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Abstract
We derive an asymptotic expression for the number of cubic maps on orientable surfaces when the
genus is proportional to the number of vertices. Let Σg denote the orientable surface of genus g and
θ = g/n ∈ (0, 1/2). Given g, n ∈ N with g → ∞ and n

2 − g → ∞ as n → ∞, the number Cn,g of
cubic maps on Σg with 2n vertices satisfies

Cn,g ∼ (g!)2 α(θ)β(θ)n γ(θ)2g, as g →∞,

where α(θ), β(θ), γ(θ) are differentiable functions in (0, 1/2). This also leads to the asymptotic
number of triangulations (as the dual of cubic maps) with large genus. When g/n lies in a closed
subinterval of (0, 1/2), the asymptotic formula can be obtained using a local limit theorem. The
saddle-point method is applied when g/n→ 0 or g/n→ 1/2.
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1 Introduction

Since the seminal work of Tutte on planar maps [19], various types of maps on surfaces have
attracted much attention (see e.g. [3, 4, 11, 13]). Most of results on maps deal with the case
when the genus is constant. When the genus is proportional to the number of vertices, edges
or faces, there are only a few results, which deal with either maps with one face (also known
as unicellular maps) [1, 7, 18] or triangular maps (also known as triangulations) [6].

In this paper we study cubic maps (and their dual, triangular maps) on orientable surfaces
of non-constant genus. As demonstrated in [8, 15], such cubic maps form base cases in the
study of sparse random graphs of non-constant genus. Furthermore, the study of random
graphs of non-constant genus has only been initiated very recently [8, 16], and it is likely to
prove to be the most interesting – the “evolution” of random graphs of non-constant genus
depends heavily on the ratios between the genus, the number of edges, and the number of
vertices, and it “transforms” from a random forest to the classical Erdős-Rény random graph.
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13:2 Counting Cubic Maps with Large Genus

We let Σg denote the orientable surface of genus g. A map on Σg is a connected graph
G that is embedded on Σg in such a way that each component of Σg −G, called a face, is
simply connected region. A map on Σg will be called a map with genus g. Throughout the
paper, a map is always rooted, meaning that an edge is distinguished together with an end
vertex and a side of it.

A map is called cubic if all its vertices have degree 3. The dual of a cubic map is called a
triangular map whose faces all have degree 3. Let Cn,g be the number of cubic maps with 2n
vertices and genus g and Tn,g be the number of triangular maps with n vertices and genus g.
Recall Euler’s formula for a map with v vertices, e edges, f faces, and genus g:

v − e+ f = 2− 2g.

In addition, a triangular map with e edges and f faces satisfies 2e = 3f , and therefore a
triangular map with v vertices and genus g has exactly 2(v + 2g − 2) faces, which in dual
corresponds to a cubic map with 2(v + 2g − 2) vertices and genus g. Thus, we have

Cn,g = Tn−2g+2,g. (1)

A direct consequence is that there are no cubic maps on Σg with 2n vertices (and hence
Cn,g = 0), if 2g > n+ 1. Therefore, throughout the paper we assume 2g ≤ n+ 1.

When g is constant, the following asymptotic formulas for Tn,g and Cn,g were determined
by Gao [10]: as n→∞,

Cn,g ∼ 3 · 6(g−1)/2 tg n
5(g−1)/2 (12

√
3)n, (2)

Tn,g ∼ 3 · (29 · 37)(g−1)/2 tg n
5(g−1)/2 (12

√
3)n. (3)

In fact, the constant tg appears universally in the asymptotic formulas for various rooted
maps on Σg [3, 4, 11, 13]. Its asymptotic expression was derived by Bender, Gao, and
Richmond [5]:

tg ∼
10 (3/5)1/2 Γ(1/5) Γ(4/5) sin(π/5)

21/2 π5/2

(
1440 g
e

)−g/2
, as g →∞. (4)

In this paper we study cubic maps on Σg when g is non-constant, particularly when
g/n ∈ (0, 1/2). We determine the asymptotic behavior of the generating function for Cn,g
(Theorem 1) and an asymptotic expression for Cn,g (Theorems 2 and 3) as g → ∞ and
n− 2g →∞.

