, pA,3(λ) ≤ negl(λ).

Proof. Suppose there exists a PPT prover A and a non-negligible function ε(·) such that
for all λ ∈ N, the challenger outputs 1 with probability ε = ε(λ) in Experiment 3. This
means with probability at least ε, there exists an index i∗ ∈ [λ] such that A queries the
random oracle on xi∗,0, xi∗,1 and finally outputs {(yi,mi, di)}i such that ChkF (yi∗ , 0, xi∗,0) =
ChkF (yi∗ , 1, xi∗,1) = 1.

We will construct a reduction algorithm B that breaks the claw-free property of F with
probability ε. The reduction algorithm receives the key k from the NTCF challenger, which it
forwards to A. Next, A makes polynomially many random oracle queries, which are answered
by the reduction algorithm by maintaining a database. Eventually, A sends {(yi,mi, di)}.
The reduction algorithm checks if there exist tuples (xi∗,0, hi∗,0) and (xi∗,1, hi∗,1) in its
database such that ChkF (yi∗ , 0, xi∗,0) = ChkF (yi∗ , 1, xi∗,1) = 1. If so, it sends (xi∗,0, xi∗,1)
to the NTCF challenger. C

Using the above claims, it follows for every classical prover A, there exists a negligible
function negl(·) such that for all λ ∈ N, pA ≤ negl(λ).
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4 Construction of NTCFs based on Ring LWE

Our construction is similar to the one in [3]. Let λ be the security parameter, n = 2dlogλe.
The following are other parameters chosen by our scheme (we will ignore dependence on
security parameter/n):

Ring R = Z[X]/(Xn + 1).
Modulus q = poly(n), Rq = R/qR

m = Ω(log q) : determines the dimension of range space
χ: the noise distribution. In our case, χ is a Discrete Gaussian over Zn with parameter
BV .
BP : the noise bound for function evaluation. We require the following constraints on
BP :
BP ≥ Ω(n ·m ·BV )
2BP
√
n ·m ≤ q/(CT ·

√
n log q) for some constant CT

The domain is X = Rq, and range is Y = Rmq .
Each function key k = (a,a · s + e), where s ∈ Rq, ai, ei ∈ Rq for all i ∈ [m], a =

[a1 . . . am]T , e = [e1 . . . em]T . For b ∈ {0, 1}, x ∈ X , k = (a,a · s + e), the density function
fk,b(x) is defined as follows:

∀y ∈ Y, (fk,b(x))(y) = DZn·m,BP (y− a · x− b · a · s), (8)

where y = [y1 . . . ym]T , and each yi can be represented as an element in Znq (using the
coefficient representation); similarly for a · x and a · s.

We will now show that each of the properties of NTCFs hold.

1. Efficient Key Generation: The key generation algorithm GenF (1λ) first chooses
(a, τ) ← GenTrap(1n, 1m, q), s ← Rq and e ← χm. It outputs key k = (a,a · s + e),
and the trapdoor is κ = (τ, k, s).

2. Trapdoor Injective Pair:
a. Trapdoor : For k = (a,a · s+ e), x ∈ X and b ∈ {0, 1}, the support of fk,b(x) is

Supp(fk,b(x)) =
{

y ∈ Y : ‖y− a · x− b · a · s‖ ≤ BP
√
n ·m

}
The inversion algorithm InvF takes as input the lattice trapdoor τ , b ∈ {0, 1}, y ∈ Y
and outputs Invert(τ,a,y)−b ·s. From Theorem 2, it follows that with overwhelming
probability over the choice of a, for all y ∈ Supp(fk,b(x)), Invert(τ,a,y) = x+ b · s.
Hence, it follows that InvF (κ, b,y) = x.

b. Injective Pair : Let k = (a,a · s+ e). From the construction, it follows that fk,0(x0) =
fk,1(x1) if and only if x1 = x0 + s. Hence the set Rk = {(x, x+ s) : x ∈ X}.

3. Efficient Range Superposition: The function f ′k,0 is same as fk,0, while f ′k,1 is defined
as follows (recall k = (a,a · s+ e)):

∀y ∈ Y, (f ′k,1(x))(y) = DZn·m,BP (y− a · x− (a · s+ e)) (9)

a. Since f ′k,0 = fk,0, it follows that for all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,0(x0)),
InvF (κ, 0,y) = x0 and InvF (κ, 1,y) = x1. We need to show the same for f ′k,1; that is,
for all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,1(x1)), InvF (κ, 1,y) = x1 and InvF (κ, 0,y) =
x0. For all x ∈ X ,

Supp(f ′k,1(x)) =
{

y ∈ Y : ‖y− a · x− a · s− e‖ ≤ BP
√
n ·m

}
Hence for any y ∈ Supp(f ′k,1(x)), ‖y− a · x1 − a · s‖ ≤ 2BP

√
n ·m; using Theorem 2,

we can conclude that InvF (κ, 1,y) = x1.
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b. The procedure ChkF takes as input y ∈ Y, k = (a,v), b ∈ {0, 1}, x ∈ X and checks if
‖y− a · x− b · v‖ ≤ BP

√
n ·m.

c. The definition of SampF is identical to the one in [3], and the Hellinger distance can
be bounded by 1− e−

2πm·n·BV
BP .From our setting of parameters, this quantity is at most

1/50.
4. Claw-Free Property Suppose there exists an adversary A that, on input k = (a,a ·s+e)

can output (x0, x1) ∈ Rk. Then this adversary can be used to break the Ring LWE
assumption, since x1 − x0 = s.
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