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Object Oriented design for a Prolog abstract interpreter 

Albstract 

Abstract interpretation is a methodology to analyze programs stati
cally. Abstract interpretation of Prolog is currently a very attractive field of 
research. Because of this, many implementations are available for specific 
interpretations. This report proposes a design to improve the genericity of a 
Prolog abstract interpreter through object oriented techniques. The result is 
summed up in a C++ program able to juggle a multitude of abstract domains 
and algorithms. Moreover, this system is built to be extended in the future. 

Résum.é 

L'interprétation abstraite est une méthode d'analyse statique des 
programmes. L'interprétation abstraite de Prolog est actuellement un 
champs de recherche très actif. De ce fait, beaucoup d'implémentations 
sont disponibles pour des interprétations spécifiques. Ce mémoire propose 
un design pour augmenter la généricité d'un interpréteur abstrait de Prolog 
au moyen de techniques orientées objets. Le résultat consiste en un pro
gramme écrit en C++ capable de jongler avec une multitude de domaines 
abstraits et d'algorithmes. De plus, ce système est prévu pour être enrichi 
dans le futur. 
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ÏntroJuction 

The application field of logic programming is growing and is no 
longer lirnited to artificial intelligence. Declarative programrning attracts a 
large number of programmers through its natural power to express facts and 
the relations between them. 

However, this gain in expression has to be paid for by a loss of effi
ciency. Fortunately, static analysis, by means of abstract interpretation, 
provides an attractive tool to help the programmer in proving a program's 
properties and generating a more efficient compiled code. 

Abstract interpretation of logic programs has inspired many theoreti
cal works, as well as practical applications. Sorne of these ideas have been 
implemented but, due to these selective implementations, their focus has 
been limited to what is the current novelty. One regrets the loss of time and 
efficiency when switching from one to another to take advantage of each 
one's specificity. A lot of time is also wasted when re-coding common parts 
of the systems. Moreover, some smart combinations of abstract interpreta
tion algorithms could result in greater benefits than a series of lone execu
tions. 

The assignment is therefore to integrate some Prolog abstract inter
preters into a coherent global design, carried out under the supervision of 
Baudouin Le Charlier and Pascal Van Hentenryck. The aggregated system 
must improve the genericity of Prolog abstract interpretation by providing 
to the user a single interface to the different features. This design should 
also respect the criteria of handling ease and ability for future extensions. 

As the framework is made of different inter-operating components, a 
special attention should be given to their interfaces. The object oriented 
programrning paradigm, by providing opportunities of encapsulation and 
genericity, is a suitable foundation to achieve our objectives. 

The first part of this report focuses on a review of logic program
ming, abstract interpretation and object oriented programrning. It is fol
lowed by the core section where the design of the different components is 
exposed. Finally, the results of the work are presented and evaluated. 
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This first part has the purpose of familiarizing the reader with the 
core concepts present in this report. As the target language of the static 
analysis is Prolog, we first review what logic programming is. Secondly, the 
properties of Prolog programs are deduced from abstract interpretation; we 
thus explain this concept as well as general fixpoint computation algorithms. 
Finally, while genericity is achieved by an object oriented paradigm and the 
code is implemented in C++, we tackle these notions. 

We tried to find a balance between completeness and comprehensi
bility. We illustrate each subject with several examples. 
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1. PROLOG AND LOGIC PROGRAMMING 

This introduction to Prolog and logic programming is there to insure 

that we share the same basic knowledge. We expose the key concepts of 

logic programming and broaden them to the Prolog language. We thus ex

plain the main Prolog data objects and how it manipulates them to achieve 

the computation of a pro gram. 

Contents of this chapter: 

1.1. LOGIC PROGRAMMING AND THE PROLOG ACHIEVEMENT 18 

1.2. PROLOG ABSTRACT SYNTAX 19 

1.3. PROLOG EXECUTION MODEL 20 

1.4. EXAMPLE 22 

1.5. THE CUT SYSTEM PREDICA TE 23 

1.6. SUBSTITUTIONS 24 

1.6.1. CONCRETE SUBSTITUTIONS 24 

1.6.2. SEQUENCE OF SUBSTITUTIONS 24 

1.7. REFERENCES 25 
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1.1. LOGIC PROGRAMMING AND THE PROLOG 

ACHIEVEMENT 

As opposed to logic thinking, which finds its origin in scientific rea
soning, Prolog is not so old; work on Prolog began in the early seventies. 
The first implementation of Prolog was released in 1972 by Alain 
Colmerauer and Phillippe Roussel. We think that Prolog has still not 
reached its maturity; that is to say its lack of efficiency in some cases pre
vents it from being accepted as a real software development tool by the in
dustry. 

