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Abstract
Baxter permutations, plane bipolar orientations, and a specific family of walks in the non-negative
quadrant are well-known to be related to each other through several bijections. We introduce a
further new family of discrete objects, called coalescent-walk processes, that are fundamental for our
results. We relate these new objects with the other previously mentioned families introducing some
new bijections.

We prove joint Benjamini–Schramm convergence (both in the annealed and quenched sense) for
uniform objects in the four families. Furthermore, we explicitly construct a new fractal random
measure of the unit square, called the coalescent Baxter permuton and we show that it is the scaling
limit (in the permuton sense) of uniform Baxter permutations.

To prove the latter result, we study the scaling limit of the associated random coalescent-walk
processes. We show that they converge in law to a continuous random coalescent-walk process
encoded by a perturbed version of the Tanaka stochastic differential equation. This result has
connections (to be explored in future projects) with the results of Gwynne, Holden, Sun (2016) on
scaling limits (in the Peanosphere topology) of plane bipolar triangulations.

We further prove some results that relate the limiting objects of the four families to each other,
both in the local and scaling limit case.
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1 Introduction and main results

Baxter permutations were introduced by Glen Baxter in 1964 [3] to study fixed points of
commuting functions. Baxter permutations are permutations avoiding the two vincular
patterns 2 41 3 and 3 14 2, i.e. permutations σ such that there are no indices i < j < k such
that σ(j + 1) < σ(i) < σ(k) < σ(j) or σ(j) < σ(k) < σ(i) < σ(j + 1).
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7:2 Scaling and Local Limits of Baxter Permutations

Figure 1 The diagrams of two uniform Baxter permutations of size 3253 (left) and 4520 (right).
(How these permutations were obtained is discussed in Appendix C).

In the last 30 years, several bijections between Baxter permutations, plane bipolar
orientations and certain walks in the plane1 have been discovered. These relations between
discrete objects of different nature are a beautiful piece of combinatorics2 that we aim at
investigating from a more probabilistic point of view in this extended abstract. The goal of
our work is to explore local and scaling limits of these objects and to study the relations
between their limits. Indeed, since these objects are related by several bijections at the
discrete level, we expect that most of the relations among them also hold in the “limiting
discrete and continuous worlds”.

We mention that some limits of these objects (and related ones) were previously investig-
ated. Dokos and Pak [11] explored the expected limit shape of doubly alternating Baxter
permutations, i.e. Baxter permutations σ such that σ and σ−1 are alternating. In their
article they claimed that “it would be interesting to compute the limit shape of random Baxter
permutations”. One of the main goals of our work is to answer this question by proving
permuton convergence for uniform Baxter permutations (see Theorem 5 below). For plane
walks (i.e. walks in Z2) conditioned to stay in a cone, we mention the remarkable works of
Denisov and Wachtel [10] and Duraj and Wachtel [12] where they proved (together with many
other results) convergence towards Brownian meanders or excursions in cones. This allowed
Kenyon, Miller, Sheffield and Wilson [19] to show that the quadrant walks encoding uniformly
random plane bipolar orientations (see Section 2.2 for more details) converge to a Brownian
excursion of correlation −1/2 in the quarter-plane. This is interpreted as Peanosphere
convergence of the maps decorated by the Peano curve (see Section 2.2 for further details)
to a

√
4/3-Liouville Quantum Gravity (LQG) surface decorated by an independent SLE12.

This result was then significantly strengthened by Gwynne, Holden and Sun [14] who proved
joint convergence for the map and its dual, in the setting of infinite-volume triangulations. In
proving Theorem 5 we extend some of the methods and results of [14], with a key difference
in the way limiting objects are defined. We discuss this in more precise terms at the end of
this introduction.

So far we have considered three families of objects: Baxter permutations (denoted by P);
walks in the non-negative quadrant (W) starting on the y-axis and ending on the x-axis,
with some specific admissible increments defined in the forthcoming Equation (4); and
plane bipolar orientations (O). For our purposes, specifically for the proof of the permuton
convergence, we introduce in Section 2.4 a fourth family of objects called coalescent-walk
processes (C).

1 We refer to Section 2 for a precise definition of all these objects.
2 Quoting the abstract of [13].
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We denote by Wn the subset of W consisting of quadrant walks of size n (and similarly
Cn,Pn,On for the other three families). We will present four size-preserving bijections
(denoted using two letters that refer to the domain and co-domain) between these four
families, summarized in the following diagram:

W C

O P

WC

CPOW

OP

, (1)

where the mapping OW was introduced in [19] and OP in [5]; the others are new. Our first
result is the following:

I Theorem 1. The diagram in Equation (1) commutes. In particular, CP ◦WC :W → P
is a size-preserving bijection.

Our second result deals with local limits, more precisely Benjamini–Schramm limits.
Informally, Benjamini–Schramm convergence for discrete objects looks at the convergence of
the neighborhoods (of any fixed size) of a uniformly distinguished point of the object (called
root). In order to properly define the Benjamini–Schramm convergence for the four families,
we need to present the respective local topologies. We defer this task to the complete version
of this abstract, here we just mention that the local topology for graphs (and so plane bipolar
orientations) was introduced by Benjamini and Schramm [4] while the local topology for
permutations was introduced by the first author [6]. Local topologies for plane walks and
coalescent-walk processes can be defined in a similar way. We denote by W̃• the completion
of the space of rooted walks

⊔
n≥1Wn × [n] with respect to the metric defining the local

topology. The spaces C̃•, S̃•, m̃• are defined likewise from C,P,O.
We define below the candidate limiting objects. As a matter of fact, a formal definition

requires an extension of the mappings in Equation (1) to infinite-volume objects (for the
mappings WC and OW−1 also an extension to walks that are not conditioned in the quadrant).
We do not present all the details of such extensions, but they can be easily guessed from our
description of the mappings WC,OW,CP and OP given in Section 2.

Let ν denote the probability distribution on Z2 given by:

ν = 1
2δ(+1,−1) +

∑
i,j≥0

2−i−j−3δ(−i,j), where δ denotes the Dirac measure, (2)

and let3 W̄ = (X̄, Ȳ ) = (W̄t)t∈Z be a bidirectional random plane walk with step distribution
ν, with value (0, 0) at time 0. Let Z̄ = WC(W̄ ) be the corresponding infinite coalescent-walk
process, σ̄ = CP(Z̄) the corresponding infinite permutation on Z (in this context, an infinite
permutation is a total order of Z), and m̄ = OW−1(W̄ ) the corresponding infinite map.

