
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Decentralized repository for data backup management

Derck, Didier

Award date:
1996

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/decentralized-repository-for-data-backup-management(8a2404a7-27aa-4cc0-b357-7a26e498d0da).html

FACULTÉS UNIVERSITAIRES NOTRE-DAME DE LA PAIX, NAMUR
INSTITUT D'INFORMATIQUE

RUE GRANDGAGNAGE, 21, B-5000 NAMUR (BELGIUM)

DECENTRALIZED REPOSITORY
FOR DATA BACKUP MANAGEMENT

Didier Derek

Promoteur : Jean Ramaekers

Mémoire présenté en vue de l'obtention
du grade de Licencié et Maître en Informatique

Année Académique 1995-1996

CONDENSÉ

Les environnements distribués ont les avantages que la charge de travail est distribuée sur
plusieurs de sites sur le réseau. Cependant, avec l'émergence des Interfaces Graphiques pour
les utilisateur, les temps de réponse doivent devenir très court. Cela peut conduire à des
problèmes dans les situations où plusieurs stations de travail doivent accéder à un site pour
obtenir leurs informations. Dans ces cas spéciaux, les développeurs d'applications peuvent être
amenés à changer leur vision pour la mise en oeuvre de leurs applications.
Il peut être obligatoire de faire un tel changement pour répondre aux problèmes spécifiques de
performance.
Ce travail présente une étude concernant la décentralisation d'un répertoire dans un
environnement distribué particulier : un système distribué de stockage hiérarchique. Cette
décentralisation est désirable suite aux mauvaises performances de l'application décentralisée
lorsqu'elle doit accéder au répertoire central.

ABSTRACT

The distributed environments have the advantages that they distribute the work load on several
sites on the network. However, with the emergence of the Graphical User Interfaces, the
response time must become very short. It can lead to problems in the situations where several
stations must access one site to get their information. In these special cases, the applications
developers can be brought to change their mind about the implementation of their applications.
It can be mandatory to do such a change to answer to specific performance problems.
This work presents a study about the decentralization of a repository in a particular distributed
environment : a distributed hierarchical storage system. This decentralization is desirable due
to the bad performance of the decentralized application when accessing the central repository.

ACKNOWLEDGMENTS

I wish to thank Professer Jean Ramaekers for its precious advices.
I would like to thank Benoit Hucq from Siemens-Nixdorf Software for providing the subject of
this thesis. I want to thank Fabian Libion for his help, advices and corrections and also all the
people from the RD34-RD35 teams from Siemens-Nixdorf Software for their help,
explanations and advices about HSMS and ARCIDVE products.

Finally, I would like to thank Luc Halbardier for his help concerning the English.

TABLE OF CONTENTS

1. INTRODUCTION ____________________ il
2. PRESENTATION OF HSMS 13
2.1 INTRODUCTION 13

2.2 CONCEPTS 13

2.2.1 Hierarchical Storage 13
2.2.2 HSMS Archive concepts 14

2.3 HSMS BASIC FONCTIONS 17
2.3 .1 Common properties to the basic functions 17
2.3.2 Migration 17
2.3.3 Backup 18
2.3.4 Long-term archiving (archival) 18
2.3.5 Copying backup files 19

2.4 HSMS-CL 19

3. PROBLEM DEFINITION 21
3.1 WHY A DECENTRALIZED REPOSITORY ? 21
3.2 COMMANDS USING THE REPOSITORY 22

3.2.1 Archive related commands 22
3 .2.2 Node files related commands 23

4. THEORETICAL DISTRIBUTION MODELS ____________ 25
4.1 INTRODUCTION 25

4.1.1 Distribution transparency 25
4.1.2 Site autonomy 25
4.1.3 Efficiency 26
4.1.4 High reliability/availability 26
4.1.5 Security/access control 26

4.2 REPLICATED REPOSITORY 26

4.3 P ARTITIONED REPOSITORY 27

4.4 P ARTITIONED AND CENTRALIZED REPOSITORY 28
4.5 PARTLY PARTITIONED & REPLICATED REPOSITORY 29

4.6 OTHER COMBINATIONS 30

5. EVALUATION FOR HSMS 31

5.1 INTRODUCTION 31

5.2 PRESENT STRUCTURE OF THE REPOSITORY 31
5.2.1 The F-record 31
5.2.2 The R-record 33
5.2.3 The S-record 33
5.2.4 The T-record 33
5.2.5 The X-record 34

5.3 DECENTRALIZATION POSSIBILITIES _______________ 35
5 .3 .1 Replicated repository 3 5
5.3.2 Partitioned repository 36
5 .3 .3 Partitioned and centralized repository 36
5.3.4 Partly partitioned and partly replicated repository 36
5.3.5 Other Combinations 37

5.4 THE CONTROL FILE _____________________ 37
5.5 SUl\'IMARY 37
6. INFORlvfATION EXCHANGE PROTOCOL 39
6.1 PRESENTATION 39
6.2 THE REPOSITORY INFORMATION EXCHANGE 39

6 .2.1 Order _____________________________ 39
6 .2.2 Replication case __________________________ 40
6 .2.3 Partial partition & centralization case 46
6 .2.4 Partial partition, replication & centralization case 50
6 .2.5 Common mechanisms 53

6.3 CONTROL FILE INFORMATION EXCHANGE ____________ 54
6 .3 .1 Centralized control file 54
6 .3 .2 Decentralized control file 56

6.4 IMPLEMENTATION CHOICE __________________ 58
6 .4.1 ISAM file 58
6 .4.2 Database 58

7. INTEGRATION IN HS1WS ___________________ 59
7.1 INTRODUCTION 59

7.2 PRESENT ARCHITECTURE OF HSMS 60

7.3 SOLUTION PROPOSAL 63
7 .3.l Decentralization mode! 63
7 .3.2 Update obtaining and propagation 63
7 .3 .3 Client recovery 6 4
7 .3.4 Control file 6 4
7 .3.5 Complement to the solution proposa! 6 5

7.4 MODIFICATIONS TO THE ARCHITECTURE 65
7 .4.1 Backup/archive actions 66

7 .4.2 Periodic update obtaining 68
7 .4.3 Restore actions 7 0
7 .4.4 Show actions 7 0
7 .4.5 Changes explanations 73

8. POSSIBLE EVOLUTION __________________ 75
8.1 INTRODUCTION 75

8.2 INCREMENTAL BACKUPS 75
8.2.1 Present situation 7 5

8.2.2 Evolution 7 7

8.2.3 Changes and choices explanations 81

8.3 REPOSITORY ANALYZER. ___________________ 82

8.4 ARCHIVE SELECTION FROM CLIENT ______________ 84
8 .4.1 Commands changes 8 4
8 .4.2 Possible adjunction 8 4

9. CONCLUSION ____________________ 85

JO. GLOSSARY 87

11. BIBLIOGRAPHY 91

Chapter 1 : Introduction

1. INTRODUCTION

The abject of this thesis is to study the decentralization possibilities of a repository in a
particular distributed environment and to propose an implementation model that salves the
problem of the present location of the repository.

This work is divided as follow: in the two first chapters, the distributed environment is
presented and the location problem is explained.
In the third chapter, the different theoretical decentralization models found in the literature are
presented and briefly evaluated in a general situation.
The fourth chapter con tains the evaluation of these models for the concerned distributed
environment. At the end of this chapter, three possible solutions are kept for further
evaluation. The next chapter contains the study of all the required procedures for the three
kept decentralization possibilities.
The sixth chapter con tains a solution proposal and the details of the distributed environment
architecture together with the required changes associated with the solution.
The last chapter gathers the possible evolution that can be made after the implementation of the
decentralization.

- Page 11 -

Chapter 2 : Presentation of HSMS

2. PRESENTATION OF HSMS

2.1 INTRODUCTION

HSMS is a BS2000 software product -Siemens mainframe Operating Systems- which
supports data management on external storage devices in a BS2000 system. HSMS is an
acronym for Hierarchical Storage Management System. It provides several useful functions as
backup, archiva} and migration of files.

To cope with the increasing part of the UNIX systems in the IT organization and to complete
the offered services, a complementary software has been developed: it is HSMS-CL. This new
product is a client version of the HSMS product and allows the UNIX administra tors to backup
and archive their files with HSMS (the file migration in UNIX is not yet implemented, but the
project is under way).

HSMS uses the ARCHIVE product (in BS2000 environment)for the actual saving of
the managed files to or from the storage levels.

2.2 CONCEPTS

As HSMS uses several concepts that don't exist in the other products, a brief
description is required for a good understanding of the following chapters. However, the most
important concepts will be explained in full details as they appear in the next chapters.

2.2.1 Hierarchical Storage

As HSMS is a hierarchical storage system, it respects the HSM norms for the storage
space. Globally, those norms are set to organize the storage space in several levels, each one
composed by a certain type of media.

In HSMS, the storage space is divided in three distinct levels (Table 1) :

1. Storage level S0

The storage level S0 is the normal processing level. It is the one the users can access
on-line. This level is managed directly by the file system (DMS, Data Management System, for
the BS2000 and UFS, UNIX File System, for the UNIX). This level is composed by disks. As
it is the online level, it must be the faster one. It is thus composed by magnetic disks with fast
access time.

- Page 13 -

Chapter 2: Presentation ofHSMS

2. Storage level S 1

The storage level S 1 is the online background level. The data stored on this level are
managed by the HSMS program. It is composed by disks too, but these disks are generally
slower and bigger than those ones used at the level SO.

3. Storage level S2

The storage level S2 is the off-line background level. It consists of magnetic tapes or
magnetic tapes cartridges. It is thus the slower storage level ofHSMS.

All the data at this level are managed by HSMS.

Storage level User access Media Access Access time

SO, processing direct disks online very short
level

S 1, background viaHSMS disks online short
level

S2 background viaHSMS magnetic tape or off-line long
level cartridges

Table 1 : Storage Levels in HSMS

2.2.2 HSMS Archive concepts

The archive is the basic HSMS management unit. HSMS stores and manages all data
saved by either backup, archiva! or migration in archives. HSMS distinguishes five types of
archives, one archive for each of the basics functions it off ers : backup, archiva! and migration
in BS2000, and backup and archiva! in UNIX (the migration in UNIX is not yet implemented).
All the basic HSMS functions can't be executed until the appropriate archive has been created.

- Page 14-

Chapter 2 : Presentation of HSMS

The user creating the archive is its owner. It is important to note this feature because
only the owner of an archive can manage it. Normal users can only obtain information about
the data they own or if the owner of the archive containing those data has declared this archive
public, i.e. accessible by all the users.

Each HSMS archive consists of (see Figure 1):
• the archive definition containing the archive's attributes
• the associated archive repository
• the save files containing the saved data

Archive reposito

Save file entries--+-'---1

Volume pool --+--.

Control file

Archive definition 1

Archive definition 2

Figure 1 : Structure of an HSMS archive

Archive definition

The archive definition contains the following information
• the type of the archive
• the owner of the archive

Save file
Priv /Pub

in use

available

• the attributes of the archive (as the narne of the associated repository). Among
the attributes of the archive, there is one field that describes if the archive is public
or private.

All the archive definitions are stored in the HSMS control file.

- Page 15 -

Chapter 2: Presentation ofHSMS

Archive repository

The archive repository contains the information about the saved data managed in the
archive. These information are:

• the file names and attributes
• the save files data
• the save versions data
• the occupied and free save volumes

The repository is managed by the ARCHIVE product.

Save file

The save file is a cataloged BS2000 disk or tape file. A save file on tape consists of a
number of volumes having the same owner and the same Save File Identifier (SFID). A save
file can contain one or more save versions(see Figure 2).

Save version

A save version contains all files saved by a request plus the needed metadata to allow a
restore or a recall of the files. A save version is identified by its Save Version Identifier
(SVID). A file can be saved only once in a save version.

HEADER

SA VE VERSION 1

DATA+

METADATA

FOR FILE A

SA VE VERSION 2

DATA+

METADATA

FOR FILE A

Figure 2 : Structure of a save file with several save versions

A file can appear many rimes in a save file but only if different save versions were
written in the save file.

- Page 16 -

Chapter 2 : Presentation of HSMS

2.3 HSMS BASIC FUNCTIONS

2.3.1 Common properties to the basic functions

The HSMS basic functions provide the following services

• Tapes are updated for independent archivingjobs as default. This means that tapes can be
used in a more productive manner.

• A logical expiration date (specific to the job) can be allocated for archived, backed up or
migrated files, independent of the tape's physical retention period. When changing archive
tapes, those tapes that have not yet reached their expiration date can be specifically taken
over.

• Archiving and reactivationjob are collected in a job file. Tapes can be accessed at times
specified by the system administrator. This enables the computer center to better plan tape
processing times.

• The data can be compressed when being transferred to the HSMS storage level and are
automatically decompressed when accessed.

2.3.2 Migration

This function makes possible to migrate user files from the processing level SO to S 1 or
S2 as well as to recall these files to SO for processing. This effectively reduces the danger of
saturating the disk storage. If the disk saturation limit or the user allocations are exceeded, the
migration function can be started and the inactive data migrated. The number of days since the
last access, the minimum file size and the file fragmentation can be specified as criterion for
selecting files candidates for migration.

