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Abstract

We investigate polyharmonic functions associated to Brownian motions and random walks in cones.
These are functions which cancel some power of the usual Laplacian in the continuous setting and of
the discrete Laplacian in the discrete setting. We show that polyharmonic functions naturally appear
while considering asymptotic expansions of the heat kernel in the Brownian case and in lattice walk
enumeration problems. We provide a method to construct general polyharmonic functions through
Laplace transforms and generating functions in the continuous and discrete cases, respectively. This
is done by using a functional equation approach.
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9:2 Polyharmonic Functions in Cones

1 Introduction and motivations

In the continuous setting, polyharmonic functions are functions which cancel some power of
the usual Laplacian. More precisely, a function v on some domain K of Rd satisfying

∆pv = 0

for some p ≥ 1, where ∆ is the usual Laplacian in Rd, is said to be polyharmonic of order
p, or polyharmonic for short. So polyharmonic functions of order 1 are just harmonic
functions. Obviously, a polyharmonic function vp of order p satisfies ∆vp = vp−1, where
vp−1 is polyharmonic of order p− 1. For example, polynomials are polyharmonic. Harmonic
functions have been tremendously investigated and pioneer works on polyharmonic functions
go back to the work of Almansi [1]. One can consult for instance the monograph [2] for an
introduction to this topic.

In particular, Almansi [1] proved that if the domain K is star-like with respect to the
origin, then every polyharmonic function of order p admits a unique decomposition

f(x) =
p−1∑
k=0
|x|2khk(x), (1)

where each hk is harmonic on K and |x| is the Euclidean length of x, hence completely
characterising continuous polyharmonic functions on such domains.

In comparison with the continuous case, much less is known in the discrete setting,
where the Laplacian has to be replaced by a discrete difference operator. Some progress in
understanding discrete polyharmonic functions has been made in the last two decades. For
instance, one may cite [12], where the authors investigated polyharmonic functions for the
Laplacian on trees, and proved a similar result as Almansi’s theorem (1) for homogeneous
trees. Recent works of Woess and co-authors [18, 21] are generalising this previous work.

Our original motivation to study discrete polyharmonic functions comes from the following
framework. Consider a walk in Zd with step set S confined in some cone K ⊂ Zd. Denote
by q(x, y;n) the number of n-length excursions between x and y staying in the cone K. To
simplify, we only consider the case where y is the origin, but all considerations below can be
generalised to y 6= 0. In various cases [15], the asymptotics of q(x, 0;n) as n→∞ is known
to admit the form

q(x, 0;n) ∼ v0(x)γnn−α0 , (2)

where v0(x) > 0 is a function depending only on x, γ ∈ (0, |S|] is the exponential growth,
and α0 is the critical exponent. It is easy to see that the function v0(x) in (2) defines a
discrete harmonic function. Indeed, plugging (2) into the obvious recursive relation

q(x, 0;n+ 1) =
∑
s∈S

q(x+ s, 0;n)1{x+s∈K}, (3)

dividing by γn+1n−α0 and letting n→∞, we obtain

v0(x) = 1
γ

∑
s∈S

v0(x+ s)1{x+s∈K}, (4)

which proves that, with the assumption that v0(x) = 0 for x /∈ K, v0(x) is discrete harmonic
for the Laplacian operator

Lf(x) = 1
γ

∑
s∈S

f(x+ s)− f(x), (5)

that is, Lv0 = 0. Denisov and Wachtel [15] go further and show that
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the exponential growth γ is minRd+

∑
(s1,...,sd)∈S x

s1
1 · · ·x

sd
d , it does not depend on K;

the critical exponent α0 equals 1 +
√
λ1 + (d/2− 1)2, where d is the dimension and λ1 is

the principal Dirichlet eigenvalue on some spherical domain constructed from K.

As a leading example, consider the simple random walk in the quarter plane, with step
set {←, ↑,→, ↓}. In this case, the number of excursions q((i, j), 0;n) is 0 if m = n−i−j

2 is not
a non-negative integer, and otherwise takes the value

q((i, j), 0;n) = (i+ 1)(j + 1)n!(n+ 2)!
m!(m+ i+ j + 2)!(m+ i+ 1)!(m+ j + 1)! , (6)

see [9] and our Example 6. The equivalence (2) is then

q((i, j), 0;n) ∼ 4
π

4n v0(i, j)
n3 , (7)

where v0(i, j) = (i + 1)(j + 1) is the well-known unique (up to multiplicative constants)
harmonic function positive within the quarter plane with Dirichlet boundary conditions.
Other examples of such asymptotics may be found for instance in [4, 10, 14].

Our aim in this discrete setting is to study more precise estimates than (2), by considering
complete asymptotic expansions of the following form, as n→∞,

q(x, 0;n) ∼ γn
∑
p≥0

vp(x)
nαp

. (8)

From such an asymptotic expansion and using similar ideas as in (3), (4) and (5), it is rather
easy to prove that the terms vp are polyharmonic functions, in the sense that a power Lkvp
of the Laplacian operator vanishes. We will provide examples of such asymptotic expansions
(at least for the first terms) and of the set of exponents {αp}p≥0 appearing in (8).

On the other hand, the functional equation approach has proved to be fruitful when
studying random walk problems. The reference book on this topic is the monograph [16]
by Fayolle, Iasnogorodski and Malyshev. This method has been used in [20] to construct
harmonic functions, both in the discrete and continuous settings. Basically, the method
consists of drawing from the harmonicity condition a functional equation satisfied by the
generating function (in the discrete setting) or by the Laplace transform (in the continuous
setting) of a harmonic function. Solving some boundary value problem for these quantities
leads, via Cauchy or Laplace inversion, to the sought harmonic function. We will provide an
implementation of this method to construct bi-harmonic functions, which can be generalised
to polyharmonic functions.

The main features of our results are as follows:
We shine a light on a new link between discrete polyharmonic functions and complete
asymptotic expansions in the enumeration of walks.
Our approach provides tools to study complete asymptotics expansions as in (8), but does
not allow to prove their existence. On the other hand, the powerful approach of Denisov
and Wachtel [15] seems restricted to the first term in the asymptotics (2). Indeed, one of
the main tools in [15] is a coupling result of random walks by Brownian motion, which
only provides an approximation of polynomial order, see [15, Lem. 17].
We introduce a new class of functional equations (see (21) and (29)), for which the
method of Tutte’s invariants introduced in [23, 5, 6] proves to be useful.
In the unweighted planar case, it has been shown [8] that knowing the rationality of the
exponent α0 in (8) was sufficient to decide the non-D-finiteness of the series of excursions.
However, for walks with big steps in dimension two or walk models in dimension three,
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this information is not enough [7]. As a potential application of our results, we might
use arithmetic information on the other exponents αp to study the algebraic nature, for
example the transcendance, of the associated combinatorial series.