I Theorem 2. For every n ∈ Z>0, let Wn, Zn, σn, and mn denote uniform objects of
size n in Wn, Cn, Pn, and On respectively, related by the bijections of Equation (1). For
every n ∈ Z>0, let in be an independently chosen uniform index of [n]. Then we have joint
convergence in distribution in the space W̃• × C̃• × S̃• × m̃•:

((Wn, in), (Zn, in), (σn, in), (mn, in)) d−−−−→
n→∞

(W̄ , Z̄, σ̄, m̄).

3 Here and throughout the paper we denote random quantities using bold characters.

AofA 2020



7:4 Scaling and Local Limits of Baxter Permutations

I Remark 3. We give a few comments on this result.
1. The mapping OW−1 naturally endows the map mn with an edge labeling and the root
in of mn is chosen according to this labeling.

2. We can also prove a quenched version of the above result (of annealed type) for all the
four objects (not presented in this extended abstract). It entails (see [6, Theorem 2.32])
that consecutive pattern densities of σn jointly converge in distribution.

3. The fact that the four convergences are joint follows from the fact that the extensions of
the mappings in Equation (1) to infinite-volume objects are a.s. continuous.

Our third (and main) result is a scaling limit result for Baxter permutations (see Figure 1
for some simulations), in the framework of permutons developed by [17]. A permuton µ

is a Borel probability measure on the unit square [0, 1]2 with uniform marginals, that is
µ([0, 1]× [a, b]) = µ([a, b]× [0, 1]) = b− a, for all 0 ≤ a ≤ b ≤ 1. Any permutation σ of size
n ≥ 1 may be interpreted as the permuton µσ given by the sum of Lebesgue area measures

µσ(A) = n

n∑
i=1

Leb
(
[(i− 1)/n, i/n]× [(σ(i)− 1)/n, σ(i)/n] ∩A

)
, (3)

for all Borel measurable sets A of [0, 1]2. LetM be the set of permutons. As for general
probability measure, we say that a sequence of (deterministic) permutons (µn)n converges
weakly to µ (simply denoted µn → µ) if

∫
[0,1]2 fdµn →

∫
[0,1]2 fdµ, for every (bounded and)

continuous function f : [0, 1]2 → R. With this topology, M is compact. Convergence for
random permutations is defined as follows:

I Definition 4. We say that a random permutation σn converges in distribution to a random
permuton µ as n → ∞ if the random permuton µσn

converges in distribution to µ with
respect to the weak topology.

Random permuton convergence entails joint convergence in distribution of all (classical)
pattern densities (see [1, Theorem 2.5]). The study of permuton limits, as well as other
scaling limits of permutations, is a rapidly developing field in discrete probability theory, see
for instance [1, 2, 7, 8, 16, 18, 20, 21, 22]. Our main result is the following:

I Theorem 5. Let σn be a uniform Baxter permutation of size n. There exists a random
permuton µB such that µσn

d−→ µB .

An explicit construction of the limiting permuton µB, called the coalescent Baxter
permuton, is given in Section 3.2. The proof of Theorem 5 is based on a result on scaling
limits of the coalescent-walk processes Zn, which appears to be of independent interest, and
is discussed in Section 3.1. In particular, the convergence of uniform Baxter permutations is
joint4 with that of the conditioned versions of Wn and Zn presented in Theorem 26.

We finally discuss the relations with the work of Gwynne, Holden and Sun [14]. They
show that for infinite-volume bipolar oriented triangulations, the explorations of the two
tree/dual tree pairs of the map and its dual converge jointly. The limit is the pair of planar
Brownian motions which encode the same

√
4/3-LQG surface decorated by both an SLE12

curve and the “dual” SLE12 curve, traveling in a direction perpendicular (in the sense of
imaginary geometry) to the original curve. As shown below (Lemma 12), the bijection of [5]

4 We leave a proper claim of joint convergence to the full version of this paper. However the joint
distribution of the scaling limits is the one presented in Section 3.2.
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between plane bipolar orientations and Baxter permutations can be rewritten in terms of
the interaction of these two tree/dual tree pairs, which explains the connection between our
work and the one of [14].

We prove Theorem 5 by extending some of their constructions to finite-volume general
maps, which allows us to provide an analog of their result (that are restricted to triangulations)
for general plane bipolar orientations in finite volume, jointly with the convergences above5.
More precisely, the coalescent-walk process defined in Section 2.4.1 is an extension of the
random walk X defined in [14, Section 2.1]. The fact that it encodes the spanning tree of the
dual map (Proposition 19) is a version of [14, Lemma 2.1], albeit we present it differently.
Our main technical ingredient is the convergence of the coalescent-walk process driven by
a random plane walk of Theorem 24. It corresponds to [14, Theorem 4.1]. The way the
limiting object (the right-hand side of Equation (10)) is defined is however very different,
and the proofs differ as a consequence. In our case, it comes from a stochastic differential
equation (Equation (7)), for which existence and uniqueness are known from the literature
[9, 23]. In their case, it is built using imaginary geometry, and characterized by its excursion
decomposition. These are nonetheless two descriptions of the same object, providing an SDE
formulation of an intricate imaginary geometry coupling. We wish to explore consequences
of this in further works.

Outline of the extended abstract. The remainder of the abstract is organized as follows.
In Section 2 we present the objects and the mappings involved in the diagram in Equation (1).
Moreover, we sketch the proof of Theorem 1. Section 3 is devoted to developing the theory
for the proof of Theorem 5. In particular, in Section 3.1 we present the aforementioned
results for scaling limits of coalescent-walk processes, and in Section 3.2 we give an explicit
construction of the limiting permuton for Baxter permutations. Finally, in Appendix A we
prove our main technical ingredient (Theorem 24), and in Appendix B we finish the proof of
Theorem 5. Note that we leave the proof of Theorem 2 out of this abstract.

2 Bipolar orientations, walks in the non-negative quadrant, Baxter
permutations and coalescent-walk processes

2.1 Plane bipolar orientations
We recall that a planar map is a connected graph embedded in the plane with no edge-
crossings, considered up to continuous deformation. A map has vertices, edges, and faces,
the latter being the connected components of the plane remaining after deleting the edges.
The outer face is unbounded, the inner faces are bounded.