Migrated files are automatically recalled before processing during file opening or
reservation. Migration and recall can also be executed via instructions. The normal user has
access to these statements.

Sorne files are normally excepted from migration (e.g. opened files, temporary files or
files that need to be repaired). The user can also set migration Iock.

When a file is migrated, the original catalog entry remains on SO and is given a
'migrated' symbol. This function only exists in BS2000.

- Page 17 -

Chapter 2: Presentation of HSMS

2.3.3 Backup

The concept of the backup as a system service must be separated from the concept of
'long-term archiving'. To a great extent, HSMS includes the ARCHIVE functionality, in
addition to new functions. The files on the processing level SO and the migration levels S 1 and
S2 can be saved.

The system backup is carried out by the system or the HSMS administrator. HSMS
manages backup data resources automatically and safely using system backup archives.

The principal functionality of ARCHIVE is, except the complete backup and the
archiva!, the differential saving (incremental backup). For the differential saving, the principle
is to compare the catalog entry information and the repository information and to save only
files which have been changed since the last saving. Run time and memory space are then
economized. Despite of that differential saving the possibility to reconstruct the complete data
state as existing at the last saving always exists.

The backup function permi� backup in the backup level, either on disk, tape or
cartridge. If operation is sometimes unmanned, the backup data can be temporarily stored on
disk so that it can be transferred to tape at a later point in time. It is even possible to mix
storage forms, i.e. to store the differential backup on disk and store the complete backup on
tape.

Through the archive repositories , there are many options for selecting files for the
purpose of saving back or reconstruction.

Via HSMS, it is also possible to màke complete backup by executing only an
incremental backup (full from incremental). This function consists to run an incremental
backup, then with the last differential savings and the last full backup, to reconstruct a full
backup on tape without needing to access the disks. A11 the processing is made on the
background storage levels.

2.3.4 Long-term archiving (archivai)

The HSMS archiving functions , as an end user function, provides optimum support for
long-term archiving. It also implements management of all data on the archiving level.
HSMS off ers the option of adding extra user information with archiving jobs
(names/descriptors and text for archive versions), in addition to improved archive information
functions. Another option with HSMS is defining archives and setting characteristics such
default values for compression, device types, etc.

-Page18-

Chapter 2 : Presentation of HSMS

2.3.5 Copying backup files

HSMS allows save files and save versions they contain to be copied within an archive or
from one archive to another.
Copying can be used to

• swap save files from S 1 to S2
• copy save files as a precaution against data loss
• reorganize a migration archive

2.4 HSMS-CL

HSMS-CL is a software running on UNIX systems. It allows to backup and archive
UNIX files through HSMS on the BS2000. In order to do such operations, it requires the
presence of Network File System (NFS) in server mode on the workstations and in client mode
on the BS2000. It also requires the presence of the HSMS-SV product on the server (see
Figure 3).

With this requirements fulfilled, and with the presence of the HSMS server software on the
BS2000, it is possible to backup and archive the workstations files onto the BS2000. It
necessitates too the declaration of dedicated archives for these purposes.

BS200 0 (Server)

UNIX WORKSTATION (Client)

1 HSMS

HSMS-CL HSMS-SV
NFS

NFS-Server 1--------------i NFS-Client

Figure 3: HSMS-CL configuration

The HSMS-CL software cornes under three distinct forms : a Graphical User Interface
(GUI), a Command Line Interface (CLI) and an Application Interface (API).

It is also possible to backup and archive UNIX files without having the HSMS-CL on
the workstations. In this case, only the presence of HSMS-SV and NFS is required. The
workstation is called a passive client when it does not have HSMS-CL and active client when it
does.

- Page 19-

Chapter 3 : Problem definition

3. PROBLEM DEFINITION

3. 1 WHY A DECENTRALIZED REPOS/TORY ?

The HSMS architecture is a client-server architecture in which there is only one server.
All the clients access to this server where the repository is located (Figure 4).

Repository
Client 5

Client 1
= 1

.

.

1 Client 3 Client4 Client2
Figure 4 : HSMS Client-server Architecture

The disadvantages of that centralized location are that in case of some operations
initiated from the clients (especially query operations), there is a waiting rime and a traffic
generated on the network. This delay is caused by the sending out of a request for information
to the server, the transmission time, the information retrieval on the server and the transmission
time for the answer generated by the server. As the repository is a quite big file, the
information retrieval on the server can thus take a certain rime. The generated traffic is
composed of the request from the client and the answer generated by the server. On a heavy
loaded network, the transmission rimes of these datagrams can be qui te important. And as the
client program can be a Graphical User Interface (GUI), a long waiting time is not acceptable.

The decentralization of the repository can bring a solution to those problems. It can
reduce the delay and lower the traffic on the network for query operations asked by the clients.
As the information is available locally, the delay can be reduced to the time needed for the
retrieval of the information in a local file. The traffic generated on thé network can be reduced
to the information exchange between the server and the clients that is required to keep the
decentralized repositories up to date.

- Page 21 -

Chapter 3 : Problem definition

This exchange generates a certain amount of traffic, but it can be made during periods
of the day where the overall traffic on the network is reduced (during the night for example). It
is important to note that this traffic can be as much important as the traffic generated by the
query operations.

Several interrogations arise with the decentralization :
• what kind of decentralization should be chosen ?
• which information should be decentralized ?
• when the updates to the decentralized repositories should be made and how ?

Several problems arise too :
• what does happen when an access is made to a non-updated repository ?
• some information needed to access the repository are located in another file, the

control file. Must this second file be decentralized too ?

3.2 COMMANDS USING THE REPOS/TORY

Here cornes a brief study of the commands using the repository. This study is here to
differentiate the accesses to the repository, where they are initiated, . . .

There are two types of commands : the commands given by the active clients and the
commands given by the server. All these commands access the control file which contains the
associations between the names of the archives and the names of the repositories, and other
information related to the archives.
The client commands are : bsarch, bsback, bsrest, bsshow. The others are the server
commands.

The commands are subdivided in two categories : the commands related to the node
files and those related to the archive.

3.2.1 Archive related commands

Create-archive

This command is used to create an archive for backup or archivai. It is also used to
define the name of the repository associated with the archive.
It initializes the repository.

- Page 22

Chapter 3 : Problem definition

Modify-archive

This command is used to modify an archive repository, i.e. modifying information in a
save file, deleting save files and managing a volume pool.

Delete-archive

This command is used to delete an archive definition. It does not access to the
repository but only to the control file.

3.2.2 Node files related commands

Archive-node-files, bsarch

These commands are used to archive node files, they access the repository to
update it, also to consult it in order to continue a save file, ...

Backup-node-files, bsback

These commands are used to backup node files, they access the repository to
update it, and also to consult it as the archiva! commands

Restore-node-files, bsrest

These commands are used to restore node files from an archive (either archiva! or
backup archive). They access the repository to retrieve information concerning the files
to be restored.

Show-archive, bsshow

These commands are used to see the contents of an archive. They display information
about the save files, the save versions, the node files or the volumes contained in the
specified archive. They consult the repository in order to retrieve this information.

- Page 23 -

Chapter 3 : Problem definition

Select-node-files

This command is used to select files from an archive. It consults the repository to find
which files are corresponding to the selection criterion specified by the user.
The result can be used directly by another command or stored in a file.
This file can later be used with the restore-node-files or the backup-node-files
commands in order to specify the files to be restored or backed up without giving all
the file names explicitly.

Copy-node-save-files

This command is used to copy a node save file and the save versions of a predefined
archive, either within the same archive or into another archive.
It accesses the repository in order to find the information over the save file to copy
and in order to update the information about the new save file.

The repository is accessed as much from the workstations as from the server. This
implies that the decentralization of the repository must be made so that the performance of the
server are kept optimal and the performance of the workstations are increased. It is useless to
improve the performance of the workstations if the server' s performance is degraded. It is then
necessary to find a solution giving the best gains of performance for the workstations when
accessing the repository without losing the present performance of the server for backup and
restore operations.

- Page 24

Chapter 4 : Theoretical Distribution models

4. THEORETICAL DISTRIBUTION MODELS

4. 1 INTRODUCTION

There are several possibilities for the decentralization of a repository. Each possibility has its
advantages and drawbacks. The repository can be :

• replicated
• partitioned
• partitioned and centralized
• partly partitioned and partly replicated
• any other combinations

Whatever the possibility, it must have the following properties
• distribution transparency
• site autonomy
• efficiency
• high reliability/availability
• security/access control

4.1 . 1 D istribution transparency

Regardless of exactly how the repository information is distributed, the interface and
overall operations of the repository must provide a single, consistent interface as if the
repository resides on the user's local host. There are two aspects to distribution transparency.
First, when a user is concerned, the "simple" operations on the repository must appear as if they
took place locally, even if remote sites are contacted. The definition of "simple" operations
may vary : there are operations which explicitly require the user's awareness of access to
remote sites. Second, the consistency of replicated or partitioned data is important; multiple
accesses to the repository should not result in inconsistent or unexpected results dependent on
the distribution.

4.1 .2 S ite autonomy

This property is necessary to enable any site to access its local data without being
blocked by any other site.

- Page 25

Chapter 4 : Theoretical Distribution models

4.1 .3 Efficiency

Ali the information must be stored close to its normal point of use, reducing both
response times and communications costs.

4. 1 .4 High rel iab i l ity/ava i labi l ity

It is imperative that we can rely on the application, i.e. not easily crashed by the
applications or systems failures, and available, i.e. operational at a local site or portion of the
network even if other sites crash or the network becomes partitioned.

4.1 .5 Security/access control

Although each site has its own security mechanisms, it is necessary to have some
security/access controls for the repository itself. The user should not be able to delete the
repository's file, modify it directly without using the ad hoc program, consult information to
which he shouldn't have access.

4.2 REPLICA TED REPOS/TORY

In this situation, two or more sites are holding a copy of the repository in its entirety. As
illustrated in Figure 5, there is an extreme solution in which the repository is stored in each site of
the network.

D : WS l !' < 1 : WS 3 P,:'@I : WS 2 - : WS 4
Figure 5 : Replicated repository

- Page 26

Chapter 4 : Theoretical Distribution models

This solution (full replication) selves all the problem of access time and direct traffic (by
direct traffic, we mean traffic generated by the requests) : the only traffic that is necessary is the one
needed to keep the information up to date. It offers a very high reliability : as many sites are holding
a copy of the repository, in case of a failure on a site, it is easy to find back the information and there
is no lost of information.

In the case of a non-full replication, the load is distributed to several sites in place of one,
thus accelerating processing of the requests. But this distribution model implies the propagation to
all the copies on the network. It generates thus a lot of traffic. Moreover, special provisions must be
made in case some copies are unavailable when the update is made (unavailability caused by a
network failure orby a site closure).

This solution requires a lot of disk space as each site holds the total repository. Moreover, it
implies to set up mechanisms to avoid data access concurrency.
But it respects all the properties required by the distribution. The distribution transparency is
assured as all the operations are processed locally. The site autonomy is full as no other sites must
access to this repository. The availability is also assured as no access to the network are required,
and the efficiency is maximum as the information cannot be stored closer than its normal point of
use.

4.3 PARTIT/ONED REPOS/TORY

In this situation, each site maintains its own repository containing the local information
(see Figure 6) . There is no global repository containing all the data, but the union of all the
disjoint local repositories forms the total repository.

WS 4

-�
D : WS I B : WS J
P::41 : WS 2 - : WS 4

Figure 6 : Partitioned repository

- Page 27 -

Chapter 4 : Theoretical Distribution models

This requires less storage space, accelerates the information retrieval as the file is smaller, but
off ers less security as there is only one copy of the data and the update procedure is much
easier than in any other case as it implies only the local site.

Requests concerning non local information must be broadcasted to ail the sites in order to
locate the site holding the required repository entries.

Ali the properties of the distribution are not fulfilled. The distribution transparency is
nearly perfect, as long as there is no access to information located on other sites. In this case,
there is a delay and it goes against the property of site autonomy. One site can be blocked by
the accesses coming from the other. The property of availability is not respected in this case, as
a network failure can block access to information. The efficiency is assured as the information
is stored close to its normal point of use if the partition has been correctly made.

4.4 PARTITJONED AND CENTRALIZED REPOS/TORY

In this situation, as shown in Figure 7, each site is holding its own repository containing
the local information and a central site maintains an unified copy of ail those local repositories.

D : ws l I'->:/: 1 : ws 3
kd@ : WS 2 9iffl : WS 4

Figure 7 : Partitioned and centralized repository

It has the same advantages as the partitioned case except that this requires more disk
space to store the repositories and that requests for non-local information are directed to only
one site and not broadcasted on the network. It has the great advantage that as there is more
than one copy of the information, there is a greater security.

Updates are directed only to the local and the central site, thus reducing the complexity
of this procedure. It also needs a concurrency control between the decentralized site and the
central one.

- Page 28 -

Chapter 4 : Theoretical Distribution models

The properties are fulfilled as in the partitioned case, except that the site autonomy is
more respected as only one central site is disturbed by the non-local requests. The reliability
and availability is respected only if the server remains accessible in case of network failure.

4.5 PARTL Y PARTITIONED & REPLICATED REPOS/TORY

As shown in Figure 8, with this solution, some information contained in the repository
are replicated and some are partitioned.

