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Hairy vetch (Vicia villosa ssp. villosa Roth) is native of Europe andWestern Asia and it is the
second most cultivated vetch worldwide. Hairy vetch is used as forage species in semiarid
environments and as a legume cover crop in sub-humid and humid regions. Being an
incompletely domesticated species, hairy vetch can form spontaneous populations in a
new environment. These populations might contain novel and adaptive traits valuable for
breeding. Niche occupancy based on geographic occurrence and environmental data of
naturalized populations in central Argentina showed that these populations were
distributed mainly on disturbed areas with coarse soil texture and alkaline-type soils.
Low rainfall and warm temperatures during pre- and post-seed dispersal explained the
potential distribution under sub-humid and semiarid conditions from Pampa and Espinal
ecoregions. Conversely, local adaptation along environmental gradients did not drive the
divergence among recently established Argentinian (AR) populations. The highest genetic
diversity revealed by microsatellite analysis was observed within accessions (72%) while
no clear separation was detected between AR and European (EU) genotypes, although
naturalized AR populations showed strong differentiation with the wild EU accessions.
Common garden experiments were conducted in 2014–16 in order to evaluate
populations’ germination, flowering, and biomass traits. European cultivars were
characterized by low physical seed dormancy (PY), while naturalized AR accessions
showed higher winter biomass production. Detected variation in the quantitative
assessment of populations could be useful for selection in breeding for traits that
convey favorable functions within specific contexts.

Keywords: Vicia villosa genotypes, naturalized population, niche-modeling, genetic resource, phenotypic
characterization, microsatellites
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INTRODUCTION

The Vicia genus, of the Fabaceae family, includes several winter
annual legumes, generically grouped as “vetches.” Within this
complex, Vicia villosa ssp. villosa Roth, commonly known as
hairy vetch (HV), is a relevant member. It is native in Europe
and West Asia, being introduced as a crop or weed worldwide
to temperate climate regions. Hairy vetch is considered a
cosmopolitan species due to its high capacity to naturalize
under different conditions. It is present in the flora of both
South and North Americas, including Argentina (Van de Wouw
et al., 2001; Bryant and Hughes, 2011).

Hairy vetch is the second most important vetch in agricultural
systems worldwide (Francis et al., 1999). Generally, it is grown
for forage, consumed under direct or indirect grazing, or for
green manure. In conservation agriculture, the use of HV as
cover crop is increasing. Hairy vetch displays high tolerance to
biotic and abiotic stresses (Francis et al., 1999). It is one of the
recommended cover crop in organic or conservation farming,
mainly because it enhances soil nitrogen content by biological
fixation (Vanzolini, 2011). Due to its valuable traits, HV could
help to improve soil structure, reduce soil erosion, and enhance
weed suppression (Clark, 2007; Wayman et al., 2016; Frasier
et al., 2017). Typically, HV produces between 2.6 and 6.2 ton
ha−1 of above-ground dry biomass (Lawson et al., 2015; Mirsky
et al., 2017; Ackroyd et al., 2019).

Hairy vetch shows the capacity to form spontaneous
populations in ruderal habitats of cultivated areas (Aarssen
et al., 1986; Renzi and Cantamutto, 2013). Under natural
conditions, the ability to regenerate populations from the soil
seed bank is associated with primary combinational seed
dormancy (i.e., physical plus physiological dormancy, PY+PD)
(Renzi et al., 2014). These naturalized populations can be useful as
a genetic resource for breeding. However, despite the high
potential agronomic value, HV is an incompletely domesticated
species and only a few improved varieties exist. Likewise, HV
cover crops are often unreliable in terms of establishment,
performance and biomass production (Wilke and Snapp, 2008;
Aapresid, 2018). Altogether these drawbacks frequently limit HV
adoption by farmers (Maul et al., 2011). Studies concerning
geographic distribution and climatic requirements of this species
are scarce (Aarssen et al., 1986). The study of the ecological niches
of natural HV populations would improve our understanding of
its potential adaptation to different environmental factors.

The most important breeding goals of HV include high early
vigor, high winter, and spring biomass production and low level
of seed dormancy (mainly due to the physical component of
primary dormancy). Rapid growth under low temperatures is
especially important when HV is used to produce biomass at the
end of winter (i.e., cover crop). The time-window for HV growth
control (by desiccation or mechanical methods) during early
spring, depends on the planting date of the subsequent summer
crop. As the growth rate of HV accelerates with the spring
advance the adjustment of the control intervention is critical to
determine the cover crop performance. Moreover, HV spring
biomass production largely determines the amount of nitrogen
supplied to subsequent cash crops (Vanzolini, 2011). An
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additional challenge of HV is seed dormancy control, which
can lead to incomplete emergence after seeding (Jacobsen et al.,
2010; Maul et al., 2011). On the contrary, in agroecosystems of
semiarid regions, HV natural reseeding capacity is a desirable
trait reducing establishment costs (Renzi et al., 2017; Renzi et al.,
2019), especially when used as forage crop by livestock farmers.

HV was introduced in Argentina more than a century ago
(Manganaro, 1919). Since then, several naturalized populations
have been established in ruderal habitats surrounding
agricultural areas. These populations are considered an
unexplored genetic resource for breeding. However, to
confirm their potential value as a genetic resource, it is
imperative to collect and characterize such material, by
comparison, to currently registered cultivated accessions.