Following the notation in [5] we let Cg(x) :=
∑
n≥0 Cn,gx

n denote the generating function
for cubic maps on Σg. The parametrization given by (15) in [5]

x = 1
12
√

3
(1− s)

√
1 + 2s (0 < s < 1)

was quite useful when the genus g is constant. However, in order to study the asymptotic
behaviors of Cg(x) and Cn,g for non-constant genus g satisfying g/n ∈ (0, 1/2), it turns out
to be more convenient to use the following parametrization

x(t) := t

4(1 + 2t)−3/2. (5)

Note that x(t) is monotonically increasing in t ∈ [0, 1]. In addition, we define functions
θ, r, A, σ2 in t ∈ (0, 1) by
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θ(t) := 1
2 −

3t
4(1 + 2t)

√
1− t

ln 1 +
√

1− t
1−
√

1− t
, (6)

r(t) := 2(1 + 2t)
√

1− t
3t θ(t), (7)

σ2(t) := 1
2θ2(t) −

2t2 − t+ 2
2(1− t)2θ(t) , (8)

A(t) := 27K
8 (1 + 2t)−1/2

(
t

2(1− t)θ(t)

)3/2
, (9)

where K .= 1.2× 10−6 is some positive constant.
Our first main result is the following asymptotic expression for Cg(x).

I Theorem 1. Let x be on the complex plane. Uniformly for |x| in any given closed
subinterval of

(
0, 1/(12

√
3)
)
, the generating function Cg(x) for cubic maps with genus g

satisfies

Cg(x) = Cg(x(t)) = (g!)2 A(t) r(t)−2g (1 +O(1/g)) , as g →∞. (10)

Our next main result is the following asymptotic expression for Cn,g.

I Theorem 2. For g/n in a given closed subinterval of (0, 1/2), let τ ∈ (0, 1) be determined
by θ(τ) = g/n. Then the number Cn,g of cubic maps with 2n vertices and genus g satisfies

Cn,g ∼ (g!)2 A(τ)√
2π g σ2(τ)

x(τ)−n r(τ)−2g, as g →∞. (11)

Using (11) and (1) we also obtain the following asymptotic formula for the number of
triangular maps (i.e. triangulations) with n vertices and genus g:

Tn,g ∼ (g!)2 A(τ)x(τ)2√
2π g σ2(τ)

x(τ)−n (x(τ)r(τ))−2g
, as g →∞. (12)

The rest of the paper is organized as follows. In the next section, we provide proofs of
Theorems 1 and 2. In Section 4 we extend Theorem 2 to cover the boundary cases g/n→ 0
or g/n→ 1/2 (Theorem 3). In Section 5 we compare our asymptotic result on Cn,g with a
very recent result on the asymptotic number of triangular maps by Budzinski and Louf [6].
We conclude the paper with further discussions on cubic graphs on orientable surfaces in
Section 6.

2 Proof of Theorems 1 and 2

Proof of Theorem 1. We begin with the function Fg(x) defined by

Fg(x) = 3x3C ′g(x) + 2x2Cg(x) (g ≥ 0). (13)

Rewriting (13) in [5], which is derived from the Goulden-Jackson recursion for cubic maps [14],
we obtain the following recursion: for g ≥ 1,

AofA 2020



13:4 Counting Cubic Maps with Large Genus

1− t
1 + 2tFg(x) + x2Cg(x)

= 36x4F ′′g−1(x) + 12x3F ′g−1(x) + 6x3δg,1 + 12
g−1∑
h=1

Fh(x)Fg−h(x), (14)

where δg,1 is equal to 1 if g = 1 and 0 otherwise.
Furthermore, by definition of the functions x(t) and r(t) in (5)–(7) and with some

computation, we obtain
dx

dt
= 1

4(1− t)(1 + 2t)−5/2, (15)

x(t)
x′(t) = t+ 3t2

1− t , (16)

dr

dt
= −1

3 t
−2(1− t)3/2, (17)

dr

dx
= −4

3 t
−2(1− t)1/2(1 + 2t)5/2, (18)

d2r

dx2 = 8
3 t
−3(1− t)−3/2(1 + 2t)4(4t2 − 5t+ 4). (19)

In terms of the new parameter t, the expression for C1(x) found in [5] becomes

C1(t) = t(1 + 2t)
4(1− t)2 . (20)

It follows from (5) and (13) that

F1(t) = t3(t+ 5)
64(1 + 2t)(1− t)4 . (21)

To derive the asymptotic expression (10), we write

Cg(x) = (g!)2r(t)−2gAg(t), Ag(t) = A(t) + a1(t)g−1 + a2(t)g−2 + · · · ,

and substitute it into (14). We note
g−2∑
h=2

(h!(g − h)!)2

(g!)2 =
g−2∑
h=2

((
g

h

))−2
= O

(
g−4) ,

C ′g(x) = (g!)2r(t)−2g
(
A′g(t)−

2gr′(t)Ag(t)
r(t)

)
1

x′(t) .