�_Q---Q�

��----�
D : WS 1 h::::::==1 : WS 3 @@ : Common

n,::u11 : ws 2 • : ws 4

Figure 8 : Partly partitioned and partly replicated repository

The replicated parts generally concern information that is needed by several sites, but it
can be information that is critical and that can't be lost. By placing this information on each
site, the access rime are reduced the update procedure is more complex.

It combines the fast access rime to all the information and an average need of disk space
but requires, as in the replicated case, a special provision for the sites that are unavailable at the
update time of the replicated part. It also requires a concurrency control for these parts.

Concerning the distribution properties, the distribution transparency and the site
autonomy are fully satisfied as nearly all the required information are located on the site. It also
off ers a greater reliability and availability as the bigger part of the requests can be processed
locally, without accessing the network. The efficiency is also optimal if the replication and the
partition are correctly made.

- Page 29 -

Chapter 4 : Theoretical Distribution models

4. 6 OTHER COMBINA T/ONS

These other combinations imply that each site holds a part of the total repository,
generally the local part and the ones of the related sites.(see Figure 9).

�Q-;__Q �"�
�Q-

I
WS 4

-
�

0 : WS 1 j:::::>::·::j : ws 3
k'::@ : WS 2 mffl : WS 4

Figure 9 : Other combination

It offers a better security than the other cases as there is more than one copy of the
information and easier access to non-local information as there is a copy of those on the site.
But this requires more storage space and the update procedure is more complicated.

The distribution properties are more or less respected following the access made to the
information. If the accesses are made only to the local information, the properties are satisfied,
if it is not the case, they are not.

- Page 30

Chapter 5 : Evaluation for HSMS

5. EVALUATION FOR HSMS

5. 1 INTRODUCTION

The evaluation for HSMS is divided in three parts : the study of the structure of the
present repository, the evaluation of the decentralization possibilities for the repository, the
evaluation for the control file.

The structure of the repository is placed here to highlight some important evaluation
criterion for the decentralization possibilities. Following these criterion, the theoretical models
are evaluated for the repository and the control file. At the end of this chapter, a brief summary
is given with the possible solutions for HSMS.

5.2 PRESENT STRUCTURE OF THE REPOS/TORY

The repository is an ISAM file based on an access key of 155 characters. It is a
BS2000 file located on the server . The repository contains information about the saved files.
This information is organized in records. There are five different types of records used to store
information. These records are completed by two special records used to mark the begin and
the end of the repository. They are also used to verify the state of the repository : at the
opening, HSMS verifies if they are present, if not, it stops the access and generates an error.
These two records are the Low key record and the High key record.

The five record types used to store information about the saved files are
the file record or F-record
the save file record or R-record
the save version record or S-record
the tape record or T-record
the save version extent record or X-record

5 .2 . 1 The F-record

This type of record is used to store information about the node files that have been
archived or backed-up. The identifier of the record is formed by the letter "F" followed by the
hostname, the user number and the filename. The filename is composed with the full pathname
and the filename itself and is restricted to 99 positions. In the case of a pathname longer than
99 characters, it is truncated and the rest is stored after the identifier in the data part of the
record (up to 925 positions, for a total of 1024 characters). The identifier is followed by the
information about the file itself (access bits, access dates, . . .), and information about the save

- Page 31 -

Chapter 5 : Evaluation for HSMS

sessions. For each save session concerning the file, you find the identifier of the save version
(SVID) and the identifiers of the volumes (VSN) that contain the file (see Figure 10).

1 FI Filename I SVID 1 1 VSNl I VSN2 I SVID2 1 VSN5 1 . . .
Where filename = Hostname + user number + full pathname

Figure 10 : Structure of the F-record

- Page 32 -

Chapter 5 : Evaluation for HSMS

5.2.2 The R-record

This type of record is used to store information about the save files. The identifier is
composed by the letter "R" and by the internai save file identifier (SFID) followed by a filler in
order to obtain the 155 positions needed for the access key. The SFID is made of the date and
time of the save file creation. The following fields contain information about the save versions
stored in the save file(Figure 11). Each save version is referred via its internai identifier
(SVID).

S V ID 1 1 S V ID 2 1 S V ID 3

Figure 1 1 : Structure of the R-record

5.2.3 The S-record

This type ofrecord is used to store information about the save versions. The identifier
is formed by the letter "S" followed by the SVID and by a filler. The SVID is formed as the
SFID, by the date and time of its creation. The following fields contain various information:
among them, there are the identifiers of the volumes on which the save version is located
(Figure 12).

l s I S V ID l v sN 1 l v sN2 lv SN3 1 s a v e typ e

Figure 12 : Structure of the S-record

5.2.4 The T-record

This type of record is used to store information about the volumes that are allocated to
the archive. Its identifier is made by the letter "T" followed by the highest identifier of the
volume contained in the record (Figure 13). The fields that follow are related to the volumes
and contain the type, the availability and other data conceming the tape.

] r i H-VSN lvsN 1 jvsN2 lvsN3 jvsNs
Figure 13 : Structure of the T-record

- Page 33
1 1

Chapter 5 : Evaluation for HSMS

5.2.5 The X-record

This type of record is used to cornplete the S-records. It contains cornplernentary
information related to the save version.
It has the sarne identifier than the S-record except that the first letter is a "X".
It con tains arnong other things, the optional narne of the save version given by the user and the
SFID of the save file that holds the save version (Figure 14). There is one X-record for each S
record.

X SVID SFID 1 Information (save version narne, . . .)

Figure 14 : Structure of the X-record

Here cornes a exarnple of a possible repository

I F I F ilenarn e1I S V ID I l vsN I l s vrn 2 l vsNs 1

I F I Filenarn e3 I s v rn 1 l vsN2 l s vrn 2 lvsNs 1

R SFID l
S S V ID 1
S S V ID 2
S S V ID 3
S S V ID 4

T VSN5
X S V ID I
X S V ID 3

S V ID 1 S V ID 2 SV ID3 S V ID 4
VSN I V SN2 V SN5
VSN5 Save t
VSN3 V SN4
VSN5

Save t e . . .

e . . .

vsN I l vsN2 l vs N3 l v sN4 l v sNs 1
SFID 1 Save v ersion narn e , . . .
SFID 1 Save version narn e , . . .

Figure 15 : Structure of a repository

Rernark: the Low key and the High key records are not displayed in the figure due to the lack
of interest of those records as part of this study.

- Page 34 -

Chapter 5 : Evaluation for HSMS

There are some types of records shared by several workstations. Those records are the
T-records, the R-records and even the S and X-records in some case.
It is possible to have the situation described in Figure 16. In this situation, for a save file, there
are save versions related to distinct workstations and save versions shared by several
workstations. Thus, there are S and X records shared by some workstations, a R-record and
the T-Record shared by all the workstation.

1 S V ID 1 1 S V ID2 1 SVID 3 1 SVID 4

W here S V ID 1 refers t o files from W orkstation 1
S V ID 2 refers to files from W orkstation 3
S V ID 3 refers to files from W orkstations 2 and 4
S V ID 4 refers to files from W orkstation s 1 ,2 , 3 ,4

Figure 16 : Shared records

5.3 DECENTRALIZA TION POSSIBILITIES

Each of the theoretical possibilities will be estimated for HSMS.

5.3. 1 Replicated repository

In order to obtain gain of performance for each workstation, a full repli cation is needed.
This solution off ers one of the best gains of time for the information retrieval as the requests
can be fully processed locally. This is not the optimal solution because information retrieval is
always made in a big file, and thus increases time loss. Another drawback is that each
workstation holds information that it will normally never access thus wasting a lot of disk
space. The update procedure for this situation is important as it requires the propagation to all
sites.
This solution is full y applicable as there is no problem for the shared records, and does not pose
any problem for the performance of the server.

- Page 35 -

Chapter 5 : Evaluation for HSMS

5.3.2 Partitioned repository

This solution, theoretically near to the full optimum in term of access performance, is
practically not very optimal for HSMS. The first reason is there is a need to fully reorganize
the shared records. In order to be partitioned, those shared records must be splitted and it
leads to a lost of directly available information.
Otherwise, this solution offers good performance for the HSMS clients as the local repositories
contain only local information. It does not require much disk space, in fact it does not require
more disk space than a centralized repository, with the advantage that this total space is shared
by all the sites. The second reason is that, with this solution, the server looses its performance
for the backup and the restore functionality. This is the bigger drawback of this possibility,
making it non interesting for HSMS.

5.3.3 Partitioned and centralized repository

Theoretical proposa!

This solution has all the advantages of the previous one but without loosing
performance of the server as this one holds a full copy of the repository. It requires more disk
space and a slightly more complicated update procedure. It also implies that the shared records
must be splitted, leading to a lost of directly available information.

HSMS adapted proposa!

By making only a partly partitioned repository (the partitioned records being the non
shared ones) combined with the centralization of the full repository, there is no more problem
of reorganization of the shared records, thus leading to a simple and quite optimal solution for
HSMS. This solution is called partly partitioned and centralized repository.

5.3.4 Partly partitioned and partly replicated repository

Theoretical proposa!

By replicating the shared records, this solution avoids the problem of their
reorganization. This implies that updates made to these records must be propagated to all the
workstations. As each workstation holds all its information, this solution obtains the best
performance for HSMS client. Unfortunately, the server looses all its performances with this
solution as it holds no other information than the local ones.

- Page 36 -

Chapter 5 : Evaluation for HSMS

HSMS adapted proposai

By combining this solution with the centralization, this give a perfect solution in term of
performances. However the performances are counterbalanced by the update procedure that
requires propagation to all sites for updates concerning the shared records.
This solution is called part/y partitioned, part/y replicated and centralized repository.

5.3.5 Other Combinations

The other combinations don't offer more advantages than disadvantages.
With such solutions, a lot of disk space is needed, the update procedures are complex.
And for HSMS, those solutions are not acceptable.

5.4 THE CONTROL FILE

This file, also located on the server, contains, among other, information about the
archives. As part of the decentralization, the only interesting information are the associations
between the archives names and the repositories names. By decentralizing these, ail the query
requests can be full y treated on the workstations (depending on the decentralization schema
chosen for the repository). The drawback of this is that it implies another update propagation
procedure. If the control file is not decentralized, there is, prior the access to the repository, an
access to the central control file to get the name of the repository.

5.5 SUMMARY

There are thus three solutions that are more or less applicable to HSMS. They are the
"full replication", the "partly partition with the centralization" and the "partly replication, partly
partition with the centralization". Each of these can be combined with the possible
decentralization of the contrai file. This decentralization must be made by a parti y partition in
order to obtain good performances. The partition concerns only the names associations.

- Page 37 -

Chapter 5 : Evaluation for HSMS

Solution Advantages Disadvantages
Replication without control Duplication security (with Disk space, file size, central
file special mechanisms), access to the control file,

performance + update procedure, data
coherence

Replication with the control Security, performance ++, Disk space, file size, update
file partly partitioned traffic procedures, data coherence

for the control file
Partly partition & Performance +, disk space, Central access to the
centralization without update procedure control file, traffic
control file
Partly partition & Performance ++, disk Update procedure, data
centralization with the space, easy update coherence for the control
control file partly procedure, less traffic file
partitioned
Partly partition & partly Performance ++, disk space Update procedures, central
replication & centralization access to the control file
without control file
Partly partition & partly Performance +++, disk Update procedure (3 X),
replication & centralization space, traffic data coherence for the
with the control file partly control file
partitioned

-Page 38

Chapter 6 : Information exchange protocol

6. INFORMATION EXCHANGE PROTOCOL

6. 1 PRESENTATION

The information exchange protocol is divided in two parts : the control file part and the
repository part. These two subdivisions are qui te similar as they imply information transfer
from the server to the clients. They have some differences however : the mechanisms that must
be set for each, are different and require a separate study.

The study of the information exchange concerning the repository is itself divided in four
: one subdivision for each of the possible repository decentralization schema (full replication;
partial partition and centralization; partial partition, partial replication and centralization) plus
one part for the mechanisms common to the three decentralization possibilities.

6.2 THE REPOS/TORY INFORMATION EXCHANGE

6.2.1 Order

The order of update is the first point to approach before studying the obtaining and the
propagation themselves. The order concerns which, from the server or the clients, will get the
update information first.

But, before comparing the advantages and disadvantages of the different order
possibilities, it is important to note that for security reason, it is necessary that there is quickly
an updated repository.

So even if there is a problem with a site or with the network, it can be possible to
restore the lost information concerning the updates. Obviously, if it is the site that holds the
updated repository that crashes, it does not help to have it quickly updated.

For each of the three possibilities of decentralization, it exists three options for the propagation
order : the clients first, the server first or the clients and the server at the same rime.

The clients before

The case where the client is updated first has several drawbacks. It is not the quickest
solution : it requires the sending of datagrams to the clients, with all that it implies (possible
errors, traffic, ...). The sending of datagrams generally increases the risk of failure before a
repository is updated. As it is necessary to have all the information concerning the update
before beginning the update operation itself on the clients, there is a qui te long delay during
which no repository is updated.

- Page 39

Chapter 6 : Information exchange protocol

And, for a matter of quickness and availability of the information, it is not the simplest
solution.