I Definition 6. A plane bipolar orientation (or simply bipolar orientation) is a planar map
with oriented edges such that

there are no oriented cycles;
there is exactly one vertex with only outgoing edges (the source, denoted s), and exactly
one vertex with only incoming edges (the sink, denoted s′); all other vertices, called
non-polar, have both types of edges;
the source and the sink are both incident to the outer face.

The size of a bipolar orientation m is its number of edges and will be denoted with |m|.

5 Not presented in this extended abstract.

AofA 2020



7:6 Scaling and Local Limits of Baxter Permutations

Every bipolar orientation can be plotted in the plane in such a way that every edge is
oriented from bottom to top (as done for example in Figure 2).

s′

s
m

right external faceleft external face

m∗

s∗(s′)∗

Figure 2 In black, a bipolar orientation m of size 10. Note that every edge is oriented from
bottom to top. In red, its dual map m∗. Similarly, we plot the dual map in such a way that every
edge is oriented from right to left. This map will be used in several examples. In later pictures, the
orientation of each edge is not displayed.

Given a bipolar orientation, an edge e from v to w is bordered, in the clockwise cyclic
order, by its bottom vertex, its left face, its top vertex, its right face. It is useful, for the
consistency of definitions, to think of the external face as split in two (see Figure 2 for an
example): the left external face, and the right external face.

There is a natural notion of duality for a bipolar orientation m. It is the classical duality
for (unoriented) maps where the orientation of a dual edge between two primal faces is from
right to left. The primal right external face becomes the dual source, and the primal left
external face becomes the dual sink. This map m∗ is also a bipolar orientation (see Figure 2).
The map m∗∗ is just the reversal of the map m: the source and sink are exchanged, and all
edges are reversed.

Given a bipolar orientation m, its down-right tree T (m) may be defined as a set of edges
equipped with a parent relation, as follows.

The edges of T (m) are the edges of m.
Let e ∈ m and v its bottom vertex.

If v is the source, then e has no parent edge in T (m) (it is grafted to the root of T (m));
if v is not the source, the parent edge of e in T (m) is the right-most incoming edge
of v.

The tree T (m) can be drawn on top of m: the root of T (m) corresponds to the source s of
m, internal vertices of T (m) correspond to non-polar vertices of m, and leaves of T (m) are
the midpoints of some edges of m. Note that one can draw the trees T (m) and T (m∗∗) on
the map m without any crossing (see the left-hand side of Figure 3 for an example).

We conclude this section recalling that the exploration of a tree T is the visit of its vertices
(or its edges) following the contour of the tree in the clockwise order.

2.2 Kenyon-Miller-Sheffield-Wilson bijection
We now present a bijection between bipolar orientations and some walks in the non-negative
quadrant Z2

≥0, introduced in [19, Section 2] by Kenyon, Miller, Sheffield and Wilson.
Let m be a bipolar orientation. We consider the exploration of the tree T (m) (highlighted

in green in the middle picture of Figure 3) starting at the source s and ending at the last
visit of the sink s′. Note that this path (when reversed) is also the exploration of the tree
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1 2 3

4

5

s′

s s

s′

s

6

7

8

9 10

s′

Figure 3 Left: A bipolar orientation m with the trees T (m) (in blue) and T (m∗∗) (in red).
Middle: We add in green the interface path tracking the interface between the two trees (see
Section 2.2). Right: We label the edges of the bipolar orientations following the interface path.

T (m∗∗) stopped at the last visit of the source s. This path, called interface path6 since it
winds between the trees T (m) and T (m∗∗), identifies an ordering on the set E of edges of m
since every edge of T (m) corresponds exactly to one edge of m (see the right-hand side of
Figure 3 for an example). Let e1, e2, . . . , e|m| be the edges of m listed according to this order.

I Definition 7. Given a bipolar orientation m, the corresponding walk OW(m) =
(Wt)t∈[|m|] = (Xt, Yt)t∈[|m|] of size |m| in the non-negative quadrant Z2

≥0 is defined as
follows: for t ∈ [|m|], let Xt be the distance in the tree T (m) between the bottom vertex of et
and the root of T (m) (corresponding to the source s), and let Yt be the distance in the tree
T (m∗∗) between the top vertex of et and the root of T (m∗∗) (corresponding to the sink s′).

I Remark 8. The walk (0, X1 + 1, . . . , X|m| + 1) is the height process of the tree T (m). The
walk (0, Y|m| + 1, Y|m|−1 + 1, . . . , Y1 + 1) is the height process of the tree T (m∗∗).

Suppose that the left external face has h+ 1 edges and the right external face has k + 1
edges, for some h, k ≥ 0. Then the walk (Wt)1≤t≤|m| starts at (0, h), ends at (k, 0), and
stays in the non-negative quadrant Z2

≥0. We finally investigate the possible values for the
increments of the walk, i.e. the values of Wt+1 −Wt. We say that two edges of a tree are
consecutive if one is the parent of the other. We first highlight that the interface path of the
map m has two different behaviors when following the edges et and et+1:

either it is following two consecutive edges of T (m) (this is the case, for instance, of the
edges e3 and e4 on the right-hand side of Figure 3);
or it is first following et, then it is traversing a face of m, and finally is following et+1
(this is the case, for instance, of the edges e5 and e6 on the right-hand side of Figure 3).

When the latter case happens, the interface path splits the boundary of the traversed face in
two parts, a left and a right boundary.

Therefore the increments of the walk are either (+1,−1) (when et and et+1 are consecutive)
or (−i,+j), for some i, j ∈ Z≥0 (when, between et and et+1, the interface path is traversing
a face with i+ 1 edges on the left boundary and j + 1 edges on the right boundary). We
denote by A the set of possible increments, that is

A = {(+1,−1)} ∪ {(−i, j), i ∈ Z≥0, j ∈ Z≥0}. (4)

We denote by W the set of walks in the non-negative quadrant, starting at (0, h) and ending
at (k, 0) for some h ≥ 0, k ≥ 0, with increments in A.

6 The interface path goes sometimes under the name of Peano curve, see for instance [15].

AofA 2020



7:8 Scaling and Local Limits of Baxter Permutations

I Theorem 9 ([19, Theorem 1]). The mapping OW : O →W is a size-preserving bijection.