The objectives of this study are: i) to describe the natural
habitats of naturalized HV populations from Argentina, ii) to
assess the phenotypic variability of naturalized populations
compared with a set of 41 introduced accessions of HV
(including wild and cultivars), and iii) to study the genetic
structure using simple sequence repeat (SSR) markers.
MATERIALS AND METHODS

Ecological Characterization
Naturalized Populations
The study area comprised nine provinces: Buenos Aires, La
Pampa, Río Negro, Neuquén, Mendoza, Córdoba, San Luis,
Santa Fe, and Entre Ríos, belonging to three eco-regions:
Pampa, Espinal, and Shrubs of Plateau and Plains (Figure 1A).
Three exploration trips were accomplished during December
2013-2015, covering a total of 21.400 km. The survey on HV
populations was based on specialized systematic bibliography
(Burkart, 1952), and voucher specimens deposited at Instituto de
Botánica Darwinion (http://www2.darwin.edu.ar) and Museo de
La Plata (http://www.museo.fcnym.unlp.edu.ar). To be
considered, studied HV populations must be observed for at
least two different years at the same locality, and they must
contain more than 50 individuals. Recorded information of
collection site consisted of i) ecological region, ii) latitude,
longitude and altitude, iii) environment (soil and climate) and
plant community (dominance of co-occurring plant species)
characterized by family, iv) life cycle and origin (Marzocca,
1994). Global positioning system (GPS) coordinates of 63
naturalized populations were recorded (Table S1).

Environmental Variables
The WorldClim (http://worldclim.org) version 2.0 database was
used to extract information about the climate (period 1970–
2000). Data were extracted using DIVA-GIS software from ESRI
grids with a spatial resolution of 30 arc-seconds (~ 1 km) in the
WGS-84 (EPSG: 4326). Bioclimatic variables (BIO1–BIO19)
were derived from monthly temperature and rainfall values
(Fick and Hijmans, 2017). To avoid over-parameterization, 10
bioclimatic variables were selected to represent annual trends
and extreme conditions of temperature and precipitation: annual
February 2020 | Volume 11 | Article 189
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mean temperature (BIO1), maximum temperature of the
warmest month (BIO5), minimum temperature of the coldest
month (BIO6), mean temperature of warmest quarter (BIO10),
mean temperature of coldest quarter (BIO11), annual
precipitation (BIO12), precipitation of the wettest month
(BIO13), precipitation of the driest month (BIO14),
precipitation of wettest quarter (BIO16), and precipitation of
driest quarter (BIO17) (Hijmans et al., 2005). In addition to the
bioclimatic variables, edaphic variables related to soil texture,
pH, and bulk density were obtained from soil databases
(FAO/IIASA/ISSCAS/JRC, 2012) using WGS84 and spatial
resolution of 30 arc-seconds. For details, including basic
descriptive statistics of each environmental variable see
Table S1.

Soil samples (at depth of 0–15 cm) were collected at each site
to assess the data obtained from soil databases. Soil samples were
air-dried and sieved to < 2 mm. pH was measured using a glass
electrode pH-meter (soil: water, 1:2.5). Texture analysis (% clay,
silt, sand) on HCl and H2O2 treated and chemically [0.05 M
(NaPO3)6 and 0.15 M Na2CO3] dispersed samples was carried
out by a combination of sieving and pipette methods
(Cantamutto et al., 2008; Santos et al., 2017). Pearson’s
Correlation Coefficient was performed between soil databases
and samples using the InfoStat software (Di Rienzo et al., 2013).

Niche Analysis
Ecological niche models were constructed using the geographic
locations of HV naturalized populations. Maxent (version 279
3.4.1, Phillips et al., 2018) at default conditions, a maximum-
entropy based machine learning method was used for modeling
purposes. Maxent showed better performance than other
methods when samples sizes are small (Hernandez et al., 2006)
and it estimates the potential niche instead of the realized
Frontiers in Plant Science | www.frontiersin.org 3
distribution of the modeled entity (Phillips et al., 2006;
Hradilová et al., 2019). As environmental predictors, bioclimatic
and soil variables at a resolution of 2.5 arc minutes were used.
Logistic output with suitability values ranging from 0 (unsuitable
habitat) to 1 (optimal habitat) was used. Occurrence points (75%)
were used to calibrate themodel. The remaining (25%) occurrence
points were used for model evaluation. Model strength was
quantified using the area under the curve (AUC) of the receiver
operator generated within Maxent (Zhu et al., 2017; Phillips
et al., 2018).

Phenotypic Characterization
Plant Material
In order to determine the biodiversity of studied naturalized
populations (Figure 1A, Table S1), we compared accessions
originating from Argentina (AR) and Europe (EU). Twenty-nine
naturalized populations were evaluated in a common garden
(2014 and/or 2016) experiment (Table 1). They were selected
based on the amount of available collected seed stock (> 30 g)
and wide distribution (Figure 1A). Cultivated germplasm from
AR consisted of 10 varieties (landraces) maintained by farmers
(Table 1) and two registered cultivars (Tolse F.C.A and Ascasubi
INTA) (www.inase.gov.ar).

Wild (n = 5) and cultivated germplasm (n = 24) of HV from
EU was represented by 29 accessions (Table 1). Origin and
accession name of each cultivar were provided by the Research
Institute of Crop Production (CRI) of the Czech Republic
(Table 1; for more information see https://grinczech.vurv.cz/
gringlobal/search.aspx) (Renzi et al., 2016).

Common Garden
Plants (Table 1) were cultivated at the Experimental Agricultural
Station (EEA) of Hilario Ascasubi (Buenos Aires, Argentina; 62°
FIGURE 1 | Spatial distribution and seed collection sites (circles) of naturalized hairy vetch populations in Argentina. Gray area shows studied regions and black
circles indicate the populations used for phenotypic characterization in the common garden (A). Predicted potential distribution of HV populations in central Argentina
based on climatic niche modeling results (B). Lighter colors correspond to lower probabilities of occurrence while darker colors correspond to higher probabilities of
occurrence (created with MaxEnt 3.4.1k).
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37′W, 39°23′S) during 2014 and 2016 growing seasons. The
predominant climate in this location is semiarid-temperate with
489 mm mean annual precipitation and 14.8°C mean annual
temperature (EEA H. Ascasubi, 1966–2018). The soil was an
entic haplustoll, sandy loam, slightly alkaline (pH ≈ 7.5), high in
phosphorus (P) content (≈ 22 ppm P Bray & Kurtz) and low
organic matter content (≈ 1.6%) at 20 cm (Renzi et al., 2016).
Weather data from each year were registered at the nearby
meteorological station (less than 500 m) (http://inta.gob.ar/
documentos/informes-meteorologicos).