The server first

All the information concerning the update is located on the server. It is thus more logic
and more easy to update the server first and the clients next as all the update information is
located there. It also offers the quickest way to obtain an updated repository as soon as
possible. Once the update on the server is made, the update can be sent to the clients. It
requires for this operation special mechanisms in the case of problems during the transmission
of the update itself.

The two together

Updating the server and the clients together is a solution that depends on the sending
rime. If it is made as soon as the information is available, then it is a good solution. But
despite that, it requires the setting of special mechanisms to record which repositories are
updated when there is a network or a site failure during the update operations. If the sending is
not immediate, this solution is not better than the "client first" solution. There is no quick
update repository and it requires mechanisms in case of site failure during the operation.

6.2.2 Replication case

Update obtaining & propagation

In order to propagate the update to the sites, it is necessary to obtain it after each
operation. In the replicated case, the update is the same for all the sites on the network.

What must be set in the update and how ?

There are several possibilities for the information that must be set in the update.

First solution

The first solution is the easiest one : it consists of updating the server',s repository and
then to send it to all the clients. · But, unfortunately, this solution cannot be implemented for
two majors reasons. First, it is not an economical solution as the repository can be a quite big
file, thus involving lot of traffic for the sending to the clients. Second, as the server's repository

- Page 40 -

Chapter 6 : Information exchange protocol

is a BS2000 file, it is not directly portable to the UNIX workstations, but it can possibly be
converted.

Second solution

Another solution consists of getting only a descriptor of what has changed in the
repository and to send this one to the workstations. The descriptor contains only the pathname
that was given in the request that initiated the changes in the repository, with the identifiers of
the save version (SVID) and the save file (SFID) in which the files have been saved and the
volume identifiers (VSN) on which the files are located.

With this kind of solution, the descriptor, when received by the workstations, is stored
for further use. The workstations, when necessary, will send a request to the server to get the
update associated with the descriptor.
The big drawback of this solution is that the update is send to only one workstation at a rime,
and therefore this processing must be made for each workstation that has received the
descriptor.

Third solution

The last solution is to get the update for the clients during the server's update. Each
rime something is written or deleted or modified in the server's repository, it must be recorded
in a separate file (see Figure 17), together with an indication of the operation. So, once the
update is completed on the server, all the necessary information for the decentralized update is
contained in this file. This one must be then sent to all the workstations.

Server

✓
✓

, , ,..,o Repository

' , r - - - - ,
... 1 ':

1
1
1

1
1

: Update File
1 1 - - - - - - -·

1 - - � : All update information 1

Figure 17 : Update obtaining in a replicated case

- Page 41 -

Chapter 6 : Information exchange protocol

Update location

For the update location, there are two possibilities : the update can be located on the
BS2000-DMS part or on the BS2000-UFS part. The BS2000-DMS part is the main file
system, and the BS2000-UFS is a UNIX file system integrated in the BS2000.

Update propagation

Once the files are ready to be sent, they must be propagated to all the workstations.
But there are several possibilities that exists for the sending of these files.
These possibilities are : as soon as the files are ready, at regular intervals or once a day.
In the case the propagation does not take place directly, special mechanisms must possibly be
set for the accesses to a non updated repository (this point is studied later in this chapter).

Immediate sending of the files

The immediate sending of the update files off ers the advantage that the decentralized
repositories are quickly updated. The traffic required can be more important than in the
centralized case, especially in case of many short operations concerning the repository. Each of
these must be propagated to the decentralized sites, leading thus to a lot of traffic of lesser size.
And this traffic is made during period where the network can be congested by the traffic
generated by the other applications. It can be slowed down by these applications, or can slow
down these ones, reducing the propagation speed.

As the update propagation can concern sites that are not involved in the operation that
starts the update (situations that can exist when there is a replication (full or not)), mechanisms
must be set to cope with this special situation.

These mechanisms require that, as soon as the unavailable sites are accessible again, the
update is sent to them. For this, it is necessary either that the site itself warns that he is
accessible again, or that the server continues to try to send the update until it gets an
acknowledgment from the site. These sending attempts must be made at regular intervals, as it
is useless to try continuously.

Sending at regular intervals

To ensure a sending at regular intervals, a program must regularly check if there are
files to be sent. The intervals between two checks can be either predefined or defined by the
HSMS server's administrator.

- Page 42 -

Chapter 6 : Information exchange protocol

But with this solution, the decentralized repositories are not quickly updated. The
traffic on the network can be lesser than in the immediate sending case. It is due to the possible
gathering of several updates in one during this interval. This gain of traffic is counterbalanced
by a greater load on the workstations' CPU as one update can con tain the records resulting
from several operations. This load, in place of being spread out in many times is concentrated
in one time.

Once a day sending

The "once a day sending" means that the update propagation only occurs once a day. It
implies that all the decentralized repositories are rarely up to date and thus that accesses to
these are accesses to non-updated data.

This type of propagation can be considered as a particular case of the previous solution
with a sending interval set to a full day. This solution limits the most the update traffic since all
the modifications resulting from the operations on the repository are gathered in one update.
This advantage is counterbalanced by the fact that the workstations CPU's loads are important
as all the data must be processed in one time. In the other cases, this load is more or less
distributed during the whole day.

But, as the propagation normally takes place during the night or at any other period
where the traffic is low, a heavy load of the workstations CPUs is theoretically not
embarrassing.

The two last solution requires a study of the accesses to a non-updated repository.

Access to a non updated repository

Accesses to a non-updated repository can be made in either of three ways.

First solution

The first solution consists in allowing the access just as if the repository was up to date,
without prior notice. It is the easiest to implement : there is absolutely nothing to change to the
access procedure. However it is not acceptable. The displayed information can be wrong and
the user is not wamed.

- Page 43 -

Chapter 6 : Information exchange protocol

Second solution

The second solution is very similar to the first one; it consists in allowing the access to
the repository but with a signal that warns the user the displayed information is not up to date.
It requires a few changes to the access procedure and to the repository's file. In order to be
able to warn the user that the repository is not up to date, it is necessary to have a flag
positioned with the file. The access procedure must also be modified : a verification of the flag
must take place at each read operation of the repository. Following this result, the procedure
must display a warning message or not.

This solution is opposed to the property of distribution transparency : the user is
warned that remote operations are not yet completed. Despite the warning, this solution is not
acceptable. The displayed information can be wrong and if it is the case, the user is warned that
there is wrong information but does not know which one.

Third solution

The third solution is more complex than the previous ones : the access to the non
updated repository is redirected to the server's repository. It is the most complex to implement
but assures that the displayed information is always the most recent and correct. It requires a
modification of the access procedure and a modification to the repository's file. 'The
modification of the file is the same than in the previous solution : a flag is positioned to
indicate if the file is up to date or not. With this solution, the access procedure must check the
value of this flag. Following the value of this one, the access is made to the local repository or
to the server's repository.(see Example 1 & Example 2)

But the gains of time foreseen by the decentralization can be reduced to nothing with
this option. If a modification of the repository take place just after a propagation, the related
decentralized repositories are no longer up to date and access to them is redirected to the
server, leading to the same situation than before the decentralization.
However, the positioning of a flag on the repository requires sending signals from the server to
the stations in order to set the right value to it when there is an update that waits to be
propagated.

- Page 44 -

Chapter 6 : Information exchange protocol

ws Server

TCP/IP

· ✓ : Repository up to date
_., : Request
- -► : Answer

l The application accesses to the repository in order to know if it is up to date
2 The answer is : the file is up to date
3 Then the application accesses to the file to get the requested information
4 The requested information is given to the application

Example 1

ws
Server

TCP/IP
1
1

1 6
1

1 1
- 1

3

X : Repository not up to date
_., : Request
- -► : Answer

l The application accesses to the repository in order to know if it is up to date
2 The answer is that the file is not up to date.
3 The request is then transferred to the server.
4 The server accesses its own repository to get the requested information .
5 The requested information is given to the server
6 It is then transferred to the requesting application

Example 2

- Page 45 -

Chapter 6 : Information exchange protocol

Client Recovery

There are two possibilities to recover the decentralized repositories in the replication
case.

The first solution is to have a special update procedure on the server. This procedure
takes all its information directly from the repository. The difference with the normal update
procedure is that it does not operate when there is something written in the repository. It is an
"update obtaining" procedure based on the supposition that the decentralized repository is
empty; it must thus take ail the information that is necessary to reconstruct the crashed
repository. Ali the needed information is written in a file that is sent to the station as a normal
update file. The starting of this procedure can be made in two ways : the first one, the server's
administrator starts it manually; the second one, the recovery request is sent by the workstation
itself (by its administrator).

The other solution, consists in exchanging signais between two workstations, the
crashed one and another. This solution is applicable whatever the origin of the recovery
request. In the two cases, the server must transfer to the crashed workstation the address of
another site that can give the information.

After getting the address, the workstation must contact the other and get the repository.
With this mechanism, the repository is directly transferred from one site to another without any
special "update obtaining" procedure.

The drawbacks of the solution are that it necessitates two ex changes on the network in
place of one and that it necessitates authentication mechanisms between the workstations to
avoid unauthorized transfers and accesses to the repositories.
It has the advantage that it requires no special update obtaining procedure.

The advantage of the first solution are that the procedure can be used to migrate from a
passive client to an active one and from a version of HSMS-Client with a central repository to a
version with a decentralized one.

6.2.3 Partial partition & centralization case

Update o btaining & propagation

For the partial partition, the update only concerns the server and the workstations
targeted by the operation that triggered off the update.

- Page 46

Chapter 6 : Information exchange protocol

What must be set in the update and how ?

There are two possibilities for the update contents : either the whole update information
or a descriptor of what has changed is stored.

First solution

The first solution, getting the whole update information is similar to the obtaining
procedure described for the replication case. It is made during the server update but it only
concerns the F-records. As the operation that triggered the update can i'llvolve several
workstations and because the information is not shared, it requires as much files as there are
workstations involved. During the recording, the information is directly sorted to each file, so
the files contain no useless information (see Figure 18). Once the operation is finished, each
file must be sent to its workstation.

Server

c - - - - , /
1 '
1 1
1 WS 3 1
: : Update File
1 1 - - - - - - -·

�

r - - - - ,
1 1 1 1 1 1
: WS l : Update File
1 1 - - - - - -

r - - - - ,
1 '
1 1

: WS 2 : Update File 1 1 1 1

- - -► : Common update information
-► : Specific update information

During the update of the central repository, if the information to be written is a shared one, it is
only written in the central repository . If it is a non shared information, it is normally written in
the central file and it is also writteri in a file related to the concerned workstation

Figure 18 : Update Obtaining in a partitioned case

- Page 47

Chapter 6 : Information exchange protocol

Second solution

The second solution is to create a descriptor of what has changed during the operation
for each workstation involved. This descriptor contains the pathname that was given with the
command, and the identifier of the save version (SVID) in which the files have been saved.

Once the descriptors are ready, they must be sent to their related workstation.
At the reception on the workstation, the descriptor is stored on disk in a directory accessible by
the HSMS-Client program.

For each operation on the client that must access the repository, the pathname of the
files for which information is requested must be compared with the pathnames that are received
in the descriptors. If they match, it means that the requested records are not up to date. If they
don 't, the access is allowed to the repository (the term match means checking for an eventual
inclusion of the requested pathname in the pathnames contained in the descriptor).

If the requested information are not up to date, there are three possibilities for the
processmg:

• the access is redirected to the central repository to get the requested information and a
partial update is executed with the received information.

• the access is delayed, a full update is executed (concerning all the pathnames received on
the workstation that have not yet been updated) and then the access is allowed

• the access is redirected to the central repository and in parallel a full update is executed

Whatever the possibility, a mechanism must be implemented to allow periodic update
request based on the received pathnames.

The first solution is simple in its principle but requires a complex mechanism for the
periodic update request. For the periodic requests, it is necessary to have parameters that allow
to exclude the pathname that have already been updated. It leads to a more complex
mechanism as the updated pathname must be recorded for the periodic request. The drawback
is that it is possible to have many short updates generated. It also requires mechanisms to
avoid duplication: before launching a new update request, it is necessary to verify if the
requested information is not being transferred. If it is the case, the second access must be
blocked the rime the requested information is updated in the repository.

The second solution is a simple one, but the first user that will access the non updated
information contained in the repository will have to wait for a long time before receiving it. It
has the big drawback that there is a user who is heavily penalized. If a second request for the
non updated information is generated before the update completion, it must be blocked until the
first one is finished.

- Page 48

Chapter 6 : Information exchange protocol

The third solution has the advantage that the first user that wants to access to the non
updated information is not too much penalized, as he gets the information from the server and
has not to wait for a full update of the local repository. The following accesses to the
repository will be redirected to the server if the repository is still not updated or processed
locally if it is updated.

The three solutions requires that the process that manages the updates on the
workstation access the file where the descriptors are saved in order to keep it up to date with
the latest processed update. When the information are requested on the server, it is done via
the SVID associated with the concerned pathname. The SVID is used to find the information
in the central repository.

Update location

For the update files, the same choice as for the replication case is given: place the files
on the DMS or on the UFS. For the descriptor, it can be placed on disk as the other update
files or can be placed in memory in a buffer as it does not occupy much space.