I Example 10. We consider the map m in Figure 3. The corresponding walk OW(m) is:(
(0, 2), (0, 3), (0, 3), (1, 2), (2, 1), (0, 3), (1, 2), (2, 1), (3, 0), (2, 0)

)
.

2.3 Baxter permutations and bipolar orientations
In [5], a bijection between Baxter permutations and bipolar orientations is given. We give
here a slightly different formulation of this bijection (more convenient for our purposes) and
then in Lemma 12 we state that the two formulations are equivalent.

I Definition 11. Let m be a bipolar orientation of size n ≥ 1. Recall that to every edge of
the map m corresponds its dual edge in the dual map m∗. The Baxter permutation OP(m)
associated with m is the only permutation π such that for every 1 ≤ i ≤ n, the i-th edge
visited in the exploration of T (m) corresponds to the π(i)-th edge visited in the exploration of
T (m∗). We say that this edge corresponds to the index i.

An example is given in Figure 4. The following result proves that OP is a bijection.

s′

sm

m∗

1

2

3

4

6
78

9

10

1
2 3

4

5

6

7

8

9 10

OP(m)=

8 1 2 456 7 9 10

1 2 3 4 5 6 7 8 9 10

3

5

Figure 4 Left: The bipolar orientation m and its dual m∗, already considered in Figure 2. We
plot in black the labeling of the edges of m obtained in Figure 3 and in red the labeling of the edges
of m∗ obtained using the same procedure used for m. Right: The permutation OP(m) obtained by
pairing the labels of the corresponding primal and dual edges between m and m∗.

I Lemma 12. The function OP : O → P is equal to the function Ψ : O → P defined in [5,
Section 3.2]. Therefore OP is a size-preserving bijection.

The definition of Ψ is the same as that of OP, with T (m∗) replaced by T (m−1), m−1 denoting
the symmetry of m along the vertical axis. So the proof (that we omit) amounts to showing
that these two trees visit the edges of m in the same order7.

2.4 Discrete coalescent-walk processes
Since the key ingredient for permuton convergence is the extraction of patterns (see Pro-
position 32), we introduce in this section a new tool in order to “extract patterns from the
plane walk” that encodes a Baxter permutation, namely coalescent-walk processes. Then,
in Section 2.4.1, we present a bijection between walks in the non-negative quadrant and

7 Actually they are related by a classic bijection between trees: the Lukasiewicz walk of T (m∗) is the
reversal of the height function of T (m−1).
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a specific kind of coalescent-walk processes, and in Section 2.4.2, we introduce a bijection
between these coalescent-walk processes and Baxter permutations. Composing these two
mappings we obtain another bijection between walks in the non-negative quadrant and
Baxter permutations. Finally, in Section 2.5 we complete the proof of Theorem 1.

I Definition 13. Let I be a (finite or infinite) interval of Z. We call coalescent-walk process
over I a family {(Z(t)

s )s≥t,s∈I}t∈I of one-dimensional walks such that
the walk Z(t) starts at zero at time t, i.e. Z(t)

t = 0;
if Z(t)

k ≥ Z
(t′)
k (resp. Z(t)

k ≤ Z
(t′)
k ) at some time k, then Z(t)

k′ ≥ Z
(t′)
k′ (resp. Z(t)

k′ ≤ Z
(t′)
k′ )

for every k′ ≥ k.

Note that, as a consequence, if Z(t)
k = Z

(t′)
k , at time k, then Z(t)

k′ = Z
(t′)
k′ for every k′ ≥ k.

In this case, we say that Z(t) and Z(t′) are coalescing and call coalescent point of Z(t) and
Z(t′) the point (`, Z(t)

` ) such that ` = min{k ≥ max{t, t′}|Z(t)
k = Z

(t′)
k }. We denote by C(I)

the set of coalescent-walk processes over some interval I.

2.4.1 The coalescent-walk process corresponding to a plane walk
We now introduce a particular family of coalescent-walk processes of interest for us. Let I be
a (finite or infinite) interval of Z. Recall the definition of A from Equation (4) page 7, and let
WA(I) be the set of plane walks of time space I (functions I → Z2) with increments in A.

Take W ∈WA(I) and denote Wt = (Xt, Yt) for t ∈ I. From X and Y we construct the
family of walks {Z(t)}t∈I , called the coalescent-walk process associated with W, by

for t ∈ I, Z(t)
t = 0;

for t ∈ I and k ∈ I ∩ [t+ 1,+∞),

Z
(t)
k =


Z

(t)
k−1 + (Yk − Yk−1), if Z

(t)
k−1 ≥ 0,

Z
(t)
k−1 − (Xk −Xk−1), if Z

(t)
k−1 < 0 and Z(t)

k−1 − (Xk −Xk−1) < 0,
Yk − Yk−1, if Z

(t)
k−1 < 0 and Z(t)

k−1 − (Xk −Xk−1) ≥ 0.
(5)

Let WC : WA(I) → C(I) map each W ∈ WA(I) to the corresponding coalescent-walk
process, i.e. WC(W ) = {Z(t)}t∈I . We also set Cn = WC(Wn) ⊂ C([n]) and C = ∪n∈Z≥0Cn.

We give a heuristic explanation of this construction in the following example.

I Example 14. We consider the plane walkW = (Wt)t∈[10] starting at (0, 0) on the left-hand
side of Figure 5. We plot in the second diagram of Figure 5 the walks Y in red and −X
in blue. We now explain how we reconstruct the ten walks {Z(t)}1≤t≤10 (in green on the
right-hand side of Figure 5). The walk Z(t) starts at height zero at time t. Then,

If Z(t)
k−1 is non-negative (in particular at the starting point), then the increment Z(t)

k −Z
(t)
k−1

is the same as the one of the red walk.
If Z(t)

k−1 is negative, then the increment Z(t)
k − Z

(t)
k−1 is the same as the one of the blue

walk, as long as this increment keeps Z(t)
k negative.

Now if at time k − 1, Z(t)
k−1 is negative but the blue increment would “force” it to cross

(or touch) the x-axis (that is if Xk −Xk−1 ≤ Z(t)
k−1 < 0), then Z(t)

k is equal to Yk − Yk−1
(i.e. Z(t) coalesces with Z(k−1) at time k). For instance this is the case of the second
increment of the walk Z(7).