As the name "Prolog1
" suggests, this language tries to be an imple

mentation of logic programming. Logic programming languages are an al
ternative to imperative programming languages such as C, Pascal, 
FORTRAN or COBOL. Logic programming languages are high-level and 
declarative languages. 

A programming language is a system of notation for describing com
putations. A useful programming language must therefore be suitable both 
for describing (i.e. , for human writers and readers of programs), and for 
computation (i.e. , for efficient implementation on computers). But human 
beings and computers are so different that it is difficult to find notational 
devices that are well suited to the capabilities of both. Languages that favor 
humans are termed high-level, and those oriented for machines low-level. 

Declarative programming describes what is computed and not how it 
is done. This kind of programming language tries to separate the logic from 
the control. The idea is to write a program as the specification of the solu
tion to the given problem and then provide that text to the computer, which 
will be able to find out the results2. 

In logic programming, the main idea is that deduction can be viewed 
as a form of computation, and that the statement P if Q and R and s 
can also be interpreted procedurally as "to salve P, salve Q and R and s". 
Under these assumptions, a logic program is a set of axioms, or rules, de
fining relations between abjects using a subset of first order logic; and a 
computation is a deduction of consequences of the pro gram. 

1 Prolog means "programmation en logique". 
2 We find the same idea in other programming paradigms such as functional program

ming. 
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More formally, a logic program is a finite set of clauses. A clause 
(or rule) is a logical sentence of the form A f- B1, . . .  , Bn (n � 0) and 
is read "Ais implied by the conjunction of the Bi". 

But Prolog is only an approximate implementation of the logic pro
gramming model on a sequential machine. ln effect, when deducing a logi
cal formula, there is no particular order between the rules or between the 
components of a rule. This non-determinism deduction has to be raised 
when implementing a programming language. A Prolog program is thus a 
logic program in which an order is defined both for the clauses and the at
oms of the clauses. 

1.2. PROLOG ABSTRACT SYNT AX 

Before going further, it is important for the reader to know the 
structure of a Prolog program as well as the objects allowed to build it. To 
have a common basis for the description of the examples, we give an ab
stract syntax of Prolog using the BNF notations3

• 

3 
Here is a summary recapitulating the BNF notations we used to describe Prolog ab-
stract syntax. 

<xxxxxxx> denotes the defined object or an object used to define another. 
[ <xxxxxxx> J indicates that <xxxxxxx> is optional. 
{<xxxxxxx>} means that <xxxxxxx> can be repeated n times (0 :a:; n :a:; +oc), 

denotes the disjunction, 
· · = is used to defined an object. 
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<Program>: := { <Procedure> } 
<Procedure>: := { <Clause> } (clauses have the same name) 
<Clause>::= <Procedure_head> [:- <Goal>]. 
<Procedure head>: := <Predicate> [ ( {<Term>} ) ] 
<Goal>::= { <Literal> 
<Literal>: := <Atom> 1 ,<Atom> 
<Atom>: := <Predicate> [ ( {<Term>} ) ] 

1 <Term>1 = <Term>2 
<Term>: := <Constant> 1 <Variable> 

1 <Predicate> [ ( {<Term>} ) ] 

<Constant> E est 
<Variable> E Var 

set of constants. 
set of variables. 

<Predicate> E Predn : set of n-ary predicates (n E N). 

Note also that in the following, constants and predicates are denoted 
by identifiers beginning with a lower-case letter while variables' identifiers 
begin with a capital letter. 

1.3. PROLOG EXECUTION MODEL 

Before discussing abstract interpretation of Prolog, we think it is im
portant to review the concrete execution of a Prolog query. A query is a 
conjunction of the form f- B1, ... , Bn ( n > O) where Bi are goals. 

In Prolog, binding of variables is made by a process called substitu
tion. A substitution can be viewed as an automorphism on the terms and 
can be depicted as a finite set of such associations where the first compo
nent of the couple is a variable and the second a term. For example: 

e = {Xi/t1, ... , Xn/tn} 

is a substitution and the term se denotes the result of simultaneously re
placing in the term s each occurrence of the variable Xi by ti, The term se 
is called an instance of s. 

A computation of a Prolog pro gram P, given a query Q, returns a set 
of substitutions possibly empty in which for each substitution e there is a 
clause c in P such as Qe f- c. 