Update propagation

As in the replication case, there are three solutions for the propagation of the update.
The three possibilities are exactly the same (immediate sending, at regular intervals or once a
day) and the same mechanisms must be set up in case the sending is not immediate.

Client Recovery

There is only one possibility to recover the decentralized repositories in the partition
case.

This solution consists in having on the server a special update procedure. This special
procedure works exactly as the special one that is described in the replication case.

- Page 49

Chapter 6 : Information exchange protocol

6.2.4 Partia l partition , replication & central ization case

Update obtaining & propagation

In the partly partitioned and replicated case, the update concerns the server and all the
workstations. It is possible to restrict the update propagation of the shared information to the
workstations that are involved in the operation that has triggered the update.

What must be set in the update and how ?

There are two possibilities for the update content : either the whole update information,
or a descriptor of what has changed in the repository. Each of these two solutions is itself
divided in two parts.

First solution

There are two possibilities for the whole update information :

• One file per workstation containing all the needed information for the update. It
means that each file contains a copy of the shared records.

• One file per workstation containing the non shared data and one file containing all the
shared data.

The first solution requires more disk space to store all the files on the server, the shared
information being written as many time as there are sites containing the repository (see Figure
19). This type of organization requires more CPU and disk accesses as the shared data must be
written in each file.

- Page 50

Chapter 6 : Information exchange protocol

Server

·-
�Repository

... ···:�·-· . ':'•:,. /,/ \
�

------- ,- - - - -,
\ - --....: ',

\ 1 1

\ : WS 1 : Update File \ 1 1

' � - - - - -� ,- - - - -, ,- - - - -,
1 \ 1 \

1 1 1 1

, ws 3 • , ws 2 ' : : Update File : : Update File
1 1 1 1
1 1 1 1

- - -.. : Common update information
_. : Specific update information

During the update of the central repository, the shared information is written in the central fùe
and in each of the workstation related file. The non shared information is written in the central
repository and in the workstation related file.

Figure 19 : Update Obtaining in a partitioned an replicated case (solution 1)

The other solution reduces the CPU load, the disk space and the disk accesses as the
shared data are written only once (see Figure 20). For the sending of the files in this case, there
are two options again :

• send the two files separately to each workstation, i.e. the file containing the shared
data is sent to ail the stations through a broadcast on the network.

• send the two merged files to each workstation, i.e. the two files are merged before
the sending (this solution is similar to the first organization solution)

- Page 51

Chapter 6 : Information exchange protocol

Server

I
r - - - - ,
1 \
1 1
j\.11 ws:

/
/

Update File

/

/
/

/

, ✓URepository

r - - - - , :::-----... 1 \
KJ;�jupdate File

r - - - - , 1 '

I \ 1 1
1 1 1 s l

: : : W 2 : Update File
: ws 3 : !_ _ _ _ _ _ _ !
l 1 - - - - - - -·

Update File

- - -. : Common update information
_... : Specific update information

During the update, the shared information is written in the central repository and in a fùe
common to all the workstations. The non shared information is written in the repository and in
the workstation related file.

Figure 20 : Update Obtaining in a partitioned an replicated case (solution 2)

Second solution

The second solution for the update is to have a descriptor of what has changed in the
central repository, i.e. the pathname that was given with the command, the SVID and the SFID.
Again, there are two possibilities for the contents of the descriptor : either the SVID and the
SFID are given with the necessary information to be updated at the reception, or they are given
without any other information and when the update is requested, the supplementary information
about the SVID and the SFID is added to the file information. With the :first possibility, the
SVID and the SFID are updated at the reception. The updates of the other records are made as
in the partition case.

Update location

For the update files, the same choice as for the partition case is given: place the files on
the DMS or on the UFS. For the descriptor, it can be placed on disk as the other update files
or can be placed in memory in a buffer as it does not occupy much space.

- Page 52

Chapter 6 : Information exchange protocol

Update propagation

As in the replication and the partition cases, there are three solutions for the
propagation of the update. The three possibilities are exactly the same (immediate sending, at
regular intervals or once a day) and the same mechanisms must be set up for the case where the
sending is not immediate.

Client Recovery

There is only one possibility to recover the decentralized repositories in the partition &
replication case.

This solution consists to have on the server a special update procedure. This special
procedure works exactly as the special one that is described in the replication case.

6.2.5 Common mechanisms

The common mechanisms regroup the mechanisms that are common to all the
decentralization schemas. They are the security and integrity, the access control, the
transmission problem and the concurrency control.

Security and integrity

This part concerns the security and the integrity of the repository's file, i.e. the access
restriction to the file itself, not to the contained information. These restrictions are
implemented by forbidding the accesses that are not initiated from the HSMS client program.
Thus, direct access to the file is impossible. So the file is protected from intentional or
unintentional deletion or modification by a user.
With such restrictions, it is impossible to read, write or modify the repositories without using
HSMS.

Access control

The access control concerns the access restrictions to the information contained in the
repository. In the present situation, the users can only access to the information related to their
files or to the information that are shared. The same situation must be implemented in the
decentralized solution. Thus, the program must be modified in such a manner that for each
request to read information from the repository, it must check the access permissions to the
records and reject the request if read is not allowed.

- Page 53

Chapter 6 : Information exchange protocol

Transmission problem

As the transmissions are based on TCP/IP, a reliable stream service, the problem are
reduced to the network failures. In this case, the mechanism is the same as for the
unavailability of a site, the server will retry to send the update at regular intervals until the
communication is restored and the transmission correctly executed.

Concurrency Control

The problem of the concurrency control is quite reduced in HSMS as there is only one
program that is allowed to write or modify the records contained in the repository. The
workstations users can only read the records. It is thus necessary to have a mechanism that
manages this problem.

6.3 CONTROL FILE INFORMATION EXCHANGE

You can manage the control files in two ways : keeping the control file on the server, or
decentralizing the associations between repositories and archives names.
Whatever the chosen possibility, it requires modifications to the present situation.

The first solution, whatever the repository decentralization, reduces the site autonomy :
as a preliminary access to the server must be made, the access to the repository can be blocked
by other actions coming from other sites, or by network failures. This access increases the
response rime too.

The second solution has the advantage that the site autonomy is increased. If it is
combined with a repository decentralization that gives a great site autonomy (partial or full
replication), the site autonomy becomes total. The workstations can consult their data without
being blocked by another one. It can access the information even if the server is unavailable or
if network failures occur.

6.3 . 1 Centra l ized contro l fi le

With a centralized control file, each access to a repository on a workstation must be
preceded by a consultation of the control file on the server. This consultation is mandatory to
get the name of the repository's file associated to the requested archive. Without this
consultation, as the repository's name is not a default one and can change during his life rime,
no access is possible. It is also possible to have several archives of the same type in the future
(Figure 2 1).

- Page 54

Chapter 6 : Information exchange protocol

As this access does not exist in this form (a request to have only the name of
repository), it must be implemented. In the present situation, the access form to the control file
is the following one : it is combined with the information request transmitted to the server.
When the users of a workstation want information on the files contained in an archive, a
request is transmitted to the server. This one checks in the control file to obtain the
repository's name corresponding to the request and access then to the concerned repository.
The request to access the control file only does not exist. It is thus necessary to implement a
new client request to get the information from the server. When the server gets this new
request, it must just consult the control file and transfer the information to the requesting
workstation. It is important to note that this new mechanism can be copied from the first part
of the old mechanism.

In the case of a partial partition of the repository is chosen, all the mechanisms must be
kept, as the requests for non local information must always be transmitted to the server to get a
response.

I

I

/

EJ/ l

ws

TCP/IP

Server

1
1

1 3 1
1 1 - '

1

,: � : Control file
□ : repository

_., : Request
- -► : Answer

1 The workstation sencls a request to the server to get the repository' s name.
2 The server accesses to the control file to get the requested name .

As the contents of the control file is kept in memory, the request is processed without
accessing to the file .
3 The name is then transmitted to the requesting workstation .
4 This one accesses the repository .
5 The requested information is given

Rem : the points 4 and 5 may vary according to the repository's access methods .

Figure 21 : Access to the central control file

- Page 55 -

Chapter 6 : Information exchange protocol

6.3.2 Decentral ized control file

With this solution, all the problems that are present for the repository also exist for the
control file. Thus, the same aspects must be approached during the study : update obtaining &
propagation, security, recovery, ...

Update obtaining and propagation

As the decentralization is a partial partition, the update is different for each workstation.
The obtaining mechanism is exactly the same one as for the partly partitioned repository.
During the writing in the central control file, all the decentralized information is written in files
or in a buffer. There are as much files as workstations, one file per workstation. In each of the
files, the information concerning the workstation is written, once the writing finished, all the
non empty files can be sent to the stations (see Figure 22).

Server

/ �r-;��': , - - - -, / ,..1 - - , : : Update File
1 \ 1 \ 1 1
1 1 1 1 - - - - - - -·

: WS 3 : ' '
, : WS 2 : update File 1 1

1 1 - - - - - - -· - - - - - - -·
Update File

- - -.. : Common update information
_.. : Specific update information

Figure 22 : Control file update obtaining

For the propagation, the same options as for the repository's update exist.
As the update of the control file concerns the archive (creation or deletion) and especially the
repositories, it is important that the new information concerning these ones is quickly
propagated. If it is not the case, it is possible that accesses are made to a non existent, deleted
archive, or that accesses to newly created archive and repository can be blocked. Thus the
propagation must be immediate to avoid such problems. With the direct propagation, there is
no problem of access to non updated data.

- Page 56

Chapter 6 : Information exchange protocol

Security and access control

The same security mechanisms as for the repository must be set up so as to avoid direct
access to the contents of the control file. Only the HSMS client program can access this
information. The access control to the information contained in the file has no reason to exist,
as the information is shared by all the users of the station.

For the recovery procedure, it is again the same solution as for the repository.
A special procedure must be implemented to obtain an update that has all the information
contained in the file.

And for the concurrency control, it is exactly the same solution, only the update
program can access the file to write, all other accesses are read accesses. Thus, a write locking
solution solves the problem of concurrency control.

- Page 57 -

Chapter 6 : Information exchange protocol

6.4 IMPLEMENTAT/ON CHO/CE

To implement the repository on the workstations, there are two majors solutions :

• an ISAM file
• a database

6.4.1 ISAM file

The solution of implementing the repository in an ISAM file is the easiest one.
It is also the cheapest solution and is similar to the situation that exists on the server.
It has some advantages and some disadvantages.

The first advantage is that it requires no major changes to the records organization.
The second one is an economic one : this kind of implementation is portable on each type of
workstation and operating systems (HP, Sun, ...) and thus does not requires separate
implementations.

One of its disadvantages is that all the management of the concurrency control, if not
realized by the ISAM file manager must be made in the HSMS-Client program.
Another disadvantage is that this implementation must be preceded by a choice of the type of
access that will be optimal. The other types of access to the information won't be optimal.

6.4.2 Database

The solution of implementing the repository with a database is more costly as it requires
to dispose of a database manager software on each workstation. It also requires a full
reorganization of the records structure and requires implementing different solutions for each
database software. An advantage of this kind of implementation is that all the management of
the concurrency control is made by the database. Another one is that implementing the
repository via a database can allow to optimize several distinct types of request without any
modification.

- Page 58

Chapter 7 : Integration in HSMS

7. INTEGRATION IN HSMS

7. 1 INTRODUCTION

This chapter is divided in three parts : the present architecture of HSMS, the solution
proposal and the modifications to the HSMS architecture.

The presentation of the present architecture is intended to explain the basic functioning
of HSMS. The solution proposa} gathers the choices that have been made concerning the
decentralization model, the implementation, the update obtaining and propagation models and
the client recovery procedure. Next to this, the choice for the decentralization of the control
file is also explained, together with some complements to the repository's decentralization.

- Page 59

Chapter 7 : Integration in HSMS

7.2 PRESENT ARCHITECTURE OF HSMS

r · - · ~ · Data files
· -

File

- □ .-----.._ ◄- - - - - - - -�1 - - - - - - - 1
system · - · - 1

1

Unix
Network
BS2000 -
Server

..... : 22 : 1• 23 _ 2�
j HSMS-Client Daemon j

21

Communication
answer task

!
1
1
1
1

! 5
1
1

� CLI / GUI�r

,-2b API
3

HSMS first
communication

task

1'
13 14 h 1

!.. ► Communication
subtask �, ,

20 i i

6, 8, 1 0 ,,
1 1

1 1

7j ;
i j
i i
; ;

ARCHIVE 1-�---'-'1? __ _ HSMS
server task

- j i
. i

main task
1 , l 1

1 9
- 9

1 1 • 1 n 1•

H ; ! 1 5 ,._ _ _., ,
,r L - -�������.:_- · - - - - - · - · - · - ·! 1 1 re;st ! · -- . 1 8 1

fil !

1 �:!�� - - -�é 8-- - - - 7 �s r i
' y . .

.. -• - - - · - - - · - . - , - · - - - · - · - · - . - . - · - · - · - - - - - · -· � _ _ _ j1 7 ; _ l

Figure 23 : HSMS architecture

- Page 60

1

Chapter 7 : Integration in HSMS

1 A UNIX user issues a HSMS-CL statement on his workstation. A first local
syntactic check occurs on this statement ; it is only a forma! check, not a detailed one.