I Observation 15. The y-coordinates of the coalescent points of a coalescent-walk process in
C(I) are non-negative.
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7:10 Scaling and Local Limits of Baxter Permutations

2.4.2 The permutation associated with a coalescent-walk process
Given a coalescent-walk process Z = {Z(t)}t∈I defined on a (finite or infinite) interval I, the
relation ≤Z on I defined as follows is a total order (we skip the proof of this fact):

i ≤Z j ⇐⇒ {i < j and Z(i)
j < 0} or {j < i and Z(j)

i ≥ 0} or {i = j}. (6)

This definition allows to associate a permutation to a coalescent-walk process.

I Definition 16. Fix n ∈ Z≥0. Let Z = {Z(t)}t∈[n] ∈ Cn be a coalescent-walk process over [n].
Denote CP(Z) the permutation σ ∈ Sn such that for 1 ≤ i, j ≤ n, σ(i) ≤ σ(j) ⇐⇒ i ≤Z j.

We have that pattern extraction in the permutation CP(Z) depends only on a finite
number of trajectories, a key step towards proving permuton convergence.

I Proposition 17. Let σ be a permutation obtained from a coalescent-walk process Z =
{Z(t)}t∈[n] via the map CP. Let I = {i1 < · · · < ik} ⊂ [n]. Then8 patI(σ) = π if the
following condition holds: for all 1 ≤ ` < s ≤ k, Z(i`)

is
≥ 0 ⇐⇒ π(s) < π(`).

We end this section with the following observation. Note that given a coalescent-walk
process on [n], the plane drawing of the trajectories {Z(t)}t∈I identifies a natural tree
structure Tr(Z) as follows (see for instance the middle and right-hand side of Figure 6):

vertices of Tr(Z) correspond to points 1, . . . , n on the x-axis, plus a root.
Edges are portions of trajectories starting at the right of a vertex i and interrupted at
the first encountered new vertex. Trajectories that do not encounter a new vertex before
time n are connected to the root. The label i is also carried by the edge at the right of i.

I Remark 18. In the case where I = [n] for some n ∈ Z≥0, the permutation π = CP(Z) is
readily obtained from Tr(Z): it is enough to label the points 1, . . . , n on the x-axis of the
diagram of the colaescent-walk process Z (these labels are painted in purple in the middle
picture of Figure 6) according to the exploration process of Tr(Z) and then to read these
labels from left to right.

2.5 From plane walks to Baxter permutations via coalescent-walk
processes

We sketch here the proof of Theorem 1. The key ingredient is to show that the dual tree
T (m∗) of a bipolar orientation can be recovered from its encoding plane walk by building
the associated coalescent-walk process Z and looking at the corresponding tree Tr(Z). More

8 See Appendix B for notation on patterns of permutations.

Z(7)

Z(1)

X

Y −X Y ,

t

−X Y ,

t

,Z = {Z(t)}1≤t≤10

−X

Y

−X

Y

Figure 5 Left: A plane walk (X,Y ) starting at (0,0). Middle: The diagram of the walks Y (in
red) and −X (in blue). Right: The two walks are shifted (one towards the top and one to the
bottom) and the ten walks of the coalescent-walk process are plotted in green.
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Yt + 1

−Xt − 1m

T (m∗)

1 2
3

4

5

6

7

8

9 10

1 2 3 4 6 7 9 10
168 9 105 7

5
2

8
4 3

These two points are
identified in Tr(Z)

10

9

85
41

3
2

7
6

Tr(Z)

CP(Z)=8 6 5 7 9 1 2 4 10 3

Figure 6 On the left-hand side the map m from Figure 4. In the middle the associated coalescent-
walk process Z = WC ◦OW(m) that naturally determines the tree Tr(Z) (shown on the right). Note
that the exploration of Tr(Z) gives the inverse permutation CP(Z)−1 = 6 7 10 8 3 2 4 1 5 9.

precisely, let W = (Wt)1≤t≤n = OW(m) be the walk encoding a given bipolar orientation m,
and Z = WC(W ) be the corresponding coalescent-walk process. Then the following result,
illustrated by an example in Figure 6, holds.

I Proposition 19. The tree Tr(Z) is equal to the dual tree T (m∗) with edges labeled according
to the order given by the exploration of T (m).

The proof requires a lot more notation so we skip it in this extended abstract. Theorem 1
then follows immediately, by construction of OP(m) from T (m∗) and T (m) (Definition 11)
and of CP(Z) from Tr(Z) (Remark 18).

3 Convergence to the Baxter permuton

We start this section by representing a uniform random walk in Wn as a conditioned random
walk. For all n ≥ 2, let WA,exc

n be the set of plane walks (Wt)0≤t≤n−1 of length n that stay
in the non-negative quadrant, starting and ending at (0, 0), with increments in A (defined
in Equation (4)). Remark that for n ≥ 1, the mapping WA,exc

n+2 → Wn removing the first
and the last step, i.e. W 7→ (Wt)1≤t≤n, is a bijection. Recall also that W̄ denotes the walk
defined below Equation (2). An easy calculation then gives the following (observed also in
[19, Remark 2]):

I Proposition 20. Conditioning on {(W̄t)0≤t≤n+1 ∈ WA,exc
n+2 }, the law of (W̄t)0≤t≤n+1 is

the uniform distribution on WA,exc
n+2 , and the law of (W̄t)1≤t≤n is the uniform distribution

on Wn.

As we said in the introduction, a key result to prove Theorem 5 is to determine the
scaling limit of coalescent-walk processes encoded by uniform elements of Wn. Thanks to
Proposition 20 we can equivalently study coalescent-walk processes encoded by quadrant
walks conditioned to start and end at (0, 0). We will first deal with the unconditioned case
(see Section 3.1.1) and then with the conditioned one (see Section 3.1.2).

3.1 Scaling limits of coalescent-walk processes
We start by defining our continuous limiting object: it is formed by the solutions of the
following family of stochastic differential equations (SDEs) indexed by u ∈ R, driven by a
two-dimensional process W = (X,Y){

dZ(u)(t) = 1{Z(u)(t)>0} dY(t)− 1{Z(u)(t)≤0} dX(t), t ≥ u,
Z(u)(t) = 0, t ≤ u.