The key concept in Prolog is the notion of unification. Unifying two 
terms is finding a substitution which, if applied to both of them, makes them 
syntactically identical. If such a substitution exists then it is called the uni
fier and the two terms are said to be unifiable. For example, the terms 
f (X, g (Y)) and f (a, Z) are unifiable by the unifier e = {X/a, 
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Z/ g (Y) } • On the other hand, the terms f (X, g (Y)) and f ( z ,  h (W) ) are 
not. 

As explained earlier, the execution of a Prolog program is totally 
deterministic and there is thus an order for evaluating the clauses and the 
goals. When solving a goal (i.e. , a query or an atom of a clause), the first 
literai to be solved is the leftmost one and then the next until the empty lit
erai is reached. Given a literai to solve, the first clause whose head unifies 
with it is chosen and then the next until there are no more clauses satisfying 
the unification. When that happens, the execution backtracks to the last lit
erai chosen, i.e. , asks the last literai if it can produce another solution. 

Fig. 1- 1 shows an example of backtracking for the Prolog program: 

<fail> 

Fig. 1-1 : Backtracking. 

The literai a1 produces a first solution 01 and suspends its execution 
to let the literai a2 compute. Given the input substitution 01, the literai a2 
produces a solution 02 and suspends. The control is given to the literai a3 
which is unable to produce a result for that input. The execution then 
backtracks and gives the control to a2. This last produces a second solution 
03 which, given to a3, permits it to generate two final solutions: 04 and 0s. 
After the failure of a3, the execution backtracks again just to notice that a2  
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has nothing more to produce, and so backtracks one more time to gives the 

control to a1. This literal produces a second solution 06 which is forwarded 

to a2 (a new execution of this literal is thus started). This leads finally to a 

solution 0a. After a few more backtrackings, the execution of the program 

terminates when the literal a1 fails. 

To sum up, the solutions of this pro gram are 04, 0s and 0a. 

1.4. EXAMPLE 

To clarify all the notions explained in this section, here is a small ex

ample. Let us consider the relation existing between two lists Ll and L2 
and a third one LR which is their concatenation. We can express it 

LR = Ll <>  L2 , 

where <> denotes the list concatenation, or 

append (Ll , L2 , LR) . 

U sing the first order predicate logic and normalizing the formula in a dis

junction of conjunctions, we can write it4 

(Ll = [ )  /\ L2 = LR) v (Ll = [ H I T] /\ LR = [ H I R] /\ 
append (T , L2 , R)). 

where I denotes the addition of a first element in a list. 

The associated Prolog pro gram could be: 

append ( [] , L2 , L2) . 
append ( [ H I T], L2 , [ H I R]):- append (T , L2 , R). 

The execution of the query f- append ( [ a ,  b J , [ c ,  d J , LR) is now de

picted in Fig. 1 -2. The number on the arrows denotes the number of the 

clause and the unifying substitution is indicated when successful. Note also 

that at each recursive call, the variables are renamed to avoid conflict. 

4 Note that the quantifiers are omitted. 
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9, = { [ ]  / [ ]  ' 

� append ( [a ,  b ] , [ c ,  d] , LR) 
71 #2 

/ 1
0, = { H1/a,  T1 / [b] , L2j [c, d] , LR/ [ H, I R, ] } 

fail � append ( [b] , [ c, d] , R1 ) 

�
#2 

/ 1
02 = { H2/b, T2/ [ ] , L22/ [ c , d] , R1/ [H2 I Ra l } 

fail  � append ( [ ] , [ c , d] , R2 ) 

� #2 

123 / [ c , d] , R
a� l 

<empty> fail 

Fig. 1-2 . :  Execution of append ( [a ,  b] , [ c, d] , LR) . 

The solution to the query is given by 0 which is the composition
5 

of substi

tutions 01 , 02 and 03 restricted to the variables present in the query. The re

sulting substitution 0 tells us that LR = [ a ,  b ,  c ,  d] . 

1.5. THE CUT SYSTEM PREDICATE 

We do not want to get into the subtleties of Prolog but we think it is 

important to explain briefly what the eut system predicate is (noted ! ) .  This 

predicate affects the procedural behavior of Prolog deduction. When exe

cuted, a eut has two effects: 

when the execution backtracks, it will not go before this literal; 

the next clauses of the current procedure will not be tried. 

Let us illustrate the eut on the following example. We define the 

Prolog program min/  3, which computes z as the minimum of x and Y, as: 

min (X, Y, Z) :- X �  Y, Z Y .  
min (X, Y, Z) :- Y �  X, Z = X .  

