
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Improving the generecity of an abstract interpretation algorithm through object
oriented design

Delvaux, Pierre ; Englembert, Nicolas

Award date:
1996

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/improving-the-generecity-of-an-abstract-interpretation-algorithm-through-object-oriented-design(7a1b7cb9-8774-4a64-ac0f-072628094d4a).html

FUNDP
NAMUR

Facultés Universitaires Notre-Dame de la Paix, Namur

Institut d'Informatique

Année académique 1995-1996

IMPROVING THE GENERICITY OF

AN ABSTRACT INTERPRETATION

ALGORITHM THROUGH OBJECT

ORIENTED DESIGN

Pierre Delvaux & Nicolas Englebert

Promoteur: Baudouin Le Charlier

Mémoire présenté en vue de l'obtention du grade

de Licencié et Maître en Informatique

1
)/

1
l
1

(1
1
1
1
1 u/

)

Object Oriented design for a Prolog abstract interpreter

Albstract

Abstract interpretation is a methodology to analyze programs stati
cally. Abstract interpretation of Prolog is currently a very attractive field of
research. Because of this, many implementations are available for specific
interpretations. This report proposes a design to improve the genericity of a
Prolog abstract interpreter through object oriented techniques. The result is
summed up in a C++ program able to juggle a multitude of abstract domains
and algorithms. Moreover, this system is built to be extended in the future.

Résum.é

L'interprétation abstraite est une méthode d'analyse statique des
programmes. L'interprétation abstraite de Prolog est actuellement un
champs de recherche très actif. De ce fait, beaucoup d'implémentations
sont disponibles pour des interprétations spécifiques. Ce mémoire propose
un design pour augmenter la généricité d'un interpréteur abstrait de Prolog
au moyen de techniques orientées objets. Le résultat consiste en un pro
gramme écrit en C++ capable de jongler avec une multitude de domaines
abstraits et d'algorithmes. De plus, ce système est prévu pour être enrichi
dans le futur.

Object Oriented design for a Prolog abstract interpreter

Ackn({])W leJ.gm.en ts

We would like to thank all the people who contributed to this report.
We especially want to thank Pascal Van Hentenryck, who invited us to
Brown University, for his support as well his numerous and perceptive
comments and criticisms. They have had a major impact on our work and
on this report. We also thank Baudoin Le Charlier who supported the proj
ect in important ways and gave us the opportunity to fulfill our task.

Special thanks to our friend Carrie for her assistance with our Eng
lish grammar.

We also thank the G.C.B. for its sympathetic and supportive atmos
phere.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 7

IJNTRODUCTION 131

1 PART/: BACKGROUND 1 sj

1. PROLOG AND LOGIC PROGRAMMING 17

1.1. LOGIC PROGRAMMING AND THE PROLOG ACHIEVEMENT 18

1.2. PRO LOG ABSTRACT SYNT AX 19

1.3. PROLOG EXECUTION MODEL 20

1.4. EXAMPLE 22

1.5. THE CUT SYSTEM PREDICATE 23

1.6. SUBSTITUTIONS 24

1.6.1. CONCRETE SUBSTITUTIONS 24

1.6.2. SEQUENCE OF SUBSTITUTIONS 24

1.7. REFERENCES 25

2. ABSTRACT INTERPRETATION 27

2.1. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 29

2.1.1. INTRODUCTION 29

2.1. 2. REVIEW 29

2.1.3. MATHEMATICAL BACKGROUND 30

2.1. 3 .1. Concrete computation 30

2.1.3.2. Abstract domains 31

2.1. 3. 3. Least fixpoint of a transformation 34

2.1.4. GENERAL ALGORITHMS OF FIXPOINT COMPUTATION 36

2.1.4.1. Bottom-up and top-down evaluation of recursive definitions 36

2.1.4.2. Abstract interpretation algorithms 38

A. Bottom-up algorithm 38

B. Top-down algorithm 38

C. Approximation, termination and acceleration of convergence 39

D. Monovariant and polyvariant algorithms 41

8

2.2. ABSTRACT INTERPRETATION OF PROLOG PROGRAMS

2.2.1. INTRODUCTION

2.2.2. NORMALIZED PROGRAMS

2.2.3. INSTANCIATION DEGREE OF A TERM ~ MODES

2.2.4. ABSTRACT OPERATIONS ON THE DOMAINS

2.2.5. ABSTRACT INTERPRETATION ALGORITHMS

2.2.5.1. Abstract semantics

2.2.5.2. Manipulation of the Set of Abstract Tuples

2.2.5.3. Overview of the abstract interpretation algorithm

2.2.5.4. Procedure call dependencies

A. The dependency graph

B. Transitive clos ure of the dependencies

C. Operations

2.2.5.5. Top-down algorithm

2.2.5.6. Bottom-up algorithm

2.2.5.7. Sequence based top-down algorithm

2.3. RESUL TS OF AN ABSTRACT INTERPRETATION

2.3.1. INTRODUCTION

2.3.2. POST-PROCESSING ALGORITHMS ~ THE FOUNDATION

2.4. SOME GOALS OF PRO LOG ABSTRACT INTERPRETATION

2.4.1. SPECIALIZATION OF THE UNIFICATION ALGORITHM

2.4.1.1. Mode analysis

2.4.1.2. Sharing analysis

2.4.1.3. Pattern analysis

2.4.2. CARDINALITY ANAL YSIS

2.4.3. STATIC REUSE OF THE MEMORY

2.5. REFERENCES

3. OB.JECT ORIENTED PROGRAMMING AND C++

3.1. INTRODUCTION

3.2. NOTIONS OF OBJECT ORIENTED PROGRAMMING

3.2.1. CLASS AND OBJECT

3.2.2. ENCAPSULATION, INHERITANCE AND SPECIALIZATION.

3.2.3. POLYMORPHISM

3.2.4. GENERICITY

3.2.4.1. Generic procedure (dynamic bindings)

3.2.4.2. Generic type

41

41

41

42

43

44

44

45

46

47

47

48

48

48

51

52

53

53

54

56

57

57

58

59

59

59

60

61

62

62

62

62

65

65

65

67

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 9

3.3. THE C++ LANGUAGE 68

3.3.1. C++, A WELL-KNOWN OBJECT ORIENTED LANGUAGE 68

3.3.2. C++, A COMPLEX LANGUAGE 68

3.3.2.1. Introduction 68

3.3.2.2. An example of C++ limits 69

A. Pointer casting 69

a. Review 69

b. Upcasting and downcasting with language C++ 70

B. Multiple inheritance and the C++ virtual base class 70

C. The incompatibility of C++ pointer casting and multiple inheritance 71

3.4. REFERENCES 72

!PART Il: DESIGN AND IMPLE.ME.NTATION

4. INTRODUCTION TO THE ABSTRACT INTERPRETER

APPLICATION

4.1. DESIGNING THE APPLICATION

5. DOMAINS

5.1. ABSTRACT SUBSTITUTIONS AS OBJECTS

5.2. BUILDING THE INHERITANCE GRAPH

5.2.1. THE OBJECT "ABSTRACT SUBSTITUTION"

5.2.2. ADDING THE ABSTRACT SEQUENCES OF SUBSTITUTIONS

5.2.2.1. Input and output values

5.2.2.2. Capturing information at procedure level

5.3. CONCLUSIONS AND IMPLICATIONS

5.3.1. DOMAINS ALREADY IMPLEMENTED

5.3.1.1. The domain Prop

5.3.1.2. The domain Type-Graph

5. 3 .1. 3. The domain Cardinal sequence

5.3.1.4. The domain Pattern

5.3.1.5. The domain Pattern + arithmetic lists

5. 3 .1. 6. The Cartesian Product of domains

5.3.2. THE ADDITION OF NEW DOMAINS

5.4.REFERENCES

75

76

79

8 0

8 0

81

81

82

82

8 3

84

84

85

86

87

89

91

92

92

10

6. ALGORITHMS 9 3

6.1. DATA STORAGE,.., SET OF ABSTRACT TUPLES 94
6.1.1. INTRODUCTION 94

6.1.2. SAT IN MONOV ARIANT AND POLYV ARIANT ALGORITHMS. 94

6.1.2.1. SAT in a polyvariant algorithm 94

A. Hasse diagram 95

B. Hash table 96

6.1.2.2. Monovariant sat 97

6.1.2.3. Comparison of the different sat implementation 97

A. Polyvariant versus monovariant 97

B. Hasse diagram versus hash table 100

6.2. MANAGEMENT OF THE PROLOG CODE 100
6.2.1. BASIC CODE MANIPULATION 100

6.2.2. PREFIXING THE CLAUSES 102

6.3. ALGORITHMS AS OBJECTS 103
6.4. ALGORITHMS ALREADY IMPLEMENTED 103
6.4.1. INTRODUCTION 103

6.4.2. ALGORITHMS HIERARCHY 103

6.5. REFERENCES 105

1 PART Ill: UTILIZATION AND EVALUATION 1071

7. HANDLING THE APPLICATION 10 9

7 .1. INTRODUCTION 110

7.2. WHAT THE USER MUST SPECIFY TO COMPUTE AN ABSTRACT

INTERPRETATION 110

7.3. HOW THE USER CAN QUERY THE RESULTING SAT 112

7.4. A FULL EXAMPLE 112

8 . INTEGRATION IN A PROLOG COMPILER 117

8 .1. INTEGRATION IN A PROLOG COMPILER 118

Improving the genericity of an abstract interpretation algorithm through Object Oriented design

9. EXPERIMENTAL RESUL TS

9.1. DOMAIN PROP
9.2. DOMAIN PATTERN
9.3. DOMAIN PATTERN+ ARITHMETIC LISTS
9.4. DOMAIN TYPE-GRAPH
9.5. DOMAIN CARTESIAN PRODUCT
9.5.1. CARTESIAN PRODUCT OF PROP AND PATTERN

9.5.2. CARTESIAN PRODUCT OF PATTERN AND TYPE-GRAPH

11

121

122
124

125

127

128

128

130

9.5.3. CARTESIAN PRODUCT OF PROP, PATTERN AND TYPE-GRAPH 131

10. CONCLUSIONS AND FUTURE WORKS

10.1. CONCLUSION
10.1.1. OPEN PRODUCT DOMAIN

10.1.2. REFINING INPUT SUBSTITUTIONS

10.1.3. CACHING THE OPERATIONS

1 REFERENCES

!ANNEXES

Al. LISTINGS OF SOME PROLOG PROGRAMS

133

134

134

135

135

141

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 13

ÏntroJuction

The application field of logic programming is growing and is no
longer lirnited to artificial intelligence. Declarative programrning attracts a
large number of programmers through its natural power to express facts and
the relations between them.

However, this gain in expression has to be paid for by a loss of effi
ciency. Fortunately, static analysis, by means of abstract interpretation,
provides an attractive tool to help the programmer in proving a program's
properties and generating a more efficient compiled code.

Abstract interpretation of logic programs has inspired many theoreti
cal works, as well as practical applications. Sorne of these ideas have been
implemented but, due to these selective implementations, their focus has
been limited to what is the current novelty. One regrets the loss of time and
efficiency when switching from one to another to take advantage of each
one's specificity. A lot of time is also wasted when re-coding common parts
of the systems. Moreover, some smart combinations of abstract interpreta
tion algorithms could result in greater benefits than a series of lone execu
tions.

The assignment is therefore to integrate some Prolog abstract inter
preters into a coherent global design, carried out under the supervision of
Baudouin Le Charlier and Pascal Van Hentenryck. The aggregated system
must improve the genericity of Prolog abstract interpretation by providing
to the user a single interface to the different features. This design should
also respect the criteria of handling ease and ability for future extensions.

As the framework is made of different inter-operating components, a
special attention should be given to their interfaces. The object oriented
programrning paradigm, by providing opportunities of encapsulation and
genericity, is a suitable foundation to achieve our objectives.

The first part of this report focuses on a review of logic program
ming, abstract interpretation and object oriented programrning. It is fol
lowed by the core section where the design of the different components is
exposed. Finally, the results of the work are presented and evaluated.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 15

This first part has the purpose of familiarizing the reader with the
core concepts present in this report. As the target language of the static
analysis is Prolog, we first review what logic programming is. Secondly, the
properties of Prolog programs are deduced from abstract interpretation; we
thus explain this concept as well as general fixpoint computation algorithms.
Finally, while genericity is achieved by an object oriented paradigm and the
code is implemented in C++, we tackle these notions.

We tried to find a balance between completeness and comprehensi
bility. We illustrate each subject with several examples.

Jmproving the genericity of an abstract interpretation algorithm through Object Oriented design 17

1. PROLOG AND LOGIC PROGRAMMING

This introduction to Prolog and logic programming is there to insure

that we share the same basic knowledge. We expose the key concepts of

logic programming and broaden them to the Prolog language. We thus ex

plain the main Prolog data objects and how it manipulates them to achieve

the computation of a pro gram.

Contents of this chapter:

1.1. LOGIC PROGRAMMING AND THE PROLOG ACHIEVEMENT 18

1.2. PROLOG ABSTRACT SYNTAX 19

1.3. PROLOG EXECUTION MODEL 20

1.4. EXAMPLE 22

1.5. THE CUT SYSTEM PREDICA TE 23

1.6. SUBSTITUTIONS 24

1.6.1. CONCRETE SUBSTITUTIONS 24

1.6.2. SEQUENCE OF SUBSTITUTIONS 24

1.7. REFERENCES 25

18

1.1. LOGIC PROGRAMMING AND THE PROLOG

ACHIEVEMENT

As opposed to logic thinking, which finds its origin in scientific rea
soning, Prolog is not so old; work on Prolog began in the early seventies.
The first implementation of Prolog was released in 1972 by Alain
Colmerauer and Phillippe Roussel. We think that Prolog has still not
reached its maturity; that is to say its lack of efficiency in some cases pre
vents it from being accepted as a real software development tool by the in
dustry.

As the name "Prolog1
" suggests, this language tries to be an imple

mentation of logic programming. Logic programming languages are an al
ternative to imperative programming languages such as C, Pascal,
FORTRAN or COBOL. Logic programming languages are high-level and
declarative languages.

A programming language is a system of notation for describing com
putations. A useful programming language must therefore be suitable both
for describing (i.e. , for human writers and readers of programs), and for
computation (i.e. , for efficient implementation on computers). But human
beings and computers are so different that it is difficult to find notational
devices that are well suited to the capabilities of both. Languages that favor
humans are termed high-level, and those oriented for machines low-level.

Declarative programming describes what is computed and not how it
is done. This kind of programming language tries to separate the logic from
the control. The idea is to write a program as the specification of the solu
tion to the given problem and then provide that text to the computer, which
will be able to find out the results2.

In logic programming, the main idea is that deduction can be viewed
as a form of computation, and that the statement P if Q and R and s
can also be interpreted procedurally as "to salve P, salve Q and R and s".
Under these assumptions, a logic program is a set of axioms, or rules, de
fining relations between abjects using a subset of first order logic; and a
computation is a deduction of consequences of the pro gram.

1 Prolog means "programmation en logique".
2 We find the same idea in other programming paradigms such as functional program

ming.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 19

More formally, a logic program is a finite set of clauses. A clause
(or rule) is a logical sentence of the form A f- B1, . . . , Bn (n � 0) and
is read "Ais implied by the conjunction of the Bi".

But Prolog is only an approximate implementation of the logic pro
gramming model on a sequential machine. ln effect, when deducing a logi
cal formula, there is no particular order between the rules or between the
components of a rule. This non-determinism deduction has to be raised
when implementing a programming language. A Prolog program is thus a
logic program in which an order is defined both for the clauses and the at
oms of the clauses.

1.2. PROLOG ABSTRACT SYNT AX

Before going further, it is important for the reader to know the
structure of a Prolog program as well as the objects allowed to build it. To
have a common basis for the description of the examples, we give an ab
stract syntax of Prolog using the BNF notations3

•

3
Here is a summary recapitulating the BNF notations we used to describe Prolog ab-
stract syntax.

<xxxxxxx> denotes the defined object or an object used to define another.
[<xxxxxxx> J indicates that <xxxxxxx> is optional.
{<xxxxxxx>} means that <xxxxxxx> can be repeated n times (0 :a:; n :a:; +oc),

denotes the disjunction,
· · = is used to defined an object.

20

<Program>: := { <Procedure> }
<Procedure>: := { <Clause> } (clauses have the same name)
<Clause>::= <Procedure_head> [:- <Goal>].
<Procedure head>: := <Predicate> [({<Term>})]
<Goal>::= { <Literal>
<Literal>: := <Atom> 1 ,<Atom>
<Atom>: := <Predicate> [({<Term>})]

1 <Term>1 = <Term>2
<Term>: := <Constant> 1 <Variable>

1 <Predicate> [({<Term>})]

<Constant> E est
<Variable> E Var

set of constants.
set of variables.

<Predicate> E Predn : set of n-ary predicates (n E N).

Note also that in the following, constants and predicates are denoted
by identifiers beginning with a lower-case letter while variables' identifiers
begin with a capital letter.

1.3. PROLOG EXECUTION MODEL

Before discussing abstract interpretation of Prolog, we think it is im
portant to review the concrete execution of a Prolog query. A query is a
conjunction of the form f- B1, ... , Bn (n > O) where Bi are goals.

In Prolog, binding of variables is made by a process called substitu
tion. A substitution can be viewed as an automorphism on the terms and
can be depicted as a finite set of such associations where the first compo
nent of the couple is a variable and the second a term. For example:

e = {Xi/t1, ... , Xn/tn}

is a substitution and the term se denotes the result of simultaneously re
placing in the term s each occurrence of the variable Xi by ti, The term se
is called an instance of s.

A computation of a Prolog pro gram P, given a query Q, returns a set
of substitutions possibly empty in which for each substitution e there is a
clause c in P such as Qe f- c.

The key concept in Prolog is the notion of unification. Unifying two
terms is finding a substitution which, if applied to both of them, makes them
syntactically identical. If such a substitution exists then it is called the uni
fier and the two terms are said to be unifiable. For example, the terms
f (X, g (Y)) and f (a, Z) are unifiable by the unifier e = {X/a,

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 21

Z/ g (Y) } • On the other hand, the terms f (X, g (Y)) and f (z , h (W)) are
not.

As explained earlier, the execution of a Prolog program is totally
deterministic and there is thus an order for evaluating the clauses and the
goals. When solving a goal (i.e. , a query or an atom of a clause), the first
literai to be solved is the leftmost one and then the next until the empty lit
erai is reached. Given a literai to solve, the first clause whose head unifies
with it is chosen and then the next until there are no more clauses satisfying
the unification. When that happens, the execution backtracks to the last lit
erai chosen, i.e. , asks the last literai if it can produce another solution.

Fig. 1- 1 shows an example of backtracking for the Prolog program:

<fail>

Fig. 1-1 : Backtracking.

The literai a1 produces a first solution 01 and suspends its execution
to let the literai a2 compute. Given the input substitution 01, the literai a2
produces a solution 02 and suspends. The control is given to the literai a3
which is unable to produce a result for that input. The execution then
backtracks and gives the control to a2. This last produces a second solution
03 which, given to a3, permits it to generate two final solutions: 04 and 0s.
After the failure of a3, the execution backtracks again just to notice that a2

22

has nothing more to produce, and so backtracks one more time to gives the

control to a1. This literal produces a second solution 06 which is forwarded

to a2 (a new execution of this literal is thus started). This leads finally to a

solution 0a. After a few more backtrackings, the execution of the program

terminates when the literal a1 fails.

To sum up, the solutions of this pro gram are 04, 0s and 0a.

1.4. EXAMPLE

To clarify all the notions explained in this section, here is a small ex

ample. Let us consider the relation existing between two lists Ll and L2
and a third one LR which is their concatenation. We can express it

LR = Ll <> L2 ,

where <> denotes the list concatenation, or

append (Ll , L2 , LR) .

U sing the first order predicate logic and normalizing the formula in a dis

junction of conjunctions, we can write it4

(Ll = [) /\ L2 = LR) v (Ll = [H I T] /\ LR = [H I R] /\
append (T , L2 , R)).

where I denotes the addition of a first element in a list.

The associated Prolog pro gram could be:

append ([] , L2 , L2) .
append ([H I T], L2 , [H I R]):- append (T , L2 , R).

The execution of the query f- append ([a , b J , [c , d J , LR) is now de

picted in Fig. 1 -2. The number on the arrows denotes the number of the

clause and the unifying substitution is indicated when successful. Note also

that at each recursive call, the variables are renamed to avoid conflict.

4 Note that the quantifiers are omitted.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 23

9, = { [] / [] '

� append ([a , b] , [c , d] , LR)
71 #2

/ 1
0, = { H1/a, T1 / [b] , L2j [c, d] , LR/ [H, I R,] }

fail � append ([b] , [c, d] , R1)

�
#2

/ 1
02 = { H2/b, T2/ [] , L22/ [c , d] , R1/ [H2 I Ra l }

fail � append ([] , [c , d] , R2)

� #2

123 / [c , d] , R
a� l

<empty> fail

Fig. 1-2 . : Execution of append ([a , b] , [c, d] , LR) .

The solution to the query is given by 0 which is the composition
5

of substi

tutions 01 , 02 and 03 restricted to the variables present in the query. The re

sulting substitution 0 tells us that LR = [a , b , c , d] .

1.5. THE CUT SYSTEM PREDICATE

We do not want to get into the subtleties of Prolog but we think it is

important to explain briefly what the eut system predicate is (noted !) . This

predicate affects the procedural behavior of Prolog deduction. When exe

cuted, a eut has two effects:

when the execution backtracks, it will not go before this literal;

the next clauses of the current procedure will not be tried.

Let us illustrate the eut on the following example. We define the

Prolog program min/ 3, which computes z as the minimum of x and Y, as:

min (X, Y, Z) :- X � Y, Z Y .
min (X, Y, Z) :- Y � X, Z = X .

The result of the query min (5, 5, z) gives two times the same sub

stitution: { z / 5 } .

We modify the program by adding a eut in the first clause:

5 Because of the functional definition of the substitution, the composition here can be
the usual functional composition.

24

min (X, Y, Z):- X � Y, ! , Z = Y .
min (X, Y, Z) :- Y � X, Z = X .

Now the result of the query min (5, 5, z) with this modified pro
gram gives only one substitution { z / 5 } ; the second clause is not tried be
cause a eut has been executed in the first clause.

1 .6 . SUBSTITUTIONS

We must now give a more formal definition of the Prolog result of a
computation, that is to say the substitutions. We first define the substitution
in itself, and then how Prolog handles it as a result.

1 .6 . 1 . CONCRETE SUBSTITUTIONS

Substitutions are one of the main objects of the Prolog concrete se
mantics. A concrete substitution s is a fmite set es (possibly empty) of the
form

{ Xi/ t 1, , , . , Xn/ t n } ,

where each Xi is a variable, each t i is a term distinct from Xi and the vari
ables X1, . . . , Xn are distinct. Its domain dom (S) is D = { X1, . . . , Xn } .

1 .6.2. SEQUENCE OF SUBSTITUTIONS

In general, a literai may fail or produce one or several solutions.
Thus a clause or a procedure may produce several solutions.

For a given input substitution s and predicate p, the execution of a
program produces a sequence of substitutions <S1, . . . , Sn>. This is de
noted by <S, p> ➔ <S1, . . • , Sn>, Moreover, the execution is described
by attaching a sequence of substitutions to each program point of the proce
dure.

To sum up, a Prolog procedure may either:
terminate after producing a fmite number of solutions;
produce an infinite number of solutions;
enter an infinite loop after producing a finite number solutions.

As a consequence, a Prolog program could produce any of the se
quences of substitutions depicted in Table 1-1.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 25

Type representation example of such a query

empty <> f- append ([a, b] , X, [c, I Y])

finite < S 1 , . . . , Sn> f- append (X, Y, [a, b, c])

infinite <S1 , . . . , S i , . . . > f- append (X, [], Y)

incomplete <S1 , . . . , S i , .1> f- append (X, X, X)

Table 1-1 : Sequences of substitutions' typology.

The empty sequence is only a particular case of finite sequence.

1 . 7. REFERENCES

[BY95/9] BYTE, A Brief History of Programming Languages , September 1995 .

[LEC2Ll] LE CHARLIER B. , lecture notes: Logic programming, 2° licence,

1994.

[TEN] TENNENT R. D. , Principles of Programming languages, Prentice

Hall.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 27

2. ABSTRACT INTERPRETATION

The abstract interpretation algorithm is the core engine of our proj
ect. So we think that the time has corne to abstract the concrete. In this
chapter, we explain the notions of static analysis and abstract interpretation
in general. The concepts of fixpoint, fixpoint computation and abstract do
mains are exposed. We then particularize these concepts to the specific case
of Prolog. Finally, we consider some benefits of Prolog abstract interpreta
tion.

Sections 2. 1 and 2.2 of this chapter are based on [LECH91] and
[LEVA94], respectively.

Contents of this chapter:

2.1. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 29
2.1.1. INTRODUCTION 29

2.1.2. REVIEW 29

2.1.3. MATHEMATICAL BACKGROUND 30

2.1.3 .1. Concrete computation 30

2.1.3 .2. Abstract domains 31

2.1.3 .3 . Least fixpoint of a transformation 34

2.1.4 . GENERAL ALGORITHMS OF FIXPOINT COMPUTATION 36

2.1.4.1. Bottom-up and top-down evaluation of recursive definitions 36

2.1.4.2. Abstract interpretation algorithms 38

A. Bottom-up algorithm 38

B. Top-down algorithm 3 8

C. Approximation, termination and acceleration of convergence 39

D. Monovariant and polyvariant algorithms 41

2.2. ABSTRACT INTERPRETATION OF PROLOG PROGRAMS 41
2.2.1. INTRODUCTION 41

2.2.2. NORMALIZED PROGRAMS 41

2.2.3. INSTANCIATION DEGREE OF A TERM ~ MODES 42

2.2.4. ABSTRACT OPERATIONS ON THE DOMAINS 43

28

2.2.5. ABSTRACT INTERPRETATION ALGORITHMS 44

2.2.5.1. Abstract semantics 44

2.2.5.2. Manipulation of the Set of Abstract Tuples 45

2.2.5.3. Overview of the abstract interpretation algorithm 46

2.2.5.4. Procedure call dependencies 47

A. The dependency graph 47

B. Transitive closure of the dependencies 48

C. Operations 48

2.2.5.5. Top-down algorithm 48

2.2.5.6. Bottom-up algorithm 51

2.2.5.7. Sequence based top-down algorithm 52

2.3. RESUL TS OF AN ABSTRACT INTERPRETATION 53

2.3.1. INTRODUCTION 53

2.3.2. POST-PROCESSING ALGORITHMS ~ THE FOUNDATION 54

2.4. SOME GOALS OF PROLOG ABSTRACT INTERPRETATION 56

2.4.1. SPECIALIZATION OF THE UNIFICATION ALGORITHM 57

2.4.1.1. Mode analysis 57

2.4.1.2. Sharing analysis 58

2.4.1.3. Pattern analysis 59

2 .4 .2. CARDINALITY ANAL YSIS 59

2.4.3. STATIC REUSE OF THE MEMORY 59

25. REFERENCES 60

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 29

2.1. STATIC ANALYSIS AND ABSTRACT INTERPRETATION

2.1 . 1 . I NTRODUCTION

The basic idea behind abstract interpretation is to approximate pro

gram properties by using an abstract domain instead of the actual domain of

computation.

For instance, the actual domain consisting of the integers can be re

placed by the abstract domain { - , O , + } representing the set of negative

integers, zero, and the set of positive integers. This way, properties of the

sign of an expression can be found without actually computing this expres

sion. The basic operations of the language and/or its semantics can then be

associated with operations on the abstract domain which approximate them

in a consistent manner (for instance the addition has to be redefined on the

set { - , o , + }).

2.1 .2. R EVIEW

We now introduce some definitions that are useful for the rest of this

section.

Relation: a relation R on a set s is a subset sxs . As we prefer to use the

infix notation, we write xRy for (x , y) E R.

Partial order: a relation R on a set s is partial order if it respects the

following properties:

1 . reflexivity: V x E s , xRx;

2. anti-symmetry: V x , y E s , xRy A yRx ⇒ x = y;

3. transitivity: V x , y , z E S , xRy /\ yRz ⇒ xRz .

Upper bound: Let s be a set with a partial order s; then x E s is an

upper bound of a subset u ç s if u ::; x V u E u.

Least upper bound (lub for short) : Let s be a set with a partial order s;

then x E s is the least upper bound of a subset u ç s if x is an upper

bound of u and, for all upper bounds x ' of u, we have x ::; x ' .

If it exists, the least upper bound of a set is unique.

Lower bound: Let s be a set with a partial order s; then x E s is an

lower bound of a subset u ç s if x ::; u V u E u.

- Greatest lower bound (glb for short) : Let s be a set with a partial order

s; then x E s is the greatest lower bound of a subset u ç s if x is a

lower bound of u and, for all lower bounds x ' of u, we have x ' ::; x.

If it exists, the greatest lower bound of a set is unique.

30

Chain: a chain of the partial order (s , :s;) is a finite increasing sequence
Xo ::,; X1 ::,; , , , :s; Xi :s; , , , ,
Complete partial order (cpo for short): the partial order (s , ::;) is a
complete partial order if the set s owns a minimal element, named bot
tom and denoted ..ls, and if any chain xo :s; x1 :s; . . . :s; Xi :s; . • . of s
has a least upper bound denoted u�=Ox i .

Lattice: a lattice is a partially ordered set s in which any two elements x i

and Xj have a least upper bound and a greatest lower bound in S .
Complete lattice: a lattice L is a complete lattice if lub (U) and glb (U }
exist for every subset u ç L.
The Fig. 2-1 is an example of a complete lattice.
Monotonie: Let L1, L2 be complete lattices and T : L1 ➔ L2 be a map
ping. T is monotonie iff T (x) :s; T (y } whenever x :s; y, V x E L1
and y E L2.
Concretization function: this fonction maps the abstract properties to
the concrete values
Cc : AS ➔ y:, (CS)

a ➔ {c: c verifies a}
- Abstraction function: this fonction maps the concrete values to the ab

stract properties
Abs: CS ➔ AS

C ➔ a a is an abstraction of c .