(7)

Existence and uniqueness of solutions were already studied in the literature in the case where
the driving process W is a Brownian motion, in particular with the following result.
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7:12 Scaling and Local Limits of Baxter Permutations

I Theorem 21 (Theorem 2 of [23], Proposition 2.2 of [9]). Let I be a (finite or infinite)
interval of R and fix t0 ∈ I. Let W = (X,Y) denote a two-dimensional Brownian motion on
I with covariance matrix

( 1 ρ
ρ 1
)
for ρ ∈ (−1, 1). We have path-wise uniqueness (explained in

1 below) and existence (explained in 2 below) of a strong solution for the SDE:{
dZ(t) = 1{Z(t)>0} dY(t)− 1{Z(t)≤0} dX(t), t ∈ I ∩ [t0,+∞),
Z(t0) = 0.

(8)

Namely, letting (Ω,F , (Ft)t∈I ,P) be a filtered probability space satisfying the usual conditions,
and assuming that (X,Y) is an (Ft)t-Brownian motion,
1. if Z,Z? are two (Ft)t-adapted continuous processes that verify Equation (8) almost surely,

then Z = Z? almost surely.
2. There exists an (Ft)t-adapted continuous process Z which verifies Equation (8) almost

surely, and is adapted to the completion of the canonical filtration of (X,Y).

3.1.1 The unconditioned scaling limit result

Let us now work on the completed canonical filtered probability space of a Brownian motion
W = (X,Y) with covariance

(
1 −1/2
−1/2 1

)
. For u ∈ R, let Z(u) be the strong solution of

Equation (8) with I = [u,∞) and t0 = u, provided by Theorem 21. Note that Z(u) satisfies
Equation (8) (only) for almost all ω. For every u, Z(u) is adapted, and it is simple to see
that the map (ω, u) 7→ Z(u) is jointly measurable. By Tonelli’s theorem, for almost every ω,
Z(u) is a solution for almost every u.

I Remark 22. For fixed u, Z(u) is a Brownian motion on [u,∞). Note however that the
coupling of Z(u) for different values of u is highly non trivial.

I Remark 23. Given ω (even restricted to a set of probability one), we cannot say that
(Z(u))u∈R forms a whole field of solutions to Equation (7), since we cannot guarantee that
the SDE holds for all u simultaneously. Similarly, it is expected that there exists exceptional
u where uniqueness fails.

Now, let W̄ = (X̄, Ȳ ) = (X̄k, Ȳk)k∈Z be the random plane walk defined below Equa-
tion (2), and Z̄ = WC(W̄ ) be the corresponding coalescent-walk process. We define rescaled
versions: for all n ≥ 1, u ∈ R, let W̄n : R→ R2 and Z̄

(u)
n : R→ R be the continuous functions

defined by linearly interpolating the following points:

W̄n

(
k

n

)
= 1√

2n
W̄k, k ∈ Z, Z̄

(u)
n

(
k

n

)
= 1√

2n
Z̄

(bnuc)
k , u ∈ R, k ∈ Z. (9)

Our most important technical result is the following theorem (whose proof is postponed to
Appendix A).

I Theorem 24. Let u1 < . . . < uk. We have the following joint convergence in (C(R,R))k+2:

(
W̄n, Z̄

(u1)
n , . . . , Z̄

(uk)
n

)
d−−−−→

n→∞

(
W,Z(u1), . . . ,Z(uk)

)
. (10)
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3.1.2 The conditioned scaling limit result
As a standard application of [12, Theorem 4], the scaling limit of the random walk W̄n

conditioned on starting at the origin at time 0 and ending at the origin at time n + 1
is We = (Xe,Ye), the Brownian excursion in the non-negative quadrant of covariance(

1 −1/2
−1/2 1

)
. Let us denote by (Ω,F , (Ft)0≤t≤1,Pexc) the completed canonical probability

space of We, and work from now on in that space.
It makes sense that the scaling limit of the coalescent-walk process in this conditioned

setting should be the solution of Equation (7) driven by We, for which we have to show exist-
ence and uniqueness. First, let us remark that since Brownian excursions are semimartingales,
stochastic integrals are still well-defined. We skip the rather abstract proof of the following,
which relies on absolute continuity between Brownian excursion and Brownian motion:

I Theorem 25. Denote F (u)
t = σ(We(s) −We(u), u ≤ s ≤ t) completed by the Pexc-

negligible sets of Ω. There is a jointly measurable map (ω, u) 7→ Z(u)
e such that for all u, Z(u)

e

is (F (u)
t )t-adapted, and almost surely, for almost every u, Z(u)

e solves Equation (7) driven
by We. Moreover, for u ∈ (0, 1), if Z? is another (F (u)

t )t-adapted solution of Equation (7)
driven by We started at time u, then Z? = Z(u)

e almost surely.

From the above result and the discrete absolutely continuity arguments of [10, 12], we
can deduce the following analogous result of Theorem 24 (whose proof is omitted). We use
the same notation as in Equation (9), and state the result for uniform random times for later
convenience.

I Theorem 26. Let u1 < . . . < uk be k sorted independent continuous uniform random
variables on [0, 1], independent from all other random variables. We have the following
convergence in (C([0, 1],R))k+2:(

W̄n, Z̄
(u1)
n , . . . , Z̄

(uk)
n

∣∣∣(W̄t)0≤t≤n+1 ∈WA,exc
n+2

)
d−−−−→

n→∞

(
We,Z

(u1)
e , . . . ,Z(uk)

e

)
.

3.2 The construction of the limiting object
We introduce the limiting coalescent Baxter permuton. We place ourselves in the probability
space defined above, where We = (Xe,Ye) is a Brownian excursion of correlation −1/2
conditioned to stay in the non-negative quadrant. Let Ze = {Z(u)

e }u∈[0,1] be the family of
processes given by Theorem 25, which almost surely solves Equation (7) driven by We for
almost every u. From the continuous coalescent-walk process Ze we build a binary relation
≤Ze

on [0, 1] defined as in Equation (6). Clearly, (ω, x, y) 7→ 1x≤Zey
is measurable, and we

have the following property whose proof, which relies on path-wise uniqueness, is skipped.

I Proposition 27. The relation ≤Ze is a total order on [0, 1] \A, where A is a random set
of zero Lebesgue measure.