The accessions were arranged in row plots in a randomized
complete block design, with three replications. Each
experimental unit consisted of a row of 2.50 meters sown with
30 seeds on 10th April 2014 and 27th April 2016. Original
collected seeds were used in 2014 and 2016 experiments. Seeds
were inoculated with commercial inoculum (Rhizobium
leguminosarum bv viciae) immediately before sowing (Deaker
et al., 2004).

To determine the number of days from sowing to 50%
flowering, the growing stage was recorded twice a week. After
50% flowering, leaf length (mm), leaflets per leaf, and the number
of flowers per raceme were measured on 10 randomly selected
individual stems in each plot. For foliar observations, the leaf of
the third upper node of the stem and the basal leaflet of the leaf
were chosen. Above-ground total dry matter was measured at
end of winter (mid-September) and late spring (mid-December)
by cutting plant shoots at ground level in a 0.50 m row in each
plot. The biomass of each accession, in each year, was expressed
in relation to the average biomass per year. Maturity was defined
by the presence of 75% ripe pods, approximately at the beginning
of summer. Seeds from mature pods were immediately harvested
and threshed by hand, on 21st December 2014 and 26th

December 2016, for physical (PY) testing. Moisture content at
harvest was ≤ 14% (Renzi and Cantamutto, 2013).
TABLE 1 | Country, improvement status (cultivar, wild, and naturalized), and
name of hairy vetch accessions included in the phenotypic and genotypic
studies.

Country of origin N Accession/locality† (name) Evaluation**

Cultivar
Hungary 1 Kartali a

2 Simabuekkoeny a
Poland 3 Rea a

4 Rod MPI a
5 Sielecka a,b,c

Turkey 6 617 81 a,b
7 Capello a,b

Bulgaria 8 266 99 a,b,c
Czech Republic 9 Arida a

10 HS 1884 a
11 Modra a,b
12 nsl. Dobrenice a
13 Troubsko a,b,c
14 Viola a

France 15 Savane a,b
Germany 16 Ebsdorfer a

17 Oregon a,b
18 Polyp a
19 SAM 21 a
20 Welta a

Russia 21 Pridesnjanskaja a
22 Stavcanka a,b,c
23 Stenskaja 24 a

Serbia 24 Sarajevo a

Wild
Czech Republic 1 Pouzdrany† a

2 Zavojno jezero I† a
Serbia 3 Petrovo Selo† a,b

4 Radenka II † a,b,c
5 Senokos† a

Naturalized
Argentina 1 Algarrobo† a,b

2 Bordenave† a
3 C. Dorrego† b
4 C. Pringles† b
5 C. Suarez† a
6 Chelforó† b
7 Doblas† a
8 E. Martini† b
9 E. S. Pablo† a
10 G. Acha† b
11 Guaminí† a,b
12 Guatraché b
13 I. Rico† b
14 Médanos† a
15 Ombucta† a
16 P. Carretas† b
17 P. Luro† b
18 Pasman† a
19 Pigue† a,b
20 Rancul† a
21 Rivera† b
22 S. Luis† b
23 S. Pedro† a,b,c
24 Saldungaray† a,b,c
25 T. Arroyos† b
26 T. Origone† a

(Continued)
TABLE 1 | Continued

Country of origin N Accession/locality† (name) Evaluation**

27 T. Picos† a,b
28 Tratayen† b
29 Winifreda† a

Cultivar*
Argentina 1 Algarrobo† a

2 Ascasubi INTA a,b,c
3 Bordenave† a
4 Buratovich† a
5 Carhué† a
6 G. Chavez† a
7 Guatraché† a
8 M. Juárez† a
9 Oriente† a
10 Pergamino† a
11 T. Origone† a
12 Tolse F.C.A a,b,c
February 2020 | Volume 11
*Include VNS, variety not stated.
**Phenotypic common garden evaluation in 2014 (a) and 2016 (b), and genotypic analysis
with SSR (c).
†Correspond to name of a locality.
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Statistical Analysis
Analyses of variance (ANOVA) considering a randomized
complete block, between improvement status (EU Cultivar,
Wild, AR Cultivar, Naturalized; Table 1) and between
accessions for each improvement status, were performed using
InfoStat software. Accessions and improvement status means
were compared by Fisher’s least significant difference test.
Correlations between quantitative traits were calculated using
Pearson’s correlation coefficient. Canonical variate analysis
(CVA) was performed with all phenotypic traits based on
Euclidean distance through InfoStat software.

Physical Dormancy Testing
After the harvest from the common garden experiment, seeds
were cleaned and seed weight was estimated, in a sample of 100
seeds in 2014 (n = 1) or 50 seeds in 2016 (n = 3). PY seeds (i.e.,
“hard” or impermeable) were determined by an imbibition test
performed at 20 ± 2°C for 3 days (Baskin and Baskin, 2014).
Intact non-germinated seeds of each replication were placed on
moist filter paper in Petri dishes and watered daily with tap
water. Imbibed seeds showed a visible change in its size/volume
ratio, and were easily distinguished from non-imbibed ones
(Renzi et al., 2014). Seed viability of non-germinated seeds was
assessed by slicing longitudinally with razor and immersion in a
0.5% (wt/vol) tetrazolium chloride (2,3,5-triphenyltetrazolium
chloride) (Sigma-Aldrich) solution for 24 h at 30°C in the dark
(ISTA, 2019). Seeds with pink or red-stained embryos were
considered viable. The total number of viable seeds consisted
of germinated plus stained one (Renzi et al., 2016).