Divide both sides of (14) by (g!)2 and expand the resulting expressions in powers of g. Both
sides become Laurent series in g with highest power equal to 1. Comparing the coefficients
of g and using (13) and (5), we obtain (with the help of computer algebra system Maple)

r′(t) = −1
3 t
−2(1− t)3/2,

which is (17). Observing limt→1 r(t) = 0 (see (31) in Section 4), we obtain (7).
Next we compare the coefficients of g0 in Laurent series to obtain

A′(t)
A(t) = 11− 2t

4(1− t)(1 + 2t) + (1− t)3/2

2t2r(t) . (22)

Integrating both sides, we obtain (9) for some constant K. The approximate value of K is
obtained in Section 3. J
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Proof of Theorem 2. Define functions u(t) and µ(t) in t ∈ (0, 1) by

u(t) : = −2 ln r(t), (23)

µ(t) : = x(t)
x′(t)

du

dt
. (24)

Figure 1 The plot of θ(t).

With some algebra (and with help of Maple), we find θ(t) = 1/µ(t) and σ2(t) = x(t)
x′(t)

dµ
dt

are as in (6) and (8), respectively (see Figures 1–2). We note that σ2(t) is positive for
t ∈ (0, 1).

In order to apply a generalized version (Theorem 4 in [12]) of the local limit theorem in
[2, Theorem 3], we need to verify the technical condition that

|r(x)| > r(|x|), for |x| ∈
(

0, 1/(12
√

3)
)

and x 6= |x|. (25)

We first check (by Maple) that

r(t) = 1
3t + 1

2 − ln 2− 1
2 ln 1

t
− 1

8 t−
1
96 t

2 − 1
384 t

3 − 1
1024 t

4 − · · · ,

where all the positive powers of t have negative coefficients. Applying the Lagrange inversion
formula to (5), we see that t(x) is a power series in x such that [xn]t(x) are all positive for
all n ≥ 1. Also the radius of convergence of t(x) is 1/(12

√
3) .= 0.048. This implies that

|t(x)| < t(|x|) for all x 6= |x| with |x| ∈ (0, 1/(12
√

3)), which leads to (25). Figure 3 shows
the plots of |r(ρeiφ)| for ρ ∈ {0.01, 0.02, 0.03, 0.04} and 0 ≤ φ ≤ π.

AofA 2020



13:6 Counting Cubic Maps with Large Genus

Figure 2 The plot of σ2(t).

Applying [12, Theorem 4] and using (23)–(24), we obtain

Cn,g ∼ (g!)2A(τ)r(τ)−2g x(τ)−n 1√
2π g σ2(τ)

.

This completes the proof of Theorem 2. J

3 Estimate the value of K

Our approach in the previous section does not give any information about the constant K
that appeared in A(t) – see (9). We may compare the exact values of Cn,g and its asymptotic
values given by (2) to obtain numerical estimation of K.

Define

Bn,g := 3n+ 2
(g!)2 Cn,g for n ≥ 1, g ≥ 0.

It follows from the Goulden-Jackson recursion [5, (8)] that

B−1,0 = 1/2,
B0,0 = 2,
B−1,g = B0,g = 0 for g ≥ 1,
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Figure 3 The plots of |r(ρeiφ)|.

and for n ≥ 1, g ≥ 0,

Bn,g = 4(3n+ 2)
n+ 1

(
n(3n− 2)

g2 Bn−2,g−1 +
n−1∑
i=−1

g∑
h=0

1(
g
h

)2Bi,hBn−2−i,g−h

)
, (26)

where Bn−2,g−1/g
2 is understood to be 0 when g = 0.

Using (9) and (11) we obtain

lnK .= lnBn,g −
1
2 ln g + g

(
ln x
θ

+ 2 ln r
)

+ 1
2 ln

(
2πσ2)− ln 3

θ
−
(

ln 27
8 −

1
2 ln(1 + 2t) + 3

2 ln t

2(1− t)θ

)
.

We used θ = 1/3 and calculated B3g,g for 1 ≤ g ≤ 150 using (26). We then obtain

t
.= 0.0569135164, x .= 0.0121039967, r .= 4.223432731, σ2 .= 1.212044822,K .= 1.2× 10−6.