This paper is organised as follows. We choose to start with the continuous setting since
computations are more enlightening and accessible. In Section 2, we prove that polyharmonic
functions naturally arise when performing an asymptotic expansion of the Dirichlet heat
kernel in a cone. We next present the functional equation method to construct polyharmonic
functions. Our main result here is Theorem 4, where a class of solutions for the Laplace
transform of a bi-harmonic function is provided. It shows that the Laplace transform of a bi-
harmonic function can be expressed in terms of the Laplace transform of the related harmonic
function plus some additional terms. This can be thought of as a Laplace transform version
of Almansi’s theorem (1). In Section 3, we exhibit the same phenomenon in the random walk
setting. Discrete polyharmonic functions appear when considering the asymptotic expansion
of coefficients counting walks with fixed endpoints in a domain, and the functional equation
approach may be used to construct discrete polyharmonic functions.

These notes are the starting point of a long-term research project on discrete polyharmonic
functions in cones. Notice that many ideas and techniques are not specific to cones and
would work for many other domains of restriction K.

2 Classical polyharmonic functions and heat kernel expansions

As pointed out in [2, Chap. VI], the connection between the heat kernel and polyharmonic
functions is very profound. Here, we deepen this connection by proving an exact asymptotic
expansion for the heat kernel in terms of polyharmonic functions. We then implement the
functional equation method to construct polyharmonic functions.

2.1 Exact asymptotic expansion for the Brownian semigroup in a cone
Let K be some cone in Rd and consider the Brownian motion (Bt)t≥0 killed at the boundary
of K. Denote by p(x, y; t) its transition density, that is the density probability function of
the transition probability kernel

Px(Bt ∈ dy, τ > t),

where τ is the first exit time of K. Recall the well-known fact that p(x, y; t) corresponds
to the heat kernel, i.e., the fundamental solution of the heat equation on K with Dirichlet
boundary condition, see for instance [3]. Here, we prove that the heat kernel admits a
complete asymptotic expansion in terms of polyharmonic functions for the Laplacian.

Denote by ∆ the usual Laplacian on Rd. In polar coordinates (r, θ), where r is the radial
part and θ the angular part, it writes:

∆ = ∂2

∂r2 + d− 1
r

∂

∂r
+ 1
r2 ∆Sd−1 , (9)

where ∆Sd−1 denotes the spherical Laplacian. Let respectively mj and λj be the Dirichlet
(normalised) eigenfunctions and eigenvalues for the spherical Laplacian on the generating set
K ∩ Sd−1, that is,{

∆Sd−1mj = −λjmj in K ∩ Sd−1,

mj = 0 in ∂(K ∩ Sd−1). (10)
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The eigenvalues satisfy 0 < λ1 < λ2 ≤ λ3 ≤ . . . by [11, Chap. VII]. We introduce, for j ≥ 1,

βj =
√
λj + (d/2− 1)2 and bj = 1− d/2 +

√
λj + (d/2− 1)2. (11)

Lemma 1 in [3] gives an explicit expression for the transition density p(x, y; t) of the Brownian
motion in K. It states that, for x, y ∈ Rd and t ∈ R+,

p(x, y; t) =
exp

(
−ρ

2+r2

2t

)
t(ρr) d2−1

∞∑
j=1

Iβj

(ρr
t

)
mj(θ)mj(η), (12)

where in polar coordinates x = (ρ, θ) and y = (r, η). Here, Iβ is the modified Bessel function
of the first kind of order β, satisfying the differential equation I ′′β (z) + 1

z I
′
β(z) = (1 + β2

z2 )Iβ(z)
and admitting the series expansion

Iβ(z) =
∞∑
m=0

1
m!Γ(m+ β + 1)

(z
2

)2m+β
. (13)

The following easy lemma will allow us to define certain polyharmonic functions.

I Lemma 1. For any µ ≥ 0 and j ≥ 1, let fµ,j be defined in spherical coordinates by

fµ,j(r, θ) = rµmj(θ). (14)

Then fµ,j satisfies

∆fµ,j = (µ2 + (d− 2)µ− λj)fµ−2,j . (15)

Proof. The proof is elementary using (9) and (10). J

I Corollary 2. For any k ∈ N, the function fbj+2k,j defined in (14) is k-polyharmonic.

Proof. It is obvious that µ = bj satisfies µ2 + (d − 2)µ − λj = 0, see (11), so that fbj ,j is
harmonic by (15). An induction based on (15) completes the proof. J

Doing an expansion of the heat kernel (12) as t → ∞ and using series expansions of the
exponential function and of the Bessel function (13), one immediately obtains:

I Theorem 3. The Dirichlet heat kernel p(x, y; t) in K admits the following expansion, as
t→∞, where fbj+2k,j is defined in (14), and bj and βj in (11):

p(x, y; t) ∼∑
j≥1

∑
k,m≥0

k∑
n=0

1
t1+βj+k+2m

(−1)k
(
k
n

)
2kk!m!Γ(m+ βj + 1)fbj+2(m+n),j(ρ, θ)fbj+2(m+k−n),j(r, η).

As such, the above result shows that the transition density of the Brownian motion
in K admits, as t → ∞, an asymptotic expansion in descending powers of t and in terms
of polyharmonic functions for the Laplacian (see Corollary 2). Moreover, the set of these
exponents is (with N = {0, 1, 2, . . .})

∞⋃
j=1

(βj + 1 + N). (16)

AofA 2020
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Note that, depending on the cone, there might be an overlap between the sets βj + 1 + N.
For instance, in the quadrant in dimension 2, one has βj = 2j and the set in (16) reduces to
{3, 4, 5, . . .}. On the other hand, in dimension 2 in a cone of opening α such that π/α /∈ Q,
there is no overlap between the points in (16).

As a last remark, we note that the same phenomenon appears for the survival probability
Px(τ > t). Indeed, thanks to its explicit expression given by [3, Thm 1] (in terms of the
confluent hypergeometric function), one can write down an asymptotic expansion of Px(τ > t)
in descending powers of t in terms of polyharmonic functions for the Laplacian.