2.1 .3. MATHE MATICAL BACKGROUND

2.1 .3 .1 . CONCRETE COMPUTATION

We denote D the domain of values handled by a language we want to
analyze by means of abstract interpretation. In general, D has a complex
structure to take into account the different types of the language: scalars,
structured objects, files . . . We assume that D is unstructured; this does not
change the nature of results but simplifies the notations. Note that we will
make other simplifications without ever mentioning them. As we will see
later, all this can be extended to the case of actual languages (Prolog of
course) but not without complications.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 31

Suppose we want to analyze the following procedure6 of our lan
guage.

f (x) if X > 1 0 0
then x - 1 0
else f (f (x + 1 1)) .

This function7 computes values from z to z (the set of integers). We are
thus interested in some properties of the function computed by the proce
dure and an interesting one is which values could take the variables at dif
ferent points of the execution.

To capture such multiple information, we have to replace individual
values of D by sets of values; that is to say elements of P (D) . This set is
denoted c (for concrete domain, of all the possible properties). The proce
dure computing over D can now be replaced by a procedure computing over
c (x denotes a set of integers):

f (X) = {x - 1 0: X > 1 0 0 A X E X} U
f (f ({X + 1 1: X ::;; 1 0 0 A X E X})} . (1)

Basic operations on individual values can generally be replaced by opera
tions handling sets of values. Procedures modified this way compute the set
of possible results corresponding to the set of possible inputs. Actually,
those modified procedures are not useful for two reasons. The first reason
leads us to the notion of abstract domain and the second to the notion of the
least fixpoint of a transformation.

2.1 .3.2. ABSTRACT DOMAINS

Not all sets of values are workable; it is, moreover, theoretically im
possible. The concrete domain c is thus replaced by an abstract domain A

conserving only some elements of c such that any element of c can be ap
proximated by an element of A.

Technically, it is often demanded that A be a complete lattice or a
complete partial order and that two monotonie functions Abs: c ➔ A and
Cc: A ➔ c exist and verify the two following conditions:

V c E C: Cc (Abs (c} } � c;

V a E A: Abs (Cc (a} } a.

6 We use functional notations.
7 This fonction is called the "91 -function" .

32

That is to say, the abstraction fonction Abs associates each set of values
with its best approximation and the concretization fonction Cc associates
each element of A with the set of values it represents.

A simple way to design an abstract domain is to define a partition
{ S1, . . . , Sn} of C, an arbitrary set A = { a1, . . . , an} and to define
the concretization fonction Cc: A ➔ P (C), by

1 ::; i ::; n .

We call these abstract domains flat domains since their elements are not
comparable.

An example of such a domain is the classical domain for sign analysis
defined as:

C = z,
A = { - , 0 , + } ,

Cc (-) { i I i < 0 } ,
Cc (0)
Cc (+)

{ 0 } '

{i I i > 0 } .

We can complete a fiat domain such as each pair of abstract values has an
upper bound. The ordering is introduced by the concretization relation.
Note that it is not absolutely required to have a unique least upper bound,
although this additional requirement is natural.

Once upper bound has been added, one may remove some original
elements because they can be approximated by one of the upper bounds.
The idea is to keep only elements that bring "interesting" information.
Hence there are many ways to complete a fiat domain A.

The most complete is -:P (A) with Cc: P (A) ➔ -:P (c) defined by

Such a completed domain is called a power set domain. Obviously if n is
the number of elements of A, -:P (A) contains 2 n elements. Therefore power
set domains can only be used for small values of n.

An other systematic way to complete a fiat domain is to only add one
"top" element T with Cc (T) = c. Notice that { T } is itself a completed
(albeit not very interesting) domain.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 33

The power set domain for sign analysis is defined as:

C = Z,
A = { � , - , o , + , s , * , � , T} ,

Cc (�) { } ,
Cc (-) {i I i < O } ,
Cc (0) { 0 } ,
Cc (+) { i I i > 0 } ,
Cc (S) { i I i S O } ,

Cc (*)
Cc (�)

{i
{i

i * 0 } ,
i � 0 } ,

The Fig. 2-1 depicts the order between elements in a Hasse diagram.
A Hasse diagram is made up of nodes and edges in such a way that there is
an edge between nodes a and b iff a s b and there is no c such that a s c
and c s b.

Fig. 2 -1 : Hasse diagramfor sign analysis .

In the procedure (1), c = P (Z) . An example of abstract domain A

would be the set x of intervals. An interval [i . . s], where i, s E z u
{ -00 , +00 } , is the set of integers e such that i s e :=;; s. The set n is a
complete lattice for the set inclusion ç. { } is the smallest element (bottom)
and [-00 • • +00] the greatest (top). Ab s (x) is the interval
[min (X) . . max (X)] . Cc (X) is the inclusion of x in P (Z) .

It is possible to rewrite the former procedure so that it maps an in
terval of inputs to an interval of results.

34

f ([i . . s]) = [max (91, i - 1 0) . . (s - 1 0)] Q
f (f ([(i + l l) . . min (s + l l, 1 1 1)])) . (2)

where Q approximates the union of two intervals by the smallest interval
which includes both of them. From this definition we try to approximate the
set of values produced by the fonction. We get the two following equa
tions:

f ([-oo , , +oo] } = [9 1 . , +oo] Q f (f ([-oo , , 1 1 1] } } ,
f ([-oo . . 1 1 1]) = [9 1 . . 1 0 1] Q f (f ([-oo . . 1 1 1]) } .

These equations demonstrate that the usual computation method is impossi
ble: it generates an infinite loop since f ([-oo . . 1 1 1] } recursively triggers
off the computation of itself. We just pointed out the second difficulty.
Computation over abstract domains cannot blindly simulate computation
over the standard domain. We separate the difficulty into two levels. First,
we give an accurate (mathematical) meaning to the procedures such as (1)
and (2), thanks to the notion of the least fixpoint of monotonie transforma
tion. We then expose the problem of computing least fixpoints.

2.1 .3 .3 . LEAST FIXPOINT OF A TRANSFORMATION

We reason over the abstract domain of intervals u, but the same
process could be applied over any abstract domain. Let x ➔ x be the set of
monotonie and continuous fonctions from x to x; that is to say, such that:
- V I, I ' E)[: I ç; I ' ⇒ f (I } ç; f (I ' } ;

- for all finite series of embedded intervals I 1 ç; I 2 ç;
we have

These conditions express that f is really an abstraction of a fonction from z
to z. The set J[➔ n can be endowed with an order:

f ::;; g iff V I E H: f (I } ç; g (I } .

This order relation means that the procedure corresponding to g produces at
least as many results as the procedure corresponding to f. The definition
(2) can be replaced by a transformation of fonction:

'C : (X ➔ X } ➔ (X ➔ U } •

with

('C f } ([i . . s]} [max (91 , i - 1 0) . . (s - 1 0)] Q
f (f ([(i + 1 1 } . . min (s + 1 1 , 1 1 1 }] } } .

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 35

Hence, the equation (2) simply means that the fonction f is a fixpoint of the

transformation 't; that is to say:

't (f) = f .

It is possible to demonstrate the following results.

Provided that the concrete and abstract domains verify the formerly

mentioned properties, every fixpoint of 't gives a correct approximation

of the properties of the associated procedure.

The transformation 't has necessarily a least fixpoint (the most accurate).

The least fixpoint of 't is equal to the limit of an increasing series of ap

proximations :

where fa (I) = { } V I E K ,

fk+l = 't (fk) V k 2:: o .

In our example, we can verify after a drudgery computation that

fk ([i . . s]) = [max (91, i-1 0) . . max (91, s-10)]
{ }

if s 2:: l (k)
if s < l (k)

with

1 (k) +oo if k 0,
1 0 2 - k if 1 ::;; k ::;; 1 2 ,
2 2 2 - l lk if k 2:: 1 3 .

As 1 (k) tends to -00 when k tends to +00 , the series of functions converges

to the function f such that

f ([i . . s]) = [max (9 1, i-1 0) . . max (9 1 , s-1 0)] . (3)

This function is the least fixpoint of the transformation 't in our example.

The interest of such a function is that the computation of a single value

gives us information about an infinity of executions of the original proce
dure (from z to z) . We have for example

f ([-oo . . +oo) } = [9 1 . . +oo) ,

which indicates that all the values produced by the standard procedure are

greater or equal to 91. We can also compute that

f ([-00 • • 1 0 1]) = { 9 1 } ,

36

which means that for all input smaller or equal to 1 O 1 , the procedure returns
9 1 or does not terrninate8

•

However, the way we proceeded to compute these results is not sat
isfactory for an automated processing: the deterrnination of an explicit form
of the fixpoint such as (3) can only be realized by a specific reasoning. In
stead, we must find methods of fixpoint computation based only on the re
cursive definition (2). It is the purpose of the next section.

2.1 .4. G ENERAL ALGORITH MS OF FIXPOINT COMPUTATION

Fixpoint computation of some transformations associated with pro
grams according to an abstract semantic is close to computations of recur
rent procedures in a prograrnrning language. There are however two major
differences:

the computation must terrninate in all possible cases;
- it is generally sufficient to compute an approximation of the fixpoint9

•

2.1 .4.1 . BOTTOM-UP AND TOP-DOWN EVALUATION OF RECURSIVE
DEFINITIONS

Fixpoint computation algorithms are a generalization of the methods
used to compute the values of fonctions defined recursively. That is why we
first expose these methods before generalizing them for abstract interpreta
tion. Let us consider the following recursive definition:

f (x) i f X E { Q , 1 }
then x
else f (x - 1) + f (x - 2).

To compute a particular value f (v), we can first evaluate the fonc
tion bottom-up, starting with "small values" o and 1 for which the value of f
is irnrnediate, and then by progressively propagating these results to 2 , 3 , 4 ,
. . . until we obtain the desired value. If we want to compute f (4) ; it looks
like this:

8 In effect, our abstract domain does not deal with the issue of termination.
9 Note that the fixpoint itself, in general , gives only an approximation of the actual

properties.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 37

f (0) 0

f (l) 1

f (2) f (l) + f (0) 1 + 0 1

f (3) f (2) + f (1) 1 + 1 2

f (4) f (3) + f (2) 2 + 1 3

We can also evaluate the fonction top-down, starting from the ex
pression f (v) to compute, and by further developing it until we obtain an
expression completely computable. Again, to compute f (4) , it looks like:

f (4) = f (3) + f (2)

(f (2) + f (l)) + (f (l) + f (0))

((f (l) + f (O) + f (l)) + (f (l) + f (0))

((1 + 0) + 1) + (1 + 0)

3

The bottom-up method seems to be more efficient on the example
above. However, it is difficult to systematize it because we need to find the
right series of values to compute so that ail the needed values are already
computed. It is not always possible. The top-down method has the advan
tage of being systematic. Unfortunately, it is very inefficient because the
same value can often be reevaluated. Above, f (2) is computed twice.
Generally, top-down computation is exponential in time whereas bottom-up
is linear.

Fortunately, the top-down method can be improved to be generally
as efficient as the bottom-up method. This improvement, know as memo
ization, is enhanced for the abstract interpretation algorithms. The idea is to
record in a table the values already computed in order to prevent them from
being reevaluated. Our example, using this improvement, gives:

f (4) f (3) + f (2)

(f (2) + f (l)) + f (2)

((f (l) + f (0)) + f (l)) + f (2)

((1 + f (0)) + f (l)) + f (2) { f (l) l }

((1 + 0) + f (l)) + f (2) { f (0) 0 }

(1 + f (l)) + f (2) { f (2) l }

2 + f (2) { f (3) 2 }

3 { f (4) 3 }

Now, this modified algorithm is linear since every expression f (v) is
only evaluated once.

38

2. 1 .4.2. ABSTRACT INTERPRETATION ALGORITHMS

The issue is to compute the least fixpoint of the abstract transforma
tion:

'C : (A ➔ A) ➔ (A ➔ A) .

Remember that we want an algorithm able to compute f (a) for all
abstract values a.

A. Bottom-up algorithm

The simplest way to compute such f (a) value can be done by a se
ries of approximations:
- fo (a) = ..L V a E A,

- fk+l = 'C (fk) V k � 0,

- f = fn such that fn+l = fn .

This bottom-up method demands that the domain A be finite10
•

Moreover, the results produced by this algorithm are sometimes less accu
rate with regard to the top-down.

B. Top-down algorithm

The algorithm explained here is based on the top-down method and
uses an enhanced memo-ization; we store intermediate and partial results of
computation. We start with the recursive definition of the fixpoint and then
try to recursively compute the value f (a) . During the computation, we
keep an up-to-date table of values ai for which a recursive call has been al
ready initiated (whether terrninated or not) together with its associated
lower approximation of f (ai) . When the same recursive call is reconsid
ered, it is not developed but its current approximation stored in the table is
returned. At each end of a call, the content of the table is updated with the
last value computed. As this later is generally an approximation (since the
value in the table are so), we repeat the same computation until the result
cannot be further improved (i.e., the result is stable) .

Let us illustrate this top-down algorithm with the fixpoint computa
tion of the 91-function. We have to compute f ([-00 • • +00]) for the trans
formation

10 A widening can be use in the case of infinite domains.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 39

('C f) ([i. .s]) = [max (91 , i - 1 0) .. (s - 1 0)] lJ
f (f ([(i + 1 1) .. min (s + 1 1, 1 1 1)])) .

Each time a recursive call is initiated, a value is added in the table with the

associate current "approximated" result { } . Hence, when we start the com

putation, the approximated value of f ([-00 • • +oo J) in the table is { } . After

the first iteration, we get

f ([-oo , . +oo] } = [91. . +oo] /J f (f ([-oo . . 1 1 1] } } .

Thus a call for f ([-00 • • 1 1 1 J) (whose current approximation is { }) is ini

tiated. This call can be further developed in

f ([-oo . . 1 1 1]) = [9 1. . 1 0 1] lJ f (f ([-oo . . 1 1 1])) .

The same recursive call should be initiated but we instead pick up its current

approximated value in the table (i.e. , { }); this would have otherwise en

tailed an infinite loop. So we get

f ([-oo . . 1 1 1] } = [9 1. . +oo] /J f ({ } }

= [9 1.. +oo] .

The new result for this call is used to update the table for that entry and

then the same computation is reconsidered just in case we could improve the

current result due to the new information just obtained.

f ([-oo . . 1 1 1 J) = [9 1. . +oo J JJ f (f ([-oo . . 1 1 1 J))

= [9 1. . +oo] /J f ([91. . 1 0 1] } .

This new iteration triggers off the computation of f ([9 1 .. 1 O 1 J) . Again,

the same method is applied to compute the successive approximations of

f ([9 1 .. 1 O 1 J) • Since it is quite long, it is not mentioned. The least fix

point computation finally stabilizes and terminates with the best possible re

sult

f ([-oo . . +oo] } = [9 1 . . +oo] .

This algorithm can be systematically implemented for any kind of

programming language, provided it has been endowed with an abstract se

mantic allowing to associate with any program a transformation rc. This is

theoretically always possible.

C. Approximation, termination and acceleration of convergence

The abstract domain J l of intervals is infinite. With such a domain,

the top-down algorithm can loop. This is the case if an infinity of different

40

calls are initiated. It is not the case if the same call is recursively repeated.
This is avoided by the table. The previous example was not concerned with
this eventuality but this is not always the case. To avoid such problems, we
could limit ourselves to finite abstract domains but it is not always possible
to find a better finite domain approximating the infinite domain we wish to
use. A much cleverer approach consists of dynamically choosing those ap
proximations, according to the particular example. The idea is to replace
the virtually infinite set of values being considered by a finite set which cov
ers them; that is to say we widen

1 1 it. The results obtained this way are gen
erally safe (or consistent) approximations of the fixpoint values. The use of
these approximations, moreover, enables faster convergence. We can illus
trate this again with the computation of f ([-00 • • +00]) • We first compute

f ([-oo , , +oo] } = [9 1 , , +oo] /J f (f ([-oo , , 1 1 1] } } ,

As [-oo . . 1 1 1] ç [-oo . • +oo]) , we can replace f ([-oo . . 1 1 1]) by
f ([-00 • • +00]) (with, of course, the risk of losing accuracy); that gives us

f ([-oo , , +oo] } :: [9 1 , , +oo] /J f (f ([-oo , , +oo] } }
_ [9 1 . , +oo] /J f ({ })

_ [91 , , +oo] ,

When reconsidering the computation, we finally get

f ([-oo , , +oo]) = [9 1 , . +oo]
- [9 1 , , +oo]
- [9 1 , , +oo]
- [9 1 . . +oo]
- [9 1 . , +oo] ,

IJ
IJ
IJ
IJ

f (f ([-oo , , +oo]))
f ([9 1 , , +00])

f ([-oo , , +oo])
[91 , , +oo]

The computation stops after two iterations with the best possible result,
while the "exact" algorithm would have required lots of iterations. Our ex
ample is well tailored for the account. Unfortunately, it is possible to find
less satisfying ones. Let us compute, for example, f ([-00 • • 1 O O]) and re
place the recursive calls by a widened call. We get:

f ([-oo . . 1 0 0]) = { } /J f (f ([-oo . . 1 1 1]))
f ([-oo . . 1 1 1]) = [9 1 . . 1 0 1] IJ f (f ([-oo . . 1 1 1]))

_ [9 1 . . 1 0 1] .

11 This operation presupposes the existence of an underlying least upper bound fonction.

lmproving the generîcîty of an abstract interpretation algorîthm through Object Oriented design 41

So,

f ([-00 • • 1 0 0]) = f ([91 . . 1 0 1])
_ f ([-oo • • 1 1 1])
_ [9 1 . . 1 0 1] .

The result is less accurate than previously but obtained much more quickly.
The design of operations allowing the convergence to speed up without
losing too much precision is an intricate task, depending heavily on the spe
cific abstract domain.

D. Monovariant and polyvariant algorithms

When computing an abstract interpretation, a decision must be made
about keeping track of the input and output values. We can either store all
values or "lump" them. The second case implies in general that the under
lying domain be complete. We respectively call them polyvariant and
monovariant algorithms.

In general, monovariant algorithms imply a loss of accuracy because
of the upper bound operation.

For instance, in the previous example, when computing
f ([-00 • • +00]) , a polyvariant algorithm would keep track of two recursive
calls, f ([-00 • • 1 1 1]) and f ([9 1 . . 1 0 1]). On the other hand, a
monovariant algorithm would only remember f ([-00 • • +oo]) .

2.2. ABSTRACT INTERPRETATION OF PROLOG PROGRAMS

2.2.1 . INTRODUCTION

We now particularize the above notions to the case of the abstract
interpretation of Prolog programs.

In this section, we first explain the way we transform Prolog pro
grams to make them more convenient to handle. We then introduce a ty
pology for Prolog terms and the abstract operations needed for abstract in
terpretation. Finally, we discuss different types of abstract interpretation al
gorithms and consider the different benefits they bring.

2.2.2. NORMALIZED PROGRAMS

As we do not want to miss any operations, for example unification in
the head, we have to normalize the input Prolog program before any other

42

processing. As we will see, a normalized program is also more convenient
to handle.

Given a Prolog program, we normalize it with the help of an ordered
set of variables { X1 , . . . , Xn , . . . } . These variables are called pro gram
variables. A normalized pro gram is a set of clauses

where p (X1 , . . . , Xn) is called the head, and 11, . . . , lr the body. If a
clause con tains m variables, these variables are necessarily X1, . . . , Xm. The
literai in the body of the clause are of the form

q (Xu , . . . , Xim) where Xu , . . . , Xim are distinct variables;
Xu = Xi2 with Xi1 -::/:. Xi2;

Xu = f (Xi2 , . . . , Xin) where f is a fonction of arity n-1 and Xi2 ,
. . . , Xin are distinct variables.

For instance, the following text of append/ 3 is the normalized ver
sion of the pro gram defined above:

append (Xl , X2 , X3) :
Xl = [] ,
X2 = X3 .

append (Xl , X2 , X3) : -
Xl = [X4 I X5] ,
X3 = [X4 1 X6] ,
append (X5 , X2 , X6) .

The translation process from a raw Prolog program into its normal
ized version is automatic. The advantage of normalized programs is that an
abstract substitution for a procedure p/n is always expressed in terms of
variables X1, . . . , Xn , This greatly simplifies all the traditional problems en
countered with renaming.

2.2.3. I NSTANCIATION DEGREE OF A TERM ~ MODES

In abstract interpretation, we are often interested in the instanciation
level of a term. A term can be a constant, a variable or made of term(s)
structured by the mean of a fonction. We now explore the groundness of
the term.

If a term contains only constants, it is called ground. On the other
hand, if a term is only made of variables, its mode is called var. Between
these two extremes, we can define several variations:

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 43

nor ground nor var: partially instanciated,

ground or var: not partially instanciated,

not ground,

not var,

any: any term.

2.2.4. ABSTRACT OPERATIONS ON THE DOMAINS

ln this section, we explain the abstract operations that are needed by

the abstract interpretation algorithms to handle the substitutions and thus

perform their job properly. We have two types of abstract operations: some

operations are abstract versions of concrete operations which are performed

by a Prolog compiler to extract the semantic of a Prolog program, whereas

the others are peculiar to the abstract interpretation algorithms.

We define the following operations on the abstract domains:

UNION (131, 132) : where 131 and P2 are abstract substitutions on the same

domain; this operation returns an abstract substitution representing all

the substitutions satisfying at least P1 or P2. It is used to compute the

output of a procedure given the outputs for its clauses. More formally it

is the least upper bound of the cpo' s elements P1 and P2.

AI_ VAR (p) : where p is an abstract substitution on { X1, X2} ; this opera

tion returns the abstract substitution obtained from p by unifying vari

ables X1 and X2.

AI FUNC (13, f) : where p is an abstract substitution on { X1, . .. , Xn}
and f is a predicate symbol of arity n-1 ; this operation returns the ab

stract substitution obtained from p by unifying X1 and f (X2, . . . , Xn).

EXTC (c , p) : where p is an abstract substitution on { X1, . . . , Xn} and

c is a clause containing variables { X1, . . . , Xm} (m 2:: n) ; this opera

tion returns the abstract substitution obtained by extending P to accom

modate the new free variables of the clause. It is used at the entry of a

clause to include the variables in the body not present in the head.

RESTRC (c , p) : where p is an abstract substitution on the clause vari

ables { X1, .. • , Xm} and { X1, . .. , Xn} are the head variables of

clause c (m 2:: n); this operation returns the abstract substitution ob

tained by projecting P on variables { X1, . . . , Xn} . lt is used at the

exit of a clause to restrict the substitution to the head variables only.

RESTRG (1 , P) : where p is an abstract substitution on { X1, . .. , Xn} ,
and l is a literai p (Xi1, . .. , Xim) or Xi1 = Xi2 or Xi1 = f (Xi2,
. . . , Xim); this operation returns the abstract substitution obtained by:

44

1. projecting P on (Xi1 , . . . , Xim) obtaining P ' ;
2. expressing p ' in terms of { X1 , . . . , Xm } by mapping Xh to xk,

It is used before the execution of a literai in the goal of a clause. The
resulting abstract substitution is expressed in terms of { X1 , . . . , Xm } ,
as an input abstract substitution for p /n .
EXTG (1 , P , p ') : where p is an abstract substitution on D = { X1 ,
Xn } , the variables of the clause where 1 appears, 1 is a literai

p (Xii , . . . , Xim)
or Xii Xi2

f (Xi2 , . . . , Xim) with (Xi1 , . . . , Xim) ç D

. . . ,

and p ' is an abstract substitution on (X1 , . . . , Xm) representing the
result of p (X1 , . . . , Xm) P" where P" = RESTRG (1 , P) ; this opera
tion returns the abstract substitution obtained by instantiating
(abstractly) p to take into account the result p ' of the literai 1 . It is
used after the execution of a literai to propagate the results of the literai
to ail variables of the clause.

2.2.5. ABSTRACT INTERPRETATION ALGORITHMS

In this section, we discuss the engine of a Prolog abstract interpreta
tion algorithm: the computation of the least fixpoint. We explain how we
keep track of the interesting results of the computation (i.e., the set of ab
stract tuples). Another important part of the conception of an abstract in
terpretation algorithm is to avoid redundant computations; this point is thus
tackled too. After these discussions, the generic algorithms are exposed. A
big part of this section is based on [LEV A94].

2.2.5.1 . ABSTRACT SEMANTICS

The abstract semantics are defined in terms of abstract tuples. An
abstract tuple is of the form: (P1n , p, Pout) where p is a predicate of arity n
and P1n and Pout are abstract substitutions on variables X1 , . . . , Xn,

UD is the underlying domain of the program, i.e. , the set of pairs
(P1n , p) where p is a predicate symbol of arity n and P1n is an abstract sub
stitution on variables X1 , . . . , Xn,

Let us denote sat, a set of abstract tuples. There exists at most one
Pout for each pair (Pin , p) such that (P1n , p, Pout l and we indicate that sub

stitution by sat(P1n , p). A set of abstract tuples is endowed with a structure
of cpo by defining:

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 45

.L = { (P , P , .Lo }
(ASo , S } } ;

(p , p } e uo and is the smallest element in

- sat S sat' a V (P , P } E UD: sat (P , P } S sat' (P , P } ,

where ASo is the set of abstract substitutions on the set of variables o
{ X1 , . . . , Xn} .

The abstract semantics is defined as the least fixpoint of the trans
formation TSAT, depicted below (Fig. 2-2). Informally speaking, the fonc
tion Tp (P , P , sat} executes all clauses defining p on substitution P and
takes the union of the results. The fonction Tc executes one clause by ex
tending the substitution, executing the body, and restricting the substitution.
The fonction Tb executes the body of a procedure by considering each literal
in turn. When the literal is a procedure call, a lookup in the sat is per
formed; otherwise the operations AI_ VAR or AI _FUNC are executed. Op
eration RESTRG is used before calling any literal and operation EXTG is per
formed after each call.

TSAT (sat} = { (P , P , P2): (P , P } E UD and P2

Tp (p , p , sat} = UNION (P1 , , , . , Pn }
where Pi = Tc (P , Ci , sat} ,

c1 , . . . , en are the clauses of p .

Tc (P , c , sat} = RESTRC (c , P2 }
where P2 = Tb (EXTC (c , P } , b , sat} ,

b is the body of c .

Tb (P , <> , sat} = p .
Tb (p , 1 . g , sat} = Tb (P3 , g , sat }
where P3 = EXTG (l, P , P2 }

P2 = sat (P1 , p } if l is p (. . . }
AI_ VAR (P1 }
AI _FUNC (P1 }

P1 = RESTRG (l, p } .

if
if

l is
l is

Xi Xj
Xi = f (. . . }

Fig. 2-2 : The abstract semantics.

2.2.5.2. MANIPULATION OF THE SET OF ABSTRACT TUPLES

Mainly two operation need to be defined on the set of abstract tu
ples: the extend and adjust operations. Informally speaking, the EXTEND

46

operation is intended to extend a set of tuples with a new element while the

AD JUST is intended to update the result of a pair (p , p) .

The two operations can be specified as follows, assuming that the

domain of a set of abstract tuples sat, denoted dom (sat) , is the set of

pairs (P , P) for which there exists a P ' such that (P , P , P ') E sat.

EXTEND (P , p, sat) , given an abstract substitution p, a predicate symbol

p, and a set of abstract tuples sat which does not contain (P , p) in its

do main, returns a set of abstract tuples sa t ' containing (p , p) in its

do main. According to the implementation, the value sa t ' (p , p) can be

defined as the least upper bound of all sa t (p ' , p) such that p ' ::; p or

it can be defined as . .L

AD JU s T (p , p, p ' , sa t) , where p ' represents a new result computed for

the pair (p , p) , returns a sa t ' which is sa t updated with this new re

sult. Here, the ADJUST implementation depends upon the sat imple

mentation12. The minimal goal of this operation is to adjust the result of

(P , P) with P ' the following way: the value of sat ' (P , P) is equal to

lub (P ' , sat (P , P)) .

2.2.5.3. OVERVIEW OF THE ABSTRACT INTERPRETATION ALGORITHM

A brute-force approach to the generic abstract interpretation algo

rithm would be to compute the least fixpoint of TSAT entirely. We can eas

ily understand that such an approach would involve much unnecessary work.

The purpose of the abstract interpretation algorithm is to converge

toward a set of abstract tuples that includes (Pin , p, Pout) E least fixpoint of

TSAT but as few other elements as possible. The algorithm computes a se

ries of lower approximations sat o , . . . , sat n such that sat i < sat i+1

and sat n contains (Pin , p, Pout) . The algorithm then moves from one set to

another by selecting

an element (a , q) which is not present but needs to be computed, or

an element (a , q) whose value sati (a , q) can be improved because the

values of some elements it depends upon have been updated.

There are still many decisions to take into account, including the de

tection of termination and the choice of the elements to work on.

lnformally, the algorithm works as follows. Given an initial pair

(Pin , p), it executes the fonction T
p of the abstract semantics. At some

12 For more information about these implementation see section 11 .6. 1 .

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 47

point, the computation may need the value of (ain , q) which may not be
defined or is just approxirnated at that stage of the computation. In this
situation, the algorithm starts a new subcomputation to obtain the value of
(ain , q) or a lower approximation of it. This computation is carried out in
the same way as the primary computation except in the case where a value
for (Pin , p) is needed. In that case, instead of starting a new computation
(that may generate an infinite loop), the algorithm simply looks up the cur
rent value of (Pin , p). The execution of the initial pair (Pin , p) is only re
sumed once the computation of (ain , q) is completed. Note that if the
computation of (ain , q) has required the value of (Pin , p) then its resulting
substitution may only be approximated and hence (ain , q) has to be recon
sidered if the value of < Pin , p) is updated. In the algorithm, a dependency
graph is used to detect when an element needs to be reconsidered.

2.2.5.4. PROCEDURE CALL DEPENDENCIES

The goal of the data structure described below is to avoid redundant
computations during the abstract interpretation.