2a If the statement con tains an error, the process is stopped and an error message is sent to
the user.

2b If the statement is correct, the corresponding API function is called.

3 The API function then builds a structure describing the command following the
HSMS client-server protocol and sends this data on the network to the BS2000
HSMS server.

4 On the BS2000 side, the connection event is received by the HSMS first
communication task, which immediately redirects it to a free communication
subtask.

5 The communication subtask reads the data from the network and checks whether it
complies with the HSMS client-server protocol.
If the protocol is correct, the subtask builds a control block which con tains all the
network-related data of the remote command, then translates the structure into a
HSMS BS2000-like statement before executing full syntactic and semantic checks.

6 If the statement is refused, the control block is passed to the Communication
answer task with a negative retum code, and the subtask retums idle.
If the statement is accepted, it is translated into a 'request' which is then processed.

The next steps are different according to the type of the request.

7 Show statements are processed by the communication subtask itself, which opens the
corresponding repository to find the requested information.

8 The result and the control block are then passed to the Communication answer task
(step 19).

9 Action statement are more complex. The subtask writes the request into the request
queue.

10 It then passes the control block to the Communication answer task with a retum code
'accepted' and finally retum idle.

1 1 The request waiting in the request queue is eventually taken and processed by a HSMS
server task.

- Page 61 -

Chapter 7 : Integration in HSMS

12 The server task reads the request and calls the ARCHIVE product via a private
interface. The task is then called 'ARCHIVE main task' .

13 The ARCHIVE main task asks the HSMS-Client daemon the complete list of the files
to be processed.

14 The HSMS-Client Daemon access the file system to get the requested information and
then transfers them to the Archive main task

15 The ARCHIVE main task builds the list of files to be processed by matching the list
received from the daemon, and the pathnames already present in the repository.

16 It then creates an ARCHIVE subtask and transmits to it the list of files.
It is possible to have several subtasks created by the main task to work in parallel on a
part of the list in order to obtain better performance.

17 The subtasks are responsible for the physical access to the storage media.

18 Once all the subtasks are finished, the ARCHIVE main task update the concemed
repository if necessary.

19 The ARCHIVE main task retums to HSMS.

20 The HSMS server task generates a report which is passed with the control block to
the Communication answer task

21 When the Communication answer task receives a control block, it opens a network
connection to the HSMS-CL daemon of the UNIX workstation and sends the result.

22 On the workstation, the daemon receives the result and stores it in a file.

23 If the user process is still waiting, the result is directly fetched to it, and it is displayed.

24 If no user process is waiting, the result stays available and the user may read it at any
rime by issuing a specific HSMS-CL command.

- Page 62 -

Chapter 7 : Integration in HSMS

7.3 SOLUTION PROPOSAL

7 .3 .1 Decentral izat ion model

The chosen solution for the decentralization of the repository is the partial partition,
partial replication and centralization. From the three remaining possibilities of decentralization,
it is the one that gives the best performance without requiring too much disk space. For the
implementation of the repository, the ISAM file has been chosen as it is the most economical
solution : it requires only one implementation for each type of workstation (the database
solution requires several implementations for each type of workstation).

But compared with the solution described in the previous chapters, the implemented
solution will have some changes. These changes mainly apply to the shared records (the R, S,
T and X records).

The first main modification concern the T records : as they are not used on the UNIX
workstations (they are only used for the backup/archive action by the ARCHIVE subtasks),
there is absolutely no need to decentralize them.

The second change concern the R, S and X records : they will only be replicated if they
are effectively shared by several workstations. If it is not the case, they will only be send to the
concerned workstation. And even if they are shared, only the sharing workstations will get the
information.

With these modifications, the workstations will have incomplete information about the
shared records, but as these ones are useless on some workstations, it does not matter. It has
the advantage that it simplifies the update procedure.

7.3 .2 Update obtai n i ng and propagation

For practical reasons and disk space usage, the chosen solution for the update is the
descriptor option (the full information need too much disk space, especially the full file names).
The descriptor is the "short" version, i.e. the version which only contains the pathname given
with the command that initiated the update, the SVID and the SFIO, and nothing else. It can
be placed in a buffer before being sent to the related workstation (the information is quite
reduced). By choosing this solution, the central repository is considered to be always the first
one to be updated and the reference for the other decentralized ones.

At the receipt of the descriptor on the workstation, it is stored in a file. The name of
this file is contained in the configuration file of HSMS-CL. There is one file per repository
(thus one descriptor file per archive).

- Page 63 -

Chapter 7 : Integration in HSMS

As regards the propagation, the descriptor is sent as soon as it is ready while the update
itself is only made periodically. When there are accesses to a non updated repository, they
must be redirected to the central repository. It means that it is very important to have a good
planning of the periodical update requests to have a gain of rime due to the decentralization of
the repository. If this planning is not correctly made, the decentralization off ers no advantages.
It is thus important that the workstation administrators are well informed of this situation in
order to be able to synchronize more or less the update request with the backup operations.

The choice of redirecting the accesses to non updated records towards the central
repository, ensures the usage of HSMS : generally, the backup/archive operations are
processed during the night. By setting the periodical update requests in concordance with the
end of these operations, the repositories are normally up to date for the day operations.

With such configuration, the only case where the repository can be no up to date is
when a user has made a backup/archive during the day. In this situation, when this user wants
to consult the records, his accesses will be redirected to the central repository ifhe wants to
have information about the files he has just archived. The other users of this workstation will
have some of their accesses redirected (consultation of the SFIO and SVID records)

7.3 .3 C l ient recovery

For the client recovery, there is only one solution : it is the special update procedure.
This procedure must be initiated from the workstation, and not from the server. AH the
problem is to detect the inconsistency of the information contained in the repository. It
requires to have a tool to check the different relations that exist between the records (see
chapter 7). It is the role of the workstation administrator to initiate the recovery when he notes
a problem with the repository. This procedure can also be used to migrate from passive client
to active client or from a centralized repository version of HSMS-Client to a decentralized
one. Moreover, it can be considered as a particular case of the normal update procedure, the
difference residing in the requested information.

7.3 .4 Control fi le

The chosen solution for the possible decentralization of the control file is an
intermediate solution between the centralization and the decentralization.
This solution consists in writing in the HSMS-CL configuration file the full name (with the
pathname) of the repositories files (one for the archiva! Archive and one for the backup
archive). This writing must be made during the installation of the HSMS-CL program.
As the names of the repositories are not expected to change during their lifetime, it does not
require a special update procedure for their management.

- Page 64 -

Chapter 7 : Integration in HSMS

7 .3 .5 Complement to the solution proposai

There are some things that must be added to the solution to avoid problems or
unnecessary traffic.

The first thing to add to the solution is critical : it is the conversion from the EBCDIC
code (used on the BS2000) to the ASCII code (used on the workstation). The conversion
procedure already exists in HSMS, it is used for the conversion of the reports that must be sent
to the workstations. Thus, it can be reused for the update.

The second thing to add to the solution is not critical, and if not implemented, leads to
useless traffic. It consists a list of the active clients to have on the server. With this list, the
HSMS server knows to which workstations it is necessary to send a descriptor after a
backup/archive operation that concerns all clients and that has been initiated by the server itself.

7.4 MODIFICATIONS TO THE ARCHITECTURE

For each of the possible operations on the workstations that access to the repository,
the modifications involved by the decentralization are studied here.

- Page 65 -

Chapter 7 : Integration in HSMS

7.4.1 Backup/archive aCtions

Config file
r-,, Descriptor file

n File
� r-i, .----:-- �- - -2_4_ - -: 1 system�

Data files

ReposTt;""ry 5
!T6

22
..--___

2_
3 ____ ��►-�• -�,•-�

2
a

□
T �'

- 1--CL_I_I G_UI
-1

\
2b HSMS-Client Daemon I API J

Unix i, J,

Network
BS2000 -
Server

1 3

21

Communication
answer task

14

! 5 1
1

1

3

HSMS first
communication

task
4 ,

20
L ► Communication

subtask '""◄,

1 9bis
�

6, 8, 10
1 1

1
7;

! .
1 1

1

ARCHIVE 1◄�•- --�
1
-2 -- HSMS '"" 1

main task 1 9 server task 1
; 1

9
1

1
1 1 1 j 1 • 1 .. ,, i i l é : ! 15 ! !

1 ' i. . -� � � � � � � .:_- · - · - · - · - · - · - ; 1 1 request ; ;

..... ,:;;:,
-
_
=t::

_
u
::
_;
:

t
_�
:;
-

iv

::
ks
_

e

::-_
=::

_
- ' - !', �9 cp ◄ - - - - -1 :s H

j

• -
• L - - - - · - · - • - , - · - · - • - · - • - · - · - • - · - • - · - • - ·

� - - . J1 7 ; _ l

Figure 24 : Modifications due to the decentralization

- Page 66 -

Chapter 7 : Integration in HSMS

Until the step 19, there is no change to the architecture.

19bis The descriptor is generated with the SFIO, the SVID and the pathname.

20 The HSMS server task generates a report which is passed with the control block and
the descriptor to the Communication answer task

21 When the Communication answer task receives a control block, i t opens a network
connection to the HSMS-CL daemon of the UNIX workstation and sends the result and
the descriptor.

22 On the workstation, the daemon receives the result and stores it in a file.

23 If the user process is still waiting, the result is directly fetched to it, and it is displayed.

24 If no user process is waiting, the result stays available and the user may read it at any
rime by issuing a specific HSMS-CL command.

25 The daemon gets from the configuration file the name of the file where the descriptor
must be saved.

26 The daemon stores the descriptor in the corresponding file.

- Page 67

Chapter 7 : Integration in HSMS

7.4.2 Periodic update obtaining

Unix
Network
BS2000 -
Server

Repository

1 3

12
► CLI / G

1 HSMS-Client Daemon j
1 4

Descriptor file Config file

1 1

Communication
answer task

5
1 ,- · - · - · - · - ·

1

HSMS first
communication

task

L Communication
subtask

Figure 25 : Periodic update obtaining architecture

1 The command requesting the update is started on the workstation. A first local
syntactic check occurs on this statement ; it is only a formai check, not a detailed one.

2a If the statement con tains an error, the process is stopped and an error message is sent to
the user.

2b If the statement is correct, the corresponding API function is called.

3 The descriptor and the repository file names is extracted from the configuration file.

4 The SVID and the SFID are extracted from the descriptor file.

- Page 68 -

Chapter 7 : Integration in HSMS

5 The API function then builds a structure describing the command following the HSMS
client-server protocol and sends this data on the network to the BS2000 HSMS server.

6 On the BS2000 side, the connection event is received by the HSMS first communication
task, which immediately redirects it to a free communication subtask.

7 The communication subtask reads the data from the network and checks whether it
complies with the HSMS client-server protocol.
If the protocol is correct, the subtask builds a control block which contains all the
network-related data of the remote command, then translates the structure into a HSMS
BS2000-like statement before executing full syntactic and semantic checks.

8 If the statement is refused, the control block is passed to the Communication answer
task with a negative return code, and the subtask returns idle.
If the statement is accepted, it is translated into a 'request' which is then processed.

9 The statement is processed by the communication subtask itself, which opens the
corresponding repository to find all the information related to the received SVID and
SFIO (F, R, S, X records).

10 The result and the control block are then passed to the Communication answer task.

1 1 When the Communication answer task receives a control block, it opens a network
connection to the HSMS-CL daemon of the UNIX workstation and sends the result.

12 The HSMS-CL daemon directly transfers the result to the requesting process.

13 The repository is updated with the received information.

14 The contents of the descriptor that has just been updated is deleted.

- Page 69 -

Chapter 7 : Integration in HSMS

7 .4.3 Restore actions

For the restore operations, the decentralization of the repository leads to no changes to
the processing of the requests. The consultation of the repository is made to find where the
requested files are stored, and thus is only useful on the server, processing this consultation on
the workstation leading to no advantages.

7 .4.4 Show actions

For the show actions, the processing of the requests is totally changed. It is important
to differentiate the two possible cases that can arise. These two cases are :

• consultation of updated records
• consultation of non-updated records

Updated records

Unix
Network
BS2000 -
Server

Repository file

o �◄ _s_...,....___,.._....

Descriptor file Con.fig file

Figure 26 : Bsshow on updated records

1 A UNIX user issues a HSMS-CL statement on his workstation. A first local syntactic
check occurs on this statement ; it is only a forma! check, not a detailed one.

2a If the statement contains an error, the process is stopped and an error message is sent to
the user.

2b If the statement is correct, the corresponding API function is called.

- Page 70

Chapter 7 : Integration in HSMS

3 The descriptor and the repository file names are extracted from the config file.

4 The information contained in the descriptor file is compared with the requested one.

5 As the comparison has given the result that the requested information is up to date, the
local processing of the request can continue. A possible check can occur at this point
and next the requested information are extracted from the repository. The access
permission to these information is checked.

6 The result, empty if the user has not the rights to access to these records or the
requested information, is transferred to the user.

