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Abstract 

Along the Patagonian coast, there are processing factories of marine products in land 

that produce fish-processing effluents. The aim of the present study was to assess the 

physicochemical properties and the prokaryotic community composition of soils 

receiving fish-processing effluent discharges (effluent site-ES), and to compare them 

with those of unaltered soils (control site-CS) in the arid Patagonian steppe. We 

analyzed soil prokaryotic communities (using amplicon-based sequencing of 16S rRNA 

genes), soil physicochemical properties and fish-processing effluent characteristics. Soil 

moisture, electrical conductivity (EC), total and inorganic C were significantly higher in 

ES than in CS (p < 0.05). Effluent discharges induced a decrease in the total number of 

Operational Taxonomic Units (OTUs) and in the Shannon diversity index (p = 0.0009 

and 0.01, respectively) of soil prokaryotic community. Proteobacteria, Actinobacteria 

and Acidobacteria were the dominant phyla in CS, while ES soil showed a more 

heterogeneous composition of phyla. Linear discriminant analysis (LDA) effect size 

(LEfSe) analysis showed that fish-processing effluent discharges promoted an 

enrichment of Firmicutes and Bacteroidetes, which are active contributors to organic 

matter mineralization, along with a decrease of oligotrophic phyla such as 

Acidobacteria, Chloroflexi, Armatimonadetes and Nitrospirae, commonly found in 

nutrient-poor arid soils. The concentrations of inorganic C and ammonium, the EC and 

the soil moisture explained 73% of the total variation within the community 

composition. Due to its salinity and nutrients, fish-processing effluents have potential 

mainly for native salt-tolerant plant irrigation, however the impacts of soil prokaryotic 

community shifts over plant growth remain to be determined. 
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1. Introduction  

 

Drylands are of vital importance to our planet, not only because they are largely 

expanded (occupying about 40% of the total land area of the Earth) but also because 

they provide much of the world’s grain and livestock (FAO, 2008). In these regions, the 

erratic and discontinuous input of precipitations together with the scarcity of nutrients, 

especially nitrogen, limit the primary productivity (Whitford and Duval, 2019). The 

lack of sufficient available water in arid and semi-arid regions leads to the consideration 

of non-conventional water resources (e.g. wastewater reuse) as an alternative to partially 

meet the water demands. Therefore, irrigation with treated wastewater contributes with 

water requirements for agriculture and landscaping in many countries (Becerra-Castro et 

al., 2015).  

Fishing industry is currently increasing, reaching a total world production of 171 

million tons in 2016 (FAO, 2018). Fish processing is characterized by high water 

consumption, which results in high wastewater production (de Melo Ribeiro and Naval, 

2019). Although the quantity of fish-processing wastewater varies according to the 

processed species, the adopted technology and the manufactured product (Guimarães et 

al., 2018), it has been estimated that approximately 11 and 15 m
3
 of water are consumed 

to process a ton of fish and shrimp, respectively (de Melo Ribeiro and Naval, 2017). 

Fish-processing wastewater is characterized by high Biochemical Oxygen Demand 

(BOD), Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS), resulting 

from the complex mixture of organic substances present in the effluents 

(Muthukumaran and Baskaran, 2013). Moreover, fish-processing wastewater may 

contain significant amounts of salts, oils, greases and nitrogen (Tay et al., 2006; Mseddi 

et al., 2014). After an appropriate treatment, it is possible to reuse fish-processing 
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effluents for some industrial processes (de Melo Ribeiro and Naval, 2019; Guimarães et 

al., 2018). Treated fish-processing effluents also have the potential to be reused for 

irrigation in agriculture and landscaping, as they contain organic substances and 

nutrients that could be assimilated by plants and soil microorganisms. Nevertheless, the 

recovery and reuse of water and nutrients from such effluents has been scarcely 

explored. There are some evidences that wastewater from fish-processing industries has 

high potential to be reused as a liquid fertilizer in agriculture (Muthukumaran and 

Baskaran, 2013; Ching and Redzwan, 2017). Aerobic biodegradation of (8-folds 

diluted) fish-meal wastewater resulted in amino acid levels in the final broth comparable 

to those in a commercial fertilizer, and when more diluted (32-folds) wastewater was 

used, phytotoxicity of the biodegraded final broth was reduced, suggesting a potential of 

the fish-meal wastewater for fertilizer production (Kim et al., 2007). After treating 

wastewater from a fish-canning factory by coagulation/flocculation, Fahim et al. (2001) 

suggested that the final effluent, if not discharged to the area sewer, was safe to be used 

under controlled conditions in some irrigation applications or forestry projects at the 

desert area surrounding the factory. 