4 Extend to the boundary

In this section we extend Theorem 2 to cover the ranges of g satisfying g/n→ 0 or g/n→ 1/2.
More specifically, we shall apply the saddle-point method to prove

I Theorem 3. Assume the same notation as in Theorem 2. Then (11) and (12) hold when

g →∞ and n

2 − g →∞ as n→∞. (27)

AofA 2020



13:8 Counting Cubic Maps with Large Genus

Proof Sketch. To study the asymptotic behaviours of Cn,g when θ = g/n is near 0 or 1/2,
we need to find the asymptotic expansions of relevant functions as t→ 0 or t→ 1. With the
help of Maple and using (5)–(9), we obtain the following asymptotic expansions.

x(t) =
{

t
4 −

3t2
4 +O

(
t3
)
, t→ 0,

1
12
√

3

(
1− 1

6 (1− t)2 − 5
27 (1− t)3 +O

(
(1− t)4)) , t→ 1, (28)

x(t)
x′(t) =

{
t+ 3t2

∑
k≥0 t

k, t→ 0,
3(1− t)−1 − 5 + 2(1− t), t→ 1, (29)

θ(t) =
{ 1

2 + 3t
4 ln t

4 +O
(
t2 ln t

)
, t→ 0,

1
15 (1− t)2 + 23

315 (1− t)3 +O
(
(1− t)4) , t→ 1, (30)

r(t) =
{ 1

3t + 1
2 ln et

4 +O(t), t→ 0,
2

15 (1− t)5/2 + 4
21 (1− t)7/2 +O

(
(1− t)9/2) , t→ 1. (31)

µ(t) =
{

2− 3t ln t+ (6 ln 2)t+O
(
(t ln t)2) , t→ 0,

15(1− t)−2 +O
(
(1− t)−1) , t→ 1, (32)

σ2(t) =
{
−3t ln t+O(t), t→ 0,
90(1− t)−4 +O

(
(1− t)−3) , t→ 1, (33)

M3(t) : = x(t)
x′(t)

dσ2

dt
=
{
−3t ln t+O(t), t→ 0,
1080(1− t)−6 +O

(
(1− t)−5) , t→ 1, (34)

A(t) =
{

27K
8 t3/2 +O

(
t5/2 ln t

)
, t→ 0,

405
√

10K
32 (1− t)−9/2 +O

(
(1− t)−7/2) , t→ 1.

(35)

A more careful analysis of (10) gives

Cg(x) = (g!)2 A(t) r(t)−2g (1 +O (1/g)) ,

where the O-term is uniform for 0 < t < 1. In fact, we have (with the help of Maple)

Ag(t) = A(t)
(

1− 3
8

(
2 + 20t2 − 42t+ 31

1 + 2t
t r(t)

(1− t)5/2

)
g−1 +O(g−2)

)
. (36)

Using (31), we see that the coefficient of g−1 in (36) is bounded for t ∈ (0, 1).
The Cauchy integration formula and the standard saddle-point method give

[xn]Cg(x) = 1
2πi

∮
|x|=x(τ)

Cg(x)x−n−1dx

∼ (g!)2

2π x(τ)−n
∫
|φ|≤π

A(τeiφ) exp
(
gu(τeiφ)

)
e−inφdφ

∼ (g!)2

2π A(τ)x(τ)−nr(τ)−2g
∫
|φ|≤δ

exp
(
−gσ

2(τ)φ2

2 +O
(
gM3(τ)δ3)) dφ,

where τ is determined by the saddle-point equation θ(τ) = g/n, M3(τ) is given in (34), and
δ satisfies

gσ2(τ)δ2 →∞ and gM3(τ)δ3 → 0.

It follows from (33) and (34) that this condition is satisfied, provided that

gt ln(1/t)→∞ as t→ 0. (37)

Using (30), we see that (37) is equivalent to

g

(
1
2 −

g

n

)
→∞ as g

n
→ 1

2 , i.e.
n

2 − g →∞ as g

n
→ 1

2 .

This completes the proof of Theorem 3. J
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When the order of g/n or n − 2g is known, the asymptotic expression of Cn,g can be
simplified using the asymptotic expansions (29)–(36). For example, we have the following
corollary to Theorem 3.

I Corollary 4. Let θ = g/n. Suppose g →∞ and g = o
(
n1/2). Then

Cn,g ∼
9K

32 (15)1/4√2πg
θ−5/4 (g!)2

(
12
√

3
)n

exp
((

5
2 ln e

15θ + 2 ln 15
2 −

5
63(15θ)1/2

)
g

)
.