We then define the following random function (note that (ω, t) 7→ ϕZe
(t) is measurable):

ϕZe
(t) := Leb

({
x ∈ [0, 1]|x ≤Ze

t
})

= Leb
({
x ∈ [0, t)|Z(x)

e (t) < 0
}
∪
{
x ∈ [t, 1]|Z(t)

e (x) ≥ 0
})

,

where here Leb(·) denotes the one-dimensional Lebesgue measure. We define the coalescent
Baxter permuton as the push-forward of the Lebesgue measure via the map (Id, ϕZe), i.e.

µB(·) = µZe
(·) := (Id, ϕZe

)∗ Leb(·) = Leb ({t ∈ [0, 1]|(t, ϕZe
(t)) ∈ · }) .
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7:14 Scaling and Local Limits of Baxter Permutations

I Observation 28. We try to give an intuition behind the definition of µB. Recall that
given a coalescent-walk process Z = {Z(t)}t∈[n] ∈ C, we can associate to it the corresponding
Baxter permutation σ = CP(Z) and the total order ≤Z on [n]. The permutation σ satisfies
the following property: for every i ∈ [n], σ(i) = |{j ∈ [n]|j ≤Z i}|. The function ϕZe is a
continuous analogue of the permutation σ, when we consider the continuous coalescent-walk
process Ze instead of a discrete one, and µZe is the associated permuton.

The following result is proved as [20, Proposition 3.1], relying on Proposition 27.

I Proposition 29. Almost surely, µZe
is a permuton.

The final proof of Theorem 5, i.e. the convergence of uniform Baxter permutations to µB , can
be found in Appendix B. We give here a short sketch. The proof is based on the analysis of
pattern extraction from uniform Baxter permutations. Proposition 17 relates the probability
of extracting a specific pattern to the probability that some trajectories of the corresponding
coalescent-walk process have given signs at given times. Then, by Theorem 26, the latter
converges to the analogue probability for the limiting continuous coalescent-walk process.
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A The proof of Theorem 24

Recall that W̄ = (X̄, Ȳ ) = (X̄k, Ȳk)k∈Z is the random plane walk defined below Equation (2),
and Z̄ = WC(W̄ ) is the corresponding coalescent-walk process. We need the following result
whose proof is left to the complete version of this extended abstract.

I Proposition 30. For every u ∈ Z, Z̄(u) has the distribution of a random walk with the
same step distribution as Ȳ (which is the same as that of −X̄).

I Remark 31. Recall that the increments of a walk of a coalescent-walk process are not always
equal to one of the increments of the corresponding walk (see for instance Equation (5)).
The statement of Proposition 30 is a sort of “miracle” of the geometric distribution.

Proof of Theorem 24. The first step in the proof is to establish convergence of the compon-
ents of the vector on the left-hand side of Theorem 24. By a classical invariance principle,
we get that W̄n = (X̄n, Ȳn) converges to W = (X,Y) in distribution. Using Proposition 30,
and applying again the invariance principle, we get that (Z̄(u)

n (u+ t))t≥0, converges to a
one-dimensional Brownian motion. This gives the marginal convergence thanks to Remark 22.

The second step in the proof is to establish joint convergence. Marginal convergence
gives joint tightness, so that by Prokhorov’s theorem, to show convergence, one only needs to
identify the distribution of all joint subsequential limits. Assume that along a subsequence,
we have(

W̄n, Z̄
(u1)
n , . . . , Z̄

(uk)
n

)
d−−−−→

n→∞

(
W, Z̃1, . . . , Z̃k

)
.

Using Skorokhod’s theorem, we may define all involved variables on the same probability space
and assume that the convergence is almost sure. The joint distribution of the right-hand-side
is unknown for now, but we will show that for every 1 ≤ i ≤ k, Z̃i = Z(ui) a.s., which would
complete the proof. Recall that Z(ui) is the strong solution of Equation (8), started at time
ui and driven by W = (X,Y), which exists thanks to Theorem 21. Let us now fix i and
abbreviate u = ui, Z̃ = Z̃i. Our goal is to show that Z̃ also verifies Equation (8) and apply
path-wise uniqueness.
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Let Ft = σ(W(s), Z̃(s), s ≤ t). This gives a filtration for which W and Z̃ are adapted. We
will show thatW is an (Ft)t-Brownian motion, that is for t ∈ R, s ≥ 0, (W(t+s)−W(t)) ⊥⊥ Ft.
For fixed n, by definition of a random walk, W̄n(t+ s) − W̄n(t) is independent from
σ(W̄k, k ≤ bntc). Therefore, by the definition given in Equation (5),(

W̄n(t+ s)− W̄n(t)
)
⊥⊥

(
W̄n(r), Z̄(u)

n (r)
)
r≤n−1bntc

. (11)

By convergence, we obtain that W(t + s) −W(t) is independent from
(
W(r), Z̃(r)

)
r≤t,

completing the claim that W is an (Ft)t-Brownian motion.
Now fix a rational ε > 0 and a rational t > u such that Z̃(t) > ε. There is δ > 0 so that

Z̃ > ε/2 on [t − δ, t + δ]. By almost sure convergence, there is N0 such that for n ≥ N0,
Z̄

(u)
n > ε/4 on [t− δ, t+ δ]. On this interval, outside of the event

{ sup
1≤i≤n

|Ȳi − Ȳi−1| ≥
√

2nε/4},

Z̄
(u)
n − Ȳn is constant by construction of the coalescent-walk process. As a result (the

probability of the bad event is bounded by Ce−c
√
n ), the limit Z̃− Y is constant too almost

surely. We have shown that almost surely Z̃− Y is locally constant on {t : Z̃(t) > ε}. This
translates into the following equality:∫ t

u

1{Z̃(r)>ε} dZ̃(r) =
∫ t

u

1{Z̃(r)>ε} dY(r).

The stochastic integrals are well-defined: on the left-hand side by considering the canonical
filtration of Z̃, on the right-hand-side by considering (Ft)t. The same can be done for
negative values, leading to∫ t

u

1{|Z̃(r)|>ε} dZ̃(r) =
∫ t

u

1{Z̃(r)>ε} dY(r)−
∫ t

u

1{Z̃(r)<−ε} dX(r).

By stochastic dominated convergence theorem [24, Thm. IV.2.12], one can take the limit
as ε→ 0, and obtain∫ t

u

1{Z̃(r)6=0} dZ̃(r) =
∫ t

u

1{Z̃(r)>0} dY(r)−
∫ t

u

1{Z̃(r)<0} dX(r).