Redundant computations may occur in a variety of situations. For
instance, the value of a pair (a, q) may have reached its definitive value
(the value of (a, q) E least fixpoint of TSAT) and hence subsequent con
siderations of (a, q) should only look up its value instead of starting a new
subcomputation. Mutually recursive programs are another important case.
For those programs, we would like the algorithm to reconsider a pair (a, q)

only when some elements which i t is depending upon have been updated. In
other words, keeping track of the procedure call dependencies may substan
tially improve the efficiency of some classes of programs.

A. The dependency graph

The basic intuition of the dependency graph is that dp (p , p) repre
sents at some point the set of pairs upon which (p , p) directly depends.

A dependency graph dp is a set of tuples of the form < (p , p) , l t >,
where lt is a set { (a1 , q1) , . . . , (an , qn) } (n ;;:: 0), such that, for each
< P , p), there exists at most one l t such that < (P , p) , l t> E dp.

We denote by dp (P , p) the set lt such that < < P , p), lt> E dp if it
exists. We also denote by dom (dp) the set of all (p , p) such that
< (P , p), lt> E dp and by codom (dp) the set of all (a, q) such that there
exists a tuple < < P , p), lt> E dp satisfying (a, q) E lt.

48

B. Transitive closure of the dependencies

The trans dp (P, p, dp) represents all the pairs which, if updated,
would require reconsidering (p , p) . (p , p) will not be reconsidered unless
one of these pairs is updated.

Let dp be a dependency graph and assume that (p, p) E dom (dp) .
The t r ans_ dp (p, p, dp) is the smallest subset of codom (dp) closed by
the following two rules:

if (a, q) E dp (p, p) then (a, q) E trans dp (p, p, dp);

if (a, q) E dp (P, P), (a, q) E dom (dp), and (a ' , q ') E

trans_dp (a, q, dp) then (a ' , q ') E trans_dp (P, p, dp).

C. Operations

Let us specify the three following operations:
REMOVE_DP ({ (<X1 , qi), ... , (<Xn , qn) } , dp) removes from the depend
ency graph dp all elements < (a, q) , l t > for which there is a (<X1 , qi) E

trans_dp (a, q, dp} .

EXT _DP (P, p, dp) inserts an element < (P, p) , 0> in dp.

ADD _DP (P, p, a, q, dp) simply updates dp to include the dependency of
(P, P) with regard to (a, q). After its execution (a, q) E dp (p, p).

The main intuition here is that the algorithm makes sure that the ele
ments (p , p) that need to be reconsidered are such that (p , p) �
dom (dp) . Conversely, elements of dom (dp) do not (as yet) require recon
sideration.

2.2.5.5. TOP·DOWN ALGORITHM

We are now in a position to present the generic abstract interpreta
tion algorithm. The algorithm is composed of three procedures and is
shown in Fig. 2-3.

The top-level procedure sol ve which, given an input substitution Pin
and a predicate symbol p, returns the final dependency graph and the set of
abstract tuples sat containing (P1n, p, Pout l E least fixpoint of TSAT.

Procedure sol ve _ call receives as inputs an abstract substitution
Pin, its associated predicate symbol p, a set suspended of pairs (P, q), sat,
and a dependency graph dp. The set suspended contains all pairs (P, q)
for which a subcomputation has been initiated and not completed yet. The
procedure considers or reconsiders the pair (Pin, p } and updates sat and

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 49

dp accordingly. The core of the procedure is only executed when (Pin , p }
is not suspended and not in the domain of the dependency graph. In effect,
if (Pin , p) is suspended, no subcomputation should be initiated and if
(Pin , p) is in the domain of the dependency graph, it means that none of the
elements upon which it is depending have been updated. Otherwise a new
computation with (Pin , p) is initiated. The core of the procedure is a repeat
loop which computes the lower approximation of (Pin , p) given the ele
ments of the suspended set. Local convergence is attained when (Pin , p) is
in the domain of the dependency graph. One iteration of the loop computes
each of the clauses defining p and computes the union of the results. If the
result produced is greater or not comparable to the current value of
(Pin , p) , then the set of abstract tuples is updated. The dependency graph
is also adjusted accordingly by removing ail elements which depend (directly
or indirectly) on (Pin , p) . Note that the calls to the clauses are done with
an extended suspended set since a subcomputation has been started with
(Pin , p) . Note also that, be fore executing the clauses, the dependency
graph has been updated to include (P1n , p) (which is guaranteed not to be in
the domain of the dependency graph before that update). (Pin , p) can be
removed from the domain of the dependency graph during the execution of
the loop if a pair which it is depending upon is updated.

Procedure solve_clause executes a single clause for an input pair
and returns an abstract substitution representing the execution of the clause
on that pair. It begins by extending the substitution with the variables of the
clause, then executes the body of the clause, and terminates by restricting
the substitution to the variables of the head. If a literal is concerned with
unification, the operations AI_ VAR and AI_FUNC are used. Otherwise, pro
cedure solve_call is called and the result is looked up in sat . Moreover,
if (Pin , p) is in the domain of the dependency graph, it is necessary to add a
new dependency. Otherwise, (Pin , p) needs to be reconsidered anyway.

50

procedure solve (in P1n , p ; out sat, dp)
begin

sat:= 0 ;
dp:= 0 ;

solve _ call (Pin , p , 0 , sat , dp)
end .

procedure solve_call (in Pin , p , suspended; inout sat, dp)
begin

P1n:= WIDEN (Pin , P , suspended } ;
if (Pin , P) � (dom (dp) U suspended) then
begin

if (P1n , P } � dom (sat) then
sat:= EXTEND (Pin, p , sat);

repeat
Pout:= J.;
EXT DP (Pin , P , dp);
for i:= 1 to m with c1 , . . . , cm clauses-of p do
begin

sol ve _ clause (Pin , p , Ci , suspended u { (Pin , p) } ,
Paux , sat, dp);

Pout:= UNION (Pout , Paux) ;
end ;
(sat , modified) : = ADJUST (Pin , P , Pout , sat } ;
REMOVE_DP (modified , dp) ;

until (Pin , P) E dom (dp)
end

end .

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 51

procedure solve_clause (in 13in, p, c, suspended ; out Pout ;
inout sat, dp)

begin
13ext:= EXTC (c, l3in) ;
for i:= 1 to m with b1, . . . , bm body-of c do
begin

13aux: = RESTRG (bi, 13exd ;
switch (b1) of

case Xj = xk :

l31nt:= AI VAR (l3aux) ;
case Xj = f (. . .) :

l31nt: = AI _FUNC (13aux, f) ;
case q (. . .) :

solve_call (13aux, q, suspended, sat, dp) ;
l31nt: = sat (13aux, q) ;
if (l31n, P) E dom (dp) then

ADD_DP (13in, p, 13aux, q, dp) ;
end ;
13ext: = EXTG (bi, 13ext, 13int }

end ;
Pout:= RESTRC (C, 13ext }

end .

Fig. 2 -3 : The generic abstract interpretation top down algorithm.

As explained earlier, an abstract interpretation algorithm may not
terminate if the computation is made over an infinite domain. The use of a
widening is useful to limit the number of abstract inputs to be considered.

The intuition behind this is that an element cannot be refined infi
nitely often. Each time a call (131n, p) is encountered, the last element of
the form (13 ' 1 n, p) inserted in the suspended set (which now has to be con
sidered a stack) is searched. If such an element exists, the computation
continues with (13 ' in u 131n, p) instead of (131n, p) ; otherwise, the compu
tation proceeds normally.

This operation is executed at the beginning of the procedure
solve call.

2.2.5.6. BOTTOM-UP ALGORITHM

The bottom-up algorithm uses the same underlying operations such
as the manipulation of the dependency graph, the abstract operations, etc.

52

One major difference is that the bottom-up algorithm is divided in
two phases. The first one computes the outputs whereas the second one
catches the inputs.

In the first phase, when it solves a call to a predicate, it forgets its
actual input substitution and replaces it with a substitution where each term
is bound to any. This is thus a bottom-up approach of the problem. This
implies that the RESTRG operation is skipped.

The second phase complete the set of abstract tuples with the input
substitutions for every predicate encountered during the computation. This
second phase is very useful because we are in fact more interested by the in
puts than the outputs.

The fondamental principles are explained on the following example.
Suppose the Prolog program:

p (X1, X2 , X3 , X4 } : - . • . , q (X2 , X4 } , . . .

q (X1, X2 } : - X1 = X2 .

The abstract domain used here is able to represent the groundness of
a term and binding of terms13

. We suppose that the abstract substitution
while computing p/ 4 associates X2 to ground and X4 to any. The abstract
substitution resulting from the computation of q/ 2 tells us that X2 and X4 are
both associated to any (because of forgetting the input) and are bound to
gether. Now, thanks to the EXTG operation performed after the returning
from the call to q/ 2 , we know that X4 is ground (in effect, as X2 is ground
and X2 and X4 are bound, we can deduce that X4 is ground) .

Notice that in general, the bottom-up algorithm can lose some accu
racy with regard to the top-down algorithm. On the other hand, as the
number of iterations is often smaller, the bottom-up algorithm is faster.

2.2.5. 7. SEQUENCE BASED TOP·DOWN ALGORITHM

When using a sequence of substitutions as an abstract domain for the
output, the algorithm gets a little different. The problem is to have accurate
sequence of substitutions; that is to say, we do not want to make a simple
least upper bound after the interpretation of clause. Instead, we prefer to
use the CONC operation which performs the concatenation of substitutions.
This operation is quite complex but the main idea is to refine the exclusion

13 This is in fact the PROP abstract domain explained later.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 53

between clauses of a predicate. These exclusions may be due to an executed
eut, arithmetic predicates, incompatibility between the input substitutions of
the clauses, etc. ln fact, it depends on what the abstract domain is able to
catch.

For example, let us consider a predicate made of two clauses. If the
abstract interpretation of the first clause binds a variable x to a predicate
f (. . .) while g (. . .) is bound to the second and we know that this predi
cate will be called with X/ ground; we can deduce that these two clauses
are exclusives because if one of them leads to a result, the other will surely
fail.

Here are some more examples. In the following piece of program,
the first and the second clause of predicate p are obviously exclusives.
There is thus no way to compute the result as the least upper bound; it is
cleverer to take this fact into account.

p (X, Y) : - X > Y,
p (X, Y) : - X < Y,

In the next example, we notice that, as the eut of the first clause is
surely executed, the abstract result of the next clause does not even have to
be considered.

p : - ! ,

p : -

2.3. RESULTS OF AN ABSTRACT INTERPRETATION

2.3. 1 . I NTRODUCTION

The algorithms terminate when all the predicates are stables; i.e., no
more result can be refined. It is now time to examine these results. They
are stored in the set of abstract tuples. The problem is that this set may
contains raw materials that are in fact useful for the fixpoint computation
but not relevant for the abstract interpretation itself. In effect, our major
concern is to know all possible inputs for a given predicate; but sometimes
intermediate computations are developed. Let us have a look at the fol
lowing example:

54

p ([H I T], X) : - p (T, Y), q (Y) .
p ([], []) .
q ([])

If we start the abstract interpretation of p (ground , any) on the Prop do

main, we notice14 that q (ground} is computed although it is obviously not

called because the result of the predicate p (ground, any), called before q
in the first clause of p, is (ground , any) . It is bec a use this last result is the

"stable" result, but before we obtained this result, we had a non-stable result

for p, telling us the Y might be ground.

That is why, to separate the good from the bad, so to speak, we in

troduce the notion of foundation (computed by the mean of a post

processing algorithm) .

2.3.2. POST-PROCESSI NG ALGORITHMS ~ TH E FOUNDATION

Many abstract interpretation applications need more information than

input/output pairs. Additional information can be computed easily by a

post-processing step once the fixpoint has been reached. This approach is

attractive for various reasons. On the one hand, it allows the abstract se

mantics and the fixpoint algorithm to be kept as simple as possible15
. On the

other band, the additional information can be computed easily given the re

sults of the fixpoint algorithm. Most of these post-processing steps are

based on variations of the algorithm depicted in Fig. 2-3.

procedure collect (in Pin , p , sat)
begin

collect_call (Pin , p , 0 , sat)
end .

14 In the set of abstract tuples.
15 In particular, the fixpoint algorithm will be computed more efficiently.

Jmproving the genericity of an abstract interpretation algorithm through Object Oriented design 55

procedure collect call (in P1n , p , suspended , sat) - -
begin

Pin:= WIDEN (Pin , p , suspended) ;
if (Pin , p) rt. suspended then
begin

for i:= 1 to m with c1 , . . . , cm clauses-of p do
collect_clause (P1n , P , Ci , suspended U { (P1n , P) } , sat)

end
end.

procedure collect clause (in Pin , p , c , suspended, sat)
begin

Pext: = EXTC (C, P1n) i
· for i: = 1 to m with b1 , . . . , bm body-of c do

begin
Paux:= RESTRG (b1 , Pext) i
switch (bi) of

case Xj = Xk :

Pint: = AI_ VAR (Paux) i
case X j = f (. ..) :

Pint: = AI FUNC (Paux , f) i
case q (.. .) :

collect_call (Pam , q , suspended, sat) ;
end ;
Pext := EXTG (bi , Pext , P int)

end
end.

Fig. 2-4 : The basic schema for post-processing algorithms.

The post-processing algorithm is closely related to the generic algo-
rithm. The main differences are:

all the instructions manipulating the dependency graph are removed;
the repeat loop of procedure sole call has been removed and re
placed by a single execution of the body of the loop;
the RESTRC operation is removed because collect_clause does not
need to return a result;
the set of abstract tuples is not updated.

We used a post-processing algorithm to compute the foundation.

The foundation is the set of tuples (Pin , p , Pout l required to answer the
query which triggered the computation.

56

The Fig. 2-5 shows the modified collect call procedure for

foundation algorithm.

procedure collect_call (in Pin, p, suspended, sat, foundation)
begin

Pin:= WIDEN (Pin, p, suspended) ;
if (Pin, p) � foundation then
begin

foundation: = foundation U { (Pin, p)} ;
for i:= 1 to m with c1, . . . , cm clauses-of p do

collect_clause (Pin, P, Ci, suspended u
{ (Pin, P)} , sat, foundation)

end
end.

Fig. 2 -5: The collect call procedure for foundation computation.

Additionally, the set foundation is initialized with the empty set in
collect procedure and then passed to collect _ call and finally to
collect _ clause. The set suspended is replaced by the set
foundation in the membership test of (Pin, P). In effect, if the pair
(Pin, p) is already in the foundation, there is no need to further compute
this call.

In fact, speaking about implementation, we do not need a set to store
the tuples. We just add a Boolean for each tuple which is true iff the tuple

is in the foundation.

2.4. SOME GOALS OF PROLOG ABSTRACT

INTERPRETATION

Abstract interpretation is not only a theoretical application; it is use

ful to optirnize Prolog programs during the compilation. In effect, the

knowledge of some data properties at some program points perrnits, for ex

ample:

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 57

replacing the general unification algorithm (less efficient) with a spe
cialization which takes into account the specificity of the actual situa
tion;
a better use of the memory;
etc.

Here are a few examples of possibilities created by the abstract inter
pretation of Prolog.

2.4.1 . SPECIALIZATION OF THE UNIFICATION ALGORITH M

When the Prolog compiler encounters an instruction like:

where Xi, X2, . . . , Xn are bound respectively to the terms t1, t2, . . . , tn, it
builds a term f (t2, .. . , tn) and then applies the general unification al
gorithm to t1 and f (t2, . .. , tn), because in general t1, t2, . . . , tn may be
any terms. But in practice, these terms are not any and that is why it is pos
sible to generate a more efficient code.

2.4. 1 . 1 . MODE ANAL VSIS

If the abstract interpretation reveals the following mode associations
for the terms of the previous example: Xi/var and X2/ ground, . . . ,
Xn/ ground, the compiler can replace the general unification algorithm by
the following code:

begin
new (X1, f/n) ;
X1 Î [1] : = X2 ;

X1Î [n-l] := Xn ;
end.

{memory allocation for a predicate f/n}
{ as signment in X1 ' s 1 st cell of X2}

This code boils down to a simple sequence of assignments and skips several
consistency tests like occur checks. The final situation is depicted in Fig. 2-
6 which schematizes the memory.

58

1
...

f/n

1 • 1 > t2 �
. .
. .
. .

1 • 1 > tn �

Fig. 2 -6: State of the memory after the unification.

Another abstract interpretation could reveal that the following modes
are associated: X1/ground and X2/var, . . . , Xn/var. In that case, the com
piler could generate the code:

begin
if struct (X1 , f/n)

then begin

{tests the consistency of the
predicate}

X2 : = X1 Î [1] ;

end
end

Again, we profit from the same advantages as the one we won in the previ
ous example and the memory situation is the same.

But we forgot to take into account the sharing. That is to say if two
variables Xi and Xj (i :f:. j ; i, j � 2) are unified, this unification algorithm
leads to an incorrect situation. That is why the sharing analysis is also an
important part of Prolog abstract interpretation.

2.4. 1 .2 . SHARING ANAL YSIS

As we saw previously, the sharing analysis is an important matter
when trying to replace the general unification algorithm by a more efficient
one.

We define the relation noshare as:

noshare (Xi, Xj) <=> vars (ti) n vars (t j) = 0 ,

where ti and tj are respectively the terms bound to xi and Xj and
vars (td is the set of all the variables present in the structure of the term
ti,

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 59

Thus, if we add the following condition (i.e . , raised by the abstract

interpretation) : no share (X1 , X2) /\ . . . /\ no share (X1 , Xn) then the last

specialized unification algorithm is correct.

2 .4 .1 .3. PATTERN ANALYSIS

If we define the relation form as:

form (X) = f / n {:::} t i s formed l ike f (u 1 , . . . , U n) ,

where t is the term bound to x, and ui are terms, and if the abstract inter

pretation of the previous example reports also that form (X1) = f / n; then

we can skip the structure test in the specialized algorithm.

2.4.2. CARDINALITY ANAL YSIS

It is sometimes useful to know if a predicate is (strictly) determinist

or not .

In the Table 2-2, there are some example of cardinality analysis for

the well-known append (X1 , X2 , X3) procedure:

X1

list

ground

var

X2 X3

list var

ground var

var list

cardinality

1

O or 1

at least 1

condition

noshare (X1 , X3) Ano share (X 2 , X3)

no share (X1 , X2 , X3)
1 6

Table 2-2 : Cardinality analysis for append (Xl , x2, X3) .

2.4.3. STATIC REUSE OF THE MEMORY

Memory allocation is a long process for an operating system; that is

why it can be useful to detect if some parts of it are never referenced after a

certain program point so that it is possible to recycle them.

16 noshare (X1 , X2 , X3) � noshare (X1 , X2) A noshare (X2 , X3) /\

nos hare (X1 , X3)

60

For example, if the abstract interpretation of append (X1 , X2, X3) re
veals that :

the following modes are associated: Xi / l i st, X2/ l i s t and X3/var;

noshare (X1, X2, X3) ;
- X1 is never used afterwards ,

then X3 can point to the same memory zone a s X1 as showed in Fig. 2 -7 .

Fig. 2-7: Memory recycling for append(Xl ,X2,X3).

2.5. REFERENCES

[CHJ095] CHABOT F. and JOUCKEN P., Abstract Interpretatiion of full

p rolog, 1995.

[LCMR] LE CHARLIER B . , CORSINI M. , MUSUMBU K. and RAUZY A. ,
Efficient Bottom-up Abstract lnterpretation of Prolog by means of

Constraint Solving over Symbolic Finite Domains.

[LECH91] LE CHARLIER B. , L'analyse statique des programmes par inter

prétation abstraite, Nouvelles de la Science et des Technologies vol.

9, number 4, 1991.

[LEVA94] LE CHARLIER B. and VAN HENTENRYCK P. , Experimental

Evaluation of a Generic Abstract Interpretation Algorithm for

Prolog, ACM Transactions on Programming Languages and Systems

(TOPLAS), 1994.

[LECH??] LE CHARLIER B . , Abstract Interpretation and Finite Domain Sym

bolic C onstraints.

[LVBM94] LE CHARLIER B., BRAEM C. , MODART S. and VAN

HENTENRYCK P. , Cardinality Analysis of Prolog, 1994.

[LVM91] LE CHARLIER B. , MUSUMBU K. and VAN HENTENRYCK P., A

Generic Abstract lnterpretation Algorithm and its Complexity Analy

sis, 1991.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 61

3. OBJECT ORIENTED PROGRAMMING AND C++

The purpose of this chapter i s to allow a non-Object Oriented pro

grammer or a non-C++ programmer to read this whole report. It delivers

the main Object Oriented concepts such as encapsulation, inheritance, poly

morphism and dynamic bindings. The last part of this chapter is a brief in

troduction to the C++ language.

Contents of this chapter:

3 .1. INTRODUCTION 62

3. 2. NOTIONS OF OBJECT ORIENTED PROGRAMMING 62

3 .2.1. CLASS AND OBJECT 62

3.2.2. ENCAPSULATION, INHERITANCE AND SPECIALIZATION. 62

3 .2.3 . POL YMORPHISM 65

3.2.4. GENERICITY 65

3.2.4.1. Generic procedure (dynamic bindings) 65

3.2.4.2. Generic type 67

3 . 3. THE C++ LANGUAGE 68

3.3.1. C++, A WELL-KNOWN OBJECT ORIENTED LANGUAGE 68

3 . 3 .2. C++, A COMPLEX LANGUAGE 68

3.3 .2.1. Introduction 68

3.3 .2.2. An example of C++ limits 69

A. Pointer casting 69

a. Review 69

b. Upcasting and downcasting with language C++ 70

B. Multiple inheritance and the C++ virtual base class 70

C. The incompatibility of C++ pointer casting and multiple inheritance 71

3 . 4. REFERENCES 7 2

62

3 .1 . INTRODUCTION

The goal of our work was to integrate several applications. These
applications all did the same thing (i.e., a Prolog abstract interpretation), but
they were using different abstract interpretation options: that is to say dif
ferent algorithms, different domains, different ways of storing data, etc.
Our plan was to build one application that could compute a Prolog abstract
interpretation with any combination of the existing options, according to the
user choice.

To achieve this, a well-suited technology is the Object Oriented pro
gramming. It is an excellent way to represent algorithms and domains as
objects because it provides some notable benefits. Encapsulation, inheri
tance and specialization improve the code cleanness, comprehensibility and
reusability. Dynamic bindings allow one to write, for example, generic algo
rithms that do not need to be changed when we add new domains to the ap
plication.

We now review the general notions of Object Oriented programming
in order to use these notions freely in this report.

3 .2 . NOTIONS OF OBJECT ORIENTED PROGRAMMING

3.2.1 . CLASS AND OBJECT

We can define an object as a variable (i.e. , a region of storage with
associated semantics); it is something material (as opposed to a value)
which can be created, transformed and destroyed.

As with all variables in typed programming languages, the object
proceeds from a type. To be as clear as possible and to distinguish the ob
ject and its type, we call a class the object type. An object is an example of
a class.

3.2.2. E NCAPSULATION, INHERITANCE AND SPECIALIZATION.

The basic feature of Object Oriented programming is the encapsula
tion . That is to say that all the data needed by an object can be bundled in
side. An object can also have its proper procedures, one calls them meth
ods. This has essentially a methodological effect; the encapsulation permits
a more readable program because it separates the interface from the imple
mentation (as shown on Fig. 3- 1). This way, the user is able to use the ob-

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 63

ject in a relatively safe and predictable rnanner without being ternpted to

peek at the object's irnplernentation. The properties of an object are far

more valuable and reusable than the code used to irnplernent thern.

non-Object Oriented Object Oriented

Interface of
procedure 1 Interface of

m ethod 1
lmplementation of

procedure 1 Interface of
method N

Interface of
procedure N lmplementation of

method 1
lmplementation of

procedure N lmplementation of
method N

Fig. 3-1 : Encapsulation.

It is possible to link two objects with an inheritance relationship.

The inheritance relationship lets the programmer rnodel the "kind of' rela

tionship between a son and a father object. This notion can be extended to

multiple inheritance: a son can have several fathers. Note that it does not

leave out the fact that a father can have several sons. A son object owns the

data and rnethods defined in its father and inherited by its fathers. Inheri

tance allows the factorization of the code.

An inherited rnethod can be rewritten in the purpose to adapt it to

the new object; this is the notion of specialization. Notice that this rnethod

always keeps its original signature.

64

Example:
Let Shape be a class which encapsulates one data and one method:

class Shape {
Data:

} 1

center: point
Methods:

Move

where point is a type for representing spatial position. Let Circle inherit

from Shape. Because of that inheritance, the class Circle owns implicitly

the data (center) and methods (Move) which are present in the class

Shape. Circle is the following class :

class Circle inherits from Shape {
Data:

} .

radius : integer
Methods:

D raw

Let P olygon inherit from S hape and be the following abject (which con

tains implicitly the data and methods of Circle) :

class P olygon inherits from Shape
Data:

} .

number of side: integer
Met hods:

none

Let Triangle inherit from P olygon. The abject Triangle inherits from

the data of P olygon. The method Move is specialized.

class Triangle inherits from Polygon {
Dat a :

} .

pl, p2 , p3: point
Met hods:

Move
D raw

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 65

Our example's inheritance graph is now as Fig. 3-2:

Circle Polygon

Triang le

Fig. 3-2 : Inheritance graph.

3.2.3. POL YMORPHISM

The inheritance and specialization notions together allow polymor
phism. A polymorphie method is a method which can be applied to several
classes. Notice that a polymorphie method is defined by several distinct
methods which have the same names but belong to different classes. In ef
fect, if an object inherits from another and if one of its methods is special
ized, this method can be called on both objects (but the method's code is
different with regard to the object's type).

For instance, in the previous example, we can apply the method
Move on an instance of class Shape, Circle, P o lygon or T r i angle. The
methods defined in the class Shape will be called if we have a Shape,

Circle or Po lygon object type. The methods defined in the class
Triangle will be called if we have an object Triangle type. The method
Move is polymorphie.

3 .2.4. GENERICITY

3 .2.4. 1 . GENERIC PROCEDURE (DYNAMIC BINDINGS)

A generic procedure is a procedure which can be applied to several
types. It is different from a polymorhpic procedure because only one code
exists and can be executed with different types. For instance in the previous
example, a generic procedure could be a procedure that moves and prints
any figure. To achieve this, we need two new concepts: the dynamic bind

ings and the dynamic type.

66

U sually, the binding between the method call and the method code is

static; it is defined at compilation time. But we can postpone that binding to

run time; that kind of method is called dynamic (or virtual).

The dynamic type is a type that can be, at run time, a specialization

of the type at compilation time. A type is static if all its methods (including

the inherited methods) are static, otherwise this type is dynamic.

For instance, if we want this procedure17

procedure D rag& Drop (fig : reference to a Shape)

fig->Move
fig->Draw

to be generic, the class Shape must be a dynamic type (to allow fig to be

a reference to a specialization of Shape) and the methods Move and Draw
must be dynamic (to call the right one with regard to the object ' s type).

Practically, we just need to declare the Move and Draw methods of

the class Shape as dynamic in the class Shape; thanks to this declaration,

the class Shape is dynamic. Note that the Draw method did not exist in the

first version of the class Shape. We have to declare it as virtual in the

class Shape to avoid a compilation error at the second line of the proce

dure Drag& D rop. The problem is that we have no implementation of this

method at the Shape level. The solution is to declare the Draw method as a

pure virtual method which is a virtual method without implementation. The

class Shape is now as follows:

class Shape {
Data :

} .

center : point
virtual Methods :

Move
pure virtual Methods :

Draw

We call a class that has at least one pure virtual method a pure vir
tual class, (example : the classes Shape and Polygon) . As opposed to

17 Where o->M represents the application of a method M on an object o.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 67

this, we call any classes that are not pure virtual classes concrete classes

(example: the classes Circle and Triangle) .

We can say that a pure virtual method specifies that a method exists
on every concrete derived class. It forces concrete derived classes to pro
vide a definition for this method.

Notice that the pure virtual classes cannot be instanciated (be an ob
ject), they are only abstractions and they can only be used to manipulate
concrete specializations. For instance, in the procedure Drag& Drop, fig is
now a reference to an object which cannot be instanced (Shape is pure vir
tual class). That is why, during the execution, fig can only be a specializa
tion of Shape.

An advantage of a generic procedure is that it can call a future code.
In effect, old polymorphie methods can dynamically bind to new codes. A
new derived class can be used by an existing generic procedure without
modifying this procedure. For instance, in the previous example, we can
add a new derived class from the class P olygon: the class Square, sup
posing we implement the inherited pure virtual method Draw (if we do not
make this implementation, the class Square would be pure virtual!). With
out modifying anything to the procedure Drag&Drop, it works with a
square shape.

3 .2.4.2. G ENERIC TYPE

The definition of a generic type is one which contains one or more
undefined types. The goal is to allow the user to create an instance and to
choose a type for the undefined type. That notion is very interesting for
code reuse. Let us see the following generic class definition:

68

class List of t
data :

head : reference to a type t
tail : reference to a List of t abject

methods :
Insert (in data : t)
GetHead (out data : t)
GetTail (out next : reference to a List of t

abject)

The undefined type of this generic class is t . When we create an object

List we must provide t 's type. Thus, we have one code for the object

List and we can use it to manage lists which store whatever we need.

The use of generic type increases the code reuse and simplifies

maintenance because the algorithms are defined once, and then instanciated

several times for each type that is needed.

3.3. THE C++ LANGUAGE

3.3. 1 . C++, A WELL-KNOWN OBJECT ORIENTED LANGUAGE

Every fifteen seconds a non-C++ programmer switches to C++. In

October 199 1 , the number of C++ users was estimated at 400,000. At that

time, the C++ community was doubling every seven and a half months. To

be ultra-conservative, let us assume that the rate has slowed to doubling

every twelve months. Based on these assumptions, on May 2005 every

man, woman and child on planet Earth will be a C++ programmer (and the

following year we will discover life on Mars, no doubt) .