Proof. When g = o(n1/2), we have the following expansions

1− t = (15θ)1/2
(

1− 23
42(15θ)1/2 +O(θ)

)
,

A ∼ 405K
√

10
32 (15θ)−9//4,

σ ∼ 3
√

10(15θ)−1,

ln x = ln 1
12
√

3
− 5

2θ −
5
27(15θ)3/2 +O

(
θ2) ,

ln r = ln 2 + 1
4 ln 15 + 5

4 ln θ + 10
7 (15θ)1/2 +O(θ),

r−2gx−n ∼ (12
√

3)n exp
(
g

(
5
2 − ln 4− 1

2 ln 15− 5
2 ln θ − 5

63(15θ)1/2
))

.

Now the result follows from Theorem 3. J

The following result from [6] is an immediate consequence of Theorem 2.

I Corollary 5. Let g, n → ∞ such that g/n → θ0 ∈ (0, 1/2). Let t0 be determined by
θ(t0) = θ0 and x0 = x(t0), where x(t) and θ(t) are defined by (6) and (5). Then we have

Cn+1,g

Cn,g
→ 1

x0
, as n→∞.

Proof. Let t1 be determined by θ(t1) = g/(n+ 1). Since

g

n+ 1 = θ0 −
θ0

n
+O

(
θ0

n2

)
,

and the function θ(t) is differentiable and has nonzero derivative in (0, 1), we have

t1 = t0 +O

(
1
n

)
.

Hence

x(t1)→ x(t0), r(t1)→ r(t0), A(t1)→ A(t0), σ2(t1)→ σ2(t0) as n→∞.

Writing f(t) := ln x(t) + 2θ0 ln r(t) and applying Theorem 2, we obtain

Cn+1,g

Cn,g
∼ 1
x(t0)

(
x(t1)
x(t0)

)−n(
r(t1)
r(t0)

)−2g

= 1
x(t0) exp (−n (f(t1)− f(t0)))

= 1
x(t0) exp

(
−n
(
f ′(t0)(t1 − t0) +O

(
(t1 − t0)2))) .

AofA 2020
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Using (23) and (24) and noting θ0 = 1/µ(t0), we obtain

f ′(t0) = x′(t0)
x(t0) + 2θ0

r′(t0)
r(t0) = 0.

Thus
Cn+1,g

Cn,g
∼ 1
x(t0) exp

(
−O

(
n/n2))→ 1

x0
,

as desired. J

5 Cross-check with a result on triangulations in [6]

In [6] Budzinski and Louf resolved a conjecture of Benjamini and Curien on the local limits
of uniform random triangulations whose genus is proportional to the number of faces. As
a consequence, they derived an asymptotic formula for the number of triangulations up to
sub-exponential factors.

Using notations in [6], let τ(n, g) denote the number of triangulations (i.e. triangular
maps) with 2n faces and genus g, which of course is equal to the number Cn,g to cubic maps
(as dual) with 2n vertices and genus g. For any λ ∈ (0, 1/(12

√
3)] let h ∈ (0, 1/4] be such that

λ = h

(1 + 8h)3/2 and ψ(λ) =
h ln

(
1 +
√

1− 4h)/(1−
√

1− 4h)
)

(1 + 8h)
√

1− 4h
.

For any ϑ ∈ [0, 1/2) let λ = λ(ϑ) be the unique solution of the equation

ψ(λ) = 1− 2ϑ
6 .

In [6, Theorem 3] it was shown that for g = g(n) satisfying 0 ≤ g ≤ n+1
2 and g/n → ϑ ∈

[0, 1/2], we have

τ(n, g) = n2g exp(f(ϑ)n+ o(n)), as n→∞, (38)

where f(0) = log(12
√

3), f(1/2) = log(6/e), and

f(ϑ) = 2ϑ ln(12ϑ/e)− (1− 2ϑ)
∫ 1

2ϑ
lnλ(ϑ/z)dz, for ϑ ∈ (0, 1/2),

in which we have corrected the factor −(1 − 2ϑ) in front of the integral – see (3) in [6,
Theorem 3] for comparison.

In order to compare (38) with our result (11), we note the following relations between
parameters:

t = 4h, x = λ, µ = 1
ϑ
.

Using Stirling’s formula (up to the sub-exponential factor), we may rewrite our asymptotic
expression of Cn,g in (11) as

Cn,g ≈ n2g exp(q(t)n), as n→∞, (39)

where

q(t) = 2(− ln r + ln θ − 1)θ − ln x. (40)
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We note that, as t→ 0, θ → 1/2 and consequently

q(t) → − ln(rx)− ln(2e) → ln(6/e) = f(1/2).