Even though one of the mayor concerns about wastewater reuse for irrigation is 

the risk associated with the introduction of human pathogens to soil and crops, its 

impact on soil properties and on microbial communities, which are involved in 

important soil processes such as organic matter decomposition and nutrient cycling, 

must be also considered (Lüneberg et al., 2018). If not properly controlled, wastewater 

irrigation may induce an excessive soil organic matter and nutrient supply (e.g. nitrogen 

and phosphorous), changes in soil pH, insertion of exogenous microorganisms and soil 

salinization/sodification (Delvaux Silva et al., 2016). For example, nutrient input 

through wastewater irrigation may have a fertilizer effect in agriculture and enhance the 
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metabolic activity of soil microorganisms (Durán-Álvarez and Jiménez-Cisneros, 2014; 

Delvaux Silva et al., 2016). However, a long-term excessive nutrient application may 

lead to soil eutrophication (Mikkelsen et al., 1997). Moreover, salts in wastewater may 

negatively affect soil porosity and water holding capacity, and consequently produce 

detrimental effects on soil microorganisms and plants (Hussain et al., 2019). Thus, fish-

processing wastewater reuse could contribute to cope with the problem of water and 

nutrient scarcity, particularly in arid ecosystems, but its effect on soil fertility needs to 

be better characterized. 

In Argentina, 98% of the fishing activity is focused on marine species, of which 

the red shrimp (Pleoticus muelleri Bate, 1888) is the main product (accounting for 60 % 

in dollars of the Argentinean fishery exports, www.argentina.gob.ar/hacienda). Along 

the Patagonian coast, there are processing factories of marine products in land that 

produce fish-processing effluents as a result of their activities. The aim of the present 

study was to assess the physicochemical properties and the prokaryotic community 

composition of soils receiving fish-processing effluent discharges near a cluster of 

processing industries, and to compare them with those of unaltered soils from a nearby 

site in the arid Patagonian steppe. To reach that goal, we characterized prokaryotic 

community composition using amplicon-based sequencing of 16S rRNA genes from 

soil samples. Additionally, we analyzed the physicochemical properties of soil and fish-

processing effluent samples, and related these properties to the changes in soil 

prokaryotic community composition. This study contributes with baseline information 

regarding a potential reuse of fish-processing wastewater for irrigation.  

 

2. Material and methods 
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2.1. Study area and sampling 

The study was conducted in a field near a cluster of fish-processing industries in 

Puerto Madryn City, Chubut Province, Argentina (42° 43ʹ S; 65° 02ʹ W). There, the 

vegetation is distributed in patches separated by bare soil, corresponding to a shrubland 

of Larrea divaricata Cav. with perennial grasses (León et al., 1998). Mean annual 

temperature is 13.4 ± 0.1°C, and mean annual precipitation is 177.9 ± 9.8 mm (1971–

2016 time series, INTA SIPAS, http://anterior.inta.gov.ar/region/pas/sipas2/ 

cmp/agromet/index.html). Soils are a complex of Typic Torriorthents (Pereyra and 

Bouza, 2019). We selected a site which received fish-processing effluent discharges 

(effluent discharge site, ES) and a nearby undisturbed control site (CS). At the CS, plant 

cover accounted for 46 % of the soil surface (with high occurrence of Larrea divaricata 

and Chuquiraga avellanedae Lorentz.). In contrast, the ES presented a visible 

stimulation of the vegetation (plant cover 70%), prevailing Atriplex lampa (Moq.) 

Gillies ex D.Dietr. and the invasive plant Diplotaxis tenuifolia (L.) DC. At each site, 5 

modal size (height: > 1 m, diameter 1.5–2.5 m) plant-covered patches were randomly 

selected and two upper soil sub-samples (0–10 cm depth and 10 cm in diameter) were 

collected. Soil samples were immediately transported to the laboratory at 4°C. Each set 

of two sub-samples was subsequently pooled, homogenized and sieved through a 2 mm 

mesh for further processing. In addition, a sample of the effluent discharge was also 

collected and transported to the laboratory (4 °C) to be characterized. 

 

2.2. Effluent analyses 

Temperature and electrical conductivity (EC) were measured in situ with a 

Hanna HI 98192 probe, while pH was determined with a Hanna pH 211 instrument 

(Hanna Instruments, USA). Chemical Oxygen Demand (COD) was measured using a 
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Photometer Hanna HI83099 (Hanna Instruments, USA), (Method EPA 410.4-Adapted; 

Environmental Protection Agency, 1993). Biochemical Oxygen Demand (BOD) was 

measured by the method 5210B of the American Public Health Association (APHA, 

2017). In addition, odor (Method 2150B), color (Method 2120B, using Aquaquant 

14421 color kit, Merck), turbidity (Method 2130B), total solids (Method 2540.B), oils 

and greases (Method 5520B), and ammonium concentration (Method 4500-NH3 F) 

determinations were carried out according to APHA (2017). Nitrate concentration was 

measured following EPA Method 352.1 (Keith, 1996). Sodium Adsorption Ratio (SAR) 

was analyzed as described in US Salinity Laboratory Staff (1954). Coliforms were 

tested as per the standard procedures of APHA (2017). Analyses were performed in 

triplicate and the results averaged.  

 

2.3. Soil analyses 

Soil moisture was gravimetrically evaluated (105 °C, 48 h) and all the results 

were expressed on the basis of dry soil weight. Soil texture was determined by the 

Bouyoucos' Hydrometer method (Bouyoucos, 1962). Soil EC, pH and SAR were 

assessed in soil saturation extracts as described in US Salinity Laboratory Staff (1954). 