Non updated records

Unix
Network
BS2000 -
Server

12

1 HSMS-Client Daemon 1

Descriptor file

1 1

Communication
answer task

► CLI / G

Config file

5

HSMS first
communication

task
7 6

L Communication
subtask

8, 1 0
1

9 i - - - - - · - · - · - · - · - · - · - · - - - - - - - - - · - - - · - · - - - · - :

Figure 27 : Bsshow on non updated records

- Page 71 -

Chapter 7 : Integration in HSMS

1 A UNIX user issues a HSMS-CL statement on his workstation. A first local syntactic
check occurs on this statement ; it is only a formal check, not a detailed one.

2a If the statement contains an error, the process is stopped and an error message is sent to
the user.

2b If the statement is correct, the corresponding API function is called.

3 The descriptor and the repository file names are extracted from the config file.

4 The information contained in the descriptor file is compared with the requested one.

5 As the comparison has given the result that the requested information is not up to date,
the request is transferred to the BS2000 server.

6 On the BS2000 side, the connection event is received by the HSMS first communication
task, which immediately redirects it to a free communication subtask.

7 The communication subtask reads the data from the network and checks whether it
complies with the HSMS client-server protocol.
If the protocol is correct, the subtask builds a control block which con tains all the
network-related data of the remote command, then translates the structure into an
HSMS BS2000-like statement before executing full syntactic and semantic checks.

8 If the statement is refused, the control block is passed to the Communication answer
task with a negative return code, and the subtask returns idle.
If the statement is accepted, it is translated into a 'request' which is then processed.

9 The statement is processed by the communication subtask itself, which opens the
corresponding repository to find the requested information.

10 The result and the control block are then passed to the Communication answer task.

1 1 When the Communication answer task receives a control block, i t opens a network
connection to the HSMS-CL daemon of the UNIX workstation and sends the result.

12 The HSMS-CL daemon directly transfers the result to the requesting user.

- Page 72 -

Chapter 7 : lntegration in HSMS

7.4.5 Changes explanations

Due to the decentralization of the repository, all the software directly involved in the
backup processes, i.e. HSMS-Client, HSMS and ARCHIVE, must be changed.

Backup/archive actions

For the backup operations, the changes concem the generation of the descriptor and its
recording on the workstations.

For the generation of the descriptor, the question is to know which, from HSMS server
task or ARCHIVE main task, will create it. The problem is that both have a part of the
information that must be set in the descriptor. If it is the HSMS server task that generates it,
the information about the SFID and the SVID must be transmitted from the ARCHIVE main
task. ln the opposite case, all the information conceming the location of the descriptor (file
name or memory location) must be transmitted to the HSMS server task in order to allow this
one to send it to the workstation. The two options exist and the solution to this problem can
only be found during a deeper analysis of the changes involved by the decentralization.

For the recording of the descriptor, it requires a change to the HSMS-CL daemon. This
one must check, at the reception of a descriptor, in the config file what is the name of the file in
which the received information must be stored. It involves that the descriptor contains an
indication of which archive is concemed by it (i.e. if the descriptor concems the archivai or
backup repository).

Another problem arises with the backup/archive operations : it' s also possible to
generate a command on the BS2000 that concerns the backup of the node-files (backup-node
files, archive-node-files). ln this case, the server must first know which are the workstations
must receive the descriptor and then must have a new task to send the descriptors to the
workstations. This new task is required because there is no report sent to the clients, the
descriptor cannot be added to the report. And as there is no control block related to a
workstation, there is absolutely no information available to send them.

So, this case requires a new mechanism, but due to lack of time and mainly to the
complexity of this mechanism, it will not be studied here.

- Page 73 -

Chapter 7 : Integration in HSMS

Update o btaining

For the update obtaining, a new command is required. This new command must get the
descriptor file name from the config file, extract the contents of this one and then ask to the
server all the needed information. To get the information from the server, the new command
can be considered a combination of three successive bsshow :

• one to get the save file information
• one to get the save version information
• one to get the node-files information

It is for these three bsshow that it is necessary to have the SFID and the SVID in the
descriptor.
When all the requested information are received on the workstation, the command must
execute the update of the repository itself. Once the update is completed, the contents of the
descriptor must be deleted to avoid duplication in the updates.

Show operations

The show operations must be changed too. The show command must first consult the
config file to get the name of the requested repository and its descriptor.
Then, it must extract the contents of this descriptor and match the obtained information with
the one given with the command.

After receiving the result of this comparison, the access is made on the workstation
repository (if there is no matching), or is redirected to the server repository.
The local access to the repository requires the implementation of the same security and data
privacy mechanisms that exist on the server.

- Page 74 -

Chapter 8 : Possible evolution

8. POSSIBLE EVOLUTION

B. 1 INTRODUCTION

The decentralization of the repository opens several possibilities for the evolution of
HSMS. Sorne of these evolutions are useful to avoid problems, other are useful to accelerate
the processing of some commands.

The first possible evolution concerns the processing of the incremental backups : the
decentralization of the repository off ers the possibility of speeding up the processing of such
operations.

The second possible evolution concern the repository itself: it consists in a tool to
check the contents of it.

A third possible evolution consist to have several archives of the same type for the
workstations (in the present situation, there is only one backup and one archivai archive for the
workstations).

8.2 INCREMENTAL BACKUPS

8.2.1 Present situation

HSMS and HSMS-Client offer the possibility to make incremental backups in place of
full backups, i.e. a backup of only what has changed since the last backup
(full or incremental).
During incremental runs, the files that have not changed are also recorded in the repository.
They are recorded with a special mark that indicates that they were present at the time of the
backup run but that they have not changed. The mark is 'Cataloged-not-saved' (CNS). It is
used during the restore operations.

Following a parameter in the restore command, the files that are marked with CNS are
restored or not.

- Page 75 -

Chapter 8 : Possible evolution

Example

The files have been saved as follows by various backup runs

Filenames Save version name

BACKUP01 BACKUP02 BACKUP03 BACKUP04

Fi le . 1 Fu l l Ful l Ful l CNS

Fi le.2 Ful l CNS Ful l

Fi le.3 Fu l l Ful l

Fi le .4 Ful l

WheœFull and CNS indicate the save type of the file.

Action statement Restored Fi les From save version

bsrest -sv Fi le . 1 BACKUP03

Fi le .3 BACKUP04

bsrest Fi le . 1 BACKUP03

Fi le .2 BACKUP03

Fi le .3 BACKUP04

Fi le.4 BACKUP01

bsrest -sv BACKUP02 Fi le . 1 BACKUP02

Fi le .2 BACKUP01

As shown in the example, the files that are marked CNS are not always restored.
During restore, all save versions existing in the referenced archive are selected for processing
by default. To select only the latest save version, it is necessary to specify the optional
parameter -sv.

For restore operations on all save versions, the data are taken, for each file, from the
last save version in which they are saved.

For restore operations on the latest save version only, there are only the files that have
been actually saved or marked CNS in this save version that are restored. The CNS marked
files are restored by taking the data from the last save version where there are fully saved.

And for restore operations on a specified save version, the data are taken for each file
either from this save version if the file is fully saved in this one, or from the first previous save
version in which the file is not CNS marked if it is CNS marked in the specified one.

- Page 76 -

Chapter 8 : Possible evolution

Architecture

In the schema describing the architecture, when the ARCHIVE main task builds the list
of files to be processed, for an incremental backup, it compares the metadata of the files with
those contained in the repository before building the list.

8.2.2 Evolution

As it can be seen, the incremental backups require, in the present situation, the transfer
of all the files information from the clients to the server before executing the comparison. vVith
the decentralization of the repository, this comparison can be executed on the workstation, and
thus a part of the traffic required by the backup run be avoided, leading thus to greater
performance. The direct traffic on the network is reduced for the incremental backup as only
the filenames that must be actually processed are transferred, and not all the metadata
associated with the files.

But there is a drawback to this : the CNS marking of the non changed files can not be
executed on the server, as this one does not know which are the files in this situation.
Thus, these file names must be transferred to the server. For that, they must first be recorded
during the comparison on the workstation (Remind the assumption that the central repository
must be the first updated). The transfer must take place just before the update of the central
repository, so all the information is written in one rime.

- Page 77 -

Chapter 8 : Possible evolution

r-,,i--- 12 CNS file 15 r · - - - - - - - - - · - · - · - · - · - · - · - · - · - · - · - · - · - ·, . ,

,-,, ! .-------------, I 1 system Descriptor :\:
i
' i '2r□�� �I_:s_ - -2, - - - -: i· , . �

l 30 l 13, '2;9�□ Config file t : =--
_J'\ l , . ✓ • □ CLI / GUI<.

1 HSMS-Client Daemon . :4 Reposito API f . , ry,...--,-__. Unix J i�
· 4

Network
BS2000 -
Server 25

3

16, 2 1
Communication

answer task

HSMS first
communication

task
4

1 1 , 1 9

23bis ,, �

Jl Jl

24
6, 8

L ► Communication _
subtask

1 1
1

ARCIDVE ,,◄�--�
1�0 -- HSMS -

main task 23 - server task 7
1

1

1

! 17 1

1 • r

1' L- -- · - · - · - · , ; 9 request , . F, 22 l.. file
Archlve
Subtasks

- -- . .._ G
«po,i<o; ��---- · - · - · -! NFS

-
L - - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · •

1

Figure 28 : HSMS architecture with CNS verification on the client

1 A UNIX user issues a HSMS-CL statement on his workstation. A first local syntactic
check occurs on this statement.

2a If the statement con tains an error, the process is stopped and an error message is sent to
the user.

2b If the statement is correct, the corresponding API function is called.

- Page 78 -

Chapter 8 : Possible evolution

3 The API function then builds a structure describing the command following the HSMS
client-server protocol and sends this data on the network to the BS2000 HSMS server.

4 On the BS2000 side, the connection event is received by the HSMS first communication
task, which immediately redirects it to a free communication subtask.

5 The communication subtask reads the data from the network and checks whether it
complies with the HSMS client-server protocol.
If the protocol is correct, the subtask builds a control block which contains all the
network-related data of the remote command, then translates the structure into an
HSMS BS2000-like statement before executing full syntactic and semantic checks.

6 If the statement is refused, the control block is passed to the Communication answer
task with a negative return code, and the subtask returns idle.
If the statement is accepted, it is translated into a 'request' which is then processed.

7 The subtask writes the request into the request queue.

8 It then passes the control block to the Communication answer task with a return code
'accepted' and finally return idle.

9 The request waiting in the request queue is eventually taken and processed by an HSMS
server task.

10 The server task reads the request and calls the ARCHIVE product via a private
interface. The task is then called 'ARCHIVE main task'.

11 The ARCHIVE main task asks the HSMS-Client daemon the complete list of the files
to be processed.

12 The HSMS-Client daemon gets the information about the concemed files from the
workstation's file system.

13 It accesses the HSMS configuration file to get the name of the involved repository.

14 The HSMS-Client Daemon access the repository to get information about the
concemed files.

15 The daemon builds the list of the files to be processed by comparing the data from the
file system and from the repository. It then stores the names of the other ones in a file,
the CNS file.

16 The list of the files that must be processed is transferred to the ARCHIVE main task.

- Page 79 -

Chapter 8 : Possible evolution

17 The ARCHIVE main task creates an ARCHIVE subtask and transmits to it the list of
files. It is possible to have several subtasks created by the main task to work in parallel
on a part of the list in order to obtain better performance.

18 The subtasks are responsible for the physical access to the storage media.

19 Once all the subtasks are finished, the ARCHIVE main task asks to the HSMS-Client
daemon the names of the files that must be marked CNS.

20 The daemon reads the names from the CNS file.

21 The result is then transferred to the ARCHIVE main task.

22 The ARCHIVE main task updates the concerned repository.

23 The ARCHIVE main task returns to HSMS.

23bis The descriptor is generated with the SFIO, the SVID and the pathname.

24 The HSMS server task generates a report which is passed with the control block and
the descriptor to the Communication answer task

25 When the Communication answer task receives a control block, it opens a network
connection to the HSMS-CL daemon of the UNIX workstation and sends the result and
the descriptor.

26 On the workstation, the daemon receives the result and stores it in a file.

27 If the user process is still waiting, the result is directly fetched to it, and it is displayed.

28 If no user process is waiting, the result stays available and the user may read it at any
rime by issuing a specific HSMS-CL command.

29 From the configuration file the daemon gets the name of the file where the descriptor
must be saved.

30 The daemon stores the descriptor in the corresponding file.

31 The daemon deletes the contents of the CNS file.

- Page 80 -

Chapter 8 : Possible evolution

8.2.3 Changes and choices explanations

Changes

The changes mainly concern the building of the files list : in place of being executed on
the server, the comparison and the building are processed on the clients.
It requires thus the adaptation of the HSMS-Client Daemon : new functions must be added to
execute this processing. The other change concern the transfer of the CNS file : the ARCHIVE
main task must ask them to the workstation before updating the repository. This transfer takes
place at this moment to have the correct information as quickly as possible in the repository and
a complete report also (containing all the information).