The C++ language supports every general characteristic provided by

an Object Oriented language. Encapsulation, inheritance (and multiple in

heritance) , specialization, polymorphism, generic fonctions and generic

types (which are called "template" in the C++ dialect).

3.3.2. C++, A COMPLEX LANGUAGE

3.3.2. 1 . INTRODUCTION

The conception of an application is always something difficult to

achieve. Even at a high conception level, identifying abjects and organizing

a correct inheritance graph often takes a lot of time. And it is still more

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 69

complicated when we must pay attention to the language we use. In effect,
a complex language often contains a lot of complications or restrictions be
cause at times, some programming concepts are incompatible.

In this section, we want to illustrate the difficulty of designing a
complex language like C++. As an example, we clarify in this section that
multiple inheritance is sometimes incompatible with pointer casting in C++.

3 .3 .2.2. AN EXAMPLE OF C++ LIMITS

One of the first C++ limitations we encounter is the prohibition of
some object pointer casting. This part can be skipped by the reader not in
terested in technical C++ information. On the other hand, we think it inter
esting to develop because it causes us some troubles to achieve our goals.

In fact, the C++ compiler does not allow us to cast an object that is
issued from a rhombus inheritance. That was our first C++ nightmare. We
finally found out the reasons for this incompatibility, which we briefly ex
plain here.

In order to make this example clear, we first review what is a pointer
casting; then explain the multiple inheritance and finally reveal that recon
ciling these two notions is difficult in a programming language like C++.

A. Pointer casting

a. Review

Casting a pointer means changing the type of the memory zone it ref
erences. Let us have a look at the Shape example depicted above:

Let us declare c a reference to an object Circle. It means that the memory
that begins at the address referenced by c is divided as follows (the first
field represents the data inherited from the class Shape -the shape 's center
and the second represents the data from the class Circle -the circle 's ra
dius-):

(field 1)
point

(fi el d 2)
integer

Now, if we cast (change the pointer's type) c to an object Shape, the
memory (pointed by c) is interpreted with the following mask:

70

r- - - - - - - - - - - - -7
1 (fi e l d 1) 1
1 1
�---- point ____ _!

As we can see, this memory interpretation (resulting from a casting) seems
to be correct because the mask maps the right data in memory (which is the
circle's center). In this example, the casting is done correctly. A bad cast
ing example could be the casting of the c pointer to a character, because the
memory would be interpreted with the following mask:

r - - - - - - - - - - - - - 7
1 (fi e l d 1) 1
1 1
1 character 1

Here, the data pointed by c would be interpreted as a character (and is, in
fact, a point). We have what we call a wild pointer.

Pointer casting can sometimes be useful. For example, suppose class
S quare is derived from Shape, and the method GetSides exists on the
class S quare but not on the class Shape. As a Square can be manipulated
in terms of a Shape (because the class Shape is dynamic), a developer might
downcast an object Shape reference to an object S quare in order to ac
cess the method GetSides.

Notice that the use of pointer casting must be done very carefully be
cause it makes the code difficult to read. Moreover, as shown above, a
wrong casting may result in a wild pointer.

b. Upcast ing and downcast ing with language C++

If a derived class inherits from a base class, C++ lets you convert a
reference to a derived class in a reference to a base class because the de
rived class is a "kind of' the base class; the upcasting is implicit. As op
posed to this, converting a reference from a base class to a derived class is
not allowed in C++. To do this we need to explicitly cast the pointer; it is a
dowcasting.

B. Multiple inheritance and the C++ virtual base class

As multiple inheritance is allowed, we can imagine the following
situation: a class D can inherit from the classes B and c which, in turn, both
inherit from the class A. We have the following inheritance graph (Fig. 3-3):

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 71

Class A

Class C

Class D

Fig. 3-3 : The rhombus inheritance graph.

Classes B and c do not specialize any methods . The problem is that
the class D inherits class A' s data twice (and needs these data only once) .
The C++ solution (to have the class A 's data only once in the class D) is to
declare the class A as a virtual base class. This way, the class D is as fol
lows : the data inherited from the class A are shared by the methods inherited
from classes B and c.

We can generalize this problem of the rhombus inheritance graph to
any class that inherits from two (or more) classes if these classes inherit
from the same class .

C. The i ncompat ib i l ity of C++ pointer casting and multiple
inheritance

C++ does not allow casting a reference to a virtual base class or a
derived class . Here is why.

Let us have a look at the memory allocation for the rhombus inheri
tance ' s classes (see Fig. 3-3) .
- The memory allocation for the abject A of a rhombus inheritance:

(field 1)
cla s s A ' s dat a

The memory allocation for the abject B of a rhombus inheritance:

(fi e l d 1)
cla s s A ' s data

(fi e l d 2)
class B ' s dat a

72

- The memory allocation for the object c of a rhombus inheritance:

(fi e l d 1)
class A' s data

(fi e l d 2)
class C ' s data

The memory allocation for the object o of a rhombus inheritance:

(field 1) (fi e l d 2)
class A' s data class B ' s data

(fi e l d 3) (fi e l d 4)
class C ' s data class D ' s data

Now let us create an object o and initialize the several fields of this
object. Imagine that we cast a reference to this object to a pointer to an
object c. As explained above, the memory interpretation is done with the
object c mask. We now can easily see the problem: the second field in
memory represents the class B data (because an object o has been created)
and the interpretation of this field is the class c data (because of the new
pointer type).

Notice that, with a recent C++ compiler, the problem of casting a
virtual base class can be avoid by using a "dynamic casting" which solves, by
means of some computation, this problem.

This example was used to show that designing a complex language
sometimes leads to some complications or restrictions; here the language
must prohibit some classical pointer casting because of the acceptance of a
rhombus inheritance graph. A complex language cannot be as didactic as a
simple one. It is often more complicated and less intuitive to use.

3 .4. REFERENCES

[CLL095] Marshall P. CLINE and Greg A. LOMOW, C+ + Frequenctly Asked
Questions, Addison-Wesley Publiching Co. , 1 995.

[LECH l L] LE CHARLIER B . , course notes: Théorie des langages: paradigmes
de programmation, l O licence.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 73

Part KK g Design and

im.plem.entation

This part mainly focuses on the work we did at Brown University
under the supervision of Pascal Van Hentenryck. We explain the features
wanted for such a system. We then explain how we built the whole applica
tion, component by component and step by step.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 75

4. INTRODUCTION TO THE ABSTRACT INTERPRETER

APPLICATION

In this chapter, we lay the foundation of the design of the applica
tion. It is an introduction to the global design that is studied thoroughly in
the next chapters.

76

4.1. DESIGNING THE APPLICATION

So now we are ready to start the design of the Prolog abstract inter
preter. As shown in the previous sections, there are a lot of properties we
want to find out about a Prolog program. Our main objectives concerning
the design were:

Conceiving a lone system able to include all existing features1 8 (i.e. , dif
ferent fixpoint algorithms, several domains of abstract substitutions,
different organizations of the set of abstract tuples, etc).
Not only should the system integrate the existing features but it has to
be opened enough to be easily extendible. The interfaces between the
different components (especially the abstract domains) must suggest a
natural way to write add-ons.
The abstract interpreter project was mature enough to stand a wide dis
tribution. This software tool reveals its power when combined with a
Prolog compiler. Again, a convenient interface to the fixpoint algo
rithms is a key concept to achieve this goal.
As one gets nothing for free, some concessions in terms of performances
should be adrnitted to fulfill the above objectives. This possible loss of
efficiency must be kept into reasonable bounds.
Without being a real objective but rather a consequence, we hoped the
final product would open new kind of results obtained by abstract inter
preter units made of components never gathered together.

The core of the application is the fixpoint algorithm. Following the
first objective, a perfect way for integration would be to design them as ge
neric procedures. As polymorphism and dynarnic bindings allow genericity,
our concern is now to find a tool offering these concepts. On the other
hand, the interface feasibility would be greatly simplified by data and proce
dures encapsulation.

The object oriented programrning paradigm implements all these
concepts and seems thus an appropriate framework to sustain the design of
a multi-services provider system.

To achieve the goals of efficiency and wide distribution, we searched
in the field of object oriented programming language and realized that C++
was suitable to accomplish this task.

18 A lot of specific abstract interpreters are already implemented.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 77

Being faced for the first time with such a complex assignment, we
did not really know where to start. We could have spent our time trying to
create a perfect design on paper by considering every component and find
ing a correct, integrated solution. But then we would not have fulfilled the
other part of the task, which was an obligation to get results by means of an
executable code.

We first identified the main components to treat as objects:
the abstract domain,
the fixpoint algorithm,
the set of abstract tuples.

So we began to design the interfaces of these various cornponents
and pasted the appropriated code behind them. The result was a first ver
sion of the application having all the generic features needed for the future
but where only one specialization for each of them was implemented.

We then extended this embryonic system with further specialization
of the generic components. More than once, we felt that issues were not
possible to solve without a complete design reorganization. That was the
price to pay for a method close to "trial and error" . But, on the other hand,
we have a solid result; tested and proven for future extensions.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 79

5. DOMAINS

As one of the most likely extensions of the system is the addition of
new domains, their design is an important matter. This chapter retraces the
thought process that came before the final design. It also briefly describes
the domains already included in the system.

Contents of this chapter:

5.1. ABSTRACT SUBSTITUTIONS AS OBJECTS 80

5.2. BUILDING THE INHERITANCE GRAPH 80

5.2.1. THE OBJECT "ABSTRACT SUBSTITUTION" 81

5.2.2. ADDING THE ABSTRACT SEQUENCES OF SUBSTITUTIONS 81

5.2.2.1. Input and output values 82

5.2.2.2. Capturing information at procedure level 82

5.3. CONCLUSIONS AND IMPLICATIONS 83

5.3.1. DOMAINS ALREADY IMPLEMENTED 84

5.3.1.1. The domain Prop 84

5.3.1.2. The domain Type-Graph 85

5.3.1.3 . The domain Cardinal sequence 86

5.3.1.4. The domain Pattern 87

5.3.1.5. The domain Pattern + arithmetic lists 89

5.3 .1.6. The Cartesian Product of domains 91

5.3.2. THE ADDITION OF NEW DOMAINS 92

5.4. REFERENCES 92

80

5.1. ABSTRACT SUBSTITUTIONS AS OBJECTS

As the execution of an abstract interpretation algorithm is a series of

actions on abstract substitutions19 following the Prolog program, we need to

have a handy way to manipulate them. That is why it is a good idea to have

an object to represent them.

One of the goals of our work was to permit every abstract interpre

tation algorithm to be executed with any abstract domains. To achieve this,

we needed to define a model of abstract substitutions on which the inter

pretation algorithm can perform the abstract operations. So we came to

create a pure virtual object which owns all the abstract operations defined in

section 1.2.2.4. These methods are the interface that permits modifications

or queries of an abstract substitution.

Moreover we can exploit another aspect of object oriented pro

gramming (the specialization) to easily extend a domain already imple

mented. In effect, we can specialize some of its methods in order to create

more efficient and/or accurate domains without having to rewrite it from

scratch20
•

The consequence on the computational level is that when a specific

abstract domain is chosen out of the existing ones, the method call resulting

from the application of an abstract operation on a substitution is solved at

run-time. We thus lose some efficiency but we win genericity.

5.2. BUILDING THE INHERITANCE GRAPH

The object "abstract substitution" is quite complex. lt ongmates

from a long maturing process based on notions such as efficiency, polymor

phism and other constraints that are discussed in this section.

We choose to explain its building step by step instead of a straight

forward presentation. We begin with a simple model adapted to the abstract

substitutions alone. We will soon find that this model is too poor to include

the abstract sequence of substitutions notion and that it has to be refined.

Finally, it becomes obvious that sometimes the interpretation algorithms

19 We will distinguish abstract substitutions and abstract sequences of substitutions
later.

2
° For example Pattern + arithmetic lists is a specialization of Pattern .

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 81

need other data than the substitutions when computing and that these data
are not part of the substitutions.

5.2.1 . THE OBJECT "ABSTRACT SUBSTITUTION"

We define a pure virtual object to represent the abstract substitutions
and name it SUBST. Every domain that would be implernented must be de
picted by an object that inherits from SUBST and thus respect its interface.

Note that this specialized object can no longer be pure virtual if it
has to be used by the abstract interpretation algorithrn. But it can sorne
times be useful to generate other models (thus pure virtual objects) based on
SUBST. It can serve, for example, the following purposes:

An intermediate model. This kind of model can be used to factorize the
code when two (or more) domains are similar. It rneans that some
methods of the object SUBST would be specialized at this level and in
herited by these domains.
A model needed for particular interpretation algorithrns. It is possible
that some algorithms need more operations or knowledge about a sub
stitution than the ones available in the SUBST model. Such a model re
strains this particular algorithm genericity because all dornains not in
herited from this new model cannot be utilized in this case.

In fact, we never use the last possibility because it is incompatible
with our will of genericity of the algorithms. In effect, such a design would
restrict the set of combinations of domains and algorithms.

Instead, we define some methods by default at the SUBST level.
When it is impossible to avoid it, those kinds of methods throw an error
message and abort the computation (which finally is the same as restraining
the genericity, as above). But sometimes we can write a method which it
returns the less definite result with respect to its knowledge. Of course, it is
possible (and even recommended) to specialize this method to gain accu
racy.

5.2.2. ADDING THE ABSTRACT SEQUENCES OF SUBSTITUTIONS

I t is sometimes useful to have not only a single substitution
(computed as the least upper bound of all the results) as an abstract inter
pretation of a Prolog query but also to have an abstract sequence of all the
solutions generated. Including this notion in the abstract interpreter leads
us to distinguish input value and output value. We also distinguish the pro
gram point value in order to take the eut operation into account.

82

5 .2 .2 . 1 . INPUT AND OUTPUT VALUES

Because an abstract sequence of substitutions cannot be used as an
input for a query, this new concept forces us to make a difference between
the input data and the output data of the interpretation algorithm. We now
have two new pure virtual objects which are:
- V ALUE_IN: virtual object for representing concrete inputs;
- VALUE_OUT: virtual object for representing concrete outputs.

In effect, it is methodologically correct to distinguish the inputs and
the outputs because, in a concrete execution of a Prolog program, an input
for a clause is a substitution, while its output is a sequence of substitutions
(possibly boiled down to a lone substitution). These two concepts are thus
two different objects in our design.

We call SEQ, the abstract sequence of substitutions, a pure virtual
object which inherits from the VALUE_OUT object. As an abstract sub
stitution can be both input and output, the object SUBST inherits from both
VALUE_IN and VALUE_OUT (see Fig. 5-1).

VALUE_:JN VALUE_OUT

SUBST SEQ

Fig. 5-1 : Distinction of VALUEJN and VALUE_OUT in the inheritance graph of sub

stitutions & sequences.

5.2.2.2. CAPTURING INFORMATION AT PROCEDURE LEVEL

At this stage, the interpretation algorithm manipulates VALUE_OUT
objects (that can be either an abstract substitution or an abstract sequence of
substitutions) because its behavior is to refine the result of a query for a
predicate (that is to say output data) through the iterations. On the other
hand, the eut predicate has not "directly" an effect on the structure of out
put but influences the behavior of the execution. An execution of the eut
leads to two effects which are the following (review):
- Effect at the clause level: the execution does not backtrack beyond the

eut.
- Effect at the procedure level: the next clauses are not executed.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 83

Thus the eut also influences the abstract interpretation at the procedure
level. To capture this effect, it is necessary to hold the eut information from
the clause level.

We therefore introduce a third kind of value: VALUE_PRG. This
object is manipulated by the algorithms during interpretation in order to
hold the information relevant to the computation. Although we currently
only need such a value to store the eut information, we choose to create this
general object that can be specialized to take into account other information
relevant to the procedure level. This object contains a reference to a
V ALUE_OUT object that represents the abstract (sequence of) substitution
in itself.

As a consequence, we immediately specialize VALUE_PRG in
VALUE_CUT that contains a Boolean which indicates the encounter of an
executed eut.

We have now a new non-virtual object VALUE_PRG that represents
a program point value. That object contains a reference to a VALUE_OUT
object. That object is specialized into V ALUE_CUT to add the eut infor
mation to the output value manipulated during the computation. The col
lection of data that are in use can now be schematized as follows (Fig. 5-2):

VALUE_IN

SUBST SEQ

VALUE_PRG

reference to a

VALUE_OUT

VALUE_CUT

Fig. 5-2 : Insertion of the abjects VALUE_FRG and VALUE_CUT in the data structure.

5.3. CONCLUSION S AND IMPLICATIO N S

In this section, we leave the virtual part to enter into the real world;
that is to say objects which are implementations of abstract domains.
Moreover, we discuss the addition of new domains.

84

5.3. 1 . DOMAI NS ALREADY IMPLEMENTED

We depict in Fig. 5-3 the final result of our work. The PROP,
PATTERN, PATTERN + Arithmetic Lists, TYPE_GRAPH, CARTESIAN
PRODUCT non-virtual objects inherit from the SUBST virtual object. The
CARDINAL non-virtual object inherits from the SEQ virtual object. These
abstractions of concrete domains are explained in a few words below.

PROP

VALUE_IN

SUBST

TYPE GRAPH PATTERN

PATTERN
+ arithm. lists

CARTESIAN
PRODUCT

Fig. 5-3: Hierarchy of the implemented domains.

VALUE_OUT

SEQ

CARDINAL
Reference to

a SUBST

In this section, we have a closer look at each implemented domain.
We first explain in a few words the properties they are able to represent;
then we illustrate them with an abstract interpretation of the predicate ap
pend with the basic top-down polyvariant algorithm.

5.3.1 . 1 . THE DOMAIN PROP

The abstract domain Prop gives information about the groundness of
a variable. The concrete substitution over o = { X1, . . . , Xn } is abstracted
by a Boolean formula using variables from o. Every variable is assigned a
truth value to denote its groundness (true means ground and false, not
ground). This Boolean formula is also built with logical connectives (and,
or) and ordered by implication. For example X1 {=} X2 abstracts the substi-

lmproving the genericity of an abstract interpretation a/gorithm through Object Oriented design 85

tutions { X1, /Y1, X2/Yi } , { X1, /a , X2/ a } , but not { X1, / a, XdY } nor
{ X1, / Y1, Xd Y2 } ,

The following sat is the result of the abstract interpretation of
append (any, any, any) . The number of goal iterations was three while
the number of clause iterations was six.

P redicat e : append/ 3

- Couple # 1 :

Bin :

(any any any

Bout :

--> 1

(any any any --> (~X3 & (~X2) + (X2 & ~Xl))

+ (X3 & X2 & X l)

We can concretize the resulting output abstract substitution with, for
example:

{ X1 / [] , X2 /Y, Xd Z }

{ Xi / Y, X2/ [a] , X3 / Z }

{ Xi / [a] , Xd [b] , X3/ [c] }

But not with:
{ Xi / Y, X2/ [b] , X3 / [c] } .

5.3.1 .2. THE DOMAIN TVPE-GRAPH

instanciation of (~ X3 & ~ X2) ;

instanciation of (~X3 & X2 & ~Xl) ;

instanciation of (X3 & X2 & Xl) .

Although Prolog is an untyped programming language, type analysis
is important since it allows us to specialize the general unification algorithm,
for example.

The domain Type-graph permits us to infer in a term its disjunctive
and recursive structures by the means of subterms. Its grammar can be de
scribed, using the BNF rules, as:

<T> : : = < constant>

where:

1 @ (<T>) any

< const ant> E const ant , the set of the constants,
0R (<T>1, <T> 2) represents the disjunction between <T>1 and <T>2 ,

p (<T>1, . . . , <T>n) indicates that the subterm is instanciated by a
predicate p / n containing the subterms <T>1, . . . , <T> n,

86

@ (<T>) indicates that the term <T> is recursively present in the subterm,

any represents any term.

The following sat is the result of the abstract interpretation of

append (any, any, any) . The number of goal iterations was four while

the number of clause iterations was eight.

P redicate: append/3

- Couple # 1 :
Bin:

([1] , [2] , [3]) -->
graph:

[1] 1 :Any
[2] 1 :Any
[3] 1 :Any

Bout:
([1 l , [2 l , [3 l) -->
graph:

[1] 1 :OR (

[2 l 1: Any
[3] 1:Any

2 : . (

4 : [l

3:Any ,
@ (1)

We notice that the structure of the subterm [1 J is recursive and is, in

any case, a list while the two other subterms [2 J and [3 J are any.

We can concretize the resulting output abstract substitution with, for

example:

{ Xi/ [] , X2/Y, X3/ Z} ;

{ X1/ [a l [X I []]] , Xz/Y, X3/Z} .

5.3. 1 .3 . THE DOMAIN CARDINAL SEQUENCE

The idea of the abstract sequence of substitutions is to catch all the

successive results of a Prolog query. The goal here is to capture the number

of solutions (minimum and maximum) and the termination (sure termination,

sure non-termination and possible termination) of the execution. It also in-

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 87

cludes an abject SUBST which represents the substitution like in the previ
ous domains.

The following sat is the result of the abstract interpretation of
append (any , any , any) computed with abstract sequence of substitu
tions Prop. The number of goal iterations was four while the number of
clause iterations was eight.

P redicate: append/3

- Couple # 1:
Bin:

(any any any) --> 1
Bout :

[0 , oo] possible termination
(any any any) --> (~X3 & (~X2) + (X2 & ~Xl)) + (X3

& X2 & Xl)

With regard to the interpretation with substitution, the interpretation with
sequence adds the following information: the Prolog program can produce
an infinity of solutions and may terminate.

5.3 . 1 .4. THE DOMAIN PATTERN

The key concept of the abstract domain Pattern is the notion of sub
term. Given a substitution on a set of variables, an abstract substitution as
sociates the following information with each subterm appearing in the sub
stitution:

its mode,
its pattern which specifies the main functor as well as the subterms
which are its arguments,
its possible sharing with other subterms.

Each subterm is identified unambiguously by indices. For instance,
the substitution

{ Xl/ [a, b], X 2 / [c , d], X3/Ls}

could have for instance the following indices association:

{ (l , [a , b]) , (2 , a) , (3 , b) , (4 , [c , d]) , (5 , c) , (6 , d) ,
(7 , Ls)} .

88

In this domain, the mode is taken from the following set M = { J_,
2 1 Th' ground, var, ngv, novar, gv, noground, any} . 1s set satis-

fies the ordering depicted in the Hasse diagram at Fig. 5-4. An oriented
vertex from one node to another denotes that the first is greater than the
second.

Fig. 5-4: The ordering of the modes.

The mode association for the example substitution would be:

{ (1, ground) , (2, ground) , (3, ground) , (4, ground) ,
(5, ground), (6, ground), (7 , var)} .

The pattern component possibly22 assigns to an indice an expression
f (i 1, . . . , in) where f is a fonction symbol of arity n and i 1, . . . , in

are indices. In our example, the pattern component makes the following as
sociations :

{ (1 , . (2 , 3)) , (2 , a) , (3, b) , (4 , . (5, 6)) , (5, c) , (6, d) } 23
•

Finally, the sharing component specifies which indices, not associ
ated with a pattern, may possibly share variables. Attention is restricted to
indices without patterns since the patterns already express some sharing in
formation and we do not want to introduce inconsistencies between the

2 1 Ngv stands for "no ground no variable" , gv for "ground or variable" and any is the
top element.

22 In fact, the pattern is optional.
23

• (head , tai l) is the usual list constructor.

Jmproving the genericity of an abstract interpretation algorithm through Object Oriented design 89

components. In our example, the only sharing is the couple (7 , 7) , ex
pressing that variable Ls shares a variable with itself.

In order to clarify the concept, a more appealing representation is
given for the predicate append/ 3 instanced with the above substitution:

append (ground (l) : . (ground (2) : a, ground (3) : b),
ground (4) : . (ground (5) : c, ground (6) : d), var (7))

with the sharing information { (7 , 7) } .

The following sat is the result of the abstract interpretation of
append (var, var, var). The number of goal iterations was four while
the number of clause iterations was eight.

Predicate: append/3

- Couple # 1 :
Bin :

(Var (l), Var (2), Var (3))
ps : {1, 1} {2, 2} {3, 3}

Bout :
(Novar (l), Any (2), Noground (3))

ps: {1, 1} {1, 2} {1, 3} {2, 1} {2, 2} {2, 3} {3, 1} {3, 2}
{ 3, 3}

We can concretize this resulting output abstract substitution with, for
example:

{ Xi/ [] , X2/Y, X3/ Z} ;

{ X1 / [a I X] , Xz/ Y, X3 / [a I Z] } .

5.3.1 .5. THE DOMAIN PATTERN + ARITHMETIC LISTS

The domain Pattern + arithmetic lists is a specialization of the do
main Pattern. It inherits from this last and thus owns all its features. How
ever, it can hold more information about the terms of a substitution in the
form of an arithmetic list. As a consequence, some of the methods inherited
from the domain Pattern are specialized to take this information into ac
count24 .

24 The implementation of the Pattern + arithmetic list domain was facilitated by the ab
ject oriented programming.

90

Prolog permits the insertion of arithmetic built-ins like <, ::;, >, 2, -:t

and = . They can be used to ensure some data properties within a clause be

cause if they fail, the execution of the current clause stops.

Adding information about arithmetic built-ins is only useful when

computing abstract interpretation over a domain of abstract sequences . In

effect, arithmetic lists are used to detect exclusive clauses.

In the following example, the domain Pattern + arithmetic lists is able

to catch the fact that the two clauses are exclusives.

p { X):- X < 0 ,
p (X) : - X 2 0 ,

This example is quite obvious but this domain is more clever and is able to

catch the same information in the following modified program which has the

same semantic.

p (X) : - lt (X, 0), . . .
p (X) : - get (X, 0),

lt (X, Y) : - X < Y .
get (X) : - X 2 Y .

Moreover, this do main will compute the transitive clos ure of the

arithmetic conditions in order to avoid missing information. In effect, if we

have the two arithmetic relations x > Y and Y > z , we can deduce x > z .

To illustrate this domain, we do not use the classical append/ 3
predicate because the results are the same as the domain Pattern. Instead,

we want to point out the gain of accuracy given by the arithmetic lists in

cardinality analysis . We thus first compute an abstract interpretation of the

pro gram partition/ 4 with an abstract sequence using the domain Pattern

and then compare the results with the addition of arithmetic lists.

The predicate partition/ 4 , given a number X, splits a list L into

two lists L1 and Lz where all the elements of L1 (respectively L2) are smaller

or equal (respectively greater) to X. The text of partition/ 4 is :

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 91

partit ion ([] , X, [], []) .
partit ion ([F I T], X, [F I S], B) :

F <= X,
partit ion (T, X, S, B) .

partition ([F I T], X, S, [F I B]) : -
F > X,
partition (T, X, S, B) .

The result of the abstract interpretation of part i t ian (ground,
ground, var, var) with a sequence algorithm based on Pattern tells us,
in four goal and twelve clause iterations, that

the output substitution is (ground, ground, ground, ground) ,

the query may terminate,
the number of solution is between O and +oc.

On the other hand, adding the arithmetic lists to the domain Pattern
leads to the following conclusions in three goal and nine clause iterations:

the output substitution is (ground, ground, ground, ground) ,

the query may terminate,
the number of solution is between o and 1.

To sum up, this last domain informs us that part it ion (ground,
ground, var, var) is deterministic. Moreover, the result is reached in
less iterations than with the domain Pattern.

5.3. 1 .6. THE CARTESIAN PRODUCT OF DOMAINS

The Cartesian product of domains is what we (almost) got for free25

with object oriented programming. It is a Cartesian product of two domains
(both can be Cartesian product also). The algorithm executes "in parallel"
both components.

Every domain present in a Cartesian product does not communicate
with another, except if a substitution turns to bottom then they all become
bottom. That is why sometimes it is possible to gain accuracy with a Carte
sian product compared to a domain executed alone. In effect, if a domain
catches the bottom and forwards it to the other component then, when a
least upper bound is performed (at the end of each clause) on this last, the
result could be less general.

25
It was coded in a few lines.

92

For example: suppose that we use only the domain Prop and the in

terpretation of the first clause returns (ground, var, any) and the sec

ond returns (var, var, var) , then the least upper bound is (any, var,

any) . In a second interpretation, we use a Cartesian product of the Prop

and domains Pattern. Let us say that the result for the first clause is differ

ent from bottom and the second is bottom for the domain Pattern. So Pat

tern communicates this bottom result to Prop. Then, on the Prop side, the

least upper bound would be between (ground, var, any) and 1-, and

will lead to (ground, var , any) which is more precise than previously.

It is possible to have another type of product where the communica

tion would be more intense26
• A domain could ask, for example, if a vari

able is ground to another one and consequently act.

5.3.2. THE ADDITION OF N EW DOMAINS

In order to add a new domain, one must of course implement a non

virtual object which inherits from SUBST (or SEQ) and specialize the pure

virtual methods. As told earlier it is also possible to start from an already

implemented domain and to specialize it.

5.4. REFERENCES

[BRM094] BRAEM C. and MODARD S . , Abstract Interpretation for Prolog
with eut: Cardinality Analysis, 1 994.

[CHJ095] C HABOT F. and JOUCKEN P. , Abstract lnterpretatiion of full
prolog, 1 995.

[LVBM94] LE CHARLIER B. , BRAEM C . , MODART S . and VAN
HENTENRYCK P . , Cardinality Analysis of Prolog, 1 994.

[LVC94] LE CHARLIER B . , CORTES! A. and VAN HENTENRYCK P . ,
Evaluation of the domain Prop, 1 994.

[LVC294] LE CHARLIER B . , CORTES! A. and VAN HENTENRYCK P . , Type
Analysis of Prolog using Type Graphs, 1 994.

[PVH96] VAN HENTENRYCK P., personal communication.

26
See 1 0. 1 . 1 .

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 93

6. ALGORITHMS

This chapter describes the design and implementation of the algo
rithms. As the algorithms manipulate several generic types that have not
been explained yet, we first discuss the implementation of these concepts,
that is to say the management of the set of abstract tuples and the Prolog
program code. To finish this chapter, we expose the advantage of a post
processing treatment.