Total soil carbon (C) and nitrogen (N) were measured using a CN628 Carbon/Nitrogen 

Determinator (LECO Corporation, USA). Inorganic C concentration was determined 

gravimetrically, after removing soil carbonates with 3N HCl (Allison and Moodie, 

1965). The concentration of soil organic C was assessed by wet combustion (Nelson 

and Sommers, 1996). Ammonium concentration in soil sample extracts was analyzed 

according to Keeney and Nelson (1982), and nitrate and nitrite concentrations as 

described in Shand et al. (2008). All samples were analyzed in triplicate and the results 

averaged.  
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2.4. Soil DNA extraction and sequencing 

Total DNA was extracted from ca. 0.5 g of soil samples using the FastDNA
®
 

SPIN Kit for Soil (MP Biomedicals, USA), following the manufacturer’s instructions. 

DNA was quantified using a Quantus™ Fluorometer and the QuantiFluor
®
 dsDNA Dye 

System (Promega Corporation, USA). The amplification of the V4 region of bacterial 

and archaeal 16S rRNA genes from the 10 soil DNA samples was performed using the 

HotStarTaq Plus Master Mix Kit (QIAGEN, USA), barcoded primers 515F/806R 

(Caporaso et al., 2011), and the following amplification program: 3 min at 94 °C, 28 

cycles of 30 sec at 94 °C, 40 sec at 53 °C, and 60 sec at 72 °C, and a final elongation 

step at 72 °C for 5 min. Purification of the PCR products was performed using 

calibrated Ampure XP beads, and the purified products were paired-end sequenced (2  

300) in an Illumina MiSeq Sequencing platform at MR DNA (Shallowater, TX, USA). 

Raw sequences of bacterial and archaeal 16S rRNA genes were deposited in the NCBI 

Sequence Read Archive (SRA) database, under project accession PRJNA562709 

(https://www.ncbi.nlm.nih.gov/sra/PRJNA562709). 

 

2.5. Bioinformatic analyses 

MiSeq sequencing yielded 1,396,611 raw reads from 10 soil samples. Sequences 

were processed using the bioinformatic software mothur v.1.39.5, following the MiSeq 

SOP protocol (Schloss et al., 2009; last accessed October 2018; Kozich et al., 2013). 

Reads were aligned to a SILVA 16S rRNA gene reference alignment (Quast et al., 

2013), and trimmed to overlap the correct region of the reference alignment. Further 

denoising was achieved by pre-clustering sequences that differed in less than 3 

nucleotides. Chimeras were detected de novo with the VSEARCH algorithm and 
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removed from the dataset (Rognes et al., 2016). Sequences were classified using a 

Naïve Bayesian classifier (Wang et al., 2007) based on the SILVA SSU database v132 

(Quast et al., 2013), and chloroplasts, mitochondria, eukaryotic sequences, and 

sequences not assigned at least at the domain level were removed, so that only bacterial 

and archaeal sequences were retained. Sequences were clustered into operational 

taxonomic units (OTUs) at a 3% dissimilarity level.  

 

2.6. Data analysis 

The statistical significance of the differences in soil properties between ES and 

CS were evaluated by the Student's t test. The relationships among soil properties were 

analyzed by Spearman rank-order correlation test. Statistical analyses were carried out 

using SPSS 7.5 package (Norušis, 1997). Diversity analyses were performed using 

MicrobiomeAnalyst software (Dhariwal et al., 2017). Rarefaction curves of the number 

of OTUs observed at different sequencing depths were obtained for each sample (Fig. 

S1). The Good's coverage index was calculated as a measure of the depth of sequencing 

effort. Alpha diversity metrics (total observed OTUs, Shannon and Simpson diversity 

indices) were calculated based on a subsample of 65,992 sequences to fit the size of the 

smallest library. Permutational analysis of variance (PERMANOVA) based on the 

Bray-Curtis beta diversity index were performed to compare the community structure of 

different samples. The relationship between the prokaryotic community composition 

(based on an OTU relative abundance matrix) and the environmental variables was 

assessed by canonical correspondence analysis (CCA), using the R package vegan (Ter 

Braak, 1986; Oksanen et al., 2019). In this constrained ordination method only the 

community variation that can be explained by selected environmental variables is 

shown (Legendre and Legendre, 2012). We selected the concentrations of inorganic C 
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and ammonium, the EC and the soil moisture as the constrained environmental variables 

in the CCA analysis. The variance inflation factor calculated on these variables was < 

10, showing that they contain independent information (i.e., they are not redundant). 

The significance of the model based on the selected environmental variables was tested 

with permutations (number of permutations: 999; Oksanen et al., 2019). Before CCA, 

environmental variables measured as concentrations were log-transformed, and all 

environmental variables were standardized to zero mean and standard deviation of one, 

to avoid different measure units in the multivariate analysis. LEfSe method, based on a 

normalized relative abundance matrix, was applied to search for statistically different 

biomarkers between sites (Segata et al., 2011). Such analysis was performed by 

MicrobiomeAnalyst package, using a LDA threshold score of 3.5 (Cui et al., 2018) and 

α = 0.1. The correlation among the bioindicator relative abundances and the soil 

properties was analyzed by the Spearman rank-order correlation test.  