For all accessions, PY break dynamics as a function of storage
time (38 days) and temperature (20°C) under wet conditions
were analyzed using the area under the curve (AUC) calculated
by GraphPad Prism Software (GraphPad, San Diego, California,
USA). Where AUC = 1 indicates seed without PY (Initial non-PY
seeds = 100%) and AUC = 0 indicate PY seed (final non-PY
seeds = 0%) (Renzi et al., 2016). Accessions were grouped by
improvement status and further compared by Fisher’s least
significant difference test using InfoStat software.

Relationships Among Phenotypic Traits, Geography,
and Environment
To assess relationships between phenotypic traits in 16 and 20
naturalized populations of Argentina (2014 and 2016) and both
geographic and environmental distances, six matrices were
prepared and examined using the Mantel test (Smouse et al.,
1986). The physical distance between naturalized populations was
estimated using geographic distance (GGD) for latitude (x)/
longitude (y) values: GGD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − xj)2 + (yi − yj)2

p
(Peakall

and Smouse, 2006; Garayalde et al., 2011). The geographic
matrix contained pairwise geographical distances while
phenotypic distance was calculated as Euclidean distances
between populations. All environmental variables were
standardized and were calculated using soil and climatic
variables (“environmental”). The significance of the normalized
Mantel coefficient was calculated using a two-tailed Monte Carlo
permutation test with 1,000 permutations using InfoStat software.
Frontiers in Plant Science | www.frontiersin.org 5
Genotypic Characterization
Plant Sampling and DNA Isolation
Three representative naturalized populations (n = 3) were
contrasted with AR cultivar (n = 2), EU cultivar (n=4), and
wild accession (n = 1) (Table 1). Seeds were sown in a common
garden at the Experimental Agricultural Station (EEA) of Hilario
Ascasubi. Leaf material from 10 randomly selected plants from
each accession was collected at the vegetative stage (August
2016). Genomic DNA was extracted using a modified
cetrimonium bromide (CTAB) method (Hoisington et al.,
1994) from leaf tissue dried on silica gel.

Microsatellite Markers
The five most polymorphic SSR markers were chosen (Table S2)
from set of 36 simple sequence repeat (SSR) markers developed
by Raveendar et al. (2015) for common vetch (Vicia sativa subsp.
sativa) (Chung et al., 2013) and being applicable for HV
genotyping analysis. Amplification reactions were performed in
17 ml volumes containing: 0.25 U of Taq DNA polymerase
(Invitrogen), 1 mM MgCl2, 1.1 pmol of primers, 1 mM of each
deoxynucleoside triphosphate (dNTP), and 30 ng of genomic
DNA template. The optimum annealing temperature was
determined for each primer set: KF008505 (55°C), KF008507
(59°C), KF008512 (59°C), KF008526 (59°C), and KF008536 (60°
C). Amplifications were initially checked on 1.5% agarose gels.
PCR products were analyzed on 6% denaturing polyacrylamide
gel, 1×TBE electrophoresis buffer at 60 W for 75 min and the
bands were visualized by silver staining and scanned (modified
from Tang et al., 2003 and Garayalde et al., 2011). The size of
each SSR allele was estimated using a 100 bp molecular weight
marker. Each DNA fragment was considered as an allele of a
single co-dominant locus.

Genetic Data Scoring and Genetic Variability
The amplified SSR loci were scored for 10 accessions.
Homozygous and heterozygous genotypes were inferred from
the band patterns and allele frequencies (pi) calculated
accordingly. The absence of band (null allele) was scored
as missing data. Mean expected heterozygosity values (He)
and the percentage of polymorphic loci (P%) were calculated:

HE = 1 −opi2;  P% =
Lp
LT

� 100, where pi is the frequency of

the ith allele, Lp is the number of polymorphic loci, and LT is
the total number of loci. Hardy–Weinberg equilibrium was

tested using chi-squared test X2 = x2 =ok
i=1

(Oi − Ei)2

Ei
, where

Oi is the observed number of individuals of the ith genotype,
Ei is the expected number under equilibrium hypothesis, and K
is the total number of genotypes. Degrees of freedom for the
chi-squared test were calculated as d.f. = [Na(Na–1)]/2, where
Na is the number of alleles at the locus (following Garayalde
et al., 2011).

The calculation of genetic distances (GD) followed the
method of Peakall et al. (1995) and Smouse and Peakall
(1999). For the analysis of a SSR single-locus, the first step
involves the calculation of the vector by additive genotype
February 2020 | Volume 11 | Article 189
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scoring convention per individuals. Subsequently, the squared
distance (d2) between any two genotypes is one-half the
Euclidean distance between their respective pair of vectors as
follows: d2ij =

1
2 ok

k=1(yik − yjk)
2, where i and j are the genotypes

and k is the scoring character. Squared distances range from 0,
when individuals share the same alleles, to 4 when individuals are
homozygous for different alleles. Genetic distance matrices for
each locus were summed across loci under the assumption of
independence. At population level, a ØPT (analogue of FST)
obtained from analysis of molecular variance (AMOVA) was
used as an estimate of population genetic differentiation with SSR
markers. Principal coordinate analyses (PCO) were performed
on GD matrices. The correlation between genetic distance and
phenotypic matrix was analyzed by the Mantel test (see
Garayalde et al., 2011).