The result of the query min ( 5, 5, z ) gives two times the same sub

stitution: { z / 5 } .  

We modify the program by adding a eut in the first clause: 

5 Because of the functional definition of the substitution, the composition here can be 
the usual functional composition. 
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min (X, Y, Z):- X �  Y, ! ,  Z = Y .  
min (X, Y, Z) :- Y �  X, Z = X .  

Now the result of the query min ( 5, 5, z )  with this modified pro
gram gives only one substitution { z / 5 } ;  the second clause is not tried be
cause a eut has been executed in the first clause. 

1 .6 .  SUBSTITUTIONS 

We must now give a more formal definition of the Prolog result of a 
computation, that is to say the substitutions. We first define the substitution 
in itself, and then how Prolog handles it as a result. 

1 .6 . 1 . CONCRETE SUBSTITUTIONS 

Substitutions are one of the main objects of the Prolog concrete se
mantics. A concrete substitution s is a fmite set es (possibly empty) of the 
form 

{ Xi/ t 1, , , . , Xn/ t n } , 

where each Xi is a variable, each t i  is a term distinct from Xi and the vari
ables X1, . . .  , Xn are distinct. Its domain dom ( S ) is D = { X1, . . .  , Xn } . 

1 .6.2. SEQUENCE OF SUBSTITUTIONS 

In general, a literai may fail or produce one or several solutions. 
Thus a clause or a procedure may produce several solutions. 

For a given input substitution s and predicate p, the execution of a 
program produces a sequence of substitutions <S1, . . .  , Sn>. This is de
noted by <S, p> ➔ <S1, . . •  , Sn>, Moreover, the execution is described 
by attaching a sequence of substitutions to each program point of the proce
dure. 

To sum up, a Prolog procedure may either: 
terminate after producing a fmite number of solutions; 
produce an infinite number of solutions; 
enter an infinite loop after producing a finite number solutions. 

As a consequence, a Prolog program could produce any of the se
quences of substitutions depicted in Table 1-1. 
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Type representation example of such a query 

empty <>  f- append ( [ a, b] , X, [c, I Y]) 

finite < S 1 ,  . . .  , Sn> f- append (X, Y, [ a, b, c]) 

infinite <S1 , . . .  , S i ,  . . .  > f- append (X, [], Y) 

incomplete <S1 , . . .  , S i ,  .1> f- append (X, X, X) 

Table 1-1 :  Sequences of substitutions' typology. 

The empty sequence is only a particular case of finite sequence. 

1 .  7. REFERENCES 

[BY95/9] BYTE, A Brief History of Programming Languages , September 1995 . 

[LEC2Ll ]  LE CHARLIER B. ,  lecture notes: Logic programming, 2° licence, 
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[TEN] TENNENT R. D. , Principles of Programming languages, Prentice 

Hall. 
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2. ABSTRACT INTERPRETATION 

The abstract interpretation algorithm is the core engine of our proj
ect. So we think that the time has corne to abstract the concrete. In this 
chapter, we explain the notions of static analysis and abstract interpretation 
in general. The concepts of fixpoint, fixpoint computation and abstract do
mains are exposed. We then particularize these concepts to the specific case 
of Prolog. Finally, we consider some benefits of Prolog abstract interpreta
tion. 

Sections 2. 1 and 2.2 of this chapter are based on [LECH91] and 
[LEVA94], respectively. 
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2.1. STATIC ANALYSIS AND ABSTRACT INTERPRETATION 

2.1 . 1 . I NTRODUCTION 

The basic idea behind abstract interpretation is to approximate pro

gram properties by using an abstract domain instead of the actual domain of 

computation. 

For instance, the actual domain consisting of the integers can be re

placed by the abstract domain { - , O , + }  representing the set of negative 

integers, zero, and the set of positive integers. This way, properties of the 

sign of an expression can be found without actually computing this expres

sion. The basic operations of the language and/or its semantics can then be 

associated with operations on the abstract domain which approximate them 

in a consistent manner (for instance the addition has to be redefined on the 

set { - , o ,  + }  ). 

2.1 .2. R EVIEW 

We now introduce some definitions that are useful for the rest of this 

section. 

Relation: a relation R on a set s is a subset sxs . As we prefer to use the 

infix notation, we write xRy for ( x ,  y ) E R. 

Partial order: a relation R on a set s is partial order if it respects the 

following properties: 

1 .  reflexivity: V x E s ,  xRx; 

2. anti-symmetry: V x ,  y E s ,  xRy A yRx ⇒ x = y; 

3. transitivity: V x ,  y ,  z E S ,  xRy /\ yRz ⇒ xRz .  