 

3. Results and discussion 

 

3.1. Effects of fish-processing effluent discharge on soil properties 

 

The characteristics of the fish-processing discharge are presented in Table 1. It 

showed a reddish-brown color with strong smell. The pH of the discharge was close to 

neutral (Table 1), as commonly observed for seafood effluents (Thomas et al., 2015). 

Regarding the potential reuse of fish-processing effluents as a water and nutrient source, 

it is interesting to compare the quality of the fish-processing discharge with 

recommendations for irrigation water. EC and SAR values indicate moderate soil 

salinization and sodification hazards (Table 1). Other parameters such as BOD5, COD, 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

12 
 

ammonium, and oils and greases were determined at high levels (Table 1). Overall, 

most of the chemical properties of the fish-processing discharge showed values that 

would exceed those considered by most of the worldwide water quality guidelines for 

irrigation (Jeong et al., 2016). In addition, according to the local Chubut Province 

Standards, EC and SAR values of the fish-processing discharge entail mild to moderate 

restrictions for irrigation reuse, while BOD, oils and greases, and coliforms overcome 

the limits recommended by that guideline (Chubut Province, Decree N° 1540/16; Table 

1).  

In both ES and CS, soil texture corresponded to loamy sand (Table 2). Soil 

moisture, EC, total C and inorganic C were significantly higher in ES than in CS (Table 

2). In ES, the increased soil salinity is possibly associated to the concentrations of 

soluble salts contained in the fish-processing discharge. According to the Richards 

diagram for classifying irrigation waters, together the EC and SAR values of the fish-

processing discharge (2.8 mS cm
-1

 and 12.9, respectively) indicate a very high and a 

medium risk of soil salinization and sodification, respectively (US Salinity Laboratory 

Staff, 1954). Moreover, waters with EC values above 2.25 mS cm
-1

 only allow the 

growth of the most salt-tolerant crops (US Salinity Laboratory Staff, 1954). Thus, as 

expected due to the increased soil salinity, a shift in ES vegetation was evident, with 

prevalence of the ever-green shrub A. lampa and the perennial plant D. tenuifolia (Fig. 

S2). The former is characterized by a high tolerance to drought and soil salinity, and its 

foliage concentrates salts (Caraciolo Maia et al., 2002; Soteras et al., 2013). In addition, 

Diplotaxis tenuifolia has been classified as a salt tolerant species with potential as 

vegetable crop for saline agriculture (de Vos et al., 2013).  

In agreement with dryland characteristics, ES and CS soils showed low total and 

organic C concentrations (Table 2). Similar values of organic C as those in this study 
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were observed in soils from an arid ecosystem of Patagonia under grazing disturbance, 

whereas higher values (0.5 to 0.7%) were observed in undisturbed sites (Marcos et al., 

2019). Although the sampling site from this study was not under grazing disturbance, 

the degree of aridity may be high as a result of other factors, such as high 

evapotranspiration due to wind erosion or soil topography, which in turn may be 

associated to the low soil organic C values. Moreover, soil organic C concentration did 

not differ between sites, which was likely related with an intensification of soil 

prokaryotic activity in ES. According to the available evidence, there are discrepancies 

about the effects of effluent irrigation on the soil organic C pool. In other studies, soil 

organic C either decreased (Jueschke et al., 2008; Tarchouna et al. 2010), increased 

(Rusan et al., 2007; Bedbabis et al., 2014), or remained constant (Qian and Mecham, 

2005; Ibekwe et al. 2018) after wastewater irrigation, which was associated with the 

wastewater organic matter composition and its mineralization by the soil 

microorganisms. In this study, the BOD5/COD ratio of the fish-processing discharge 

was equal to 0.5, which suggests a biodegradable organic matter input into ES soil 

(Aloui et al., 2009). 

On the other hand, the soil inorganic C concentration was significantly higher in 

ES than in CS (Table 2). Carbonate and bicarbonate as well as calcium and magnesium 

are essential elements for carbonate precipitation in soils (Bai et al., 2017). Such process 

is also affected by soil carbon dioxide, pH, water content and temperature (Entry et al., 

2004). The fish-processing discharge could be a source of soluble calcium, magnesium 

and bicarbonate that, under the alkaline conditions of the studied soils, would benefit 

the formation of carbonates at ES. In line with the results of other studies, soil inorganic 

C concentration positively correlated with those of soluble Ca
2+

 and Mg
2+

 (Spearman´s 
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rho = 0.64; p = 0.024; considering the entire dataset), suggesting its presence in the 

form of soil carbonates (Plaza-Bonilla et al., 2015; Guo et al., 2016). 