Analysis of Molecular Variance
The individual pairwise GDmatrices were subjected to AMOVA.
Total genetic variation was partitioned into three levels: within
and between accessions and between origin (AR and EU).
Variation was summarized both as the proportion of the total
variance and as Ø-statistics (Excoffier et al., 1992). Genetic
variability measures, distance metrics, PCO analysis, correlation
analysis, and AMOVA were analyzed using GenAlEx 6 (Peakall
and Smouse, 2006).
RESULTS

Ecological Niche of Naturalized
Populations
Naturalized populations of hairy vetch were found in the three
monitored regions (Figure 1A), corresponding to Pampa,
Espinal, and Shrubs of Plateau and Plains. In the central
temperate region of Argentina, annual rainfall varies from semi-
arid to arid conditions with only 200 mm, to sub-humid and
humid environments with approximately 1,000 mm. The
vegetation changes in all three regions, from arid steppes in the
Frontiers in Plant Science | www.frontiersin.org 6
west (Shrubs of Plateau and Plains) to grass steppes without
woody species in the east (Pampa). The Espinal is an intermediate
savannah, with grasses and scarce xeric trees, mainly of the
Prosopis genus.

The proposed niche modeling explained most of the variation
in HV geographical distribution. The area under the receiver
operating curve (AUC) score of MaxEnt models, both training
and test AUC values, were 0.957 and 0.956, respectively,
indicating that most climatically suitable areas predicted by
MaxEnt were highly correlated with the occurrence of natural
HV populations. The distribution was significantly affected by
precipitation amount of the driest quarter (BIO17), max
temperature of the warmest month (BIO5), annual mean
temperature (BIO1), and clay content in the soil surface
(t_clay, Table 2). The main suitable habitats for HV are
distributed in the southeast of Espinal and southwest of the
Pampa region, characterized by sub-humid and semiarid
temperate climates, with warm-dry summers and cold-wet
winters (Figure 1B).

Plant communities associated with HV comprised of 63
species (Table S1). Most frequent species were cosmopolitan
weeds, including Avena fatua, Cynodon dactylon, Sorghum
halepense (Poaceae), Carduus sp., and Centaurea solstitialis
(Asteraceae) and natural communities of the perennial pasture
Festuca arundinacea (Poaceae). Table 3 presents the life cycles
and origins of the 20 species frequently associated with
naturalized HV populations in the explored region, considered
as the dominant community species. Exotic species represent
85% of the co-occurring vegetation.

Plant Growth and Phenotypic Variability
Registered rainfall in EEA Hilario Ascasubi during HV growing
season (from April to December) was 50% higher in 2014 (498
mm) and 21% lower (264 mm) in 2016, compared to historical
long-term means (331 mm). Mean daily air temperature values
were slightly higher in 2014 (13.5°C) compared to 2016 (12.8°C)
growing season. All AR accessions performed well, except for
Tolse F.C.A in 2014. However, nine out of the twenty-four EU
TABLE 2 | Contribution (%) of the bioclimatic and soil variables in the MaxEnt models, and suitable habitats of naturalized hairy vetch populations from Argentina.

Environmental variables Contribution Suitable habitats Unit
(%) Mean (range)

Precipitation of driest quarter 27.2 25.5 (16.6–39.3) mm month−1

Max temperature of warmest month 16.2 25.9 (24.1–27.7) °C month−1

Annual mean temperature 15.2 12.3 (11.0–13.6) °C month−1

Clay content in the surface soil 11.5 28.3 (8.0–38.0) %
Annual precipitation 5.0 632 (4,007–812) mm year−1

Soil pH 4.7 6.6 (6.1–9.7)
Sand content in the surface soil 4.6 37.1 (23.0–84.0) %
Min temperature of coldest month 4.3 1.5 (0.3–2.5) °C month−1

Mean temperature of coldest quarter 3.6 6.6 (5.7–7.3) °C month−1

Precipitation of driest month 2.9 20.5 (9.0–27.0) mm month−1

Silt content in the surface soil 2.6 34.6 (8.0–49.0) %
Mean temperature of warmest quarter 0.9 18.3 (16.8–19.8) °C month−1

Precipitation of wettest quarter 0.8 71.7 (44.6–91.7) mm month−1

Precipitation of wettest month 0.4 84.4 (51.0–103.0) mm month−1

Soil bulk density 0.1 1.3 (1.2–1.6) kg dm−3
February 2020 | Volume 11
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tested cultivars (nr. 1, 7, 9, 10, 12, 13, 15, 16 and 19; Table 1) and
two out of the five wild populations (1 and 2) did not produce
pods during 2014.

Using canonical discriminant analysis with the phenotypic
traits, the accessions were grouped in three clusters (Figure 2).
Frontiers in Plant Science | www.frontiersin.org 7
These corresponded to improvement status and origin. Cluster 1
consisted predominantly of wild populations, cluster 2 consisted
accessions of AR origin, and in cluster 3 were EU cultivars.

AR accessions showed higher winter biomass production
compared to EU cultivars and wild genotypes (Table 4).
TABLE 3 | Dominant community species associated with hairy vetch populations in central Argentina.

Species Family Cycle Origin Frequency

Avena fatua L. Poaceae A E 0.50
Carduus nutans L. and C. acanthoides L. Asteraceae A E 0.45
Cynodon dactylon (L.) Pers. Poaceae P E 0.42
Centaurea solstitialis L. Asteraceae A E 0.40
Sorghum halepense (L.) Pers. Poaceae P E 0.38
Festuca arundinacea Schreb. Poaceae P E 0.38
Stipa ambigua Speg. and A. caudate Trin. Asteraceae P Na 0.37
Taraxacum campylodes G.E. Haglund Asteraceae P E 0.33
Diplotaxis tenuifolia (L.) DC. Brassicaceae P E 0.29
Melilotus albus Medik. Fabaceae A E 0.28
Medicago lupulina L. Fabaceae A-P E 0.28
Ammi majus L. Umbelliferae A E 0.24
Lolium multiflorum Lam. Poaceae A E 0.22
Dactylis glomerata L. Poaceae P E 0.22
Rapistrum rugosum (L.) All. Brassicaceae A E 0.22
Eragrostis curvula (Schrad.) Nees Poaceae P E 0.20
Erigeron bonariensis L. Asteraceae A Na 0.20
Plantago lanceolata L. Plantaginaceae P E 0.19
Medicago sativa L. Fabaceae P E 0.15
Bromus catharticus Vahl Poaceae B Na 0.14
F
ebruary 2020 | Volume 11
Life cycle: A, annual; P, perennial; B, biannual. Origin: Na, native; E, exotic.
FIGURE 2 | Scatterplot of the four improvement status groupings on the two canonical discriminant functions based on phenotypic traits in a common garden
during 2014 and 2016.
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TABLE 4 | Phenotypic variability of hairy vetch (HV) for each improvement status and origin (means and range) grown in a common garden during 2014 and 2016 in Experimental Agricultural Station (EEA) Hilario