2.2 The functional equation approach
We apply here the functional equation approach in order to construct polyharmonic functions
for the 2-dimensional killed Brownian motion in a convex cone. This approach has been
previously introduced in [20] to compute harmonic functions, and is an adaptation of the
functional equation method of the random walk case. Our main result is Theorem 4, which
gives the general form of the Laplace transform of a bi-harmonic function.

Consider the Brownian motion B in the quarter plane R2
+ (compared to the last section,

we use (x, y) for the coordinates of a 2d point) with covariance matrix

Σ =
(
σ11 σ12
σ12 σ22

)
,

with σ11, σ22 > 0 and det Σ = σ11σ22 − σ2
12 ≥ 0. Its infinitesimal generator is the operator

Gf = 1
2

(
σ11

∂2f

∂x2 + 2σ12
∂2f

∂x∂y
+ σ22

∂2f

∂y2

)
.

Note that through some linear transformation φ (see [20, Eq. (5.1)]), one obtains the Brownian
motion with identity covariance matrix in the cone φ(R2

+).
The kernel associated to the Brownian motion is defined as the quantity

γ(x, y) = 1
2(σ11x

2 + 2σ12xy + σ22y
2),

for (x, y) ∈ C2. The Laplace transform of a function f , which in the continuous case is the
analogous quantity of the notion of generating function, is defined as

L(f)(x, y) =
∫∫

[0,∞)2
f(u, v)e−(xu+yv)dudv,

for (x, y) ∈ C2 with positive real parts.
Now, let h be a harmonic function associated with the Brownian motion with covariance

matrix Σ, that is, h vanishes on the boundary axes of the quadrant and satisfies Gh = 0.
The functional equation for h takes the following form (see [20, Eq. (A.1)]):

γ(x, y)L(h)(x, y) = 1
2(σ11L1(h)(y) + σ22L2(h)(x)) + L(Gh)(x, y),

where we have denoted
L1(h)(y) := L

(
∂h

∂x
(0, ·)

)
(y) =

∫ ∞
0

∂h

∂x
(0, v)e−yvdv,

L2(h)(x) := L

(
∂h

∂y
(·, 0)

)
(x) =

∫ ∞
0

∂h

∂y
(u, 0)e−xudu.
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Using the harmonicity condition Gh = 0, the functional equation for h rewrites as

γ(x, y)L(h)(x, y) = 1
2(σ11L1(h)(y) + σ22L2(h)(x)). (17)

We recall below the key argument of the method of [20] to solve the functional equation (17),
which leads to harmonic functions for the Brownian motion via Laplace inversion. We will
subsequently apply a related method to obtain polyharmonic functions.

Consider the two solutions of γ (x, Y (x)) = 0, which, since γ is a homogeneous polynomial
of degree two, are explicitly given by Y±(x) = c±x, with

c± = −σ12 ± i
√

det Σ
σ22

, (18)

so that c+ = c−. We write c± = ce±iθ, with c =
√

σ11
σ22

and θ such that cos θ = − σ12√
σ11σ22

.
Denote by GY the domain delimited by the curve Y+([0,∞]) ∪ Y−([0,∞]) = c+[0,∞] ∪

c−[0,∞] and containing the positive axis [0,∞]. Plugging each of the solutions c±x into the
functional equation (17), one obtains a boundary value problem for L1(h), which states that:
1. L1(h) is analytic on GY ,
2. L1(h) is continuous on GY \ {0},
3. For all x ∈ (0,∞], L1(h) satisfies the boundary equation L1(h)(c+x) = L1(h)(c−x).

In order to solve this problem, one introduces the conformal mapping ω from GY onto
C \R− defined by ω(x) = x−π/θ. One eventually obtains that a class of solutions is obtained
by letting L1(h) to be of the form

L1(h)(y) = P

(
1

yπ/θ

)
, (19)

for any given polynomial P . The same applies to L2(h) (by considering the solutions of
γ(X(y), y) = 0), and using the functional equation (17) and the fact that (c±)π/θ = −cπ/θ,
one must have

L2(h)(y) = −σ11

σ22
P

(
− 1
cπ/θxπ/θ

)
,

with the same P as in (19). Hence, using again the functional equation (17), we deduce that
the Laplace transform of h writes

L(h)(x, y) = 1
2σ11

P
(

1
yπ/θ

)
− P

(
− 1
cπ/θxπ/θ

)
γ(x, y) . (20)

In particular, taking P to be a polynomial of degree 1, one gets

L(h)(x, y) =
σ22

µ2
xπ/θ

+ σ11
µ1
yπ/θ

γ(x, y) ,

where the constants are related by µ2 = µ1(σ22
σ11

)1−π/2θ. Taking the inverse Laplace transform,
one should recover the unique positive harmonic function (written in polar coordinates (ρ, η))

h(x, y) = ρ
π
θ sin

(π
θ
η
)
.

Suppose now that v is bi-harmonic and satisfies Gv = h, where h is harmonic. The
functional equation for v now reads

γ(x, y)L(v)(x, y) = 1
2(σ11L1(v)(y) + σ22L2(v)(x)) + L(h)(x, y). (21)

AofA 2020



9:8 Polyharmonic Functions in Cones

By considering the roots of the kernel γ and using the same method as above, we obtain

1
2σ11L1(v)(c+x)− 1

2σ11L1(v)(c−x) = L(h)(x, c−x)− L(h)(x, c+x). (22)

We now have an a priori non-homogeneous boundary value problem for v, that we can in
fact transform into an homogeneous one, thanks to the (already known) explicit form of L(h).
The key remark to this task is that (c+x)π/θ = (c−x)π/θ = −(cx)π/θ. Rewriting (20) as

L(h)(x, y) = σ11

σ22

P
(

1
yπ/θ

)
− P

(
1

(c±x)π/θ

)
(y − c−x)(y − c+x)

and letting y → c+x and y → c−x, one finds

L(h)(x, c±x) = ∓σ11

σ22

π

θ

1
(c±x− c∓x)P

′
(

1
(c±x)π/θ

)
1

(c±x)π/θ+1 .