At CS and ES soil pH values were alkaline, agreeing with those reported for the 

region (Olivera et al., 2016; Marcos et al., 2019), and unaffected by the fish-processing 

effluent discharge (Table 2). Previous studies have shown that soil pH may remain 

constant after wastewater irrigation (Truu et al., 2009; Singh et al., 2012); although pH 

increases (Qian and Mecham, 2005; Adrover et al., 2012), and decreases (Angin et al., 

2005) have also been reported. In this study, the lack of significant differences in soil 

pH between ES and CS may be associated with the presence of carbonates in the former 

site, which act as soil buffering components preventing soil acidification (Wang et al., 

2015).  

Similarly, in both sites, the values of total soil N were low and within the range 

of those reported for other Patagonian soils (Carrera and Bertiller, 2010). In other 

studies, total N increased (Angin et al., 2005; Rusan et al., 2007; Truu et al., 2009) or 

remained constant (Kang et al., 2007) even after more than 20 years of wastewater 

irrigation (Adrover et al., 2012). It has been also reported that in low-fertility arid 

environments, some shrubs like A. lampa respond to increases in N and water supplies 

by increasing their N use efficiency and biomass production (Fernández et al., 2018). 

The observed vegetation stimulation in ES with high prevalence of A. lampa may 

suggest that the N supplied by the fish-processing effluents could have been taken up by 

these shrubs and used for biomass production, instead of being accumulated in soil (Fig. 

S2). Moreover, the nitrate + nitrite concentration did not significantly differ between 

sites, likely due to its wide variability in ES soils (Table 2). Ammonium concentration 

also greatly varied in ES soils, thus, despite its high input through the fish-processing 

discharge, there was not a significant difference in its soil concentration between sites 
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(Table 1 and 2). Nevertheless, a significant negative correlation between soil pH and 

ammonium concentration was found at ES (Spearman´s rho = -0.90; p = 0.019). This 

result suggests that, as observed in other wastewater irrigation studies, an increase of 

ammonium ions could enhance nitrification rates releasing free hydrogen ions (Jemai et 

al., 2013). 

 

3.2. Response of soil prokaryotic community to fish-processing effluent discharge 

 

Across all soil samples, we obtained a total of 846,329 archaeal and bacterial 

high-quality sequences. Based on 97% sequence similarity and subsampling to the 

smallest library (65,992), sequences were clustered into 11,795 OTUs. The Good’s 

coverage index was over 97% for all samples, indicating that the sequencing effort was 

sufficient to estimate their prokaryotic diversity (Table 3). The number of OTUs and the 

Shannon diversity (the diversity index most sensitive to rare species; Sanz and 

Köchling, 2019) were significantly lower (p = 0.0009 and 0.01, respectively) in ES than 

in CS (Table 3). In contrast the Simpson index, which is an indicator of the dominant 

species in the prokaryotic community, did not significantly differ between sites (p = 

0.10; Table 3). These results suggest that fish-processing effluent discharges induce a 

decrease in soil prokaryotic richness along with a reduction of prokaryotic diversity, in 

particular of the rare species. Congruently, permutational multivariate analysis of 

variance (PERMANOVA) separated ES from CS soils (R-squared: 0.34; p < 0.009), 

possibly reflecting the effect of the fish-processing effluent discharges on the soil 

prokaryotic community composition. The impact of altering soil prokaryotic diversity 

on ecosystem functioning is not yet fully understood; while some studies suggest that 

loss of prokaryotic diversity may negatively affect ecosystem functions (including plant 
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species diversity and nutrient cycling), others state that due to the high functional 

redundancy of prokaryotic communities, biodiversity may be a buffer that prevents 

losses of ecosystem functions (Bonkowski and Roy, 2005; Tardy et al., 2014). 

According to the available evidence, the main beneficiaries of the nutrients supplied by 

wastewater irrigation are the plants, which may further induce changes in the 

prokaryotic community through rhizodepositions (Krause et al., 2020). Consequently, 

whether changes in prokaryotic diversity and community composition lead to adverse or 

beneficial effects for plant health or microbial ecosystem services has yet to be 

established (Krause et al., 2020). 

Taxonomic assignment of the OTUs at the phylum-level revealed the presence 

of 2 archaeal and 21 bacterial phyla in ES and CS soils. Figure 1 shows the phyla with a 

relative abundance > 0.1% in the 10 samples. The remaining phyla, grouped as “other 

phyla” in Figure 1, include Armatimonadetes, Chlamydiae, Cyanobacteria, 

Deinococcus_Thermus, Elusimicrobia, Entotheonellaeota, Fibrobacteres, Nitrospirae, 

Patescibacteria, Rokubacteria, FBP, BRC1and other unclassified bacteria. In CS, 

Proteobacteria (22%), Actinobacteria (21%) and Acidobacteria (14%) were the 

dominant phyla (Fig. 1), agreeing with the findings in other drylands (Zeng et al., 2017; 

Marcos et al., 2019). On the other hand, the dominant phyla varied among ES samples 

(Fig. 1). In ES.1 and ES.5 samples, Proteobacteria relative abundance was about 50%, 

followed by Bacteroidetes (22%) and Actinobacteria (10 %), (Fig. 1). ES.2, ES.3 and 