umber

Days to

Physical dormancy

Seed

Flowering Maturity Viability Weight

AUC (%) (mg)

B 195AB 245AB 0.72D 97A 33B

40) (145–203) (204–255) (0.15–0.99) (84–100) (21–42)

** ** ** ** **

A 197BC 248B 0.48C 98AB 32B

28) (169–202) (221–255) (0.11–0.88) (88–100) (27–41)

S ** ** ** * **

B 193A 241A 0.39B 99B 31B

32) (178–202) (221–260) (0.08–0.66) (88–100) (22–40)

S ** ** ** * **

A 200C 246AB 0.13A 96A 15A

33) (188–213) (233–255) (0.00–0.23) (76–100) (10–21)

S ** NS NS ** *

* ** ** ** **

4 4 0.06 1 2

S NS ** NS NS NS
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Improvement status Origin n Relative biomass†

Leaf length Leaflet number FlowerWinter Spring

(mm) (n)

Cultivar EU 24

Mean 0.69B 0.94B 57 15.3B 26

Range (0.10–1.84) (0.35–1.59) (35–83) (12–19) (10–

Within status
(p < 0.05)

** ** ** * *

Cultivar ARG 12

Mean 1.47D 0.99BC 59 14.7A 23

Range (0.72–2.39) (0.37–1.63) (22–81) (10–19) (13–

Within status
(p < 0.05)

NS ** ** * N

Naturalized ARG 30

Mean 1.27C 1.06C 58 15.2B 25

Range (0.26–2.35) (0.48–1.89) (32–99) (13–19) (18–

Within status
(p < 0.05)

** ** ** ** N

Wild EU 5

Mean 0.20A 0.77A 51 17.2C 21

Range (0.01–0.59) (0.23–1.07) (37–77) (15–20) (15–

Within status
(p < 0.05)

* ** * ** N

Between status
(p < 0.05)

** ** NS ** *

LSD 0.15 0.08 0.5 2

Status * Year NS NS ** N

For mean values, different letters indicate significant differences among status (Fisher’s LSD test, a = 0.05).
‘**’Indicates significance at p < 0.01 and ‘*’ at p < 0.05.
†Relative to mean biomass per year (winter 222 and 168 g m−1 and spring 1,174 and 887 g m−1 in 2014 and 2016, respectively).
NS, not significant.
n

*

*
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Biomass in spring was less variable between improvement status.
Over the total data set, HV winter biomass was negatively
correlated to the number of leaflets per leaf (r = -0.20; P <
0.01), and the spring biomass was positively correlated with the
leaf length (r = 0.74; P < 0.001). There was strong positive
correlation between winter and spring biomass (r = 0.40; P <
0.001). Variations in the days to flowering among improvement
status were narrow (≤ 7 days) but statistically significant within
status (Table 4).

Seed viability was over 80% in all cases. The area under the
curve (AUC), showing the following dormancy gradient rank:
EU cultivars < AR cultivars < naturalized < wild genotype. No
significant interaction between improvement status x year was
found in the AUC (Table 4). Wild genotypes had a smaller seed
weight (Table 4).

Figure 3 shows the relationship between the main evaluated
traits (winter biomass and seed dormancy), in order to identify
the more suitable genotypes for breeding programs. Accessions
number 9, 12, 19, 21, 26 of naturalized populations and 2, 5, 10,
12 of AR cultivars showed better potential for winter biomass
with high PY. While the genotypes number 3, 6, 8 for AR
cultivars, 2 for naturalized populations and 6 for EU cultivar
showed better potential for both winter biomass and low PY.
Genotypic Characterization
The five selected polymorphic SSR loci produced altogether 24
alleles in 100 tested individuals. The mean number of alleles per
locus (N) was 4.8 ± 0.9 ranging from 3 to 8 among the five loci.
The mean expected heterozygosity (He) was 0.667 ± 0.03.
Frontiers in Plant Science | www.frontiersin.org 9
Differences in variabil ity were observed between
improvement status, being higher in EU cultivars (He = 0.64 ±
0.03; N = 4.4 ± 1.0) and naturalized populations (He = 0.63 ±
0.05; N = 4.6 ± 0.9) compared to AR cultivars (He = 0.57 ± 0.06;
N = 3.8 ± 0.9) and wild (He = 0.30 ± 0.09; N = 2.2 ± 0.4)
genotypes. The lower value of variability in wild ones might be
due to the smaller number of analyzed individuals (n = 10). Two
private alleles were found only in naturalized populations.
Equilibrium tests were significant in the 68% of cases,
indicating non-random mating within populations (Table S3).
AMOVA showed a significant differentiation between
improvement status, which explained around 19.1% of the
variance. Naturalized populations differed from the wild
accession (a genetic differentiation of 46.7%) and also from EU
(8.3%) and AR (14.3%) cultivars. Lower differentiation was
found between AR and EU cultivars (4.3%) (Figure 4).