Choices

Concerning the choice that has been made of non updating the workstation's repository,
it is for reasons of easiness. As the decentralized repositories are not updated with the CNS
information, the update obtaining does not have to be changed for the incremental backups. If
the CNS information is recorded in the repository, it requires to have special mechanisms to
fil ter the information during the normal update to avoid duplication, or it requires to have a
special update procedure only for this type of backups. It is not very economical in term of
traffic on the network, but it has the advantage that it requires few changes to the architecture

- Page 81 -

Chapter 8 : Possible evolution

8.3 REPOS/TORY ANAL YZER

In order to help to discover possible errors and inconsistencies in the decentralized
repositories, it is necessary to have a special tool to analyze the contents of these ones.

This tool, the repository analyzer, is used to verify the relations that exists between the different
fields of the records contained in the repository (see Figure 29).

X SVID SFID

3 4

SFID SVID SVID SVID

5

SVID VSN VSN VSN

F Filename SVID VSN VSN SVID VSN . . .

Figure 29 : Records relations

Relations between F and S records

1 For each SVID found in the F record, a S record must exist with the same SVID

2 Each VSN found in the F record must have its counterpart in the S record
corresponding to the SVID of the VSN.

Relations between X and R records

3 For each X record, a SVID and a SFID are to be found. It should be verified
that the SVID can be found in the R record which has the SFID in its key

- Page 82 -

Chapter 8 : Possible evolution

Relations between X and S records

4 It should be verified that for each X record, there is a S record with the same
SVID

Relations between R and S records

5 Every R record con tains a list of SVID. It should be verified that each of them
corresponds to a S record.

The repository analyzer only warns that there is inconsistencies in the repository, it does
not repair them. When errors are discovered, it is necessary to launch the recovery procedure
to solve the problem. The tool helps to discover some of the possible errors that can exist in
the repository, but other errors requires the attention of the users or the administrator. They
must warn if they get false or incomplete information when they access to the repository.

The recovery procedure, when launched, must delete the contents of the repository if it
is not empty and reconstruct it with the information received from the server.

- Page 83

Chapter 8 : Possible evolution

8.4 ARCHIVE SELECTION FROM CLIENT

In the present situation, for a backup, an archiva!, a restore or a show action issued
from a client, it is impossible to select the archive concemed. It is always the default archive
that is used (sysnodebackup or sysnodearchive).
When the same command are issued from the BS2000 and concem the node files, the selection
of the archive on which to work is possible.

A possible evolution of the present product is thus to allow the selection of the archive
from the UNIX workstations as in BS2000. This evolution in volves several changes to the
HSMS-Client commands and can also lead to the adjunction of new HSMS-Client cornmands
or lead to the modification of existing HSMS commands.

8 .4.1 Commands changes

The cornmands changes consist in adding a field to the cornmands. This field will
con tain the name of the archive on which the operation must be processed.
The cornmands concemed by this modification are the archiva!, backup, restore and show
cornmand (bsarch, bsback, bsrest and bsshow) and their sisters in the graphical user interface
(GUI) and the application program interface (API).

Moreover, the archive selection also involves a change to the GUI. It must be possible
to select the archive where the backup or archiva! operation must take place, and also the
archive from where the restore must be made. It irnplies thus changes to the interface itself in
addition to the changes to the called functions.

8.4.2 Possible adjunct ion

The possible adjunction to the already existing cornmands consists in adding cornmands
conceming the archives manipulations. In the present situation, the creation, the modification
and the suppression of the archives can only be made from the BS2000.
As only the owner of an archive can use it, either the workstation users must have an access on
the BS2000 to create their own archive, or these commands must be implemented to allow the
creation of the archive from the workstations.

- Page 84 -

Chapter 9 : Conclusion

9. CONCLUSION

The object of this work was to study the decentralization possibilities of a repository in
a particular distributed environment, and to propose a solution to solve the problems of the
present implementation of the repository.

Due to the specificity of the distributed environment, none of the theoretical
decentralization models found in the literature can be applied, but through some adaptations
and modifications of these models, a solution has been found. The repository will be partially
replicated, partially partitioned and also be kept centralized. With this implementation of the
repository, the performance problems are solved as the client workstations and the server have
good performances (the performances were a key argument in the choice of the implementation
model). And also important, the required disk space is not too important as only partial
information is replicated. Another problem with the decentralization of the repository was the
update information that must be propagated from the server to the clients. With the chosen
solution for this problem (use of a short descriptor), the traffic required for this is kept at a low
level. The chosen implementation has a little disadvantage : there is a loss of information in the
decentralized repositories (the decentralized information is not complete). But this loss is not
disturbing because the lost information, if required, can be found on the server, and because the
lost information on the workstations will never be accessed on these places.

Despite the modifications brought to the theoretical models, the implementation of the
repository keeps all the distribution properties :

• Distribution transparency : the only change that can appear on the workstations is the
response rime that will be reduced. The interface is kept consistent and no other change
appears.

• Site autonomy : as each site holds all the necessary information to access its data, this
property is completely fulfilled.

• Efficiency : all the information is stored close to its point of use (on the server or on the
concerned workstation).

• High reliability/availability : The aspect of the reliability has not change from the previous
implementation, thus remains at the same level. The availability has been increased as the
client application remains operational at a local level if the network is partitioned or other
sites crashed.

• Security/access control : as the accesses to the file containing the repository will only be
allowed through the use of the dedicated application, the access control and the security
requirements are also fulfilled.

- Page 85

Chapter 10 : Glossary

1 O . GLOSSARY

active client : workstation with the HSMS-CL software installed.

archivai : Long-term saving of files that are no longer required. The files are deleted from the
processing level once they have been backed up.

archivai archive : HSMS archive used for archival.

ARCHIVE : BS2000 software product which saves files logically. ARCHIVE has an intemal
interface with HSMS and implements the HSMS action statements.

archive : Management unit for files under HSMS management, consisting of the archive
definition and the associated repository. HSMS makes a distinction between five archive types.
There are archives concerning DMS files : backup archives, long-term archives, migration
archives. The other archives are used to save node-files : node backup archives, node long
term archives. Furthermore, HSMS distinguishes between private archives, which may be
accessed by the archive owner only, and public archives, which are available to all users.

archive directory : File used for managing the objects saved in an archive, i.e. files, save files,
save versions and the volume pool, and implemented as an ARCHIVE directory file (cf.
ARCHIVE).

archive owner : Users have the right to create archives by means of the CREATE-ARCHIVE
statement. The creator of an archive is the archive owner. The option of making the archive
created available to other users is restricted to the HSMS administrator.

archive type : Determines the basic HSMS function for which an archive is to be used.

backup : The periodic creation of copies of the data inventory to permit the restoration of data
lost due to hardware errors or inadvertent deletion, etc. Can also be used to reorganize disk
storage.

backup archive: HSMS archive used for backup.

BS2000-UFS : UNIX file system mounted on a BS2000 server.

Cataloged-Not-Saved : Indicates that a file was not saved either because an incremental
backup was performed and the file had not been changed since the previous backup, or because
an error (e.g. open error) prevented it from being saved.

CLI : Command Line Interface

CNS : Cataloged-Not-Saved

- Page 87 -

Chapter 10 : Glossary

control file : File that con tains the HSMS control parameters and the archive definitions.

default system archive : Archive assigned globally to the entire system or to disks and
accessed unless another archive is specifically specified. There is a separate default system
archive for each of the basic HSMS functions migration (SYSMIGRATE), backup
(SYSBACKUP) and archiva! (SYSARCHIVE), node backup (SYSNODEBACKUP) and node
archiva! (SYSNODEARCHIVE).

Gill : Graphical User Interface.

HSlVIS : Hierarchical Storage Management System: BS2000 software product offering such
functions as migration, backup, archiva!, and data transfer, implemented in a storage hierarchy
and in archives.

HSlVIS administrator :User enjoying the HSMS adrninistrator privilege. The HSMS
adrninistrator can use all HSMS functions without restrictions. The following are typical HSMS
administrator tasks: managing the storage hierarchy, creating the default system archives,
system backup and control of tape processing.

HSlVIS-CL : Client version of the HSMS software, running on UNIX workstations.

HSMS-SV : Server version of the HSMS software, needed to backup and archive the UNIX
workstations files.

H-VSN : Identifier of a Tape-record. Equals to the highest volume identifier contained in the
record.

implicit recall : Automatic recall of migrated files as a result of attempts, on the part ofDMS,
to access these files, as opposed to recall requested via a statement.

ISA1'1 : Indexed Sequential Access Method.

level : cf. storage hierarchy

long-term archive : HSMS archive used for archiva!.

migrated file : A migrated file is a file whose data has been deleted from the processing level
but whose catalog entry remains on this level. The catalog entry indicates the background level
to which the data was migrated.

migration : Moving inactive files from the processing level to a background level without
deleting the catalog entry.

migration archive : HSMS archive used for migration.

-Page 88 -

Chapter 10 : Glossary

NFS : Network file system. Access method to the file systems and their contents.

node : Instance (workstation, PC, . . .) connected to a network, and for which the file systems
can be processed by HSMS when HSMS-SV is present. node archival archive
HSMS archive used for the archivai of node files.

node backup archive : HSMS archive used for the backup of node files.

node file : file located on a node

passive client : workstation without HSMS-CL installed.

pool : cf. volume pool

recall : To move migrated files back to the processing level S0.

reorganization : HSMS function used primarily to reorganize the migration archive, i.e. to
reshuffle save files without transferring invalid files.

restore : To move data from an HSMS archive back to the processing level S0.

retention period : Period of rime during which data modification or deletion is prohibited. The
(physical) retention period prevents save files and save volumes from being overwritten during
this rime, while the (logical) retention period defined by the file expiration date prevents files
from being modified or deleted.

SO : Normal online processing level, implemented by (high-speed) disk storage.

S1 : Online background level, implemented by disk storage (possibly with more capacity and
longer access rimes than S0).

S2 : Off-line background level implemented by archives on magnetic tape or tape cartridge.

save : Used as a synonym for backup.

save file : "Receptacle" for saved files. The save file con tains one or more save versions and
consists of a set of volumes which ail have the same owner and retenti on period. Each save file
is identified by a save file ID (SFID) formed by the date and rime of its creation.

save version : Result of a backup or archival request. The save version is internally identified
by a save version ID(SVID). The user can refer to it via its creation date or the name assigned
to it at creation.

SFID : Identifies a save file; the save file ID has the following format: S.yymmdd.hhmmss

- Page 89

Chapter 10 : Glossary

SVID : Identifies a save version; the save version ID has the following format:
S.yymmdd.hhmmss

storage hierarchy : Assignment of storage units to different storage levels, depending on their
availability, access rime and storage costs (cf. SO,S 1 ,S2).

storage level : cf. storage hierarchy

SYSARCIITVE : Default system archive for archivai.

SYSBACKUP : Default system archive for backup.

SYSIVIIGRATE : Default system archive for migration.

SYSNODEARCIITVE : Default system archive for archivai ofnode files.

SYSNODEBACKUP : Default system archive for backup of node files.

system archive : cf. default system archive

TAPE : Volumes of the class "TAPE" are assigned to storage level S2, these are magnetic
tapes as well as magnetic tape cartridges.

UFS : UNIX File System.

volume pool : Set of volumes managed by an archive and registered in the directory. Volumes
required for save requests are normally fetched from the free volume pool of the archive.

VSN : Identifier of a tape volume.

- Page 90 -

Chapter 11 : Bibliography

11. BIBLIOG RAPHY

Dr. Michael A. BAUER, Dr. J. Michael BENNETT, Dr. Jacob SLONTh1. a Conceptual
Frameworkfor Distributed Directories. Technical report 240, The University of Western
Ontario, June 1989. Department of Computer Science, Distributed Directories Laboratory.

Dr. Jacob SLONTh1. The Role and Use of Data Dictionaries. Technical report 244, The
University of Western Ontario, June 1989. Department of Computer Science, Distributed
Directories Laboratory.

Dr. Michael A. BAUER. Distributed Directories : a Conceptual Framework (a Presentation) .
Technical report 245, The University of Western Ontario, June 1989. Department of Computer
Science, Distributed Directories Laboratory.

Dr. Jacob SLONIM. Distributed Database Management Systems (a Presentation) . Technical
report 247, The University of Western Ontario, June 1989. Department of Computer Science,
Distributed Directories Laboratory.

C.J.DATE. An Introduction to Database Systems Volume Il, chapter 7 : Distributed Databases
pp 291-332. Addison-Wesley Publishing Company 1983

Sam COLEMAN, Steve N.ITLLER. Mass Storage System Reference Mode! : version 4. IEEE
Technical Committee on Mass Storage Systems and Technology. May 1990

Souleymane Bah. File migration in a distributed environment. Facultés Notre-Dame de la Paix
Namur, June 1996. Institut d'Informatique.

External Interface Specifications for HSMS-CL

HSMS / HSMS-SV V2. 0B. Hierarchical Storage Management System : User Guide. July 1995.

HSMS Solution Studiesfor Backup Services Vl .0, September 1993.

Minutes from Interna! Formation about the HSMS and ARCHIVE repositories.
HSMS-Hierarchical Storage lvfanagement System : Brie/ Description . March 1994

BS2000 as Backup Server in an Open Universe. Company-wide baclatp with HS}.1S V2. 0 Brief
description. July 1994.

Technical Description : Archive

Hierarchical Storage Management System - HSMS.

- Page 91 -