ES.4 presented a relative abundance of Proteobacteria and Actinobacteria close to those 

of CS samples (Fig. 1), but other dominant phyla such as Bacteroidetes (26%) and 

Firmicutes (12%) in ES.2 and Gemmatimonadetes in ES.3 and ES.4 (25 and 14%, 

respectively) were also found (Fig. 1). In addition, the relative abundance of minority 

phyla varied among ES samples, and also with respect to CS (Fig. 1). Such shifts in the 
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structure of the soil prokaryotic community were significantly related to some of the 

soil physicochemical properties, as shown by the Canonical Correspondence Analysis 

(CCA), (Fig. 2 and Table S3). The concentrations of inorganic C and ammonium, the 

EC and the soil moisture explained 73% of the total variation within the community 

composition (Table S3), and the reduced model based on these environmental variables 

was significant (p = 0.001, based on permutations). Axes CCA1 and CCA2 represented 

respectively 38% and 29% of the constrained variability, i.e., 28% and 21% of the total 

variation (Fig. 2). Axis CCA1 was mainly associated with high concentrations of 

ammonium and inorganic C and with the prokaryotic communities from samples ES.1 

and ES.5, while CCA2 was associated with high EC, inorganic C and moisture, and 

with the prokaryotic communities from ES.2 and ES.3 (Fig. 2). These findings suggest 

that the fish-processing effluent discharge through its effects on soil inorganic C and 

ammonium concentrations, EC and moisture could affect the prokaryotic community 

structure, promoting the proliferation of certain groups of prokaryotes. For example, the 

sample ES.2 which had the highest EC (3.38 mS/cm), also showed the highest 

abundance of Halobacteria, an archaeal class ubiquitously distributed in high-salt 

environments (Gupta et al., 2015). It still remains unknown whether these changes in 

the prokaryotic community composition can be harmful or beneficial for plants (Krause 

et al., 2020).  

To further analyze the soil prokaryotic community, a linear discriminant analysis 

(LDA) effect size (LEfSe) was conducted to determine the prokaryotic phyla and OTUs 

with significant abundance differences (with a LDA threshold of 3.5) between sites 

(Fig. 3). According to this analysis, the phyla enriched in ES were Firmicutes and 

Bacteroidetes (Fig. 3a). Firmicutes relative abundance positively correlated with soil 

total C, inorganic C, EC and nitrate + nitrite (p < 0.05; Table 4), while Bacteroidetes 
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abundance correlated with such parameters along with soil moisture and ammonium 

concentration (p < 0.05; Table 4). Guo et al. (2017) observed that Bacteroidetes, one of 

the main contributors to the mineralization of organic matter, increases in response to 

reclaimed water irrigation of soil. Pyrosequencing analysis of 16S rRNA showed that 

Bacillus-like bacteria (belonging to phylum Firmicutes) were abundant in rhizospheric 

and non-rhizospheric saline soils, and most of the isolated Bacillus strains produced 

hydrolytic enzymes to degrade proteins, carbohydrates and lipids (Mukhtar et al., 2018). 

Thus, the tolerance of these groups to soil salinity and their ability to maintain their 

enzyme activity could explain their prevalence in ES. On the other hand, in CS, 

indicator groups were assigned to Acidobacteria, Chloroflexi, Armatimonadetes, 

Nitrospirae, Rokubacteria, Entotheonellaeota, FBP and Elusimicrobia (Fig. 3a). The 

relative abundance of most of them negatively correlated with the total and inorganic 

soil C (p < 0.05; Table 4). Most notably, all bioindicator phyla in CS showed a high 

significant and negative correlation with soil nitrate + nitrite concentration (Table 4). 

This result could be related with the oligotrophic nature of phyla such as Acidobacteria, 

Chloroflexi and Nitrospirae, which show slow growth rates and adaptations to grow in 

nutrient-poor environments (Lüneberg et al., 2018). In accordance, based on the limited 

number of available Armatimonadetes strains, it is believed that they are also 

oligotrophs sensitive to nutrient-rich culture media (Lee et al., 2014). Moreover, 

Candidate phylum Rokubacteria (formerly known as SPAM) possesses large genomes 

with the potential for a versatile and generalist metabolic strategy in oligotrophic 

environments (Becraft et al., 2017). In this study, Acidobacteria, Chloroflexi, 

Armatimonadetes and Entotheonellaeota also negatively correlated with EC, and 

Nitrospirae negatively correlated with SAR (p < 0.05; Table 4). At the OTU-level, 

LEfSe analysis identified 11 biomarkers with significant abundance differences between 
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sites (Fig. 3b). Biomarker OTUs from bacterial lineages enriched in CS were assigned 

to the family Pyrinomonadaceae (2 OTUs) and to the phyla Actinobacteria (one OTU 

associated with the clone MB-A2-108), and those from archaeal lineages were assigned 

to Euryarchaeota (one unclassified OTU and another one associated to class 

Thermoplasmata), (Fig. 3b). The family Pyrinomonadaceae includes species isolated 

from semiarid soils using low-nutrient growth media (Wüst et al., 2016). This family is 

a member of the class Blastocatellia, which seems to comprise slow-growing K-

strategists that prefer oligotrophic growth conditions (Wüst et al., 2016). Biomarker 