Contents of this chapter:

6.1. DA TA STORAGE .., SET OF ABSTRACT TUPLES 9 4

6.1.1. INTRODUCTION 94

6.1.2. SAT IN MONOVARIANT AND POLYVARIANT ALGORITHMS. 94

6.1.2.1. SAT in a polyvariant algorithm 94

A. Hasse diagram 95

B. Hash table 96

6.1.2.2. Monovariant sat 97

6.1.2.3. Comparison of the different sat implementation 97

A. Polyvariant versus monovariant 97

B. Hasse diagram versus hash table 100

6.2. MANAGEMENT OF THE PROLOG CODE 10 0

6.2.1. BASIC CODE MANIPULATION 100

6.2.2. PREFIXING THE CLAUSES 102

6.3 . ALGORITHMS AS OBJECTS 10 3

6.4. ALGORITHMS ALREADY IMPLEMENTED 10 3

6.4.1. INTRODUCTION 103

6.4.2. ALGORITHMS HIERARCHY 103

6.5. REFERENCES 105

94

6.1. DATA STORAGE ~ SET OF ABSTRACT TUPLES

6.1 .1 . I NTRODUCTION

The results of an abstract interpretation computation are incremen
tally built. We must choose a way to store these results gradually. The
management of this storage has already been introduced in the theoretical
part of this report: the organization of the set of abstract tuples.

The representation of this set of abstract tuples is an important
choice in the implementation. There are different ways to implement the
two main operations that are necessary: operations EXTEND and AD JUST.

Remember that a set of abstract tuples (sat) is a set (P1n , p , Pout)
where p is a predicate of arity n and P1n, Pout are abstract substitution on
variables X1 , . . . , Xn, P1n represents the input substitution for the predicate
p and Pout the output substitution.

To be more efficient, we distinguish the global sat and the local sat.
A local sat for a predicate p is a set of couples of input and output substitu
tion (P1n, Pout) for this predicate. We call the global sat (for a Prolog pro
gram P), the set of local sat { 1 s1, . .. , l sm } where m is the nufnber of
predicates declared in the program P; 1 s 1 is a local sat of a particular P's
predicate (we have only one local sat per predicate recorded in the program
p) .

Note that in our application, the global sat is implemented by means
of a hash table pointing to the local sat's.

6.1 .2 . SAT I N MONOVARIANT AND POLYVARIANT ALGORITHMS.

When perforrning an abstract interpretation, a decision must be made
about keeping track of the (P1n, Pout) couples of local sets of abstract tuples.
In a local sat, we can either store a couple for each different P1n or store
only one couple (P1n, Poud where P1n is the union of the input substitutions
for the predicate of the local sat. We use these sat in a polyvariant and a
monovariant algorithm respectively.

6.1 .2.1 . SAT IN A POL YVARIANT ALGORITHM

As told above, a sat used in a polyvariant algorithm contains several
tuples (one for each different P1n of the local sat 's predicate). There are

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 95

different ways of managing that set of tuples. Our application contains a
Hasse diagram implementation and a hash table implementation.

A. Hasse d iagram

A local sat for a predicate p can be represented by a Hasse diagram
(see section 1 .2 . 1 . 3 .2) . Each abstract tuple (relevant to p) encountered by
the algorithm is a node of the diagram. If a and b are respectively the nodes
(a.in , <Xout) and (Pi n , Pout) ' then a � b iff a.in � Pin•

With this kind of implementation, the two main sat operations
(EXTEND and ADJUST) are implemented as :

EXTEND (P , local_sat) : this operation looks up in the local_sat ' s
Hasse diagram if a couple (P , Pout) exists. I f it doesn't, extend returns a
local s at ' which is extended (with regard to the local s at) with a
new couple (P , ..l) . (Notice that instead of ..l as the output substitution,
we could access the tuple's descendants to compute an initial approxi
mation) .
ADJUST (P , P ' , local_sat) : this operation find the couple (P , Pout l in
the local_ s at and returns a local_ sat ' which is updated with this
new result. More precisely, the value of sa t ' (p ") for all p " � p is
equal to lub (P ' , sat (P ")) and all other values are left unchanged.

Let us illustrate the way that kind of sat is managed. The abstract
domain used in this example is able to find out if a term is ground, var or
any. Imagine we look in the local sat of a predicate p / 3. Suppose we have
already interpreted p/ 3 with the following input substitutions (it means also
that we extended the sat with them) : (any , any , ground) , (any ,
ground, var) , (any , ground, ground) , (ground, any , ground) ,
(ground, ground, ground) . The Hasse diagram local sat would look
like Fig. 6- 1 (Notice that on that figure, only the input substitution of a
node are shown, not the output substitution) .

96

T

(any , any , ground) (any , ground, var)

(any , ground, ground) (ground, any , ground)

(ground, ground, ground)

j_

Fig. 6-1 : Example of a Hasse diagram local sat.

Now, if we execute the ADJUST operation on the node (ground,
ground , ground) with Pout , the following points would happen:

the output substitution of the node (ground, ground, ground) ,
would be updated with Pout ;
all the nodes in which its input substitution is more general C>) than
(ground, ground, ground) would be updated with the result of the
least upper bound of the node ' s old output substitution and Pout • That is
to say that the following nodes would be updated: (T) , (any , any ,
ground) , (any , ground, ground) and (ground , any , ground) .
In fact, more precisely, AD JUST updates the output substitution of a
node and then starts a depth-first search algorithm to update its ances
tors . Each time a node is updated, each father is considered for possible
updating.

B. Hash table

The hash table implementation simply stores each couple (Pin , Pout)
in a hash table. The Pin is the key of that hash table and must then be
hashable.

Here, the implementations of the two main operations are :
EXTEND (P , local_sat) : this operation looks up in the local_sat ' s
hash table if a couple CP , Pout) exists. If it does not, it returns a
local_ s at ' which is extended Cwith regard to the local_ sat) with a
new couple CP , J_) . Note that it is quicker to extend the hash table be-

Jmproving the genericity of an abstract interpretation algorithm through Object Oriented design 97

cause there is no order; here we simply must hash the input substitution,

and add the new node.

ADJUST (P , P ' , local_sat) : this operation finds the couple (P , Pout) in

the local_ sat and returns a local_ sat' which is updated with this

new result. More precisely, the value of sat' (P) is equal to

lub (P ' , Pout l and all other values are left unchanged. This adj ust op

eration is quicker than the one implemented for the Hasse diagram be

cause here we must simply modify one node (not its ancestors) .

As the hash table type is widely used in our application, notice the

hash table is designed as a generic type (a template in the C++ jargon) .

6.1 .2.2. MONOVARIANT SAT

Instead of storing several abstract couples in the local sat, we can

store only one couple (Pin, Pout l , where Pin is the union of the input substi

tutions for the predicate of the local sat.

The main operations are implemented the following way:

EXTEND (P , local_sat) : this operation looks up the couple (Pin , Pout)

of the local sat and returns a local sat' . The couple of the

local_sat ' is: (lub (P , Pin) ' Pout) .

ADJUST (P ' , local_sat) : this operation looks up

(Pin , Pout l of the local sat and returns a local_ sat ' .
of the local sat ' is : (Pin , lub (P ' ' Pout l) .

6.1 .2.3. COMPARISON OF THE DIFFERENT SAT IMPLEMENTATION

A. Polyvariant versus monovariant

the couple

The couple

Using a sat used in a monovariant or a polyvariant algorithm may, in

general, lead to different results. With the first one, the Pout substitution for

a given Pin can be less accurate than with the second one because of the

"least upper bound" in the ADJUST operation. Moreover, using sat running

with a monovariant algorithm sometimes leads to fower algorithm iterations

than a polyvariant sat.

Let us show these differences with an illustration. Consider the fol

lowing Prolog program (but don 't try to catch the meaning of this pro

gram!) :

98

q (A, B) :-

p (X).

p (A } ,
p (B) .

Consider that the above Prolog program is interpreted with the following

options: a top-down algorithm, a substitution output, the domain Prop and

an input substitution: (any, ground). We show that interpreting q with a

polyvariant algorithm (using a hash table sat) leads to three goal iterations

and with a monovariant algorithm leads to only two goal iterations.

As we can see on the trace, an interpretation of q with a polyvariant

algorithm (Fig. 6-2) is as follows. The first literal to call during the com

putation of q is p (any) -line 04-. The result of this call is any -line 1 1 - .

At this moment, the local sat of p con tains one tuple { ((any) , (any)) } .
Then the second literal p (ground) is computed. The result of this call is

ground -line 20- . Now, the local sat of p contains two tuples

{ ((any), (any)), ((ground), (ground)) } .

(0 1) Cal l P RO-GOAL q: (any ground) --> X2
(0 2) Try clause 1
(0 3) Exit EXTC: (any ground) --> X2
(0 4) Cal l PRO-GOAL p: (any) --> 1
(0 5) Try clause 1
(0 6) Exit EXTC: (any) --> 1
(0 7) Exit RESTRC: (any) --> 1
(0 8) Exit clause 1
(0 9) Exit LUB: (any) --> 1

Adj ust (1 0)
(1 1) Exit PRO-GOAL p: any) --> 1
(1 2) Exit EXTG: (any ground) --> X2
(1 3) Cal l PRO-GOAL p : (ground) --> Xl
(1 4) Try clause 1
(1 5) Exit EXTC: (ground) --> Xl
(1 6) Exit RESTRC: (ground) --> Xl
(1 7) Exit clause 1
(1 8) Exit LUB: (ground) --> Xl
(1 9)
(2 0)

Adj ust
Exit PRO-GOAL p: (ground --> Xl

(2 1) Exit EXTG : (any ground) --> X2
(2 2) Exit RESTRC: (any ground) --> X2
(2 3) Exit clause 1
(2 4) Exit LUB: (any ground) --> X2

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 99

(2 5) Adj ust
(2 6) Exit PRO-GOAL q: (any ground) --> X2

Fig. 6-2 : Trace with a polyvariant algorithm.

Let us now use a monovariant algorithm (Fig. 6-3). After the first

call to p -line 04- , the local sat contains { ((any), (any)) } . Then we have

to call for the second time p -line 13- with the substitution (ground) . The

difference with the polyvariant algorithm is here. Remember that only one

couple can be inserted in a sat of a monovariant algorithm and that to

EXTEND the local sat we just take the least upper bound of the inputs. In
our example, the new input is (ground) and ground < any (and so

lub (ground, any) = any). Because ((any) , p} E dom (dp), no com

putation is done and the result of p (any) is sat ((any) , p) which is

(any).

(0 1) Call PRO-GOAL q: (any ground) --> X2
(0 2) Try clause 1
(03) Exit EXTC: (any ground) --> X2
(04) Call PRO-GOAL p: (any) --> 1
(0 5) Try clause 1
(0 6) Exit EXTC: (any) --> 1
(0 7) Exit RESTRC: (any) --> 1
(08) Exit clause 1
(0 9) Exit LUB: (any) --> 1
(1 0) Ad j ust
(1 1) Exit PRO-GOAL p: any) --> 1
(12) Exit EXTG: (any ground) --> X2
(13) Call PRO-GOAL p: (ground) --> Xl
(1 4) Exit PRO-GOAL p: (any) --> 1
(1 5) Exit EXTG: (any ground) --> X2
(1 6) Exit RESTRC: (any ground) --> X2
(17) Exit clause 1
(1 8) Exit LUB: (any ground) --> X2
(1 9) Adj ust
(2 0) Exit PRO-GOAL q: (any ground) --> X2

Fig. 6-3 : Trace with a monovariant algorithm.

We notice that the result of p (ground) is different according to the
sat used. With the monovariant algorithm, the result is less accurate. In
this case, the result of the computation (q (any, ground)) is the same
thanks to the EXTG operation.

100

For example, we would lose some accuracy if we were trying to in
terpret the same predicate with the Pattern domain and with the input sub
stitution (ground, var) . U sing the polyvariant algorithm, the result would
be (ground, var) . It is different with the monovariant algorithm; the re
sult would be (ground , gv) . Let us think about this interpretation. At the
time of the first call to p (i. e . , p (ground)), the sat would be { ((ground) ,
(ground)) } . At the second call to p (i.e . , p (var)) , the sat would become
(lub (ground , var) , lub (ground , var)) which is equal
((gv) , (gv)) . So sat ((ground) , p) = (gv) . Notice that because
sat ((any) , p) has been modified, ((ground , va r) , q) � dom (dp) and
so needs to be reconsidered; in this case, this reconsideration does not
change any of the results.

To conclude about the comparison of polyvariant and monovariant
algorithms, we notice that in general, the monovariant algorithm allows the
interpretation computation to be quicker. On the other hand, some results
can be less accurate with this algorithm.

B. Hasse diagram versus hash table

We can also sometimes see some differences between the Hasse dia
gram and the hash table implementation.

The Hasse diagram implementation stores the tuples in such a way
that the sat operations EXTEND and ADJUST take more time than in the hash
table implementation (because of the order and of the ancestors updating) .
On the other hand the Hasse diagram implementation sometimes leads to
fower goal iterations. In effect, it is possible that due to the Hasse diagram
organization, the output substitution for a tuple does not need to be com
puted because it has been updated by ADJUST operations on some of its
sons ' nodes.

6.2. MANAGEMENT OF THE PROLOG CODE

6.2. 1 . BASIC CODE MANIPULATION

Once the Prolog program text is parsed, i t i s compiled and stored in
an object named CODE. Because the algorithms need to peel the Prolog
text from the program to the literal, this object can be queried.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 101

For instance, let us take a Pro log pro gram in which the append/ 3
procedure27 appears. First, we can ask to CODE abject for that predicate.
We receive an abject 1 that contains the append procedure:

Obj l: append (Xl, X2, X3) :
Xl = [],
X2 = X3 .

append (Xl, X2, X3) :-
Xl = [X4 I X5],
X3 = [X4 I X6],
append (X5, X2, X6) .

Now, we can query this abject 1 to obtain the first clause of this procedure,
and we get an abject 2 containing

Obj 2: append (Xl, X2, X3) :
Xl [],
X2 = X3 .

We can ask, for instance, the abject 1 the clause following the abject 2 and
we get

Obj 3: append (Xl, X2, X3) :-
Xl = [X4 I X5],
X3 = [X4 I X6],
append (X5, X2, X6) .

We can ask the abject 3 the number of temporary variables in the clause (it
returns three in this case) or the first litera! and we get an abject 4:

Obj 4: Xl [X4 I X5] .

We can ask the literal 's opcode; here it is a unification. We can ask the ab
ject 3 for the litera! following the abject 4. And if we ask it again, we have
the last litera!:

Obj 5: append (X5, X2, X6) .

Here, the operating code is a call to a goal and thus we can ask more to ab
ject 5 : the name of the called predicate, the list of arguments, etc. In fact,
we can obtain from that kind of abject everything relevant for its specific
interpretation; it is of course based on its operating code.

27 Thal append procedure is normalîzed.

102

6.2.2. PREFIX ING THE CLAUSES

Another way to query a clause object is to consider it formed from

three different parts (instead of a list of litera!) : a prefix, a predicate call and

a suffix. Each of them could be possibly empty.

When we parse a clause, we receive a prefix which is the longest list

of built-ins, the first predicate call, and the suffix. The parsing operation

can be repeated on the prefix. In other words, when considering the pre

fixes of clauses, it cornes to the same thing as peeling in reverse; i.e . , begin

ning with the last litera! of a clause and heading towards the first.

For example, if we parse the object 3, we receive the three following

objects:

Obj 6 : Xl

X3

[X4 I X5],
[X4 / X6],

Obj 7 : append (X5, X2, X6) .

Obj 8 : <empty> .

Where the object 6 is the prefix, 7 is the predicate call and 8 is the suffix.

This way to consider clauses leads us to a more efficient algorithm

rightly nicknamed "prefix" . We now only explain the topics relevant to the

clauses; the rest of this algorithm is explained later.

Let us consider the following piece of Prolog program28
:

@ p (. . .) : - 11, 12 . 0

where l i and 12 are built-ins. For a given input abstract substitution @, the

output abstract substitution 0 is stable; i.e . , never has to be computed

again. If we add to this program a call to a goal g1 as last literai of the

clause, we obtain the program

@ p (. . .) : - li , 12 , (j) g1 . 0

we notice that the only way for the output substitution 0, given an input

substitution @, to be modified is if the result of g1 is refined for the input

substitution <D. Thus, if the result is refined, all we have to do to (maybe)

28 The circled numbers like @ , CD, CD, . . . represent the substitution for this program
point.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 103

refine p is to take the result of the computation of g1 . We now modify this
program again and add the literai 13 and 1 4 that are not predicate calls:

Again, if the output substitution Cll of the predicate g1, given the input sub
stitution <D,is modified, all we have to do when reconsidering the predicate
p is to compute the result of the sequence of literai 1 3 , 1 4 for the input Cll.

In short, if we modify an algorithm to take these observations into
account (i.e. , adding on the one hand a set of abstract tuples where predi
cates are replaced by prefixes, and on the other hand dependencies between
goals and prefixes), we can gain significant computation time by skipping
unnecessary computations.

6.3. ALGORITHMS AS OBJECTS

At first, the advantage of an object oriented algorithm seems obvious
for the factorization of the code and because the paradigm of object ori
ented programming helps us to express the idea of an algorithm easier. AU
the data concerning the computation are hidden in the encapsulation and the
inheritance property helps us to implement several algorithms that are simi
lar.

Moreover, the algorithms themselves need to be manipulated by the
main program, which is independent from the kind of algorithm used. That
is why the algorithms need to be generic types in such a way that we can
apply a virtual method that asks to solve a query.

6.4. ALGORITHMS ALREADY IMPLEMENTED

6.4.1 . I NTRODUCTION

As explained earlier, our system wants to be suitable for a large
number of ways to tackle abstract interpretation. Several domains fulfill this
objective, but several algorithms complete it. In this section, we describe
the algorithms that are part of our application.

6.4.2. ALGORITHMS H IERARCHY

We depict the algorithms objects hierarchy in Fig. 6-4. The object
named SOL VE is the top pure virtual object that represents the abstract in
terpretation algorithms. The TOP-DOWN, BOTTOM-UP and SEQUENCE
(top down) objects inherit from SOLVE and are pure virtual. For each of

1 04

them, we have four algorithms which are the Cartesian products of { prefix,
no prefix } and { monovariant, polyvariant } . Thus, we have sixteen non
virtual objects which represent the algorithms.

(

The algorithm named SEQUENCE is a top-down algorithm that re
turns sequences of substitutions. We distinguish the algorithms that return
substitutions and those that return sequences; these two kind of algorithins
are slightly different.

This structure was built gradually. We first laid the foundation for
the basic top down polyvariant non-prefix algorithm, and then expanded that
foundation little by little to corne to this final inheritance graph.

[SOLVE 1 ""
' '

1 1

TOP.;.DOWN 1 [BOTTOM�UP 1 [SEQUENCE 1 •.•· ' , ' ' '

/ r
- No prefix - - No prefix

f---
- No prefix

-
- Monovariant - Monovariant - Monovariant '- ./

r ,

- No prefix - No prefix - No prefix
- - Polyvariant - - Polyvariant f--- - Polyvariant

,I ,I '-

,. / / - Prefix - Prefix - Prefix
- Monovariant

-
- Monovariant f-- - Monovariant '- '-'-

/ r - Prefix - Prefix - Prefix � -
- Polyvariant - Polyvariant - Polyvariant '- '-

,I

Fig. 6-4: Inheritance graph of the algorithms.

In general, we can observe that the bottom-up algorithms sometimes
lose accuracy with regard to the top-down algorithms as predicted in the
theoretical part of this report. On the other hand the benchmarks show that

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 105

these bottom-up algorithms are often quicker than the top-down algorithms.

For general comparisons see the evaluation chapter III. 9. and for a full algo

rithm trace see the section III .7 .4.

6.5. REFERENCES

[LEVA94] LE CHARLIER B. and VAN HENTENRYCK P., Experimental

Evaluation of a Generic Abstract Interpretation Algorithm for

Prolog, ACM Transactions on Programming Languages and Systems

(TOPLAS), 1994.

[PVH96] V AN HENTENRYCK P., oral communication.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 107

Part III g U tilization and

evaluation

In this part, we expose the results of our work. That is to say how a
"final user" can consider the application. We explain how to handle the ap
plication (with a basic text interface) and how a programmer can integrate it
in a compiler. We also evaluate the efficiency of several parameters within a
series of benchmarks. We then outline some possible future extensions.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 109

7. HANDLING THE APPLICATION

This chapter depicts the existing interface between our application

and a user. The last part of this chapter describes the full trace of a Prolog

abstract interpretation.

Contents of this chapter:

7 .1 . INTRODUCTION 110

7. 2. WHAT THE USER MUST SPECIFY TO COMPUTE AN ABSTRACT

INTERPRETATION 110

7. 3. HOW THE USER CAN QUERY THE RESULTING SAT

7. 4. A FULL EXAMPLE

112

112

1 1 0

7.1. INTRODUCTION

Remember that the object of our work was to integrate several ex-
1stmg applications. The goal of these existing applications were to ab
stractly interpret a Prolog program; but each application had some particular
features like a particular algorithm, domain or data storage. Our plan was
to build one system that could compute a Prolog abstract interpretation with
any combination of the existing features, according to the user's choice.

More precisely, before thinking about the conception of the new ap
plication, we noticed the following existing features for an abstract inter
pretation (reminds).

The output of the interpretation computation can be either a abstract
substitution or a abstract sequence of substitutions.

- An interpretation can be computed with a top-down or a bottom-up al
gorithm. Moreover, either a prefix or no-prefix algorithm version can be
used.

- The algorithm can keep track of the set of abstract tuples in two differ
ent ways: It can be monovariant or polyvariant. Moreover, the polyvari
ant algorithm data can be stored in a Hasse diagram or a hash table.
Various domains can be used to compute an abstract interpretation: the
Prop domain, the Pattern domain, the Pattern and arithmetic list domain
and the Type Graph domain.

Our application is able to compute an abstract interpretation with any
combination of these options.

7.2. WHAT THE USER MUST SPECIFY TO COMPUTE AN

ABSTRACT INTERPRETATION

Because we wanted the new application to support each of the fea
tures depicted above, to compute an abstract interpretation the user has to
specify the features to be used.

We had to keep in mind that the new application could be extended
in the future and that this application was designed to be incorporated in a
Prolog compiler. That is why we allowed the possibility for adding other
compilers to our application.

Finally, we summarize the application options as follows:
- the compiler type,

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 111

the algorithm type (top down with a substitution output, bottom up with

a substitution output, top down with a sequence of substitutions output) ,

a prefixed algorithm or not,

the algorithm data storage type (monovariant or polyvariant) ,

if using a polyvariant algorithm, a Hasse diagram or a hash table imple

mentation can be used,

the domain (Prop, Pattern, Pattern+la, Type-graph or Cartesian product

of two other domains).

A dialog between the application and the user could be:

Abstract interpretation options:
Ente r the file name ?
> append . p
Enter the predicate name
> append
Enter the arity ?
> 3
Enter the mode nb . 1 ?
> ground
Ente r the mode nb . 2 ?
> ground
Ente r the mode nb . 3 ?
> var
Ente r the compile r type

(1) builtin
> 1

Ente r the algorithm type

?

(1) top down (abstract substitution output)
(2) bottom up (abstract substitution output)
(3) top down (abstract sequence output)

> 1

P refix ?
(1) no prefix
(2) prefix

> 2
Enter the kind of sat ?

(1) monovariant
(2) polyvariant

> 2

112

Enter the implementation of SAT
(1) hasse_diagram
(2) hash table

> 2

Enter the implementation of substitutions
(1 } prop
(2) pattern

(3 } pattern+list arithm
(4) type_graph

(5) cartesian_product
> 2

7.3. HOW THE USER CAN QUERY THE RESUL TING SAT

The result of a Prolog query is the output substitution. But in order

to detect the properties inherent in the input Prolog program after an ab

stract interpretation, it can be useful to examine the set of abstract tuples.

That is why when the abstract interpretation is computed by the application,

the user can query the resulting set of abstract tuples.

The next queries are available after the execution:

- get the inputs for a predicate;

get the input least upper bound for a predicate;

- get the outputs for a predicate;

- get output least upper bound for a predicate;

- print all the set of abstract tuples;

- compute the foundation.

7.4. A FULL EXAMPLE

We introduce a full example of an abstract interpretation. Fig. 7- 1 is

the trace of the interpretation upon the append Prolog program. The fol

lowing interpretation options were chosen:

- the top-down algorithm,

- a no-prefix version of the algorithm,

- a polyvariant algorithm with a hash table to implement the set of abstract

tuples,

- the Prop substitution domain,

- the query is : append (ground, ground, any } .

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 113

The first iteration of the top-down algorithm is shown at lines 0 1 to

23 . The first clause extends the input substitution (it has no effect since all

variables appear in the head) -line 03-. It then binds the first argument with

[] -line 04- and the second argument with the third -line 06-. Then the sub

stitution is restricted to the head variables (this has again no effect in this

case) . The union of the previous result with the new one is done on line 10:

lub (J_, (ground, ground, ground)) . The algorithm then computes

the second clause with the input substitution. It extends the input substitu

tion, performs some unifications and calls itself recursively with the same

substitution -line 17-. As the algorithm is currently computing

append (ground, ground, any), no computation can be initiated for

that predicate; that is why the output substitution (i.e. , j_) is simply picked

up in the set of abstract tuples. The second clause then returns J__ After,

the union -line 22- of the results, the output substitution is

(ground, ground, ground) and the set of abstract tuples is updated -line

23-.

A second iteration is necessary since the predicate depends on itself

and sat ((ground, ground, ground), append) has been modified

(with (ground, ground, ground)). This second iteration does not pro

vide more accurate result. The interesting point is at the time of the recur

sive. The look-up in the set of abstract tuples now returns (ground,
ground, ground) -line 40- and then, it produces the result (ground,
ground, ground) -line 42-. Notice that this new result is the same as the

one already stored in the set of abstract tuples (computed at the first itera

tion) .

(0 1) Call P RO-GOAL append : (ground ground any) --> X2 &
Xl

(02) Try clause 1 -iteration # 1-
(03) Exit EXTC: (ground ground any) --> X2 & Xl
(04) Call UNIFFUNC: (ground ground any) --> X2 & Xl
(0 5) Exit UNIFFUNC: (ground ground any) --> X2 & Xl
(0 6) Call UNIFVAR: ground ground any) --> X2 & Xl
(07) Exit UNIFVAR: (ground ground ground) --> X3 &

X2 & Xl
(0 8) Exit RESTRC: (ground ground ground) --> X3 & X2

& Xl
(0 9) Exit clause 1 -iteration # 1-
(10) Exit LUB: (ground ground ground) --> X3 & X2 &

Xl
(1 1) Try clause 2 -i teration # 1-

114

(12) Exit EXTC: (ground ground any any any any) -->

X2 & Xl
(13) Call UNI FFUNC: (ground ground any any any any)

--> X2 & Xl
(1 4) Exit UNIFFUNC: ground ground any ground ground

any) --> X5 & X4 & X2 & Xl
(1 5) Call UNIFFUNC: ground ground any ground ground

any) --> X5 & X4 & X2 & Xl
(1 6) Exit UNIFFUNC: ground ground any ground ground

any) --> (~X6 & X5 & X4 & ~X3
& X2 & Xl) + (X6 & X5 & X4 & X3
& X2 & Xl)

(1 7) Call P RO-GOAL append: (ground ground any) -->

X2 & Xl
(1 8) Exit P RO-GOAL append: bottom
(1 9) Exit EXTG: bottom
(2 0) Exit RESTRC: bottom
(2 1) Exit clause 2 -iteration # 1-
(2 2) Exit LUB: ground ground ground) --> X3 & X2 &

Xl
(23) Ad j ust
(2 4) Try clause 1 -iteration #2-
(2 5) Exit EXTC: (ground ground any) --> X2 & Xl
(2 6) Call UNIFFUNC: (ground ground any) --> X2 & Xl
(2 7) Exit UNIFFUNC: (ground ground any) --> X2 & Xl
(2 8) Call UNIFVAR: (ground ground any) --> X2 & Xl
(2 9) Exit UNIFVAR: (ground ground ground) --> X3 &

X2 & Xl
(3 0) Exit RESTRC: (ground ground ground) --> X3 & X2

& Xl
(3 1) Exit clause 1 -iteration #2-
(3 2) Exit LUB: (ground ground ground) --> X3 & X2 &

Xl
(33) Try clause 2 -iteration #2-
(3 4) Exit EXTC: (ground ground any any any any) -->

X2 & Xl
(3 5) Call UNIFFUNC: ground ground any any any any)

--> X2 & Xl
(3 6) Exit UNIFFUNC: ground ground any ground ground

any) --> X5 & X4 & X2 & Xl
(3 7) Call UNIFFUNC: ground ground any ground ground

any) --> X5 & X4 & X2 & Xl

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 115

(38) Exit UNIFFUNC: ground ground any ground ground
any) --> (~X6 & X5 & X4 & ~X3
& X2 & Xl) + (X6 & X5 & X4 & X3
& X2 & Xl)

(3 9) Call PRO-GOAL append: (ground ground any) -->
X2 & Xl

(4 0) Exit PRO-GOAL append: ground ground ground) -
> X3 & X2 & Xl

(4 1) Exit EXTG : ground ground ground ground ground
ground) --> X6 & X5 & X4 & X3 & X2
& Xl

(4 2) Exit RESTRC: (ground ground ground) --> X3 & X2
& Xl

(43) Exit clause 2 -iteration #2-
(4 4) Exit LUB : ground ground ground) --> X3 & X2 &

Xl
(4 5) Adjust
(4 6) Exit PRO-GOAL append : ground ground ground) -->

X3 & X2 & Xl

Fig. 7-1 : Trace of append (ground, ground, any) .

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 117

8. INTEGRATION IN A PROLOG COMPILER

An abstract interpretation algorithm can be fun as a standalone pro
gram but this application may be more useful when integrated into a Prolog
compiler. That is why, when designing the application, we always kept in
mind the interconnection feature.

This chapter describes a possible design where the abstract inter
preter is seen as a server.