AMOVA for the total marker data set is shown in Table 5.
Genetic diversity was high within accessions. Between-accession
estimated variance was significant and around 25% of the total
variation. A small but significant portion of variance (3%) was
found attributable to differences between AR and EU genotypes.
Relationships Among Distance Measures
Environmental distance matrices were significantly correlated
with geographic distance matrices (Mantel test; environment:
r2014 = 0.61, P < 0.01; r2016 = 0.78, P < 0.01), suggesting that
environmental (climatic + soil) conditions diverge with
increasing geographic distance. However, geographic (r2014 =
0.19, P = 0.16; r2016 = 0.10, P = 0.20) nor environmental (r2014 =
FIGURE 3 | Relationship between relative winter biomass and physical (PY) dormancy [area under the curve (AUC)] for each genotype (mean and standard error)
evaluated in common garden during 2014 and 2016. For number references see Table 1.
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-0.04, P = 0.54; r2016 = 0.15, P = 0.10) distances were not
significantly correlated with phenotypic distance.

Genetic and phenotypic distance matrices of naturalized
populations showed a positive but non-significant statistical
correlation (Mantel test; r = 0.19, P = 0.21).
DISCUSSION

Ecological Niche
Argentinian hairy vetch populations occur on a transitional zone
between two defined ecological regions, Pampas with sub-humid
climate and Espinal with semiarid conditions (Figure 1). HV was
used as a forage species in Buenos Aires province before 1900
(Manganaro, 1919). Thereafter, it probably escaped from
cultivation (Aarssen et al., 1986) and became naturalized. As
HV natural seed dispersal potential is very limited (Jannink et al.,
1997), seed spillage due to handling and transportation was
probably the most important distribution method. Human-
mediated dispersal is the most likely explanation of
establishment and subsequent naturalization of HV into further
suitable habitats (Horvitz et al., 2017; Pascher et al., 2017).

After its introduction in Argentina, HV spread over the areas
which met the appropriate conditions, following a patchy
Frontiers in Plant Science | www.frontiersin.org 10
distribution. HV showed adaptation in broad geographic (33–
41°S, latitude, 60–66°W longitude) and climatic range (400–800
mm rainfall; 11–13.6°C annual mean temperature; Table 2).
Duke (1981) mentioned that HV is well adapted to a greater
range of annual mean temperatures between 4.3–21°C. In this
study, low rainfall and warm temperatures during summer
months explained HV potential distribution of natural
populations (Table 2). HV was generally associated with
neutral-alkaline (range 6.1–9.7 pH), sandy or sandy loam soils.
However, it could occur on most soil types with sufficient
drainage capacity (Duke, 1981). Clark (2007) stated that HV
preferred neutral (pH 6.0–7.0) soils with tolerance to alkalinity
(Duke, 1981). Conversely, low pH (< 6.2) can decrease the rate
growth, nodulation, and nitrogen fixation (Aarssen et al., 1986).

Fitness for the Ecological Niche
The ability of HV to produce PY+PD dormant seeds and their
subsequent germination and emergence are important factors
that influence natural population dynamics and persistence
(Kimball et al., 2010). During the period of seed formation, dry
and warm conditions could shorten the species life cycle due to
rapid thermal-time accumulation (Petraityte et al., 2007) as well
as favor a decrease on seed moisture content. In HV, the
acquisition of PY is initiated only when the moisture content
TABLE 5 | Analysis of molecular variance (AMOVA) and sources of variation for hairy vetch accessions.

Source of variation df SS* MS** % variation p-value

Among origin 1 24,097 24,097 3 <0,02
Among accessions 8 136,098 17,012 25 <0,01
Within accession 90 338,600 3,762 72 <0,01
Total 99 498,795 100
February 2020 | Volume 11 | A
*SS, sum of squares.
**MS, mean sum of squares.
FIGURE 4 | Principal coordinate analyses (PCO) plots based on the individual simple sequence repeat (SSR) distance matrix.
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of the seeds is ≤14% (Hyde, 1954). Furthermore, HV is a cross-
pollinated species where bees play an important role (Zhang and
Mosjidis, 1995; Renzi et al., 2017), thus dry and warm weather is
favorable for the activity of pollinating insects (Petraityte et al.,
2007; Al-Ghzawi et al., 2009).

In the humid central region of Argentina, the spread of
naturalized populations of HV would be limited by a negative
combination of two main factors. First, the abundant rainfall
stimulates the virulence of foliar fungal diseases (e.g., Ramularia
sphaeroidea Sacc. and Ascochyta viciae Lib.), which reduce
photosynthetic leaf area thus limiting seed formation (Petraityte
et al., 2007; Renzi and Cantamutto, 2013). In addition, high
humidity conditions enhance HV indeterminate growth, non-
uniform maturity and extended growing season favoring a
biennial behavior (Duke, 1981). These consequently limit the
seed formation, drying, and acquisition of PY, and can cause a
sharp reduction of seed bank persistence and consequent natural
regeneration, similar to observations of Toser and Ooi (2014) in
Acacia saligna.