OTUs from genera Pedobacter (1), Pontibacter (1), Gemmatimonas (1), Pseudomonas 

(1), Thermomonas (1) and an unclassified Gammaproteobacteria (1) were most 

numerous in ES (Fig. 3b). Such OTUs correspond to microorganisms that could adapt to 

changes in soil conditions resulting from the organic matter, nutrient and salt input of 

fish-processing effluent discharges. The biomarker OTUs detected in this study, whose 

relative abundances consistently differ between ES and CS prokaryotic communities, 

are valuable for profiling soil bacterial communities in further irrigation studies using 

fish-processing effluents.  

Wastewater irrigation can introduce pathogens to soil posing risks to the 

environment and the human health (Jaramillo and Restrepo, 2017). Fecal coliforms and 

potential pathogenic bacteria were found in fish-processing industrial effluents 

(Sivaraman et al., 2016; Rodrigues et al., 2017). Moreover, OTUs associated with fecal 

indicator bacteria, Clostridium, Nocardia and Mycobacterium, which may include 

potential pathogenic bacteria, were present in wastewater irrigated soils (Ibekwe et al., 

2018). In this study, in congruence with the high coliform counts in the fish-processing 

discharge (Table 1), six OTUs affiliated to the family Enterobacteriaceae (one of them 

belonging to the genus Pseudocitrobacter and the rest unclassified) were detected 
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(relative abundances ≤ 0.2 %) in some ES samples. Pseudocitrobacter strains may 

produce NDM-1 carbapenemase, an enzyme of medical concerns as it confers resistance 

to carbapenem antibiotics (Kämpfer et al., 2014). Just two unclassified 

Enterobacteriaceae OTUs were present, in low abundances (≤ 0.01 %), in some CS 

samples. The abundance of Pseudomonas, known to include opportunistic strains, was 

significantly higher in ES than in CS (p = 0.048). No OTU associated with the genus 

Clostridium was detected, while Mycobacterium OTUs were present in both CS and ES 

samples. These findings render the fish-processing effluents inappropriate for direct 

irrigation reuse. To improve the quality of such effluents, an integrated process which 

includes a physical pretreatment followed by biological and/or physicochemical 

treatments is needed (Tay et al., 2006). Such treatment process should also include a 

water disinfection step (e.g. chlorination, UV disinfection, ozonation) to ensure that the 

microbiological quality meets the guidelines recommended for treated wastewater used 

in agriculture (Blumenthal et al., 2000). Thereafter, fish-processing effluents could have 

potential for irrigation of native salt-tolerant species such as A. lampa, which is 

important as forage plant and for the revegetation of arid lands (Fernández et al., 2018). 

 

4. Conclusion 

  

In this study, fish-processing effluent discharges increased the heterogeneity of 

soil properties, reducing prokaryotic diversity and inducing shifts in the structure of the 

soil prokaryotic community. Soil moisture, electrical conductivity, inorganic C and 

ammonium contents were not only the most affected properties by the fish-processing 

discharge but also the factors driving the changes of the prokaryotic community 

composition in soil. Particularly, fish-processing effluent discharge promoted an 
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enrichment of Firmicutes and Bacteroidetes which are active contributors to the 

mineralization of organic matter, along with a decrease of oligotrophic phyla such as 

Acidobacteria, Chloroflexi, Armatimonadetes and Nitrospirae commonly found in 

nutrient-poor arid soils as those in Patagonia. Due to its salinity and nutrients, fish-

processing effluents have potential as an alternative water source mainly for irrigation 

of salt-tolerant plants, however its quality needs to be improved through a treatment 

process including disinfection to avoid sanitary risks. In addition, if fish-processing 

effluents are used for irrigation, the impacts of soil prokaryotic community shifts over 

plant growth remain to be determined. To our knowledge, this is the first study on the 

effects of fish-processing effluents, a worldwide-produced wastewater, on the structure 

of the soil prokaryotic community, and in turn on soil fertility. 
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Figure Captions 

 

Figure 1: Relative abundance of bacterial and archaeal phyla from control (CS.1 to 

CS.5) and effluent (ES.1 to ES.5) sites. 

 

Figure 2: Canonical Correspondence Analysis of prokaryotic communities from ES and 

CS samples and soil physicochemical properties. Arrows represent constrained 

explanatory variables (inorganic C and ammonium concentrations, EC and moisture).  

 

 

Figure 3:  Linear discriminant analysis (LDA) effect size (LEfSe) analysis of 

prokaryotic abundance from: a- phyla and b-OTUs in effluent (white) and control 

(black) sites.  
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Table 1: Fish-processing effluent discharge characterization. HU: Hazen Units; TON: 

Threshold Odor Number; NTU: Nephelometric Turbidity Units; MPN: Most probable 

Number.  