Eventually, we get

L(h)(x, c−x)− L(h)(x, c+x)

= σ11

σ22

π

θ

 1
(c+x− c−x)

P ′
(

1
(c+x)π/θ

)
(c+x)π/θ+1 − 1

(c−x− c+x)

P ′
(

1
(c−x)π/θ

)
(c−x)π/θ+1


= σ11

σ22

π

θ

(
c+

c+ − c−
P ′
(

1
(c+x)π/θ

)
1

(c+x)π/θ+2 −
c−

c− − c+
P ′
(

1
(c−x)π/θ

)
1

(c−x)π/θ+2

)
= −σ11

σ22

π

θ

c+c−
(c+ − c−)2

(
P ′
(

1
(c+x)π/θ

)
1

(c+x)π/θ+2 − P
′
(

1
(c−x)π/θ

)
1

(c−x)π/θ+2

)
,

where the last equality follows from (c+x)π/θ = (c−x)π/θ. Therefore, the boundary value
equation (22) is now homogeneous, and of the form

1
2σ11L1(v)(c+x)− F (c+x) = 1

2σ11L1(v)(c−x)− F (c−x),

where F is equal on Y+([0,∞]) ∪ Y−([0,∞]) to

F (y) = −σ11

σ22

π

θ

c+c−
(c+ − c−)2P

′
(

1
yπ/θ

)
1

yπ/θ+2 . (23)

We note that the simpler case when F (c+x) = F (c−x) occurs exactly when c2
+ = c2

−, i.e., θ
is 0 or π/2. In this way, we obtain a boundary value problem analogous to the harmonic
case, which, on the boundary of GY except at 0, leads to

1
2σ11L1(v)(y)− F (y) = Q

(
1

yπ/θ

)
,

for any given polynomial Q. The same computation applies to L2(v). As such, using the
equation (21), the Laplace transform of the bi-harmonic function v admits the following form:
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I Theorem 4. For any polynomials P and Q, the formula

L(v)(x, y) = 1
γ(x, y)

[
Q

(
1

yπ/θ

)
−Q

(
1

(c+x)π/θ

)
+G(x, y) + L(h)(x, y)

]
is the Laplace transform L(v) of a bi-harmonic function v satisfying Gv = h, where h is a
harmonic function with Dirichlet boundary conditions, where the Laplace transform L(h) of
h has the form (20) and where

G(x, y) = F (y)− F (c+x)− L(h)(x, c+x),

with F defined in Eq. (23).

The above theorem can be understood as a Laplace transform counterpart of Almansi’s
theorem [1].

Recursively, if vn is polyharmonic of order n with Gvn = vn−1, where vn−1 is polyharmonic
of order n− 1, the above method permits to express the Laplace transform of vn through
the one of vn−1, allowing to construct polyharmonic functions via Laplace inversion.

Further computations for the Brownian motion with identity covariance matrix are
proposed in Appendix A.

3 Discrete polyharmonic functions

Similarly to the continuous setting, we first investigate the appearance of polyharmonic
functions in the asymptotic expansions of the counting coefficients of lattice paths with
prescribed endpoints, starting from an exact expression for these coefficients (such exact
expressions may typically be obtained from reflection principles). We then implement the
functional equation approach to construct polyharmonic functions.

Our framework is thus the following. We consider random walks in the quarter plane Z2
+

with the following assumptions:
1. The walk is homogeneous with transition probabilities {pi,j}−1≤i,j≤1 to the eight nearest

neighbours and p0,0 = 0 (so we are only considering walks with small steps),
2. In the list p1,1, p1,0, p1,−1, p0,−1, p−1,−1, p−1,0, p−1,1, p0,1, there are no three consecutive

zeros (to avoid degenerate cases),
3. The drifts

∑
i,j ipi,j and

∑
i,j jpi,j are zero.

The Markov operator P of the walk is defined on discrete functions by

Pf(x, y) =
∑

−1≤i,j≤1
pi,jf(x+ i, y + j),

and the Laplacian operator is L = P − I. A function f is said to be harmonic if Lf = 0 and
polyharmonic of order p if Lpf = 0.

3.1 Examples of asymptotic expansion in walk enumeration problems
We start by recalling a few exact expressions for the number of quarter plane walks of length
n with prescribed endpoints.

I Example 5 (The diagonal walk). The step set is {↗,↖,↘,↙}, with uniform transition
probabilities 1

4 . It is well known (see for instance [9]) that

q((i, j), (0, 0);n) = (i+ 1)(j + 1)
n+i+2

2
n+j+2

2

(
n
n+i

2

)(
n
n+j

2

)
, (24)
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with i and j having the same parity as n. Starting from (24), one can prove that

q((i, j), (0, 0);n) ∼ 8
π

4n
∑
p≥0

vp(i, j)
n3+p , (25)

where the first few terms in the above asymptotic expansion are given by{
v0(i, j) = (i+ 1)(j + 1),
v1(i, j) = − 1

2 (i+ 1)(j + 1)(i2 + j2 + 2i+ 2j + 9).

The first term v0 is the well-known unique (up to multiplicative constants) positive harmonic
function, with Dirichlet conditions; it is the same as for the simple walk, see (7) and (26).
The next term satisfies Lv1 = −3v0, and therefore is bi-harmonic. Note that in fact, using
the explicit expression of the Laplacian L, it is obvious that any polynomial of degree at
most 2p− 1 is polyharmonic of order p, since for any polynomial f of degree k, Lf has degree
at most k − 2 (it is a discrete equivalent of Lemma 1).

To derive a full asymptotic expansion of (24), we shall use the Laplace method applied to
the counting coefficients rewritten as an integral, in the spirit of [22, p. 75–79] (alternatively
one can apply the saddle-point method [17, Chap. B VIII] in the framework of analytic
combinatorics in several variables [14, 19]). We choose to postpone it to Appendix B, since
the computations are a bit long, though straightforward.

I Example 6 (The simple random walk). The step set is {←, ↑,→, ↓}, with uniform transition
probabilities 1

4 . We have (6) by [9]. Again, starting from (6), one can prove that

q((i, j), (0, 0);n) ∼ 4
π

4n
∑
p≥0

vp(i, j)
n3+p ,

where the first few terms in the asymptotic expansion are{
v0(i, j) = (i+ 1)(j + 1),
v1(i, j) = − 1

4 (i+ 1)(j + 1)(2i2 + 2j2 + 4i+ 4j + 15). (26)

Again, v0 is harmonic, and since Lv1 = − 3
2v0, v1 is bi-harmonic.

I Example 7 (The tandem walk). The step set is {↖,→, ↓} with uniform transition probab-
ilities 1

3 . From [10, Prop. 9], we know that:

q((i, j), (0, 0);n) = (i+ 1)(j + 1)(i+ j + 2)(3m+ 2i+ j)!
m!(m+ i+ 1)!(m+ i+ j + 2)! ,

with n = 3m+ 2i+ j. In this case, writing the asymptotic expansion

q((i, j), (0, 0);n) ∼
√

3
2π 3n

∑
p≥0

vp(i, j)
n4+p ,

one has for the harmonic function v0 and the bi-harmonic function v1,{
v0(i, j) = (i+ 1)(j + 1)(i+ j + 2),
v1(i, j) = − 1

9 (i+ 1)(j + 1)(i+ j + 2)(3i2 + 3j2 + 3ij + 9i+ 9j + 38). (27)
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3.2 Functional equation approach in the discrete case
We implement here the functional equation method to construct polyharmonic functions.
We start by recalling the key arguments in the harmonic case; details may be found in [20].