After the seed dispersal, warm summer temperatures are
required for seed dormancy release (Renzi et al., 2014; Renzi
et al., 2016). Seed dormancy acquisition, release, and seedling
emergence requirements are important fitness traits determining
ecological niches of HV (Figure 1B). These adaptive traits seem
to have evolved in Mediterranean-like environments, where hot
and dry summer conditions regulate seed dormancy alleviation
while cool and wet winters contribute to enhance vegetative
growth providing safe-sites for seedling recruitment (Van Assche
and Vandelook, 2010; Picciau et al., 2019).
Phenotypic Variability
Two cultivars of woolly-pod vetch (Capello and Tolse F.C.A)
were found among AR and EU cultivars. This subspecies (V. v.
ssp varia) is characterized by shorter leaves (29.8 ± 6 vs. 47.8 ±
9.3 mm in HV, P < 0.01), fewer leaflets (12.3 ± 1.9 vs. 15.2 ± 1.1,
P < 0.01); and flowers (20.1 ± 7.7 vs. 26.9 ± 3.4, P < 0.01), early
flowering and maturity (more than 2 week before, P < 0.01),
higher winter (Figure 3) but lower spring biomass in relation to
HV (≈ 60%, P < 0.01). On the other hand, Jannink et al. (1997)
found that accessions of HV were more winter-hardy than
woolly-pod vetch, and late flowering may be positively
genetically correlated with winter hardiness (Maul et al., 2011).
The susceptibility of HV to low-temperature increases with more
advanced phenological stages (Brandsaeter et al., 2002) while
slow growth during winter can be an adaptation attribute to
avoid frost damage (Loi et al., 1993). Prompt maturity is a
desirable trait for earlier biomass production as well as N
accumulation in regions with a shorter growing season. Also,
flowering timing can greatly influence the capacity for weed-
suppression as a cover crop (Mischler et al., 2010; Maul et al.,
2011). Therefore, woolly-pod vetch could be a source of desirable
genes for breeding program seeking early flowering cultivars for
cover crop usage in mild winter zones. Notably, most of the
genotypes characterized as early flowering by Maul et al. (2011)
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corresponded to woolly-pod vetch (https://npgsweb.ars-grin.
gov/gringlobal/search.aspx).

Quantitative traits evaluated among accessions resembled a
continuous probability distribution, although the difference
between improvement status was statistically significant
(Table 4). AR accessions showed higher winter biomass
accumulation compared to EU, probably due to a greater
adaptation to Argentinian ecological conditions.

Seed dormancy is largely genetically determined but also
depends on the environmental conditions experienced by the
mother plant (maternal effect) and the subsequent degree of seed
dehydration (Hudson et al., 2015; Finch-Savage and Footitt,
2017). HV seeds were collected from mature pods with seed
moisture content less than 14% (determined as a critical value for
PY acquisition, Hyde, 1954), and the environmental effect
between years was not detected on AUC of PY (Table 4). PY
was variable among genotypes and could act mainly as an
adaptive trait (Hudson et al., 2015; Long et al., 2015). EU
cultivars had lower PY values compared to AR cultivars and
naturalized accessions. PY is a highly heritable trait (Hudson
et al., 2015) thus it could be useful germplasm for both breeding
and artificial (or natural) selection for higher or lower levels of
dormancy (Lacerda et al., 2007). It is probable that observed
differences between accessions could be explained by genetic
adaptations of HV to the local environment (Baskin and Baskin,
2014) as shown in pea (Hradilová et al., 2019) or by selection for
improved genotypes (Fuller and Allaby, 2009; Kluyver et al.,
2013; Renzi et al., 2016).

Observed large variability within available germplasm could
be used by breeders to select parental accessions for HV
improvement breeding program that maximizes the winter-
spring biomass with low PY for cover crops (Wilke and Snapp,
2008; Wayman et al., 2016), or with high PY for ´ley farming´
systems (Loi et al., 2005; Renzi et al., 2017; Renzi et al., 2018). No
significant correspondence was found between the geographic
distance matrix and the phenotypic distance matrix (P > 0.15)
among the naturalized AR populations and these results differ
from Medicago polymorpha L., in which a correspondence
between collection site and phenotypic traits (Loi et al., 1993;
Helliwell et al., 2018) was observed.

Among the measured traits there was a significant correlation
between winter and spring biomass. The latter was also highly
correlated with the length of the leaf as described in Vicia sativa
(De La Rosa et al., 2002). Leaf size is related to the photosynthetic
rates which in turn affect growth and could be potentially
maximized with water availability (Carlson et al., 2016). Thus,
leaf size would be an indirect selection trait for biomass that
improves breeding program efficiency.
Genotypic Variability
There is scarce information on genetic diversity of HV and
therefore the knowledge of genetic variability is useful for other
studies. Our data showed low genetic differentiation between AR
and EU cultivars, but strong differentiation between wild EU and
February 2020 | Volume 11 | Article 189
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naturalized AR populations. Similarly to other outcrossing
species, variation between accessions was small in comparison
with the variance found within populations (Table 5), which is
expected for an obligate cross-pollinated species (Hamrick and
Godt, 1989). Maul et al. (2011) reported similar results, with 93%
of genetic diversity within populations.

The Hardy-Weinberg equilibrium was not stable within
populations (Table S3) and this can be attributed to
mutations, natural selection, non-random mating, genetic drift,
and gene flow. As mentioned above, a lack of geographical
signature in the pattern of population variation, as occurs with
other allogamous species (Garayalde et al., 2011), can also be
explained by human activities on seed dispersal and genetic drift
(Knapp and Rice, 1998). Cultivated populations are open-
pollinated and highly heterogeneous and would be subject to
natural selection and genetic drift throughout the cycles
(Wiering et al., 2018). These results are consistent with
observed in the phenotypic traits.
CONCLUSIONS

This study increases the understanding of the value of naturalized
hairy vetch populations in agroecosystems of Argentina.
Naturalized populations showed good soil adaptation in
disturbed areas and neutral response to alkaline soil niches from
central Argentina. Low rainfall and warm temperatures during
pre- and post-dispersal seem to explain and regulate the potential
distribution of HV populations. Within this ecological context,
dry and warm climate may be considered as favorable
environmental conditions to increase seed dormancy and
timing of germination-triggering. Considering HV genetic
variability and agro-ecological adaptation, naturalized
populations could be considered as a source of potential
adaptive traits for breeding. The AR germplasm constitutes an
important reservoir of genes for high winter and spring biomass
production. On the other hand, high levels of innate seed
dormancy of HV accessions from Argentina reduce its possible
use as a cover crop. In this sense, dedicated crosses with more
domesticated EU cultivars will serve to reduce the seed dormancy.
Frontiers in Plant Science | www.frontiersin.org 12
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