1 18

8.1. INTEGRATION IN A PROLOG COMPILER

The current compiled version of the application is sufficient to itself.
But the main procedure (i.e. , the control of different parts of the program:
compilation of the program, fixpoint algorithm and results exploitation)
could be easily rewritten to take the interfacing with a compiler into ac
count.

We now expose a possible design for a collaboration between a
Prolog compiler and the abstract interpreter. The solution would be to con
sider our application as a server29 for the compiler. The compiler would ask
the interpreter to compute an abstract interpretation with some parameters
(the Prolog program code and the interpretation options). Then the com
piler could query the interpreter to have some particular details of the re
sulting set of abstract tuples.

Remember that the input Prolog pro gram code must be parsed before
either the compilation or the interpretation. Instead of doing that work
twice, we choose, in this design, the Prolog Compiler to do these parsing
operations. As a consequence, the interpreter must use the resulting parsed
data. To allow our interpreter to read the parsing Prolog program, a solu
tion is to make the Prolog code data of the compiler be an object and inherit
from the pure virtual methods of our virtual class CODE. This way, the
Prolog compiler specializes these methods and our interpreter is able to
query the object that contains the Prolog program code. The methods that
must be specialized are simply the ones needed to peel the Prolog text from
the pro gram to the literal.

An example of this partnership is depicted in Fig. 8-1.

29 Referring to the Client/Server relationship.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 119

Queries

Answers

reter

Answers

Queries

Fig. 8-1 : Example of design.

With such a partnership, the following operations can be made by the
two components:

first, the compiler parses the input Prolog program, and obtains an ob
ject (code) that is readable by the interpreter;
then, the compiler can ask an abstract interpretation of a predicate (p) of
the input Prolog program. The compiler must provide the object code,
the predicate p to compute, the input substitution and the interpretation
options;
the interpreter computes p according to the object code.

if the compiler needs some details of the computation (i.e., inputs for a
predicate, outputs for a predicate, etc), it can ask the interpreter, which
then consults the set of abstract tuples to answer.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 121

9. EXPERIMENTAL RESULTS

This chapter contains general comparisons between several interpre
tations coupled with particular options. The Prolog code of the benchmarks
and their goals are described in the annex.

Contents of this chapter:

9.1. DOMAIN PROP
9.2. DOMAIN PATTERN
9.3. DOMAIN PATTERN+ ARITHMETIC LISTS
9.4. DOMAIN TYPE-GRAPH
9.5. DOMAIN CARTESIAN PRODUCT
9.5 . 1 . CARTESIAN PRODUCT OF PROP AND PATTERN

122
124
125
127
128
1 28

9.5.2. CARTESIAN PRODUCT OF PATTERN AND TYPE-GRAPH 1 30

9 .5 .3 . CARTESIAN PRODUCT OF PROP, PATTERN AND TYPE-GRAPH 1 3 1

122

The tables of this chapter depict the cpu time needed when using
particular options of the abstract interpretation. As a consequence of the
algorithms' genericity, almost every combination of options is possible. We
can use any domains combined with any algorithms. The benchmarks natu
rally show that using an improper combination of options often leads to
huge and unnecessary cpu time.

9.1. DOMAIN PROP

Prefix No No Yes Yes .. ··· · · ·

SAT Monovariant Polyvariant Monovariant Polyvariant

JJeeJJhole 2 . 2 8 1 . 7 1 2 . 1 5 1 . 9 0

read 2 . 2 4 2 . 94 2 . 8 1 3 . 1 4

]Jress 4 . 3 2 6 . 3 4 4 . 1 8 6 . 2 0

kalah 1 . 2 3 1 . 2 6 1 . 4 2 1 . 4 2

Table 9-1 : Cpu time (sec) for top-down algorithm with Prop.

The following table depicts an improper abstract interpretation. In
effect, using abstract sequence with the Prop domain is not interesting be
cause the Prop domain is not able to catch the exclusivity of clauses. The
algorithm thus spends unnecessary time trying to catch information that the
Prop domain cannot manage.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 123

Prefix No No Yes Yes · · · · · · · · · · · · · · ······· · · · · · · · · .. , ,

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 1 1 . 1 9 6 . 7 9 1 1 . 0 2 7 . 1 0

read 5 . 3 0 6 . 0 5 5 . 3 8 6 . 2 8

press 6 . 4 6 1 0 . 7 2 6 . 2 4 1 0 . 0 2

kalah 1 . 6 6 1 . 7 0 1 . 7 5 1 . 7 8

Table 9-2 : Cpu time (sec) for top down algorithm with Prop sequences.

Prefix No No Yes Yes

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 3 . 0 9 3 . 2 7 2 . 8 5 2 . 9 1

read 2 . 4 3 3 . 4 0 2 . 5 4 3 . 5 7

press 2 . 63 5 . 0 2 2 . 4 6 4 . 9 5

kalah 1 . 6 8 1 . 9 2 1 . 7 2 1 . 9 3

Table 9-3: Cpu time (sec) for bottom up algorithm with Prop.

124

9.2. DOMAIN PATTERN

Prefix No No Yes Yes

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 3.8 8 3.7 5 3.1 8 4.0 0

read 4.3 9 1 4. 5 7 3.4 5 1 3.90

press 4.3 9 1 8.53 4.1 9 1 6.0 0

kalah 3.3 9 4.4 1 2.7 0 3.3 7

Table 9-4 : Cpu time (sec) for top-down algorithm with Pattern.

Prefix No No Yes Yes

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 1 1.7 1 1 1.59 1 1.12 1 1.7 5

read 1 0.4 7 3 0.7 7 9.92 3 1.4 1

press 8.2 2 3 0.68 8.03 2 7.97

kalah 4.61 5.7 4 3.8 8 5.1 7

Table 9-5 : Cpu time (sec)for top down algorithm with Pattern sequences.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 125

Prefix No No Yes Yes

SAT Monovariant Polyvariant Monovariant Polyvariant

veevhole 2.7 2 4.11 2.65 4.1 5

read 3.7 0 1 2.4 9 3.53 12.58

vress 2.8 2 7.0 3 2.68 6.62

kalah 2.8 6 8.0 2 2.3 9 7.52

Table 9-6: Cpu time (sec) for bottom up algorithm with Pattern

9.3. DOMAIN PATTERN + ARITHMETIC LISTS

Prefix No No Yes Yes

SAT Monovariant Polyvariant Monovariant Polyvariant

veevhole 4.2 2 4.1 4 3.53 4.4 7

read 4.3 7 1 5.4 0 3.9 9 1 4.94

vress 4.92 1 9.61 4.7 4 1 7.3 7

kalah 3.4 7 4.55 2 . 8 7 3.8 3

Table 9-7: Cpu time (sec) for top-down algorithm with Pattern+la.

126

Prefix No No Yes Yes

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 1 4 . 1 8 1 3 . 7 7 1 3 . 5 0 1 3 . 6 5

read 9 . 7 4 2 8 . 8 7 9 . 2 1 2 8 . 4 8

press 8.96 3 2 . 8 3 8 . 6 9 3 0 . 1 7

kalah 5 . 6 9 5 . 8 4 4 . 5 5 5 . 3 2

Table 9-8: Cpu time (sec) for top down algorithm with Pattern+la sequences.

Prefix No No Yes Yes · · · ··· · · · · · · · · ············

SAT Monovariant Polyvariant Monovariant Polyvariant

veevhole 2 . 9 0 4 . 4 3 2 . 8 7 4.3 4

read 4 . 0 2 1 3 . 1 7 3 . 9 1 1 3 . 2 9

press 3 . 0 2 7 . 5 8 2 . 9 4 7 . 5 0

kalah 3 . 0 1 8.3 6 2 . 5 1 7 . 7 9

Table 9-9: Cpu time (sec)for bottom up algorithm with Pattern+la.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 127

9.4. DOMAIN TYPE-GRAPH

Prefix No No Yes Yes · · · · · · · · · · · · · ······ ·· · · · · · ·· ··· · ··· · · · · · · · · · .. ,,

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 4.0 9 3.1 2 4.0 1 3.8 1

read / / / /

press / / / /

kalah 0 . 0 8 0 . 0 6 0.1 2 0 . 0 8

Table 9-10: Cpu time (sec)for top-down algorithm with Type-graph.

The following table depicts an improper abstract interpretation. As
the Type-graph domain is not able to catch the exclusivity of clauses, using
abstract sequences with the Type-graph domain is stupid. The algorithm
spends unnecessary time trying to catch information that the Type-graph
domain cannot manage.

Prefix No No Yes Yes · · ··· · ·· · ····"······ · ·· ·· · ·· · · ·

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 1 7 4 9 4.5 1 7 6 4 0 . 4 1 7 8 8 2.2 2 1 3 3 5 . 7

read / / / /

press / / / /

kalah 0.13 0 . 1 5 0.1 6 0 . 2 5

Table 9-11 : Cpu time (sec) for top down algorithm with Type-graph sequences.

128

Prefix No No Yes Yes · · · · · ·

SAT Monovariant Polyvariant Monovariant Polyvariant

veevhole 2.0 2 2.4 5 2.2 9 2.8 9

read / / / /

press / / / /

kalah 0.15 0.1 6 0.1 9 0.2 1

Table 9-12 : Cpu time (sec) for bottom up algorithm with Type-graph.

9.5. DOMAIN CARTESIAN PRODUCT

The Cartesian product is not efficient since the components do not
communicate30

• In effect, the following tables often show that a computa
tion for a Cartesian product of A and B takes more time than the sum of the
times to compute A and B. This phenomenon is explained by the fact that
during the computation, the two domains are waiting for each other instead
of warning.

9.5.1 . CARTESIAN PRODUCT OF P ROP AND PATTERN

Prefix No No Yes Yes · · · · · · · · · · · · · · · · · · ·· ·"·· · •"''' ··

SAT Monovariant Polyvariant Monovariant Polyvariant

veevhole 7.96 8.0 6 6.8 7 8.3 7

read 8.2 8 3 4.1 2 7.66 32.95

press 1 0.4 4 4 6 .15 9.8 7 4 0.2 8

kalah 5.1 5 6 . 8 6 4 . 7 2 6.4 2

Table 9-13 : Cpu time (sec) for top-down algorithm with Cp(Prop, Pattern).

30 See section 10. 1 . 1 . for an open product of domains.

lmproving the genericity of an abstract interpretation a/gorithm through Object Oriented design 129

Prefix No No Yes Yes

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 7 0 . 9 4 63 . 4 8 6 8 . 4 5 6 3 . 7 4

read 3 5 . 4 8 8 5 . 6 1 3 4 . 93 8 1 . 8 5

press 1 8 . 0 2 7 0 . 4 2 1 7 . 63 6 2 . 4 0

kalah 6 . 7 8 8 . 7 4 6 . 0 9 8 . 3 4

Table 9-14: Cpu time (sec)for top down algorithm with Cp(Prop, Pattern)

sequences.

Prefix No No Yes Yes

SAT Monovariant Pol:vvariant Monovariant Pol:vvariant

peephole 7 . 1 0 8 . 7 7 6 . 4 0 8 . 2 1

read 1 0 . 7 0 2 7 . 62 1 0 . 4 4 2 7 . 3 6

press 9 . 1 8 1 9 . 6 9 8 . 5 5 1 9 . 0 3

kalah 7 . 68 12 . 6 6 7 . 1 6 1 1 . 8 3

Table 9-15 : Cpu time (sec) for bottom up algorithm with Cp(Prop, Pattern).

130

9.5.2. CARTESIAN PRODUCT OF PATTERN AND TYPE-GRAPH

Prefix No No Yes Yes ········ · · · · ······· · · ···· ··················· · · · · · · · · ·· ······· · · · ········· · · · · · · · · ··· ·······································

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 1 0 . 6 1 8 . 6 0 9 . 2 1 9 . 4 0

read I I I I

press I I I I

kalah 0 . 1 2 0 . 0 8 0 . 1 5 0 . 2 1

Table 9-16: Cpu time (sec)for top-down algorithm with Cp(Pattern, Type
graph).

Prefix No No Yes Yes ····················

SAT Monovariant Polyvariant Monovariant Polyvariant

peephole 3 5 . 9 5 2 4 . 7 4 3 4 . 3 6 2 4 . 9 5

read I I I I

press I I I I

kalah 0 , 1 0 0 . 1 4 0 . 2 2 0 . 2 0

Table 9-17: Cpu time (sec) for top down algorithm with Cp(Pattern, Type
graph) sequences.

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 131

Prefix No No Yes Yes ,

SAT Monovariant Polyvariant Monovariant Polyvariant

veevhole 6.3 8 7.67 6 . 2 9 7 . 5 0

read / / / /

vress / / / /

kalah 0.2 8 0 . 3 2 0.37 0.4 3

Table 9-18: Cpu time (sec) for bottom up algorithm with Cp(Pattern, Type

graph).

9.5.3. CARTESIAN PRODUCT OF PROP, PATTERN AND TYPE

G RAPH

Prefix · · · ··· · · · · · · ·

SAT

veephole

read

vress

kalah

No No Yes Yes

Monovariant Polyvariant Monovariant Polyvariant

1 7 . 0 9 1 4. 0 1 1 4 . 1 9 1 4 . 4 4

/ / / /

/ / / /

0.1 4 0.18 0 . 1 7 0 . 1 8

Table 9-19: Cpu time (sec) for top-down algorithm with Cp(Prop,

Cp(Pattern,Type-graph)).

132

Prefix .

SAT

veevhole

read

press

kalah

Prefix .

SAT

peephole

read

press

kalah

No No Yes Yes

Monovariant Polyvariant Monovariant Polyvariant

1 2 7 . 0 0 7 6 . 53 1 2 1 . 6 7 7 6 . 4 7

/ / / /

/ / / /

0 . 1 9 0 . 1 5 0 . 3 4 0 . 2 9

Table 9-20: Cpu time (sec) for top down algorithm with Cp(Prop,
Cp(Pattern,Type-graph)) sequences.

No No Yes Yes

Monovariant Polyvariant Monovariant Polyvariant

1 0 . 7 2 1 2 . 7 4 9 . 5 7 1 1 . 7 9

/ / / /

/ / / /

0 . 5 1 0 . 5 0 0 . 5 4 0 . 6 3

Table 9-21 : Cpu time (sec) for bottom up algorithm with Cp(Prop,
Cp(Pattern,Type-graph)).

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 133

10. CONCLUSIONS AND FUTURE WORKS

As the main goal of our work was to lay the foundation of an ex

tendible system, there are still a lot of possible enlargements and optimiza

tions that could be added to the system. This chapter doesn' t pretend to

quote every possible extension but only provides some of them.

Contents of this chapter:

10.1. CONCLUSION
10.1.1. OPEN PRODUCT DOMAIN

10.1.2. REFINING INPUT SUBSTITUTIONS

10.1.3. CACHING THE OPERATIONS

134

134

135

135

134

10.1. CONCLUSION

Overall, we laid the foundation for an extendible abstract interpreter.
We fulfilled the assignment: namely, improving genericity of a Prolog ab
stract interpreter through object oriented design. We built several objects to
model the different parts that we were able to identify as components of an
abstract interpretation system. When we began to work on this project, we
had lots of disparate materials (i.e., several versions of abstract interpreters)
and when we had to stop we left a new framework able to be extended in
the future.

In effect, there is still a lot of material which could be integrated
within the framework. For instance, one might want to add new algorithms
in order to catch other information. On the other hand, it is also possible to
insert other implementations of the set of abstract tuples in order to store
the information differently or to increase efficiency.

Obviously, a major interest could be the insertion of other domains.
Sorne of them are already implemented in other applications (and thus have
to be adapted to the actual matrix) while others are still in the world of
thoughts and still to be built. The fantasy would be to have an application
where one can choose from a huge list of domains. Every domain having its
specificity and its strength, it is now possible to fine-tune the abstract inter
pretation of a given Prolog program and a particular goal. Moreover, as we
are in a world of communication, why not let the domains communicate
with each other. We thus introduce the notion of open product.

1 0 .1 .1 . OPEN PRODU CT DOMAI N

The idea behind the open product domain is the combination of sev
eral domains; it is thus close to the Cartesian product domain. The major
difference is that while the components of a Cartesian product stupidly per
form the abstract interpretation in parallel, the open product allows them to
communicate to speed up the execution time and refine the result.

A domain able to take advantage of the open product feature, would
query other components of the open product in order to collect information
not in its possession (e.g. , groundness of a term, sharing information, . . .).

Notice that the domains queried must be able to answer; i.e. , they
must own new methods to collect that kind of information. In general, if
one does not want to change the domain to offer this feature, it is possible

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 135

to define these methods by default returning less precise information (e.g. ,
"I do not know").

1 0.1 .2. R EFIN ING I NPUT SUBSTITUTIONS

In the current version of the abstract interpreter, one can only enter
an abstract substitution made of modes although a lot of domains can handle
more information (pattern, sharing, etc). A more convenient input interface
should help the user to specify more complex queries.

1 0. 1 .3 . CACHING THE OPERATIONS

In order to decrease the computation time lost in abstract operations,
another extension to the system could be to cache them.

Although substitutions are implemented in terms of instanciation of
objects (i.e., variables), it is possible to consider them as values3 1

• From
that notion, we can introduce the abstract operations caching. The idea is
to store the result of a given abstract operation on a given abstract substitu
tion so that if the same operation occurs afterwards, simply looking in a ta
ble is sufficient to get the result.

Obviously, to implement the caching of abstract operations, none of
them could be destructive32

• Note that this implementation already exists in
other frameworks.

31 i.e. , an abstract and immaterial value like a number, a set, etc.
32 This is due to the persistence of a value.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 137

References

[BY95/9] BYTE, A Brief History of Programming Languages, September 1995.

[BRM094] BRAEM C. and MODARD S., Abstract lnterpretation for Prolog

with eut: Cardinality Analysis, 1994.

[CHJ095] CHABOT F. and JOUCKEN P., Abstract lnterpretatiion of full

prolog, 1995.

[CLL095] Marshall P. CLINE and Greg A. LOMOW, C++ Frequenctly Asked

Questions, Addison-Wesley Publiching Co., 1995.

[LCMR] LE CHARLIER B., CORSINI M., MUSUMBU K. and RAUZY A.,

Efficient Bottom-up Abstract lnterpretation of Prolog by means of

Constraint Solving over Symbolic Finite Domains.

[LECHlL] LE CHARLIER B., lecture notes: Théorie des langages: paradigmes

de programmation, 1 ° licence, 1993.

[LEC2Ll] LE CHARLIER B., lecture notes: Logic programming, 2° licence,

1994.

[LEC2L2] LE CHARLIER B., lecture notes: Computation logic, 2° licence,

1994.

[LECH91] LE CHARLIER B., L'analyse statique des programmes par inter

prétation abstraite, Nouvelles de la Science et des Technologies vol.

9, number 4, 1991.

[LECH??] LE CHARLIER B., Abstract lnterpretation and Finite Domain Sym

bolic Constraints,

[LVM91] LE CHARLIER B., MUSUMBU K. and VAN HENTENRYCK P., A

Generic Abstract lnterpretation Algorithm and its Complexity Analy

sis, 1991.

[LEVA94] LE CHARLIER B. and VAN HENTENRYCK P., Experimental

Evaluation of a Generic Abstract lnterpretation Algorithm for

Prolog, ACM Transactions on Programming Languages and Systems

(TOPLAS), 1994.

138

[LVBM94] LE CHARLIER B., BRAEM C., MODART S. and VAN

HENTENRYCK P., Cardinality Analysis of Prolog, 1994.

[LVC94] LE CHARLIER B., CORTES! A. and VAN HENTENRYCK P.,

Evaluation of the domain Prop, 1994.

[LVC294] LE CHARLIER B., CORTES! A. and VAN HENTENRYCK P., Type
Analysis of Prolog using Type Graphs, 1994.

[PVH96] V AN HENTENRYCK P., personal communication.

[STSH86] L. STERLING and E. SHAPIRO, The Art of Prolog: Advanced Pro
gramming Techniques, MIT Press, Cambridge, Ma, 1986.

[TENJ TENNENT R. D . , Principles of Programming languages, Prentice

Hall.

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 139

Annexes

Contents of the annexes:

Al. LISTINGS OF SOME BENCHMARK PROGRAMS 141

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 141

A1. LISTINGS OF SOME BENCHMARK PROGRAMS

The programs we use are hopefully representative of « pure » logic
programs. They are taken from a number of authors and used for various
purposes as explained later.

A1 .1. PEEPHOLE

Peephole is a program written by S. Debray to carry out the peep
hole optimization in the SB-Prolog compiler.
comp peepopt (Pil , OptPil , Preds) :

-comp_poptl (Pil , Pill) ,
comp_popt4 (Pill, [] , _, Preds , OptPil) .

comp_poptl ([l , []) .
comp_poptl ([Inst l Rest] , Pill) : - comp_poptll (Inst , Rest , Pill) .

comp_poptll_aux (T , R, Ins t , PRest , OptinstList) : -
T = R , ! ,

comp_poptll (Inst, PRest, OptinstList) .
comp_poptll_aux (T , R, Ins t , PRest , OptinstLis t) : -

popt movreg (Inst , R, T, PRest , OptinstLis t) .
comp_poptll_auxl (PRest , R, OptinstList , S , OptPRest) :

peep chk (PRest , R) , ! ,
OptinstList = [unitvar (S) I OptPRest] .

comp_poptll_auxl (PRest, R, OptinstList , s , optPRest) :
OptinstList = [unitvar (R) , movreg (R, S) I OptPRest] .

comp_poptll (puttvar (T , R) , [getstr (S , R) 1 PRest] , [putstr (S , T) 1 OptPRest]) : -
! ,
comp_poptla (PRest, OptPRest) .

comp_poptll (puttvar (T , R) , [getlist (R) I PRest] , [putlist (T) I OptPRest]) :
! ,
comp_poptla (PRest , OptPRest) .

comp_poptll (movreg (T , R) , [Inst l PRest] , OptinstList) :
! ,

comp_poptll_aux (T, R, Ins t , PRest, OptinstLis t) .
comp_poptll (putpvar (V, R) , [getpval (V, R) I PRest] , [putpvar (V, R) I OptPRest]) : -

! ,
comp_poptl (PRest, OptPRest) .

comp_poptll (putpvar (V, R) , [getstr (Str, R) I PRes t] , [putstrv (Str , V) I OptPRest]) :
! ,
comp_poptla (PRest, OptPRest) .

comp_poptll (putpval (V, R) , [getst r (Str, R) I PRest] , [getstrv (Str, V) I OptPRest]) :
! ,
comp_poptl (PRest , OptPRest) .

comp_poptll (getlist (R) ,
[unitvar (Rl) , unitvar (R2) I PRest] , [getlist tvar tvar (R, Rl , R2) I OptPRest]) : -

! , - -
comp_poptl (PRest, OptPRest) .

comp_poptll (getcomma (R) ,
[unitvar (Rl) , unitvar (R2) I PRest] , [getcomma tvar tvar (R, Rl , R2) I OptPRest]) : -

! , - -
comp_poptl (PRest, OptPRest) .

comp_poptll (getlist_k (R) ,
[unitvar (Rl) , unitvar (R2) I PRest] , [getlist k tvar tvar (R, Rl , R2) I OptPRest]) : -

! , - -
comp_poptl (PRest , OptPRes t) .

comp poptll (gettval (R, R) , PRest , OptPRest) : -
- ! ,

comp_poptl (PRest , OptPRest) .
comp poptll (unitvar (R) , [movreg (R, S) I PRest] , OptinstList) :

- ! ,
comp poptll auxl (PRest , R, OptinstList, S , OptPRest) ,

comp_poptl (PRest , OptPRest) .
comp_poptll (jump (L) , [label (L) I PRest] , [label (L) I OptPRest]) : -

142

! ,
comp_poptl (PRest , OptPRest) .

comp_poptll (jump (Addr) , [jump (_) I PRest] , [jump (Addr) I OptPRest]) :
! ,
comp_poptl (PRest, OptPRest) .

comp_poptll (jumpz (_, L) , [label (L) 1 PRest] , [label (L) 1 OptPRest]) : -
! ,
comp_poptl (PRest , OptPRest) .

comp_poptll (jumpnz (_, L) , [label (L) I PRest l , [label (L) I OptPRest]) : -
' . ,
comp_poptl (PRest , OptPRest) .

comp_poptll (j umplt (_, L) , [label (L) I PRes t] , [label (L) I OptPRest]) :
! ,
comp_poptl (PRest , OptPRest) .

comp_poptll (j umple (_, L) , [label (L) I PRest] , [label (L) I OptPRest]) :
! ,
comp_poptl (PRest , OptPRest) .

comp_poptll (jumpgt (_, L) , [label (L) I PRest] , [label (L) I OptPRest]) :
! ,
comp_poptl (PRest , OptPRest) .

comp poptll (jumpge (, L) , [label (L) I PRest] , [label (L) I OptPRest]) : -
- ! , -

comp_poptl (PRest, OptPRest) .
comp_poptll (Inst, PRest , [Inst l OptPRest]) :

comp_poptl (PRest , OptPRest) .

comp_poptla ([] , []) .
comp_poptla ([Inst l PRest] , OptPList) : -

popt uni2bld (Inst, Bldinst) , ! ,
OptPList = [Bldinst l OptPRest] ,
comp_poptll (Inst , PRest, OptPList) .

comp_poptla ([Inst l PRest] , OptPList) :
comp_poptla (PRest , OptPRest) ,
comp_poptll (Inst, PRest, OptPList) .

popt uni2bld (unipvar (X) , bldpvar (X)) .
popt-uni2bld (unipval (X) , bldpval (X)) .
popt-uni2bld (unitvar (X) , bldtvar (X)) .
popt-uni2bld (unitval (X) , bldtval (X)) .
popt-uni2bld (unicon (X) , bldcon (X)) .
popt-uni2bld (unini l , bldnil) .
popt-uni2bld (uninumcon (X) , bldnumcon (X)) .
popt=uni2bld (unifloatcon (X) , bldfloatcon (X)) .

comp_popt4_aux (El , OList, ORest , Inst) : -
El = 1 , ! ,
OList = ORest .

comp_popt4_aux (El , OList , ORest, Inst) : -
OList = [Inst l ORest] .

comp_popt4 ([] , _, _, Preds , []) .
comp_popt4 ([Inst l IRest] , RCont , Seen , Preds , OList) :

popt builtin (Inst, Preds , OList , ORest) , ! ,
RContl = RCont ,
comp_popt4 (IRest , RContl , Seen , Preds , ORest) .

comp_popt4 ([Inst l IRest] , RCont , seen , Preds , OList) :
peep redundant (Inst, IRest , RCont , RContl , Seen , E l) ,

comp_popt4_aux (El , OList , ORest , Inst) ,
comp_popt4 (IRest , RContl , Seen , Preds , ORest) .

popt builtin (call (P , N ,) , Preds , [builtin (Bno) I IRest] , IRest) : -
- comp builtin (P , N, Bno) ,

not_memberl (s lash (P , N) , Preds) ,
! .

popt builtin (calld (P , N,) , Preds , [builtin (Bno) I IRest] , IRest) : -
- comp builtin (P , N-;-Bno) ,

not_memberl (s lash (P , N) , Preds) ,
! .

popt builtin (execute (comma (P , N)) , Preds , [builtin (Bno) , proceed l IRest] , IRest) : -
- comp builtin (P , N , Bno) ,

not_memberl (s lash (P , N) , Preds) .

popt movreg (Inst , R, T , PRest , OptinstList) :
- popt movregO (Inst , R , T , Optinst) ,

pe;p chk (PRest , R) , ! ,
OptinstList = [Optinst l OptinstRest] ,

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 143

comp_poptl (PRest, OptinstRest) .
popt_movreg (Inst , R, T , PRest , OptinstList) :

OptinstList = [movreg (T , R) , Inst j OptinstRe s t] ,
comp_poptl (PRest, OptinstRest) .

popt_movregO (getstr (S , R) , R, T , getstr (S , T)) .
popt_movregO (puttbreg (R) , R, T , puttbreg (T)) .
popt_movregO (addreg (R, S) , R, T , addreg(T , S)) .
popt_movregO (subreg (R, S) , R, T , subreg(T, S)) .
popt_movregO (mulreg (R, S) , R, T , mulreg (T , S)) .
popt_movregO (divreg (R, S) , R, T , divreg (T, S)) .
popt movregO (idivreg (R, S) , R, T , idivreg (T , S)) .
popt=movregO (get_tag (R, S) , R, T , get_tag (T, S)) .
popt_movreg0 (arg (R, R2 , R3) , R, T , arg (T, R2 , R3)) .
popt_movreg0 (arg (Rl , R, R3) , R, T , arg (Rl , T , R3)) .
popt_movreg0 (arg (Rl , R2 , R) , R, T , arg (Rl , R2 , T)) .
popt_movregO (argO (R, R2 , R3) , R, T, arg0 (T, R2 , R3)) .
popt_movregO (argO (Rl , R, R3) , R, T , argO (Rl, T , R3)) .
popt_movregO (argO (Rl , R2 , R) , R, T , arg0 (Rl , R2 , T)) .
popt movregO (test unifiable (R, R2 , R3) , R, T, test unifiable (T, R2 , R3)) .
popt-movreg0 (test-unifiable (Rl , R, R3) , R, T , test-unifiable (Rl , T , R3)) .
popt=movreg0 (test=unifiable (Rl , R2 , R) , R, T , test=unifiable (Rl , R2 , T)) .

popt chkmember aux (P , Pl , Flag, Ll) : -
- P = Pl , - ! ,

Flag = O .
popt chkmember aux (P , Pl , Flag, Ll) :

- popt_chkmember (P , Ll , Flag) .

popt_chkmember (P , L , Flag) : -
var (L) , ! ,

L = [P l l ,
F lag = 1 .

popt_chkmember (P, L, Flag) :
nonvar (L) ,

L = [Pl j Ll] ,
popt_chkmember_aux (P , Pl, Flag, Ll) .

peep use (getcon (, R) , R) .
peep-use (getnumcon (, R) , R) .
peep-use (getfloatcon (, R) , R) .
peep-use (getpval (, R) �R) .
peep-use (gettval (-, R) , R) .
peep-use (gettval (R,) , R) .
peep=use (gettbreg (R), R) .
peep_use (getpbreg (R) , R) .
peep use (getstr (, R) , R) .
peep-use (getstrv(, R) , R) .
peep=use (getlist (R) , R) .
peep use (getlist tvar tvar (R, ,) , R) .
peep=use (getcomma (R) , R) . - -
peep use (getcomma tvar tvar(R, ,) , R) .
peep -use (get tag (R,) , R) . - -
peep=use (unitval (R)�R) .
peep_use (unipval (R) , R) .
peep_use (bldtval (R) , R) .
peep_use (bldpval (R) , R) .
peep use (arg (R, ,) , R) .
peep-use (arg (, R, -) , R) .
peep-use (arg (-, , R) , R) .
peep-use (argO(R� ,) , R) .
peep -use (argO (, R, -) , R) .
peep-use (argO (-, , R) , R) .
peep-use (test unifiable (R, ,) , R) .
peep-use (test-unifiable (, R, -) , R) .
peep-use (and (R,) , R) . - -
peep=use (and (_, R) , R) .
peep use (negate (R) , R) .
peep-use (or (R,) , R) .
peep-use (or (, R) , R) .
peep-use (lshiftl (R,) , R) .
peep -use (lshiftl (, R) , R) .
peep-use (lshiftr (R,) , R) .
peep -use (lshi ftr (, R) , R) .
peep-use (addreg (R�) , R) .
peep=use (addreg (_, R) , R) .