For a harmonic function h, we denote by H its generating function, namely,

H(x, y) =
∑
i,j≥0

h(i, j)xiyj .

The kernel of the random walk is defined as the polynomial

K(x, y) = xy

 ∑
−1≤k,`≤1

pk,`x
−ky−` − 1

 .

The harmonic equation Lh = 0 yields the following functional equation

K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0). (28)

To solve (28), one first proves that the function H(x, 0) (and similarly H(0, y)) satisfies a
boundary value problem (see [20]):
1. H(x, 0) is analytic in GX ,
2. H(x, 0) is continuous on GX \ {1},
3. For all x in the boundary of GX except at 1, H(x, 0) satisfies the boundary equation:

K(x, 0)H(x, 0)−K(x, 0)H(x, 0) = 0.

Here, GX is a certain domain bounded by the curve X+([y1, 1]) ∪X−([y1, 1]), where X±(y)
are the branches of the algebraic function defined by K(X(y), y) = 0. Indeed, writing K as

K(x, y) = α̃(y)x2 + β̃(y)x+ γ̃(y),

where α̃, β̃, γ̃ are polynomials of degree 2 whose coefficients depend on the model, we have

X±(y) =
−β̃(y)±

√
δ̃(y)

2α̃(y) ,

where δ̃(y) = β̃(y)2 − 4α̃(y)γ̃(y). The functions X± are thus meromorphic on a cut plane,
determined by the zeros of δ̃.

It follows by [20] that K(x, 0)H(x, 0) may be written as a function of a certain conformal
mapping ω (see [20, Eq. (3.1)] for its explicit expression):

K(x, 0)H(x, 0) = P (ω(x)),

where P is an arbitrary entire function, for example a polynomial. This represents the
analogous statement as (19) in the continuous setting. By the functional equation (28), one
eventually finds that

H(x, y) = P (ω(x))− P (ω(X+(x)))
K(x, y) ,

which again should be compared with (20) in the continuous case.
For a bi-harmonic function v, satisfying Lv = h with h a harmonic function, the functional

equation now writes

K(x, y)V (x, y) = K(x, 0)V (x, 0) +K(0, y)V (0, y)−K(0, 0)V (0, 0)− xyH(x, y), (29)
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where V is the generating function of v, i.e., V (x, y) =
∑
i,j≥0 v(i, j)xiyj ; compare with (21).

Notice that the equation (29) is very close to functional equations coming up in walk
enumeration problems.

Plugging the roots of the kernel into (29), one has

K(X±(y), 0)V (X±(y), 0) +K(0, y)V (0, y)−K(0, 0)V (0, 0)−X±(y)yH(X±(y), y) = 0,

which leads to the boundary equation

K(x, 0)V (x, 0)−K(x, 0)V (x, 0) = y (xH(x, y)− xH(x, y)) , (30)

for x on the boundary of GX (except at 1).
Note that a general method to solve this kind of boundary value problem (30) exists [16],

for any quantity in the right-hand side, ending up in some contour integral expression for
the unknown function K(x, 0)V (x, 0). We choose to provide below examples with simpler,
integral-free expressions. Indeed, the resolution of (30) is made easier in some peculiar cases,
for instance when the right-hand side of (30) is zero (which occurs for the simple random
walk, see Example 6 below), or when it can be decoupled in the terminology of [6] (which is
analogous to the continuous setting and holds for the tandem walk, see Appendix C).

I Example 6 (continued). We consider here the case of the simple random walk,with kernel

K(x, y) = xy

(
1
4

(
x+ 1

x
+ y + 1

y

)
− 1
)
.

The domain GX is the open unit disk, and the conformal mapping ω admits the expression
ω(x) = x

(1−x)2 , see [20]. A computation shows that ω(X+(y)) = −ω(y), thus one gets that
the generating function of a harmonic function h may be written as

H(x, y) = P (ω(x))− P (−ω(y))
K(x, y) .

Choosing P (x) = x
4 leads to

H(x, y) =

1
4x

(1−x)2 +
1
4y

(1−y)2

xy
(

1
4 (x+ 1

x + y + 1
y )− 1

) = 1
(1− x)2(1− y)2 =

∑
i,j≥0

(i+ 1)(j + 1)xiyj ,

that is, H is the generating function of the unique positive harmonic function, see (26).
We now consider bi-harmonic functions. Using the explicit form of H, one sees that the

right-hand side of Eq. (30) vanishes. Indeed, we have

X+(y)H(X+(y), y)−X−(y)H(X−(y), y)

= X+(y)P
′(ω(X+(y)))ω′(X+(y))
α̃(y)(X+(y)−X−(y)) −X−(y)P

′(ω(X−(y)))ω′(X−(y))
α̃(y)(X−(y)−X+(y)) ,

which is equal to zero since ω(X+(y)) = ω(X−(y)) and

X+(y) ω′(X+(y))
X+(y)−X−(y) −X−(y) ω′(X−(y))

X−(y)−X+(y) = 0

by straightforward computations. The boundary equation has thus exactly the same form as
the one in the harmonic case, so we get that on the boundary of GX ,

K(x, 0)V (x, 0) = Q(ω(x)),
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for some polynomial Q. Using (twice) the functional equation (29), the general form for the
generating function of a bi-harmonic v satisfying Lv = h, with h harmonic, is thus

V (x, y) = Q(ω(x))−Q(−ω(y)) +X+(y)yH(X+(y), y)− xyH(x, y)
K(x, y) ,

with

H(x, y) = P (ω(x))− P (−ω(y))
K(x, y) and H(X+(y), y) = P ′(ω(X+(y)))ω′(X+(y))

α̃(y)(X+(y)−X−(y)) .

For instance, taking P (x) = x and Q the zero polynomial leads to the bi-harmonic function
(non symmetrical in i and j)

v(i, j) = (i+ 1)j(j + 1)(j + 2).