 

Effluent properties Values 
Guidelines for 

irrigation water* 

pH 7.6 6.5 – 8.4 

Color (HU) < 5  

(reddish-brown color) 

N.R. 

Odor (TON) 10,000 N.R. 

Turbidity (NTU) 93.5 N.R. 

Total solids (g l
-1

) 1.2 0.5 – 2.0 

EC (mS cm
-1

) 2.8 1.3 – 2.9 

SAR 12.9 12 - 20 

BOD5 (mg l
-1

) 701 ≤ 50 

COD (mg 
-1

) 1320 N.R. 

BOD5/COD ratio 0.5 N.R. 

Oils and greases (mg l
-1

) 34.0 ≤ 10 

Ammonium (mg l
-1

) 62.9 N.R. 

Nitrate (mg l
-1

) 2.0 ≤ 133 

Total coliforms   

(MPN 100 ml
-1

) 

> 1.1 x 10
6
 N.R. 

Fecal coliforms  

(MPN 100 ml
-1

) 

1.1 x 10
5
 Industrial crops, pasture 

and trees: 

Spray or sprinkler ≤ 10
5
 

Flood/furrow ≤ 10
3 

*Chubut Province guidelines for irrigation water (adapted from Ayers and Westcot 

(1994) and Blumenthal et al. (2000)). Values correspond to mild to moderate 

restrictions for irrigation reuse. N.R.: No Recommendation (parameter not specified for 

irrigation water by Chubut Province guidelines). 
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Table 2: Soil properties at control (CS) and effluent (ES) sites. Data represents mean 

values ± standard error. Asterisk indicates significant differences between sites: 

significant at p ≤ 0.05 (*) and p ≤ 0.01 (**) according to Student's test.  

 

Soil properties CS ES Significance 

Soil moisture (%) 9.4 ± 0.4 12.9 ± 0.7 ** 

pH 8.6 ± 0.1 9.0 ± 0.5  

Sand (%)  84.3 ± 0.7 78.4 ± 2.0 * 

Silt (%) 12.0 ± 0.8 15.2 ± 2.4  

Clay (%) 3.7 ± 0.4 6.6 ± 1.4  

EC (mS cm
-1

) 0.6 ± 0.2 2.0 ± 0.5 * 

SAR 6.6 ± 2.5 11.3 ± 2.6  

Total C (%) 0.42 ± 0.03 0.86 ± 0.10 ** 

Organic C (%) 0.26 ± 0.03 0.34 ± 0.09  

Inorganic C (%) 0.10 ± 0.02 0.46 ± 0.12 * 

Calcium + Magnesium (meq l
-1

) 5.11 ± 1.17 7.55 ± 1.79  

Total N (%) 0.05 ± 0.003 0.06 ± 0.01  

Ammonium (µg g
-1

 dry soil) 4.0 ± 0.3 24.8 ± 13.7  

Nitrate + Nitrite (µg g
-1

 dry soil) 4.3 ± 0.1 74.1 ± 48.2  
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Table 3: Alpha-diversity metrics for samples from effluent (ES) and control (CS) sites. 

 

Sites OTUs Shannon Index                Simpson Index Coverage 

CS.1 6369 7.11 0.99 97.37 

CS.2 6468 6.99 0.99 97.29 

CS.3 6229 7.01 0.99 97.48 

CS.4 5528 6.80 0.99 97.24 

CS.5 6064 7.07 0.99 97.05 

ES.1 2889 5.25 0.97 98.09 

ES.2 3526 5.83 0.98 98.32 

ES.3 3726 6.40 0.99 98.06 

ES.4 5016 6.69 0.99 97.96 

ES.5 3642 5.74 0.99 98.97 
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Table 4: Significant Spearman coefficients between relative abundances of LEfSe 

bioindicator phyla and soil properties (n = 10).  

 

Phyla Total 

C 

Inorganic 

C 

EC SAR Moisture Ammonium Nitrite 

+Nitrate 

Firmicutes 0.70* 0.83** 0.70*    0.74* 

Bacteroidetes 0.78** 0.71* 0.72*  0.64* 0.78** 0.74* 

Acidobacteria -0.74* -0.79** -0.68*  -0.64* -0.65* -0.86** 

Chloroflexi      -0.72* -0.82** -0.71*   -0.82** -0.70* 

Armatimonadetes -0.77** -0.84** -0.69*  -0.69*  -0.92** 

Nitrospirae  -0.63*  -0.65*   -0.91** 

Rokubacteria -0.64* -0.64*     -0.86** 

Entotheonellaeota -0.76* -0.76* -0.68*    -0.85** 

FBP  -0.77**   -0.67*  -0.83** 

Elusimicrobia     -0.64*  -0.81** 
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Highlights 

 Fish-processing effluent discharges increased soil salinity, total and inorganic C. 

 Effluent discharges decreased soil microbial diversity and total OTUs. 

 Effluent discharges promoted an enrichment of Firmicutes and Bacteroidetes in soil. 

 Effluent discharges induced a decrease of oligotrophic phyla in soil. 

 Inorganic C, ammonium, EC and soil moisture explained 73% of community variation. 
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