As t→ 1, we have θ → 0 and

q(t) → 2θ ln(θ/r)− ln x → ln 12
√

3 = f(0).

These two values match with those in (38).

6 Discussions: cubic graphs on orientable surfaces

Graphs that are closely related to cubic maps on Σg are cubic graphs with genus at most
g, which play a crucial role in the study of phase transitions in sparse random graphs on
orientable surfaces, as it was shown in [8, 15]. Let H̃n,g denote the number of vertex-labeled
cubic graphs with 2n vertices and genus at most g and let Hn,g = H̃n,g/(2n)!. In [8, 9], it
was shown that if g is constant, then

Hn,g ∼ cg n
5(g−1)/2−1γn,

where γ does not depend on g and is the same constant as planar case (i.e. when g = 0),
and if g ≤ n+1

2 , then

ag n
2g ≤ Hn,g ≤ bg g

−4g n6g. (41)

Note that if g > n+1
2 , then Hn,g is equal to the total number of cubic graphs with 2n

vertices (without restriction on the genus). Therefore, we have

Hn,g ∼ e−2 (6n− 1)!!
(3!)2n = e−2 (6n)!

(3n)! 23n (3!)2n ∼ e−2
(

6
e3

)n
n3n. (42)

So far, an asymptotic expression for Hn,g when g/n ∈ (0, 1/2] is not known.

I Problem 1. Derive an asymptotic expression for Hn,g when 1� g ≤ n+1
2 .

As it turned out, it is quite difficult to resolve Problem 1. Let us first compare asymptotic
behaviors of Hn,g and Cn,g, particularly when g/n→ 1/2. If the asymptotic formula (11) of
Cn,g would hold also for g/n→ 1/2, then

Cn,g ≈ nn, as g/n→ 1/2. (43)

The upper bound in (41) indicates that the super-exponential factor of Hn,g could be

Hn,g ≈ nn, as g/n→ 1/2, (44)

which matches with (43). Note however that (42) suggests that the super-exponential factor
of Hn,g might be

Hn,g ≈ n3n, as g/n→ 1/2, (45)

which is substantially larger than (43).
It would be interesting to check whether or not the asymptotic formula of Cn,g in Theorem

2 holds even for g/n→ 1/2.
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I Problem 2. Determine asymptotic behavior of Cn,g when g/n→ 1/2.

Another natural, but challenging task in view of (44) and (45) is the following.

I Problem 3. Does there exist a threshold function t∗ = t∗(n) = o(n) such that

Hn,g ≈


nn, as g − n/2 = o(t∗),
nh(c)n, as g − n/2 = c t∗ (for c ∈ R),
n3n, as g − n/2 = ω(t∗),

for some function h : R→ [1, 3] satisfying h(c)→ 1 as c→ −∞ and h(c)→ 3 as c→∞?

As very recent results on sparse random graphs with large genus [8] revealed, the most
interesting unknown case is when the genus is linear in the number of vertices.

I Problem 4. Derive an asymptotic expression for Hn,g when g/n ∈ (0, 1/2].

To this end, we may apply the following steps (analogous ideas were successfully utilized
in [9] when g is constant).

(S1) We first derive asymptotic formula for 2-connected cubic maps (equivalently, loopless
triangular maps) of genus g = θn. This will be done as follows.

Show that triangular maps with a non-contractible loop are negligible by cutting
through such a loop and bounding the number of such maps by triangular maps of
genus g − 1.
For contractible loops, we can apply the usual composition technique to derive equa-
tions of generating functions relating loopless triangular maps and all triangular maps.

(S2) Similarly, we derive formulas for 3-connected cubic maps (equivalently, triangular maps
without loops or multiple edges).

(S3) In order to go from 3-connected cubic maps on Σg to 3-connected cubic graphs on Σg, we
apply Robertson-Vitray uniqueness embedding result or Thomassen’s LEW result (see
e.g. [17]). We need to show that almost all such cubic maps have representativity lar-
ger than 2g+3 (equivalently, all non-contractible cycles have length greater than 2g+3).

(S4) Finally, in order to go from 3-connected cubic graphs to cubic graphs with lower con-
nectivity we apply standard connectivity-decomposition arguments.

Note that (S3) can be quite challenging since the genus g is linear in n, and we only have g2

to play with the error term.
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