Indeed, one has

X+(y)H(X+(y), y) = − y

(1− y)4 ,

so the generating function V writes

V (x, y) = −4y
(1− x)2(1− y)4 ,

which is easily inverted. On the other hand, taking P (x) = x and Q(x) = −2x2 − 5
2x, one

obtains the bi-harmonic function

v(i, j) = (i+ 1)(j + 1)(2i2 + 2j2 + 4i+ 4j + 15),

which is (up to a multiplicative constant) the bi-harmonic function v1 appearing in Eq. (26).
Another example will be treated in Appendix C.

References
1 E. Almansi. Sull’integrazione dell’equazione differenziale ∆2n = 0. Annali di Mat. (3), 2:1–51,

1899.
2 Nachman Aronszajn, Thomas M. Creese, and Leonard J. Lipkin. Polyharmonic functions.

Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York,
1983. Notes taken by Eberhard Gerlach, Oxford Science Publications.

3 Rodrigo Bañuelos and Robert G. Smits. Brownian motion in cones. Probab. Theory Related
Fields, 108(3):299–319, 1997. doi:10.1007/s004400050111.

4 Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of directed lattice paths.
Theoretical Computer Science, 281(1-2):37–80, 2002.

5 Olivier Bernardi and Mireille Bousquet-Mélou. Counting colored planar maps: algebraicity
results. J. Combin. Theory Ser. B, 101(5):315–377, 2011. doi:10.1016/j.jctb.2011.02.003.

6 Olivier Bernardi, Mireille Bousquet-Mélou, and Kilian Raschel. Counting quadrant walks via
Tutte’s invariant method. Preprint arXiv, 2017. arXiv:1708.08215.

7 Alin Bostan, Mireille Bousquet-Mélou, and Stephen Melczer. Counting walks with large steps
in an orthant. Preprint arXiv, 2018. arXiv:1806.00968.

8 Alin Bostan, Kilian Raschel, and Bruno Salvy. Non-D-finite excursions in the quarter plane.
J. Combin. Theory Ser. A, 121:45–63, 2014. doi:10.1016/j.jcta.2013.09.005.

9 Mireille Bousquet-Mélou. Counting walks in the quarter plane. In Mathematics and computer
science, II (Versailles, 2002), Trends Math., pages 49–67. Birkhäuser, Basel, 2002.

AofA 2020

https://doi.org/10.1007/s004400050111
https://doi.org/10.1016/j.jctb.2011.02.003
http://arxiv.org/abs/1708.08215
http://arxiv.org/abs/1806.00968
https://doi.org/10.1016/j.jcta.2013.09.005


9:14 Polyharmonic Functions in Cones

10 Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the quarter plane. In
Algorithmic probability and combinatorics, volume 520 of Contemp. Math., pages 1–39. Amer.
Math. Soc., Providence, RI, 2010. doi:10.1090/conm/520/10252.

11 Isaac Chavel. Eigenvalues in Riemannian geometry, volume 115 of Pure and Applied Mathem-
atics. Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol, With
an appendix by Jozef Dodziuk.

12 Joel M. Cohen, Flavia Colonna, Kohur Gowrisankaran, and David Singman. Polyharmonic
functions on trees. Amer. J. Math., 124(5):999–1043, 2002. URL: http://muse.jhu.edu/
journals/american_journal_of_mathematics/v124/124.5cohen.pdf.

13 Louis Comtet. Advanced combinatorics. The art of finite and infinite expansions. Dordrecht,
Holland - Boston, U.S.A.: D. Reidel Publishing Company. X, 343 p. Dfl. 65.00., 1974.

14 J. Courtiel, S. Melczer, M. Mishna, and K. Raschel. Weighted lattice walks and universality
classes. J. Combin. Theory Ser. A, 152:255–302, 2017. doi:10.1016/j.jcta.2017.06.008.

15 Denis Denisov and Vitali Wachtel. Random walks in cones. Ann. Probab., 43(3):992–1044,
2015. doi:10.1214/13-AOP867.

16 Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev. Random walks in the quarter plane,
volume 40 of Probability Theory and Stochastic Modelling. Springer, Cham, second edition,
2017. Algebraic methods, boundary value problems, applications to queueing systems and
analytic combinatorics. doi:10.1007/978-3-319-50930-3.

17 Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press,
Cambridge, 2009. doi:10.1017/CBO9780511801655.

18 Thomas Hirschler and Wolfgang Woess. Polyharmonic functions for finite graphs and Markov
chains. Preprint arXiv, 2019. Frontiers in Analysis and Probability: in the Spirit of the
Strasbourg-Zürich Meetings, Springer (to appear). arXiv:1901.08376.

19 Stephen Melczer and Mark C. Wilson. Higher dimensional lattice walks: connecting
combinatorial and analytic behavior. SIAM J. Discrete Math., 33(4):2140–2174, 2019.
doi:10.1137/18M1220856.

20 Kilian Raschel. Random walks in the quarter plane, discrete harmonic functions and conformal
mappings. Stochastic Process. Appl., 124(10):3147–3178, 2014. With an appendix by Sandro
Franceschi. doi:10.1016/j.spa.2014.04.013.

21 Ecaterina Sava-Huss and Wolfgang Woess. Boundary behaviour of λ-polyharmonic functions
on regular trees. Preprint arXiv, 2019. arXiv:1904.10290.

22 F. Spitzer. Principles of Random Walk. 2nd ed, Springer, New York, 1976.
23 W. T. Tutte. Chromatic sums revisited. Aequationes Math., 50(1-2):95–134, 1995. doi:

10.1007/BF01831115.

A Detailed computations for the standard Brownian motion in the
quadrant

Here we apply the functional equation approach to the case of the Brownian motion in the
quarter plane with identity covariance matrix. The kernel γ is equal to γ(x, y) = 1

2
(
x2 + y2) ,

so c± = ±i and θ = π
2 , see (18). The functional equation (17) for h harmonic is then

(x2 + y2)L(h)(x, y) = L1(h)(y) + L2(h)(x),

which leads to

L(h)(x, y) =
P
( 1
y2
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− P

(
− 1
x2

)
x2 + y2 .
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More generally, the choice of P (x) = −(2j)!(−x)j leads to the Laplace transform (in
Cartesian coordinates) of the harmonic function f2j,j defined in (14). Indeed, recall that
f2j,j(ρ, θ) = ρ2j sin (2jθ), which is written in Cartesian coordinates as follows. Recall that
the Chebyshev polynomial Uj of the second kind is defined as Uj(cos θ) sin θ = sin(jθ), j ≥ 0,
and admits the expression

Uj(z) = zj
bj/2c∑
k=0

(
j + 1

2k + 1

)
(1− z−2)k.