144

peep use (subreg (R,) , R) .
peep -use (subreg (, R) , R) .
peep-use (mulreg (R,) , R) .
peep -use (mulreg (, R) , R) .
peep-use (divreg (R,) , R) .
peep-use (divreg (, R) , R) .
peep-use (idivreg(R,) , R) .
peep-use (idivreg (, R) , R) .
peep-use (movreg (R;) , R) .
peep-use (switchont;rm (R, ,) , R) .
peep-use (switchonlist (R, -, -) , R) .
peep-use (switchonbound (R; ;) , R) .
peep-use (jump () ,) .
peep-use (jumpeq (R;L) , R) : - L \== abs (-1) .
peep=use (jumpne (R, L) , R) : - L \== abs (-1) .
peep use (jumplt (R, L) , R) : - L \== abs (-1) .
peep-use (jumple (R, L) , R) : - L \== abs (-1) .
peep-use (jumpgt (R, L) , R) : - L \== abs (-1) .
peep=use (jumpge (R, L) , R) : - L \== abs (-1) .

peep chk ([] ,) .
peep-chk ([Inst l Rest] , R) : -

- peep use (Inst , R) , ! , fail .
peep chk ([Inst l Rest] , R) : -

- peep term (Inst , R) , , .-
peep chk ([Inst l Rest] , R) : -

- peep_chk (Rest , R) .

peep term (call (, ,) ,) .
peep-term (calld(; ;) ;) .
peep-term (execut; (-) ;) �
peep-term (' execmarker ' ,) .
peep-term (putcon (R) , R) .
peep-term (putnumcon (R) , R) .
peep=term (putfloatcon (R) , R) .
peep term (puttvar (R,) , R) .
peep-term (putpvar (, R) , R) .
peep-term (putdval (-, R) , R) .
peep-term (putuval (-, R) , R) .
peep-term (puttbreg(R) , R) .
peep-term (putpval (, R) , R) .
peep-term (putstr (;R) , R) .
peep-term (putstrv(, R) , R) .
peep-term (putlist (R) , R) .
peep-term (putnil (R) , R) .
peep-term (get tag (, R) , R) .
peep-term (movreg (;R) , R) .
peep-term (bldtvar(R) , R) .
peep=term (test_unifiable (_, _, R) , R) .

peep redundant (' execmarker ' , , R, R, , 1) .
peep-redundant (Inst, IRest, RCont , RCont l , Seen, El) : -

- peep elim (Inst, IRest, RCont , RContl , Seen, El) , ! .
peep_redundant (Inst, IRest, RCont, RContl , Seen, El) : -

RContl = RCont , El = O .

peep elim (jumpz (, L) , , RO , Rl , , 0) : - L == abs (-1) , ! , Rl RO .
peep-elim (jumpz (-, L) , -, RO , Rl , -, O) : - Rl = [] .
peep-elim (getpvar(V, R), , RCont, [r (R, v (V)) I RCont] , , 0) .
peep-elim (getpval (V, R) , -, RCont , RContl , seen , E l) : - -

- memberl (r (R, v (V)) ;Rcont) , ! ,
El = 1 , RContl = Rcont .

peep elim (getpval (V, R) , , RCont, RContl , Seen , El) :
- El = O , RContl ;;; [r (R, v (V)) I RCont] .

peep elim (getcon (C , R) , , RCont, RContl , Seen, El) : -
- memberl (r (R, c (C)), RCont) , ! ,

El = 1 , RContl = Rcont .
peep elim (getcon (C , R) , , RCont , RContl, Seen , El) :

- El = O , RContl =-[r (R, c (C)) I RCont] .
peep elim (getnumcon (N, R) , , RCont , RContl , Seen , El) : -

- memberl (r (R, n (N)) , RCont) , ! ,
El = 1 , RContl = Rcont .

peep elim (getnumcon (N, R) , , RCont, RContl, Seen , El) :
- El = O , RContl = [r(R, n (N)) I RCont] .

peep_elim (getfloatcon (N, R) , _, RCont, RContl , Seen, El) : -

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 145

memberl (r (R, nf (N)) , RCont) , ! ,
El = 1 , RContl = Rcont .

peep elim (getfloatcon (N, R) , , RCont, RContl, Seen , El) :
- El = O , RContl = [r (R;nf (N)) I RCont) .

peep elim (getnil (R) , , RCont , RContl , Seen , El) : -
- memberl (r (R, c (ni l)) , RCont) , ! ,

El = 1 , RContl = Rcont .
peep elim (getnil (R) , , RCont , RContl , Seen , El) :

- El = O , RContl-= [r (R, c (nil)) I RCont] .
peep elim (putpvar (V, R) , , LO , Ll , , 0) : -

- peep elim upd (LO , R, v (V) , Ll) .
peep elim (putpval (V, R) , , RCont , RContl , , El) : -

- memberl (r (R, v (V)) ;Rcont) , ! , -
El = 1 , RContl = RCont .

peep elim (putpval (V, R) , , RCont , RContl , , El) : -
- El = O , peep elim-upd (RCont , R, v (V) , RContl) .

peep elim (puttvar (R, Rl) -;- , LO , Ll , , 0) : -
- peep del (LO , r (R,) ;L2) , peep del (L2 , r (Rl ,) , Ll) .

peep elim (putcon (C , R) , -, RCont , RContl , , El) : - -
- memberl (r (R, c (C)), RCont) , ! , -

El = 1 , RContl = RCont .
peep elim (putcon (C , R) , , RCont , RContl , , El) : -

- El = O , peep elim upd (RCont , R, c(C) , RContl) .
peep elim (putnumcon (N, R), , RCont, RContl , , El) : -

- memberl (r (R, n (N)) , RCont) , ! , -
El = 1 , RContl = RCont .

peep elim (putnumcon (N, R) , , RCont , RContl , , El) :
- El = O , peep elim upd (RCont , R, n (N) ;Rcontl) .

peep elim (putfloatcon (N-;-R) , , RCont, RContl , , El) : -
- memberl (r (R, nf (N)) , Rcë;°nt) , ! , -

El = 1 , RContl = RCont .
peep elim (putfloatcon (N, R) , , RCont, RContl , , El) :

- El = O , peep elim upd(RCont , R, nf (N) , RContl) .
peep elim (putnil (R), , RCont , RContl , , El) : -

- memberl (r (R, c (nil)) , RCont) , ! ;
El = 1 , RContl = RCont .

peep elim (putnil (R) , , RCont , RContl , , El) : -
- E l = O , peep elim upd (RCont , R;c (nil) , RContl) .

peep elim (puts t r (F-;-R) , -;-LO , Ll , , 0) : - peep del (LO , r (R,) , Ll) .
peep-elim (putlist (R) , ;LO , Ll , ;o) : - peep del (LO , r (R,), Ll) .
peep-elim (and (, R) , , LO , Ll , , 0) : - peep de\ (LO , r (R,) -;-Ll) .
peep-elim (or (-;-R) , -;-LO , Ll , ;o) : - peep del (LO , r (R,), Ll) .
peep-elim (negate (R), , LO , Ll, , O) : - peep del (LO , r (R,) , Ll) .
peep-elim (lshiftr (, R) , , LO , Ll , , 0) : - peep del (LO , r(R,) , Ll) .
peep-elim (lshiftl (-, R) , -, LO , Ll , -, O) : - peep-del (LO , r (R,-) , Ll) .
peep-elim (addreg (;R) , ;LO , Ll , ;o) : - peep del (LO , r (R,), Ll) .
peep-elim (subreg (-, R) , -, LO , Ll , -, O) : - peep-del (LO , r (R,-) , Ll) .
peep-elim (mulreg (-, R) , -, LO , Ll, -, O) : - peep-del (LO, r (R,-) , Ll) .
peep-elim (divreg (-, R) , -, LO , Ll , -, O) : - peep-de l (LO , r (R ,-) , Ll) .
peep-elim (idivreg(, R) ; , LO , Ll; , 0) : - peep del (LO , r (R-;-) , Ll) .
peep-e lim (movreg (R;Rl) , -, LO , Ll , -, 0) : - peep-elim upd (LO;Rl, r (R) , Ll) .
peep-elim (gettbreg (R) , -;-LO , Ll , -;-o) : - peep del (LO, r (R,) , Ll) .
peep-elim (putdval (V, R)-;- , LO , Ll-;- , 0) : - peep del (LO , r (R-;-) , Ll) .
peep-elim (putuval (V, R) , -, LO , Ll , -, O) : - peep-del (LO , r (R, -) , Ll) .
peep-elim (label (comma (P-;-N , K)) , ; , [] , Seen , 0) : - -

- N >= O , ! , memberl (comma(P;N) , Seen) .
peep elim (label (comma (P , N , K)) , , , [] , Seen, O) .
peep-elim (call (, ,) , , , [] , -;-of .
peep-elim (proceed; -;- , Î]-;- , O) �
peep-elim (execute (�omma (P;N)) , IRest, , [] , Seen, El) : -

- !Rest = [label (comma (P , N , K)) I Î, N >= O , ! ,
popt chkmember (comma (P , N) , Seen, El) .

peep elim (execute (comma (P , N)) , IRest , , [] , Seen, El) : -
- E l = 0 . -

peep elim (calld (, ,) , , , [] , , 0) .
peep-elim (builtin (-) ; , -, Îl , , O) .
peep-elim (trymeelse (-;-), , ; [] , , 0) .
peep-elim (retrymeelse (-,), -, , [Î, , 0) .
peep-elim (trustmeelsefail(), -, , [Î, , 0) .
peep-elim (try (,) , , , [] ,-, 0) . - -
peep-elim (retry (-,), -, , [Î, , 0) .
peep-elim (trust (-) ; , -, Îl , , 0) .
peep-elim (jump (), ; ; [] , ;o) .
peep-elim (jumpnz (;L), , RO, Rl, , 0) : - L == abs (-1) , ! , Rl = RO .
peep-elim (jumpnz (-, L) , -, RO , Rl , -, O) : - Rl = [] .
peep=elim (jumplt (=, L) , =, RO , Rl , =, O) : - L == abs (-1) , ! , Rl = RO .

146

peep_elim (j umplt (_, L) , _, RO , Rl , _, O) : - Rl = [) .
peep_elim (jumple (_, L) , _, RO , Rl , _, O) : - L -- abs (-1) ,
peep_elim (jumple (_, L) , _, RO , Rl , _, O) : - Rl = [) .
peep_elim (jumpgt (_, L) , _, RO , Rl , _, O) : - L -- abs (-1) ,
peep_elim (j umpgt (_, L) , _, RO , Rl , _, O) : - Rl = [) .

peep_elim (jumpge (_, L) , _, RO , Rl , _, O) : - L == abs (-1) ,
peep_elim (jumpge (_, L) , _, RO , Rl , _, O) : - Rl = [) .

peep_ elim (switchonterm (_, _, _) , _, _, [l , _ ' 0) .
peep_elim (switchonlist (_, _, _) , _, _, [l , _ , 0) .

peep_elim (switchonbound (_, _, _) ' _ ,_ ' [) ' ' 0) .

peep del ([J , , [J) .
peep=del ([X I L) , Y , Ll) :

X == Y , ! ,
Ll = LlRest,
peep del (L , Y , LlRest) .

peep del ([X I L) , Y, Ll) : -
- Ll = [X I LlRest) ,

peep_del (L , Y , LlRest) .

! , Rl RO .

! , Rl RO .

! , Rl RO .

peep_elim_upd (LO , R, Cont , [r (R, Cont) I Ll)) : - peep_del (LO , r (R,) , Ll) .

comp builtin (P , N, Bno) : -
- ground (P) ,

ground (N) ,
ground (Bno) .

not memberl (X, [)) .
not-memberl (X, [F I T]) :

X \== F ,
not_memberl (X, T) .

memberl (X, [X I Y)) : - ! .
memberl (X, [F I T]) :

memberl (X, T) .

member (X, [X I Xs]) .
member (X, [I Xs)) :

member (X, Xs) .

iota (N, List) :
iotal (O , N , List) .

iotal (K, K, []) : - ! .
iotal (K, N, [K i List]) :

Kl : = K+l ,
iotal (Kl , N , List) .

dif ([] , , , [] , []) .
dif ([S I Ss), Val , Mod, [D ! Ds] , [D2 1 D2s]) :

D : = Val - S ,
D2 : = Mod - D ,
dif (S s , Val , Mod, D s , D2 s) .

rev ([J , L, L) .
rev ([X ! Xs] , Y , L) : -rev (Xs , [X I Y] , L) .

mergedelete ([] , L , L) .
mergedelete ([D ! Ds) , [D I RJ , L2) : -

mergedelete (Ds , R, L2) .
mergedelete ([D ! Ds] , [X I R] , [X I L2]) :

D > X,
mergedelete ([D 1 Ds) , R, L2) .

check ([] , , L , L , _) : - ! .
check (S , Choice, Old, L3 , Modulus) :

dif (S , Choice, Modulus , D s , Dds) ,
mergedelete (D s , Old, L2) ,
rev (Dds , [) , Rds) ,
mergedelete (Rds , L2 , L3) ,
! .

pdsl ([J , , [J ,) : - ! .
pds l (Unu;ed, List , [Choice ! Rest] , Mod) :

member (Choice , Unused) ,
check (List, Choice , Unused, U3 , Mod) ,

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 147

ptlsl (U3 , [Choice I List] , Rest , Motl) .

ptls (Ortler, [0 I Ans]) : -
N : = Ortler * (Ortler + 1) + 1 ,
iota (N , [0 I List]) ,
ptlsl (List , [0] , Ans , N) .

ptlsbm (N) : - ptls (N, [0 , l l X]) .

A1.2. READ

The program read is the tokeniser and reader written by R. O'keefe

and D.H.D. Warren for Prolog.

reatl (Answer, Variables) :
repeat ,
reatl tokens (Tokens , Variable s) ,
reatl=aux (Tokens) , ! ,
Answer = Term .

reatl aux (Tokens) : -
- reatl (Tokens , 120 0 , Term, LeftOver) , all_reatl (LeftOver) , ! .

reatl aux (Tokens) : -
- syntax_error (Token s , X) .

repeat .
repeat : -

repeat .

all reatl (I l) : - ! .
all=reatl (S) : -

syntax_error ([operator, expectetl, a fter, expression] , S) .

expect (Token, [Token ! Rest l , Rest) : - ! .
expect (Token, S0 ,) : -

syntax_error([Token, or, operator, expectetl] , S 0) .

prefixop (Op, Prec , Prec) : -
current op (Prec, fy, Op) , ! .

prefixop (Op, Prec, Less) : -
current op (Prec, fx, Op) , ! ,
Less : = Prec-1 .

postfixop (Op, Prec, Prec) :
current op (Prec, yf, Op) , ! .

postfixop (Op,-Less, Prec) : -
current_op (Prec, xf , Op) , ! , Less : = Prec-1 .

infixop (Op, Les s , Prec, Less) : -
current op (Prec, xfx, Op) , ! , Less : = Prec-1 .

infixop (Op, Les s , Prec, Prec) : -
current op (Prec, xfy, Op) , ! , Less : = Prec-1 .

infixop (Op, Piec, Prec , Less) : -
current_op (Prec, yfx, Op) , ! , Less : = Prec-1 .

ambigop (F , Ll, 01 , Rl , L2 , 02) : -
postfixop (F , L2 , 02) ,
infixop (F , Ll, 01 , Rl) , ! .

reatl ([Token ! RestTokens] , Precetlence , Term, LeftOver) :
reatl(Token, RestTokens, Precetlence, Term, LeftOver) .

reatl ([] , , ,) : -
syntax-er�or ([expression, expectetl] , []) .

reatl (var (Variable,) , [· ' (' 1 S 1] , Precetlence, Answer, S) : - ! ,
reatl (S1 , 9 9 9� Argl , S 2) ,
reatl args (S2 , RestArgs , S 3) , ! ,
exprtlO (S 3 , apply (Variable, [Argl l RestArgs]) , P recetlence , Answer, S) .

reatl (var (Variable,) , S 0 , Precetlence , Answer, S) : - ! ,
exprtl0 (S0 , Variable, Precetlence , Answer, S) .

reatl (atom (' - ') , [integer (Integer) ! S1] , Precetlence , Answer, S) : -
Negative : = -Integer, ! ,

148

exprtlO (S 1 , Negative , Precedence, Answer, S) .
read (atom (Functor) , [' (' 1 S1] , Precedenc e , Answer, S) : - ! ,

read (S l , 9 9 9 , Argl, S 2) ,
read args (S2 , RestArgs , S3) ,
univ(Term, [Functor, Argl l RestArgs]) , ! ,
exprtlO (S 3 , Term, Precedence , Answer, S) .

read (atom (Functor) , S0 , Precedence, Answer, S) :
prefixop (Functor, Prec, Right) , ! ,
after_prefix_op (Functor, Prec, Right , S0 , Precedence, Answer, S) .

read (atom (Atom) , S0 , Precedence, Answer, S) : - ! ,
exprtlO (S 0 , Atom, Precedence, Answer, S) .

read (integer (Integer) , S0 , Precedence , Answer, S) : - ! ,
exprtlO (S 0 , Integer, Precedence , Answer, S) .

read (' [' , ['] ' 1 S1] , Precedence , Answer, S) : - ! ,
exprtlO (S 1 , [] , Precedence , Answer, S) .

read (' [' , S 1 , Precedence , Answer, S) : - ! ,
read (S l , 9 9 9 , Argl , S 2) ,
read list (S 2 , RestArgs , S3) , ! ,
exprtlO (S 3 , [Argl l RestArgs] , Precedence , Answer, S) .

read (' (' , S 1 , Precedence , Answer, S) : - ! ,
read (S 1 , 1200 , Term, S2) ,
expect (') ' , S2 , S3) , ! ,
exprtlO (S3 , Term, Precedence, Answer, S) .

read (' (' , S 1 , Precedence , Answer, S) : - ! ,
read (S 1 , 120 0 , Term, S 2) ,
expect (') ' , S2 , S 3) , ! ,
exprtlO (S 3 , Term, Precedence, Answer, S) .

read (' { ' , [' } ' 1 S1] , Precedence , Answer, S) : - ! ,
exprtlO (S 1 , 1 { } ' , Precedence, Answer, S) .

read (' { ' , S 1 , Precedence , Answer, S) : - ! ,
read (S1 , 1200, Term, S 2) ,
expect (' } ' , S2 , S3) , ! ,
exprtlO (S 3 , 1 { } ' , Precedence , Answer, S) .

read (string (List) , S0 , Precedence , Answer, S) : - ! ,
exprtlO (S 0 , Lis t , Precedence , Answer, S) .

read (Token, S 0 , , ,) : -
syntax_error (ÎToken, cannot , start , an, expression] , S 0) .

read args ([' , ' 1 S1] , [Term ! Rest] , S) : - ! ,
- read (S1 , 9 9 9 , Term, S 2) , ! ,

read args (S2 , Rest , S) .
read args (Î ') ' I S] , [] , S) : - ! .
read-args (S , ,) : -

- syntax_error ([' , or) ' , expected, in, arguments] , S) .

read list ([' , ' 1 S1] , [Term l Rest] , S) : - ! ,
- read (S 1 , 9 9 9 , Term, S 2) , ! ,

read list (S2 , Rest , S) .
read list (Î ' l ' I Sl] , Rest , S) : - ! ,

- read (S 1 , 9 9 9 , Rest , S 2) , ! ,
expect (' l ' , S 2 , S) .

read list (['] ' I S] , [] , S) : - ! .
read-list (S , ,) : -

- syntax_error ([' , 1 or] ' , expected, in, list] , S) .

after prefix op (Op, Oprec, Aprec, S0 , Precedence ,) : -
-Precedence < Oprec, ! ,

syntax error ([prefix, operator, Op, in , context ,
- with, precedence, Precedence) , S 0) .

after_prefix_op (Op, Oprec, Aprec, S0 , P recedence , Answer, S) :
peepop (S 0 , S1) ,
prefix is atom (S 1 , Oprec) ,
exprtl(S1� Oprec, Op , Precedence , Answer, S) .

after_prefix_op (Op, Oprec, Aprec, S 1 , P recedence , Answer, S) :
read (S 1 , Aprec , Arg, S 2) ,
univ (Term, [Op, Arg]) , ! ,
exprtl (S2 , Oprec, Term, Precedence , Answer, S) .

peepop ([atom (F) , ' (' I Sl] , [atom (F) , ' (' 1 S1]) : - ! .
peepop ([atom (F) 1 S1] , [infixop (F , L , P , R) 1 S1]) : - infixop (F, L , P , R) .
peepop ([atom (F) 1 S1] , [postfixop (F , L , P) 1 S1]) : - postfixop (F , L, P) .
peepop (S O , S 0) .

prefix is atom ([Token l] , Precedence) :
prefix is atom (Token, Precedence) .

prefix_is_atom (infixop (, L , ,) , P) : - L >= P .

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 149

prefix is atom (postfixop (, L ,) , P) : - L >= P .
prefix-is-atom (') 1 ,) • - -
prefix-is-atom (' l ' ,) .
prefix-is-atom (' } ' ,) .
prefix-is-atom (' 1 ' , P) : - 1100 >= P .
prefix-is-atom (' , ' , P) : - 1000 >= P .
prefix=is=atom ([] ,) .

exprtlO ([atom (F) J Sl] , Term, Precedence , Answer, S) : -
ambigop (F , Ll, 01 , Rl , L2 , 02) , ! ,
exprtl ([infixop (F , Ll , Ol , Rl) J Sl] , O , Term, Precedence , Answer, S) .

exprtlO ([atom (F) 1 S l] , Term, Precedence , Answer, S) : -
ambigop (F , Ll , 01 , Rl, L2 , 02) , ! ,
exprtl ([postfixop (F , L2 , 02) J Sl] , O , Term, Precedence , Answer, S) .

exprtlO ([atom (F) J Sl] , Term, Precedence , Answer, S) : -
infixop (F , Ll , 0 1 , Rl) , ! ,
exprtl ([infixop (F , Ll , Ol , Rl) J Sl] , O , Term, Precedence , Answer, S) .

exprtlO ([atom (F) J Sl] , Term, Precedence , Answer, S) : -
postfixop (F , L2 , 02) , ! ,
exprtl ([postfixop (F , L2 , 02) J Sl] , O , Term, Precedence , Answer, S) .

exprtlO ([' , 1 J Sl] , Term, Precedence , Answer, S) :
Precedence >= 100 0 , ! ,
read (S l , 100 0 , Next , S 2) , ! ,
exprtl (S 2 , 1000 , comma (Term, Next) , Precedence , Answer, S) .

exprtlO ([' J ' J sl] , Term, Precedence, Answer, S) :
Precedence >= 1 1 0 0 , ! ,
read (Sl , 1 1 0 0 , Next , S 2) , ! ,
exprt l (S2 , 1 1 0 0 , comma (Term, Next) , Precedence , Answer, S) .

exprtlO ([Thing J Sl] , , ,) : -
cant follow expr (Thing , -Culprit) , ! ,
syntax_error ([Culprit , follows , expression] , [Thing J Sl]) .

exprtlO (s , Term, , Term, S) .

cant_follow_exp r (atom () , atom) .
cant follow expr (var (,) , variable) .
cant-follow-expr (integer () , integer) .
cant-follow-exp r (string (T, string) .
cant-follow-expr (' (' , - bracket) .
cant-follow-expr (' (' , bracket) .
cant-follow-expr (' [' , bracket) .
cant=follow=expr (' { ' , bracket) .

exprtl ([infixop (F , L , O , R) J Sl] , C , Term, Precedence , Answer, S) : -
Precedence >= O , C <= L , ! ,
read (Sl , R, Other, S 2) ,
univ (Expr, [F , Term, Other]) ,
exprtl (S 2 , o , Expr, Precedence , Answer, S) .

exprtl ([postfixop (F , L , O) J Sl] , C , Term, Precedence , Answer, S) :
Precedence >= O , C <= L , ! ,
univ (Expr, [F , Term]) ,
peepop (S l , S 2) ,
exprtl (S2 , O, Expr, Precedence , Answer, S) .

exprtl ([' , ' J Sl] , c , Term, Precedence, Answer, S) :
Precedence >= 100 0 , C < 1000 , ! ,
read (Sl , 100 0 , Next , S 2) ,
exprtl (S 2 , 100 0 , comma (Term, Next) , Precedence , Answer, S) .

exprtl ([' J ' J Sl] , c , Term, Precedence , Answer, S) :
Precedence >= 1100 , C < 110 0 , ! ,
read(Sl , 1100 , Next , S2) ,
exprtl (S 2 , 1100 , comma (Term, Next) , Precedence , Answer, S) .

exprtl (S , _, Term, _, Term, S) .

syntax error (Message, List) : -
fail .

univ (X, Y) : -
compound (X) , ! ,
functor (X, F , A) ,
Y = [F J Args] ,
collect args (X, l , A, Args) .

univ (X, L) : - -
nonvar (L) ,
1 . ,
L = [F J Args] ,
non var (Args) ,

150

lengthnovar (Args , A) ,
functor (X , F , A) ,
collect_args (X, l , A, Args) .

collect args (X, Al , A , []) :
Al > A , ! .

collect args (X, Al , A, [T I Ts]) :
arg (Al , X , T) ,
A2 : = Al + 1 ,
collect_args (X, A2 , A, Ts) .

lengthnovar ([] , 0) .
lengthnovar ([F I T] , N) :

nonvar (T) ,
lengthnovar (T , Nl) ,
N : = Nl + 1 .

read tokens (TokenLis t , Dictionary) : -
read tokens (3 2 , Dict , ListOfTokens) ,
append (Dict, [] , Dict) , ! ,
Dictionary = Dict,
TokenList = ListOfTokens .

read_tokens ([atom (end_of_file)] , []) .

p (2 6) .
p (3 1) .

read tokens (-1 ,) : - ! ,
- fail .

read tokens (Ch, Dict, Tokens) : -
- Ch <= 3 2 ,

! '
get0 (NextCh) ,
read tokens (NextCh , Dict , Tokens) .

read_tokens (3 7 , Dict, Tokens) : - ! ,
repeat ,
get0 (Ch) ,
p (Ch) ,
! ,

Ch <> 2 ,
get0 (NextCh) ,
read tokens (Nextch, Dict , Tokens) .

read tokens (4 7 , Dict , Tokens) : - ! ,
- get0 (NextCh) ,

read solidus (NextCh, Dict , Tokens) .
read tokens (33 , Dict , [atom (!) I Tokens]) : - ! ,

- get0 (NextCh) ,
read after atom (NextCh, Dict, Tokens) .

read tokens (4 0 , Dict, [' (' I Tokens]) : - ! ,
- get0 (NextCh) ,

read tokens (NextCh , Dict, Tokens) .
read tokens (4 1 , Dict , [') ' I Tokens)) : - ! ,

- get0 (NextCh) ,
read tokens (NextCh, Dict , Tokens) .

read tokens (4 4 , Dict , [' , ' I Tokens]) : - ! ,
- get0 (NextCh) ,

read tokens (Nextch, Dict , Tokens) .
read tokens (5 9 , Dict, [atom (' ; ') I Tokens]) : - ! ,

- get0 (NextCh) ,
read tokens (NextCh , Dict , Tokens) .

read tokens (9 1 , Dict , [' [' I Tokens]) : - ! ,

- get0 (NextCh) ,
read tokens (NextCh , Dict, Tokens) .

read tokens (93 , Dict , ['] ' I Tokens]) : - ! ,

- get0 (NextCh) ,
read tokens (NextCh , Dict, Tokens) .

read tokens (1 2 3 , Dict, [' (' I Tokens]) : - ! ,
- get0 (NextCh) ,

read tokens (NextCh, Dict, Tokens) .
read tokens (12 4 , Dict, [' 1 ' I Tokens)) : - ! ,

- get0 (NextCh) ,
read tokens (NextCh, Dict , Tokens) .

read tokens (1 2 5 , Dict, [') ' I Tokens]) : - ! ,
- get0 (NextCh) ,

read tokens (NextCh, Dict , Tokens) .
read_tokens (4 6 , Dict , Tokens) ! ,

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 151

getO (NextCh) ,
read fullstop (NextCh, Dict , Tokens) .

read tokens (34 , Dict , [string (S) I Tokens]) : - ! ,
- read string (S , 34 , NextCh) ,

read-tokens (NextCh, Dict , Tokens) .
read tokens (3 9 , Dict , [atom (A) I Tokens]) : - ! ,

- read string (S , 3 9 , NextCh) ,
ground (A) ,
read after atom (NextCh, Dict , Tokens) .