Thanks to the fact that Z̃ is Brownian,
∫ t
u
1{Z̃(r)=0} dZ̃(r) = 0, so that the left-hand side

equals Z̃(t). As a result Z̃ verifies Equation (8) and we can apply path-wise uniqueness
(Theorem 21) to complete the proof. J

B The proof of Theorem 5

Recall that permuton convergence has been defined in Definition 4. We present one its
characterizations (which comes from [1, Theorem 2.5]), expressed in terms of random induced
patterns. For n ∈ Z>0, we denote by Sn the set of permutations of size n. Let 1 ≤ k ≤ n,
σ ∈ Sn and I = {i1, . . . ik} with 1 ≤ i1 < · · · < ik ≤ n. The pattern in σ induced by I is
the only permutation π ∈ Sk such that the k values σ(i1), . . . , σ(ik) are order isomorphic to
π(1), . . . , π(k). In this case, we write patI(σ) = π.
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We also define permutations induced by k points in the square [0, 1]2. Take a sequence of
k points (X,Y ) = ((x1, y1), . . . , (xk, yk)) in [0, 1]2 in general position, i.e. with distinguished
x and y coordinates. We denote by (x(1), y(1)), . . . , (x(k), y(k)) the x-reordering of (X,Y ),
i.e. the unique reordering of the sequence ((x1, y1), . . . , (xk, yk)) such that x(1) < · · · < x(k).
Then the values (y(1), . . . , y(k)) are in the same relative order as the values of a unique
permutation, that we call the permutation induced by (X,Y ).

I Proposition 32. Let σn be a random permutation of size n, and Ikn = {i1n, . . . , ikn} be
a uniform k-element subset of [n], independent of σn. Let µ be a random permuton, and
denote Permk(µ) the unique permutation9 induced by k independent points in [0, 1]2 with
common distribution µ conditionally10 on µ. Then

µσn

d→ µ ⇐⇒ ∀k ∈ Z>0, ∀π ∈ Sk, P(patIk
n
(σn) = π)→ P(Permk(µ) = π).

We can now prove Theorem 5. First we state a consequence of the fact that µZe
is a

permuton and that Z(s)
e (t) are continuous random variables, which allows us to get rid of

equalities:

I Lemma 33. Almost surely, for almost every s < t ∈ [0, 1], Z(s)
e (t) 6= 0. Then Z(s)

e (t) > 0
implies ϕZe(s) < ϕZe(t), and Z(s)

e (t) < 0 implies ϕZe(s) > ϕZe(t).

Proof of Theorem 5. We reuse here the notation of Theorem 26. In particular W̄ is a ν-
random walk and Z̄ = WC(W̄ ) is the associated coalescent-walk process. Let σn = CP(Z̄|[n]).
Let En denote the event {(W̄t)0≤t≤n+1 ∈WA,exc

n+2 }. By Proposition 20 and the fact that the
mapping CP ◦WC is a size-preserving bijection, conditioned on En, σn is a uniform Baxter
permutation.

Fix k ≥ 1 and π ∈ Sk. For n ≥ k, let In = {i1n, . . . , ikn} be a uniform k-element subset of
[n], independent of σn. In view of Proposition 32, to complete the proof, we will show that

P(patIn
(σn) = π | En) −−−−→

n→∞
P(Permk(µZe) = π).

Thanks to Proposition 17, we have

P(patIn
(σn) = π | En) = P

(
∀1≤`<s≤k, Z̄

(i`
n)

is
n
≥ 0 ⇐⇒ π(`) > π(s) | En

)
.

Let (u1, . . . ,uk) be the sorted vector of k independent uniform continuous random variables
in [0, 1]. For every n ≥ 1, one can couple In and (u1, . . . ,uk) so that ijn = bnujc for every
1 ≤ j ≤ k, with an error of probability O(1/n). As a result,

P(patIn
(σn) = π | En) =P

(
∀1≤`<s≤k, (2n)−1/2Z̄(u`)

us
≥ 0 ⇐⇒ π(`) > π(s) | En

)
+O(1/n)

−−−−→
n→∞

P
(
∀1≤`<s≤k, Z

(u`)
e (us) ≥ 0 ⇐⇒ π(`) > π(s)

)
=P

(
∀1≤`<s≤k,

{
π(`) > π(s) =⇒ ϕZe (u`) > ϕZe (us)
π(`) < π(s) =⇒ ϕZe (u`) < ϕZe (us)

)
, (12)

where for the limit we used the convergence in distribution of Theorem 26 together with the
Portmanteau theorem. Additionally, Lemma 33 is used both to take care of the boundary
effect in the Portmanteau theorem, and to do the rewriting in the last line.

In order to finish the proof, it is enough to check that the probability on the right-hand
side of Equation (12) equals P(Permk(µZe) = π). This is clear since by definition of Permk

and µZe
, Permk(µZe

) is the permutation induced by
(
(u1, ϕZe

(u1)), . . . , (uk, ϕZe
(uk))

)
. J

9 Note that if µ is a permuton, then it has uniform marginals and so the x and y coordinates of k points
sampled according to µ are a.s. distinct.

10This is possible by considering the new probability space described in [1, Section 2.1].
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7:18 Scaling and Local Limits of Baxter Permutations

C Simulations of large Baxter permutations

The simulations for Baxter permutations presented in the first page of this extended abstract
have been obtained in the following way:
1. first, we have sampled a uniform random walk of size n+ 2 in the non-negative quadrant

starting at (0, 0) and ending at (0, 0) with increments distribution given by Equation (2).
This has been done using a “rejection algorithm”: it is enough to sample a walk W

starting at (0, 0) with increments distribution given by Equation (2), up to the first time
it leaves the non-negative quadrant. Then one has to check if the last step inside the
non-negative quadrant is at the origin (0, 0). When this is the case (otherwise we resample
a new walk), the part of the walk W inside the non-negative quadrant, denoted W̃ , is a
uniform walk of size |W̃ | in the non-negative quadrant starting at (0, 0) and ending at
(0, 0) with increments distribution given by Equation (2).

2. Removing the first and the last step of W̃ , thanks to Proposition 20, we obtained a
uniform random walk in Wn.

3. Finally, applying the mapping CP ◦WC to the walk given by the previous step, we
obtained a uniform Baxter permutation of size n (thanks to Theorem 1).

Note that our algorithm gives a uniform Baxter permutation of random size.
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