Hence, thanks to the explicit expression of U2j−1, the harmonic function f2j,j can be written,
in Cartesian coordinates (x, y) = (ρ cos θ, ρ sin θ),

f2j,j(x, y) =
j−1∑
k=0

(−1)k
(

2j
2k + 1

)
y2k+1x2j−(2k+1).

The Laplace transform of f2j,j is now computed using L(xnyk) = n!k!
xn+1yk+1 , and one obtains

L(f2j,j)(x, y) = (2j)!
j−1∑
k=0

(−1)k 1
y2k+2x2j−2k = (2j)!

( 1
x2

)j − (− 1
y2

)j
x2 + y2 . (31)

For v bi-harmonic, the functional equation (21) is

(x2 + y2)L(v)(x, y) = L1(v)(y) + L2(v)(x) + 2L(h)(x, y),

and the general form of the Laplace transform of v writes

L(v)(x, y) =
Q
( 1
y2

)
−Q

(
− 1
x2

)
+ 2

x4P
′(− 1

x2

)
+ 2

P
(

1
y2

)
−P
(
− 1
x2

)
x2+y2

x2 + y2 , (32)

where P and Q are arbitrary polynomials. Choosing P (x) equal to x and Q(x) of degree 2,
equal to x2, gives that

L(v)(x, y) = x2 + y2

x4y4 = 1
x2y4 + 1

x4y2 ,

which is the Laplace transform of the function v(x, y) = (x2 + y2)xy, which corresponds in
polar coordinate (ρ, θ) to the bi-harmonic function f4,2(ρ, θ) = ρ4 sin 2θ defined in (14).

More generally, choosing

P (x) = (−1)j+1(2j)!2(2j + 1)xj and Q(x) = (−1)j+1(2j)!2(2j + 1)jxj+1

leads to the bi-harmonic function f2j+2,j . Indeed, since f2j+2,j(x, y) = (x2 + y2)f2j,j(x, y),
one has, from the usual properties of the Laplace transform, that L(f2j+2,j) = ∆L(f2j,j).
As such, by applying the Laplacian to the Laplace transform of f2j,j given in (31), one
obtains that

L(f2j+2,j)(x, y) =
(2j)!2(2j + 1)
x2y2(x2 + y2)2

{
(j + 2)x2y2

(( 1
x2

)j
−
(−1
y2

)j)
+ j

(
y4
( 1
x2

)j
− x4

(−1
y2

)j)}
.

Now, plugging the above choice of P and Q in Eq. (32) gives easily the formula.
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B Complete asymptotic expansion for the diagonal walk

As an explicit example, we provide a complete asymptotic expansion for the number (24) of
n-excursions from the origin to (i, j) for the diagonal walk with steps from {↗,↖,↘,↙}.
A straightforward way to obtain such an asymptotic expansion is to apply the standard
Laplace’s method (see [17, p. 755]) using an integral representation of (24) (in [22, p. 75–
79], this is applied to obtain first order asymptotic estimates in lattice paths enumeration
problems). This leads to an explicit new family of polynomials (vp)p≥0 of increasing degree,
where vp is the polyharmonic function of order p+ 1 appearing in the expansion (25), see
Corollary 9.

Let us first introduce the necessary notations. Projecting the walk onto the coordinate
axes, one gets two decoupled prefixes of Dyck paths. Hence (24) is obtained by a simple
application of the reflection principle in the one-dimensional case, which gives that the
number of non-negative paths from 0 to λ with n steps is given by

m(λ, n) :=
(

n
n+λ

2

)
−
(

n
n+λ+2

2

)
= λ+ 1

n+λ+2
2

(
n
n+λ

2

)
, (33)

with λ ≡ n mod 2. Using the simple integral representation of the binomial coefficient(
n

k

)
= 1

2π

∫ π

−π
e−ikt(1 + eit)ndt,

one readily obtains the following integral representation for m(λ, n):

m(λ, n) = 2
π

∫ π/2

−π/2
2n(cos y)n sin((λ+ 1)y) sin(y)dy. (34)

Now define the sequence (α(m))m≥1 as

α(m) = (4m − 1)|B2m|22m

2m(2m)! , (35)

where the B2m’s are the Bernoulli numbers, which can be defined through the Riemann zeta
function at even integers:

ζ(2m) = |B2m|(2π)2m

2(2m)! .

Define also, for s ≥ k ≥ 0,

Bαs,k := Bs,k (α(2), . . . , α(s− k + 2)) , (36)

the rational numbers obtained by evaluating the partial ordinary Bell polynomial in the
variables α(m+ 1). Recall that by definition, see for instance [13], the partial ordinary Bell
polynomials in the variables (xk)k≥1 are the polynomials obtained by performing the formal
double series expansion:

exp
(
u
∑
m≥1

xmt
m
)

=
∑

n≥k≥0
Bn,k(x1, . . . , xn−k+1)tnu

k

k! .

Note that the polynomial Bn,k contains p(n, k) monomials, where p(n, k) stands for the
number of partitions of n into k parts, see [13] for details and for an explicit expression of
these polynomials. Finally, define for p ≥ k ≥ 0,

Cαk,p = 1
k!

p∑
j=k

(−1)j

(2p− 2j + 1)!B
α
j,k. (37)

We first give a complete asymptotic expansion for prefixes of Dyck paths.
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I Theorem 8. Let m(λ, n) be the number of non-negative paths from 0 to λ ∈ Z+ given
by (33). The following asymptotic expansion holds as n→∞:

m(λ, n) ∼ 2
√

2 2n√
π

1
n3/2

∑
j≥0

(−1)j

nj
hj(λ),

where for j ≥ 0,

hj(λ) =
j∑
p=0

p∑
k=0

(−1)k

(2(j − p) + 1)!C
α
k,pm2(k+j+1)(λ+ 1)2(j−p)+1, (38)

where m2k = (2k)!
2kk! is the 2k-th Gaussian moment and Cαk,p is defined in (37).

Hence, the above theorem gives, in the one-dimensional case, an asymptotic expansion of
the number of non-negative paths in terms of polyharmonic functions. Indeed, it is easily
seen that the polynomial hj has degree 2j + 1, so is polyharmonic of order j + 1 for the
one-dimensional Laplacian Lf(x) = 1

2 (f(x+ 1) + f(x− 1))− f(x).
Since the number of n-excursions for the diagonal walk is the product of two numbers of

(decoupled) Dyck paths, one readily obtains the following corollary.