read tokens (Ch, Dict, [var (Var, Name) I Tokens]) : -
- Ch >= 65 , Ch <= 90 ,

! ,
read name (Ch, s , NextCh) ,
ground (Name) ,

read_lookup (Dict, Name=Var) ,
! ,
read tokens (Nextch, Dict, Tokens) .

read tokens (Ch, Dict , [intege r (I) I Tokens]) : -
- Ch >= 4 8 , Ch <= 57 ,

! ,
read integer (Ch , I , NextCh) ,
read-tokens (NextCh, Dict , Tokens) .

read tokens (Ch , Dict , [atom (A) I Token s]) : -
- Ch >= 97 , Ch <= 122 ,

! ,
read name (Ch, S , NextCh) ,
ground (A) ,
read after atom (NextCh, Dict, Tokens) .

read t okens (Ch , Dict , [atom (A) I Tokens]) : -
- getO (AnotherCh) ,

read symbol (AnotherCh, Chars , NextCh) ,
ground (A) ,
read_after_atom (NextCh, Dict , Tokens) .

read after atom (4 0 , Dict, [' (' I Tokens]) : - ! ,
- getO(NextCh) ,

read tokens (NextCh, Dict , Tokens) .
read after-atom (Ch, Dict, Tokens) : -

- read=tokens (Ch, Dict , Tokens) .

read s tring (Chars , Quote , NextCh) : -
- getO (Ch) ,

read_string (Ch, Chars , Quote, NextCh) .

read string (2 6 , , Quote , 2 6) : -
- display (' ! -end of file in ') , ttyput (Quote) ,

display (token) , ttyput (Quote) , ttynl,
! , fail .

read string (Quote , Chars , Quote , NextCh) : - ! ,
- getO (Ch) ,

more string (Ch, Quote , Chars , NextCh) .
read string (Char, [Char ! Chars] , Quote , NextCh) :

- read_string (Chars , Quote , NextCh) .

more string (Quote , Quote, [Quote ! Chars] , NextCh) : - ! ,
- read string (Chars , Quote , NextCh) .

more_string (NextCh, _, [] , NextCh) .

read solidus (4 2 , Dict , Tokens) : - ! ,
- getO (Ch) ,

read solidus (Ch , NextCh) ,
read-tokens (NextCh, Dict , Tokens) .

read solidus (Ch, Dict , [atom (A) ! Tokens]) : -
- read symbol (Ch , Chars , NextCh) ,

ground (A) ,
read_tokens (NextCh, Dict , Tokens) .

read solidus (2 6 , 2 6) : - ! ,
- display (' ! end of file in comment ') , ttynl .

read solidus (4 2 , LastCh) :
getO (NextCh) ,
NextCh <> 4 7 , ! ,
read solidus (NextCh, LastCh) .

read solidus (4 2 , 32) : - ! .
read-solidus (, LastCh) : -

- getO (NextCh) ,

152

read_solidus (Nextch, LastCh) .

read name (Char, [Char i Chars] , LastCh) : -
- Char >= 9 7 , Char <= 122 ,

! ,
getO (NextCh) ,
read name (NextCh , Chars , LastCh) .

read_name (Lastch, [] , LastCh) .

current_op (X, Y, Z) : - ground (X) , ground (Y) , ground (Z) .

display (X) .
ttyput (X) .
ttynl .
getO (X) : - ground (X) .

read symbol (Char, [Char i Chars] , LastCh) : -
- check special (Char) ,

getO (NextCh) ,
read symbol (NextCh, Chars , LastCh) .

read_symbol (LastCh, [) , LastCh) .

check special (' # ') .
check-special (' $ ') .
check-special (' & ') .
check-special (' * ') .
check-special (' + ') .
check-special (' - ') .
check-special (' . ') .
check-special (' / ') .
check-special (' : ') .
check-special (' < ') .
check-special (' = ') .
check-special (' > ') .
check-special (' ? ') .
check-special (' @ ') .
check-special (' \ ') .
check-special (' A ') .
check-special (' ' ') .
check=special (' ~ ') .

read fulls top (2 6 , ,) : - ! ,
- display (' ! end of file just after full stop ') , ttynl,

fail .
read fulls top (Ch, , []) : -

- Ch <= 3 2 , ! . -
read fullstop (Ch, Dict , [atom (A) I Tokens]) : -

- read symbol (Ch, S , NextCh) ,
ground (A) ,
read_tokens (NextCh , Dict , Tokens) .

read integer (BaseChar, IntVal , NextCh) : -
- Base : = BaseChar - 4 8 ,

getO (Ch) ,
Ch <> 2 6 ,
Ch <> 3 9 , read digits (Ch, Base , 1 0 , IntVal, NextCh) , ! .

read integer (BaseChar, IntVal, NextCh) : -
- Base : = BaseChar - 4 8 ,

getO (Ch) ,
Ch <> 2 6 ,
Base >= 1 , read_digits (O , Base , IntVal, NextCh) ,
! .

read integer (BaseChar, IntVal , NextCh) : -
- Base : = BaseChar - 4 8 ,

getO (Ch) ,
Ch <> 2 6 ,
getO (IntVal) , IntVal < > 2 6 , getO (NextCh) ,
! .

read digits (SoFar, Base, Value, NextCh) : -
- getO (Ch) ,

Ch <> 2 6 ,
read_digits (Ch, SoFar, Base , Value , NextCh) .

read digits (Digit, SoFar, Base , Value , NextCh) :
- Digit >= 4 8 , Digit <= 5 7 ,

lmproving the genericity of an abstract interpretation algorithm through Object Oriented design 153

. ,
Next : = SoFar*Base-48+Digit ,
read digits (Next , Base , Value , NextCh) .

read_digit; (LastCh , Value, , Value, LastCh) .

read lookup ([X I l , X) : - ! .
readlookup ([I T] , X) : -

- read_lookup (T, X) .

append ([] , L , L) .
append ([H I L1] , L2 , [H I L3]) : - append (Ll , L2 , L3) .

A 1 .3 . KALAH R

The prograrn kalah is a pro gram which plays the garne of kalah. This

prograrn is taken frorn [STSH86] .

play (Game , Result) :
initialize (Game , Position , Player) ,
displaygame (Position , Player) ,
play (Position , Player, Result) .

play (Position , Player, Result) :
gameover (Position, Player, Result) , ! ,
announce (Result) .

play (Position , Player, Result) :
choosemove (Position , Player, Move) ,
move (Move , Position , Positionl) ,
displaygame (Positionl , Player) ,
nextplayer (Player, Playerl) , ! ,
play (Positionl , Playerl , Result) .

choosemove (Position, computer, Move) :
lookahead (Depth) ,
alphabet a (Depth , Position , 40 , 40 , Move , Value) .

choosemove (Position , opponent , Move) :
ground (Move) ,
genlegal (Move) .

alphabeta (O , Position, Alpha , Beta, Move , Value) : -
value (Position, Value) .

alphabeta (D , Position , Alpha, Beta , Move , Value) : -
D > O ,
allmoves (Position, Moves) ,
Alphal : = 0 - Beta ,
Betal : = 0 - Alpha ,
Dl : = D - 1 ,
evaluateandchoose (Moves, Position , Dl , Alphal , Betal , ni l , p (Move , Value)) .

allmoves (P , Re s) :
allmoves (P , [] , Res) .

allmoves (P , Acc , Res) :
move (P , X) ,
notmember (X, Acc) , ! ,
allmoves (P , [X I Acc] , Res) .

allmoves (P , Res , Res) .

notmember (X, []) .
notmember (X, [F I T]) : -

X \== F ,
notmember (X , T) .

evaluateandchoose ([Move l Moves] , Position , D , Alpha, Beta, Record, BestMove) :
move (Move , Position , Positionl) ,
alphabeta (D , Positionl , Alpha, Beta, MoveX, Value) ,
Valuel : = 0 - Value ,
cutoff (Move , Valuel , D , Alpha , Beta, Moves, Position, Record ,BestMove) , ! .

evaluateandchoose ([] , Position , D , Alpha , Beta , Move , p (Move , Alpha)) .

cutoff (Move , Value , D , Alpha , Beta, Moves, Position , Move l , p (Move , Value)) : -

154

Value >= Beta, ! .
cutoff (Move , Value , D , Alpha, Beta, Move s , Position , Movel , BestMove) :

Alpha < Value ,
Value < Beta, ! ,
evaluateandchoose (Moves, Position , D , Value , Beta, Move , BestMove) .

cutoff (Move , Value , D , Alpha , Beta , Move s , Position , Movel , BestMove) :
Value <= Alpha, ! ,
evaluateandchoose (Moves , Position , D , Alpha, Beta , Movel , BestMove) .

move (Board, [M I Ms]) :
member (M, [1 , 2 , 3 , 4 , 5 , 6]) ,
stonesinhole (M, Board, N) ,
extendmove (N, M, Board , Ms) .

move (board ([O , 0 , O , O , 0 , O] , K, Ys , L) , []) .

member (X, [X I Y)) .
member (X, [F I T]) : -

member (X, T) .

stonesinhole (M, board (Hs , K , Ys , L) , Stones) :
nthmember (M, Hs , Stones) ,
S tones > O .

extendmove (S tone s , M, Board, []) :
Stones <> 7 - M, ! .

extendmove (Stones , M, Board,Ms) : -
S tones = : = 7 - M, ! ,
distributestones (Stones , M, Board, Boardl) ,
move (Boardl , Ms) .

move ([N I Ns] , Board, FinalBoard) :
stonesinhole (N, Board, Stones) ,
distributestones (Stone s , N, Board, Boardl) ,
move (Ns , Boardl , FinalBoard) .

move ([] , Boardl , Board2) : -
swap (Boardl , Board2) .

distributestones (Stone s , Hole, Board, FinalBoard) :
distributemyhole s (Stones, Hole , Board, Boardl , Stonesl) ,
distributeyourholes (Stonesl , Boardl , FinalBoard) .

distributemyholes (Stones, N, board (Hs , K , Ys , L) , board (Hsl , Kl , Ys , L) , Stonesl) :
S tones > 7 - N, ! ,
pickupanddistribute (N, Stones , Hs , Hsl) ,
Kl : = K + 1 ,
S tonesl : = Stones + N - 7 .

distributemyholes (Stones , N , board (Hs , K, Ys , L) , Board, O) :
pickupanddistribute (N, Stones , Hs , Hsl) ,
checkcapture (N, Stones , Hsl , Hs2 , Ys , Ysl, Pieces) ,
updatekalah (Pieces , N, Stones , K, Kl) ,
checkiffinished (board (Hs2 , Kl , Ysl , L) , Board) .

checkcapture (N, Stones , Hs , Hsl , Ys , Ysl , Pieces) :
FinishingHole : = N + Stone s ,
OppositeHole : = 7 - FinishingHole,
nthmember (OppositeHole , Ys , Y) ,
y > o , ! ,
nsubstitute (OppositeHole , Hs , O , Hs l) ,
nsubstitute (FinishingHole , Ys , 0 , Ys l) ,
P ieces : = Y + 1 .

checkcapture (N, Stones , Hs , Hs , Ys , Ys , O) : - ! .

checkiffinished (board (Hs, K, Ys , L) , board (Hs , K , Hs , Ll))
z ero (Hs) , ! ,
sumlist (Ys , YsSum) ,
Ll : = L + YsSum .

checkiffinished (board (Hs , K , Ys , L) , board (Ys , Kl , Ys , L))
zero (Ys) , ! ,
sumlist (Hs , HsSum) ,
Kl : = K + HsSum .

checkiffinished (Board, Board) : - ! .

updatekalah (O , Stones , N, K, K) :
Stones < 7 - N , ! .

updatekalah (O , Stones , N, K , Kl) :
Stones = : = 7 - N, ! ,

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 155

Kl : = K + 1 .
updatekalah (Pieces , Stone s , N , K , Kl) : -

Pieces > 0 , ! ,
Kl : = K + Pieces .

distributeyourholes (0 , Board, Board) : - ! .
distributeyourholes (Stones , board (Hs , K, Ys , L) , board (Hs , K , Ysl , L)) : -

1 <= Stones ,
Stones <= 6 ,
non zero (Hs) , ! ,
distribute (Stones , Ys , Ysl) .

distributeyourholes (Stones , board (Hs , K, Ys , L) , board (Hs , K, Ysl , L)) :
Stones > 6 , ! ,
distribute (6 , Ys , Ysl) ,
Stonesl : = Stones - 6 ,
distributestones (Stonesl , l , board (Hs , K, Ysl , L) , Board) .

distributeyourholes (Stones , board (Hs , K, Ys , L) , board (Hs , K, Hs, Ll)) :
zero (Hs) , ! ,
sumlist (Ys , YsSum) ,
Ll : = Stones + YsSum + L .

pickupanddistribute (l , N , [H I Hs] , [0 I Hs l]) :
! , distribute (N, Hs, Hsl) .

pickupanddistribute (K, N, [H I Hs] , [0 I Hs l]) :
K > 1 , ! ,
Kl : = K - 1 ,
pickupanddistribute (Kl , N , H s , Hsl) .

distribute (0 , Hs , Hs) : - ! .
distribute (N, [H i Hs] , (Hl l Hsl]) :

N > 0 , ! ,
Nl : = N - 1 ,
Hl : = H + 1 ,
distribute (Nl , Hs , Hsl) .

distribute (N, [] , []) : - ! .

value (board (H , K , Y , L) , Value) :
Value : = K - L .

gameover (board (N, 0 , N , 0) , Player , draw) :
pieces (K) ,
N = : = 6 * K, ! .

gameover (board (H , K, Y, L) , Player, Player) :
pieces (N) ,
K > 6 * N, ! .

gameover (board (H , K, Y, L) , Player, Opponent) :
pieces (N) ,
L > 6 * N ,
nextplayer (Player, Opponent) .

announce (opponent) .
announce (computer) .
announce (draw) .

nthmember (N, [H I Hs] , K) :
N > 1 , ! ,
Nl : = N - 1 ,
nthmembe r (Nl , Hs , K) .

nthmembe r (l , [H I Hs] , H) .

nsubstitute (l , (X I Xs] , Y , [Y I Xs]) : - ! .
nsubstitute (N, (X I Xs] , Y, (X I Xs l]) : -

N > 1 , ! ,
Nl : = N -1 ,
nsubstitute (Nl , Xs , Y , Xsl) .

nextplayer (computer, opponent) .
nextplayer (opponent , computer) .

legal ([N I Ns]) : -
0 < N,
N < 7 ,
legal (Ns) .

legal ([l) .

genlegal ([N I Ns]) : -

156

member (N, [1 , 2 , 3 , 4 , 5 , 6]) ,
genlegal (Ns) .

genlegal ([]) .

swap (board (Hs , K, Ys , L) , board (Ys , L , Hs , K)) .

displaygame (Position, computer) : -
show (Position) .

displaygame (Position, opponent) :
swap (Position , Positionl) ,
show (Positionl) .

show (board (H , K , Y , L)) :
reverse (H , Hr) ,
writestones (Hr) ,
writekalahs (K, L) ,
writestones (Y) .

writestones (H) :
displayholes (H) .

displayholes ([H I Hs J) : -
writepile (H) ,
displayholes (Hs) .

displayholes ([]) .

wri tep ile (N) : -
N < 1 0 ,
write (N) .

wri tep ile (N) : -
N > 10 ,
write (N) .

write (X) .

writekalahs (K, L) :
write (K) ,
write (L) .

zero ([0 , 0 , 0 , 0 , 0 , 0]) .
nonzero (Hs) : -

H s \== [0 , 0 , 0 , 0 , 0 , 0] .

reverse (L , K) :
rev (L , [] , K) .

rev ([J , L , L) .
rev ([H I T] , L , K) : -

rev (T , [H I L] , K) .

sumlist (I s , Sum) :
sumlist (Is , 0 , Sum) .

sumlist ([] , Sum, Sum) .
sumlist ([I I I s] , Temp, Sum) :

Templ : = Temp + 1 ,
sumlist (Is , Templ , Sum) .

lookahead (X) : - ground (X) .

initialize (X, Y, Z) : - ground (X) , ground (Y) , ground (Z) .

pieces (X) : - ground (X) .

A1.4. PRESS

The program press 1s an equation-solver program. This program is

taken from [STSH86] .

p (Z , Y, X) : - call (test_press (X, Y)) .

solve_equation (A*B=0 , X , Solution) : -

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 157

! 1

factoriz e (A*B , X , Factors - []) ,
remove duplicates (Factors , Factorsl) ,
solve_factors (Factorsl , X, Solution) .

solve equation (Equation , X, Solution) :
- single_occurrence (X, Equation) ,

! 1

position (X , Equation, [S ide l Position]) ,
maneuver sides (Side , Equation , Equationl) ,
isolate (Position , Equationl , Solution) .

solve equation (Lhs=Rhs , X, Solution) : -
- is_polynomial (Lhs , X) ,

is_polynomial (Rhs , X) ,
! 1

polynomial normal form (Lhs-Rhs , X, PolyForm) ,
solve_polynomialyquation (PolyForm, X, Solution) .

solve equation (Equation , X, Solution) : -
- offende rs (Equation , X , Offenders) ,

multiple (Offenders) ,
homogenize (Equation , X , Offenders , Equationl , Xl) ,

! ,
solve equation (Equationl , Xl , Solutionl) ,
solve=equation (Solutionl , X, Solution) .

factorize (A*B , X , Factors - Rest) : -
! ,

factori ze (A, X, Factors - Factorsl) ,
factori z e (B , X, Factorsl - Rest) .

factorize (C , X , [C I Factors] - Factors) :
subterm (X, C) , ! .

factorize (C , X , F actors - Factors) .

solve factors ([Factor l Factors] , X, Solution) :
- solve equation (Factor=0 , X, Solution) .

solve factors([Factor l F actors] , X, Solution) :
- solve_factors (Factors , X, Solution) .

single occurrence (Subterm, Term) : -
- occurrence (Subterm, Term, 1) .

maneuver sides (l , Lhs
maneuver=sides (2 , Lhs

Rhs , Lhs
Rhs , Rhs

Rhs) : - ! .
Lhs) : - ! .

isolate ([N I Position] , Equation, IsolatedEquation) :
isolax (N, Equation , Equationl) ,
isolate (Position, Equationl , IsolatedEquation) .

isolate ([] , Equation , Equation) .

isolax (l , Terml+Term2 Rhs , Terml Rhs-Term2) .
isolax (2 , Te rml+Term2 Rhs , Term2 Rhs-Terml) .

isolax (l , Terml-Term2 Rhs , Terml Rhs+Term2) .
isolax (2 , Terml-Term2 Rhs , Term2 Terml-Rhs) .

isolax (l , Terml*Term2 Rhs , Terml Rhs/Term2) : -
Term2 <> 0 .

isolax (2 , Terml*Term2 Rhs , Term2 Rhs/Terml) : -
Terml <> 0 .

isolax (l , Terml/Term2 Rhs , Terml Rhs*Term2) : -
Term2 <> 0 .

isolax (2 , Terml/Term2 Rhs , Term2 Terml/Rhs) : -
Rhs <> o .

isolax (l , TermlATerm2 = Rhs , Terml = Rhs A (Term2)) .
isolax (2 , Terml ATerm2 = Rhs , Term2 = log (base (Terml) , Rhs)) .
isolax (l , sin (U) V, U arcsin (V)) .
isolax (l , sin (U) V, U 180 - arcsin (V)) .
isolax (l , cos (U) V, U arccos (V)) .
isolax (l , cos (U) V, U arccos (V)) .

natural_number (N) : - N > O .

is_polynomial (X, X) : - ! .
is_polynomial (Term, X) : -

158

constant (Term) , ! .
is_polynomial (Terml+Term2 , X) : - ! ,

is_polynomial (Te rml , X) ,
is_polynomial (Term2 , X) .

is_polynomial (Terml-Term2 , X) : - ! ,
is_polynomial (Te rml , X) ,
is_polynomial (Te rm2 , X) .

is_polynomial (Te rml*Term2 , X) : - ! ,
is_polynomial (Te rml , X) ,
is_polynomial (Term2 , X) .

is_polynomial (Terml/Term2 , X) : - ! ,
is_polynomial (Terml , X) ,

constant (Term2) .
is_polynomial (Te rmAN, X) : - ! ,

natural number (N) ,
is_polynomial (Te rm, X) .

polynomial normal form (Polynomial , X, NormalForm) :
polynomial form (Polynomial , X, PolyForm) ,
remove_zero_terms (PolyForm, NormalForm) .

polynomial form (X, X , [p (l , 1)]) .
polynomial form (XAN, X, [p (l , N)]) .

polynomial form (Terml+Term2 , X, PolyForm) : -
polynomial form (Terml , X, PolyForml) ,
polynomial-form (Term2 , X, PolyForm2) ,
add_polynomials (PolyForml , PolyForm2 , PolyForm) .

polynomial form (Terml-Term2 , X, PolyForm) : -
polynomial form (Terml , X, PolyForml) ,
polynomial-form (Term2 , X, PolyForm2) ,
subtract_polynomials (PolyForml , PolyForm2 , PolyForm) .

polynomial form (Terml*Term2 , X, PolyForm) : -
polynomial form (Terml , X, PolyForml) ,
polynomial-form (Term2 , X, PolyForm2) ,
multiply_polynomials (PolyForml , PolyForm2 , PolyForm) .

polynomial form (Te rmAN , X , PolyForm) : - ! ,
polynomial form (Term, X, PolyForml) ,
binomial (PolyForml , N , PolyForm) .

polynomial form (Term, X , [p (Term, O)]) :
fr;e_of (X, Term) , ! .

remove zero terms ([p (O , N) I Poly] , Polyl) : - ! ,
- remove zero terms (Poly, Polyl) .

remove zero terms ([p (C , N) I Poly] , [p (C , N) 1 Polyl]) : -
- C <> O , ! , remove zero terms (Poly, Polyl) .

remove_zero_terms ([l , []) . - -

add_polynomials ([] , Poly, Poly) : - ! .
add_polynomials (Poly, [] , Poly) : - ! .
add_polynomials ([p (Ai , Ni) 1 Polyl] , [p (Aj , N j) I Poly2] , [p (Ai , Ni) I Pol y]) : -

Ni > Nj , ! , add_polynomials (Polyl , [p (Aj , Nj) I Poly2] , Poly) .
add_polynomials ([p (Ai , Ni) I Polyl] , [p (Aj , N j) 1 Poly2] , [p (A, Ni) 1 Pol y]) : -

Ni = : = Nj , ! , A : = Ai+Aj , add_polynomials (Polyl , Poly2 , Poly) .
add_polynomials ([p (Ai , Ni) I Polyl] , [p (Aj , Nj) 1 Poly2] , [p (Aj , N j) 1 Pol y]) : -

Ni < Nj , add_polynomials ([p (Ai , Ni) 1 Polyl] , Poly2 , Poly) .

subtract_polynomials (Polyl , Poly2 , Poly) : -
multiply single (Poly2 , p (l , O) , Poly3) ,
add_polynomials (Polyl , Poly3 , Poly) , ! .

multiply single ([p (C l , Nl) I Polyl] , p (C , N) , [p (C2 , N2) I Poly]) : -
C2 : = Cl*C, N2 : = Nl+N, multiply single (Polyl , p (C , N) , Poly) .

multiply_single ([] , Factor , []) . -

multiply_polynomials ([p (C , N) 1 Polyl] , Poly2 , Poly) :
multiply single (Poly2 , p (C , N) , Poly3) ,
multiplyyolynomials (Polyl , Poly2 , Poly4) ,

add_polynomials (Poly3 , Poly4 , Poly) .
multiply_polynomials ([] , P , []) .

binomial (Poly, l, Poly) .

solve polynomial equation (PolyEquation , X , X -B/A) : -
- linear (PolyEquation) , ! ,

pad (PolyEquation, [p (A, l) , p (B , 0)]) .
solve_polynomial_equation (PolyEquation, X, Solution) : -

Improving the genericity of an abstract interpretation algorithm through Object Oriented design 159

quadratic (PolyEquation) , ! ,
pad (PolyEquation, [p (A, 2) , p (B, 1) , P (C , 0)]) ,
discriminant (A, B , C , Discriminant) ,
root (X, A , B , C , Discriminant , Solution) .

discriminant (A, B , C , D) : - D : = B*B - 4*A*C .

root (X, A, B , C , 0 , X= -B/ (2*A)) .
root (X , A, B, C , D , X= (-B+sqrt (D)) / (2 *A)) : - D > O .
root (X ,A , B, C , D , X= (-B-sqrt (D)) / (2*A)) : - D > O .

pad ([p (C , N) I Poly] , [p (C , N) I Polyl]) : - ! ,
pad (Poly, Polyl) .

pad (Poly, [p (O , N) I Polyl]) :
pad (Poly, Polyl) .

pad ([] , []) .

linear ([p (Coeff, 1) 1 Pol y]) .
quadratic ([p (Coeff , 2) 1 Poly]) .

offenders (Equation , X, Offenders) :
parse ([Equation] , X, Offendersl) ,
remove_duplicates (Offendersl , Offenders) .

homogenize (Equation , X, Offenders , Equationl , Xl) :
reduced term (X, Offenders, Type , Xl) ,
rewrite(Offenders , Type , Xl , Substitutions) ,
substitute (Equation, Substitutions , Equationl) .

reduced term (X , Offenders , Type , Xl) :
-classify (Offenders , X, Type) ,

candidate (Type , Offenders , X, Xl) .

classify (Offenders , X, exponential) :
exponential_offenders (Offenders , X) .

exponential offenders ([AAB I Offs] , X) : -
fre; of (X, A) , subterm (X, B) , exponential offenders (Offs , X) .

exponential_offenders ([] , X) . -

candidate (exponential , Offenders , X, AAX) : -
base (Offenders , A) , polynomial_exponents (Offenders , X) .

base ([AAB I Offs] , A) : - base (Offs , A) .
base ([] , A) .

polynomial exponents ([AAB I Offs] , X) : -
isyolynomial (B, X) , polynomial_exponents (Offs , X) .

polynomial_exponents ([] , X) .

substitute (A+B , Subs , NewA+NewB) : - ! ,
substitute (A, Subs , NewA) , substitute (B, Subs , NewB) .

substitute (A*B, Subs , NewA*NewB) : - ! ,
substitute (A, Subs, NewA) , substitute (B, Subs , NewB) .

substitute (A-B, Subs , NewA-NewB) : - ! ,
substitute (A, Subs, NewA) , substitute (B, Subs , NewB) .

substitute (A=B , Subs , NewA=NewB) : - ! ,
substitute (A, Subs, NewA) , substitute (B , Subs , NewB) .

substitute (AAB , Subs , NewAAB) : - ! ,
intege r (B) , substitute (A, Subs, NewA) .

substitute (A, Subs , B) : -
member (A=B, Subs) , ! .

substitute (A, Subs , A) .

rewrite ([Off l Offs] , Type , Xl , [Off=Term l Rewrites]) :
homog axiom (Type , Off, Xl, Term) ,
rewrite (Offs, Type , Xl , Rewrites) .

rewrite ([] , Type , X, []) .

homog axiom (exponential, AA (N*X) , AAX, (AAX) AN) .
homog-axiom (exponential , AA (-X) , AAX, 1/ (AAX)) .
homog=axiom (exponential , AA (X+B) , AAX, AAB*AAX) .

subterm (Term, Term) .

160

subterm (Sub, Term) : -
compound (Term) , functor (Term, F , N) , subterm (N, Sub, Term) .

member (X, [X I Y)) .
member (X, [F I T)) :

member (X , T) .

subterm (N, Sub, Term) :
arg (N, Term, Arg) ,
subterm (Sub, Arg) .

subterm (N , Sub , Term) :
N > O ,
Nl : = N - 1 ,
subterm (Nl , Sub, Term) .

position (Term, Term, [)) : - ! .
position (Sub, Term, Path) : -

compound (Term) , functor (Term, F , N) , position (N, Sub, Term, Path) , ! .

position (N, Sub, Term, [N I Path)) : -
arg (N, Term , Arg) , position (Sub, Arg, Path) .

position (N, Sub, Term, Path) : -
N > 1 , Nl : = N-1 , position (Nl, Sub , Term, Path) .

parse ([A+B J Y) , X , Ll) : - ! ,
par se ([A, B I Y) , X , Ll) .

parse ([A-B I Y) , X , Ll) : - ! ,
parse ([A, B I Y] , X, Ll) .

parse ([A=B I Y] , X , Ll) : - ! ,
par se ([A, B I Y] , X , Ll) .

parse ([A*B I Y] , X , Ll) : - ! ,
parse ([A, B I Y] , X , Ll) .

parse ([AAB J Y] , X, L) : -
integer (B) , ! , parse ([A I Y] , X , L) .

parse ([A I Y) , X, L) : -
free of (X , A) , ! ,

parse (Y, X , L) .
parse ([A I Y] , X , [A I L]) : -

subterm (X , A) , ! ,
parse (Y , X, L) .

parse ([] , X, []) .

free of (Subte rm, Term) : -
- occurrence (Subterm, Term, N) , N=O .

single_occurrence (Subterm, Term) .

occurrence (Term, Term , 1) : - ! .
occurrence (Sub, Term,N) : -

compound(Term) , ! , functor (Term, F , M) , occurrence (M, Sub, Term, O , N) .
occurrence (Sub, Term, O) .

occurrence (M, Sub , Term, Nl , N2) : -
M > O , ! , arg (M, Term, Arg) , occurrence (Sub, Arg, N) , N3 : = N+Nl ,
Ml : = M-1 , occurrence (Ml, Sub, Term, N3 , N2) .

occurrence (O , Sub , Term , N , N) .

multiple ([Xl , X2 J Xs]) .

remove duplicates ([) , []) .
remove-duplicates ([X I Xs] , Ys) : -

- member (X, Xs) , ! ,
remove duplicates (Xs , Ys) .

remove duplicates ([X I Xs) , [X I Ys]) :
- remove_duplicates (Xs , Ys) .

test__press (X, Y) : - equation (X, E , U) , solve_equation (E , U, Y) .

equation (X, Y, Z) : - ground (X) , ground (Y) , ground (Z) .