I Corollary 9. Let q(0, (i, j);n) be the number of diagonal paths with n steps from the origin
to (i, j) and confined in the quadrant, given by (24). Then

q(0, (i, j);n) ∼ 8
π

1
n3 4n

∑
p≥0

(−1)p

np
vp(i, j),

where, with hk defined in (38),

vp(i, j) =
p∑
k=0

hk(i)hp−k(j).

Clearly, the polynomial function vp has degree 2p+ 1 and thus is polyharmonic of order p+ 1
for the Laplacian associated to the diagonal walk. The set of exponents (16) appearing in
the asymptotic expansion is here 3 + N.

Proof of Theorem 8. To obtain the claimed asymptotic expansion, we apply the Laplace
method as in [17, p. 755] to the integral representation of m(λ, n) in (34). Indeed, the cosine
function admits only one maximum in the interval [−π2 ,

π
2 ], at y = 0, and the contribution to

the integral outside any fixed segment containing 0 is exponentially small and as such can be
discarded for an asymptotic consideration.

So, first, we perform the change of variable θ = y√
n
to get

m(λ, n) = 2n 2
π

1
n1/2

∫ π
2
√
n

−π2
√
n

cos
(

y√
n

)n
sin
(

y√
n

)
sin
(

(λ+ 1) y√
n

)
dy.

The next step is to consider an asymptotic expansion of the integrand as n→∞. Using the
Weierstrass product formula for the cosine function,

cos y =
∞∏
k=1

(
1− 4y2

π2(2k − 1)2

)
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and the Taylor series of the logarithm function, one has

log cos (y) = −
∑
m≥1

α(m)y2m,

where the sequence (α(m))m≥1 is defined in (35). Note that an interpretation of the sequence
(α(m))m≥1 is that they correspond to the cumulant sequence of the Bernoulli distribution
1
2δ+1 + 1

2δ−1. Now one has, using α(1) = 1
2 and the Taylor series of the exponential function,

cos
(

y√
n

)n
= exp

(
n log cos

(
y√
n

))
= e−y

2/2
∑
s≥0

1
ns

s∑
k=0

(−1)k

k! Bαs,k y
2(k+s),

where Bαs,k is the partial ordinary Bell polynomial defined in (36). Now, using the Taylor
series of the sine function, and after some elementary manipulations, one gets

cos
(

y√
n

)n
sin
(

y√
n

)
sin
(

(λ+ 1) y√
n

)
= e−y

2/2 1
n

∑
j≥0

(−1)j

nj

j∑
p=0

p∑
k=0

(−1)k
Cαk,p

(2(j − p) + 1)!y
2(k+j)+2(λ+ 1)2(j−p)+1,

where Cαk,p is defined in (37).
The next step in the Laplace method is to neglect the tails. Hence, we write

m(λ, n) ∼ 2
π

2n

n3/2

∑
j≥0

(−1)j

nj

j∑
p=0

p∑
k=0

(−1)kCαk,p
(2(j − p) + 1)! (λ+1)2(j−p)+1

∫ κn

−κn
e−y

2/2y2(k+j)+2dy,

where κn is chosen so that the error bounds are exponentially small (for instance one can
choose arbitrarily κn = n1/10). Completing the tails of the Gaussian integral, that is∫ κn

−κn
e−y

2/2y2(k+j)+2dy ∼
∫
R
e−y

2/2y2(k+j)+2dy =
√

2π (2(k + j + 1))!
2k+j+1(k + j + 1)!

=
√

2πm2(k+j+1),

where m2k = (2k)!
2kk! is the 2k-th Gaussian moment, one finally obtains, with hj defined in (38),

that

m(λ, n) ∼ 2
√

2 2n√
π

1
n3/2

∑
j≥0

(−1)j

nj
hj(λ). J

C The example of tandem walks

In this subsequent example, we consider the tandem walk with steps from {↖,→, ↓}, see
Example 7. In this case, the functional equation approach admits a nicer form because the
right-hand side of Eq. (30) can be decoupled, that is, can be written as G(X+(y))−G(X−(y)),
for some function G. The computations are close to the continuous case but are quite tedious.
First, we know [20] that the generating function H of a harmonic function h is of the form

H(x, y) = P (ω(x))− P (ω(X+(y)))
K(x, y) , (39)

where the conformal mapping ω is given by ω(x) = x2

(1−x)3 . The unique positive harmonic
function v0(i, j) = 1

2 (i+ 1)(j + 1)(i+ j + 2) of (27) is obtained choosing P (x) = 1
3x.
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Using the general form of H, one has

yX+(y)H(X+(y), y)− yX−(y)H(X−(y), y) =

3yX+(y)ω′(X+(y))
X+(y)−X−(y) P ′(ω(X+(y)))− 3yX−(y)ω′(X−(y))

X−(y)−X+(y) P ′(ω(X−(y))).

Define now the decoupling function on GX :

F (x) = − x3

(1− x)6 . (40)

Some computations show that

yX+(y)ω′(X+(y))
X+(y)−X−(y) −

yX−(y)ω′(X−(y))
X−(y)−X+(y) = F (X+(y))− F (X−(y)).

A crucial point is to guess the function F in (40) satisfying the above equation. Minding the
fundamental fact that ω(X+(y)) = ω(X−(y)), it follows that

yX+(y)H(X+(y), y)− yX−(y)H(X−(y), y) = G(X+(y))−G(X−(y)),

where G(x) = 3F (x)P ′(ω(x)). One deduces that the generating function V (x, y) for a
bi-harmonic function v satisfying Lv = h admits the form

1
K(x, y)

(
Q(ω(x))−Q(ω(X+(y)))+G(x)−G(X+(y))+X+(y)yH(X+(y), y)−xyH(x, y)

)
,

where H has the general form given by Eq. (39) and G(x) = 3F (x)P ′(ω(x)) with the
decoupling function F defined in Eq. (40). Note that this has to be compared with Theorem 4.

Choosing P (x) = x and Q = 0 leads to the bi-harmonic function

v(i, j) = (j+ 1)(i+ 1)(i+ j+ 2)(2i3 + 3i2j+ 14i2 + 5ij+ 24i− 3ij2− 2j3− 4j2 + 6j). (41)

To obtain to bi-harmonic function v1 of (27), one chooses P (x) = − 8
9x and Q(x) = 8

3x
2 + 76

27x.
This is obtained by noticing that an appropriate linear combination of the bi-harmonic
function (41) and of v1 is harmonic and its generating function corresponds to the term

Q(ω(x))−Q(ω(X+(y)))
K(x, y) .

As such, computing its generating function leads to the polynomial Q.
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