Upper bound: Let s be a set with a partial order s; then x E s is an 

upper bound of a subset u ç s if u ::; x V u E u. 

Least upper bound (lub for short) : Let s be a set with a partial order s; 

then x E s is the least upper bound of a subset u ç s if x is an upper 

bound of u and, for all upper bounds x '  of u, we have x ::; x ' . 

If it exists, the least upper bound of a set is unique. 

Lower bound: Let s be a set with a partial order s; then x E s is an 

lower bound of a subset u ç s if x ::; u V u E u.  

- Greatest lower bound (glb for short) : Let s be a set with a partial order 

s; then x E s is the greatest lower bound of a subset u ç s if x is a 

lower bound of u and, for all lower bounds x '  of u, we have x '  ::; x. 

If it exists, the greatest lower bound of a set is unique. 
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Chain: a chain of the partial order ( s ,  :s; )  is a finite increasing sequence 
Xo ::,; X1 ::,; , , , :s; Xi :s; , , , , 
Complete partial order (cpo for short): the partial order ( s ,  ::; )  is a 
complete partial order if the set s owns a minimal element, named bot
tom and denoted ..ls, and if any chain xo :s; x1 :s; . . . :s; Xi :s; . • . of s 
has a least upper bound denoted u�=Ox i . 

Lattice: a lattice is a partially ordered set s in which any two elements x i 

and Xj have a least upper bound and a greatest lower bound in S .  
Complete lattice: a lattice L is a complete lattice if  lub (U) and glb (U } 
exist for every subset u ç L. 
The Fig. 2-1 is an example of a complete lattice. 
Monotonie: Let L1, L2 be complete lattices and T :  L1 ➔ L2 be a map
ping. T is monotonie iff T ( x )  :s; T ( y }  whenever x :s; y, V x E L1 
and y E L2. 
Concretization function: this fonction maps the abstract properties to 
the concrete values 
Cc : AS ➔ y:, (CS) 

a ➔  {c: c verifies a} 
- Abstraction function: this fonction maps the concrete values to the ab

stract properties 
Abs: CS ➔ AS 

C ➔ a a is an abstraction of c . 

2.1 .3.  MATHE MATICAL BACKGROUND 

2.1 .3 .1 . CONCRETE COMPUTATION 

We denote D the domain of values handled by a language we want to 
analyze by means of abstract interpretation. In general, D has a complex 
structure to take into account the different types of the language: scalars, 
structured objects, files . . .  We assume that D is unstructured; this does not 
change the nature of results but simplifies the notations. Note that we will 
make other simplifications without ever mentioning them. As we will see 
later, all this can be extended to the case of actual languages (Prolog of 
course) but not without complications. 
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Suppose we want to analyze the following procedure6 of our lan
guage. 

f (x) if X > 1 0 0  
then x - 1 0  
else f ( f ( x + 1 1) ) . 

This function7 computes values from z to z (the set of integers). We are 
thus interested in some properties of the function computed by the proce
dure and an interesting one is which values could take the variables at dif
ferent points of the execution. 

To capture such multiple information, we have to replace individual 
values of D by sets of values; that is to say elements of P ( D )  . This set is 
denoted c (for concrete domain, of all the possible properties). The proce
dure computing over D can now be replaced by a procedure computing over 
c (x denotes a set of integers): 

f (X) = {x - 1 0: X >  1 0 0  A X E  X} U 
f (f ( {X + 1 1: X ::;;  1 0 0  A X E  X} )} . (1) 

Basic operations on individual values can generally be replaced by opera
tions handling sets of values. Procedures modified this way compute the set 
of possible results corresponding to the set of possible inputs. Actually, 
those modified procedures are not useful for two reasons. The first reason 
leads us to the notion of abstract domain and the second to the notion of the 
least fixpoint of a transformation. 

2.1 .3.2. ABSTRACT DOMAINS 

Not all sets of values are workable; it is, moreover, theoretically im
possible. The concrete domain c is thus replaced by an abstract domain A 

conserving only some elements of c such that any element of c can be ap
proximated by an element of A. 

Technically, it is often demanded that A be a complete lattice or a 
complete partial order and that two monotonie functions Abs: c ➔ A and 
Cc: A ➔ c exist and verify the two following conditions: 

V c E C: Cc (Abs (c} } � c; 

V a E A: Abs (Cc (a} } a. 

6 We use functional notations. 
7 This fonction is called the "91 -function" .  
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That is to say, the abstraction fonction Abs associates each set of values 
with its best approximation and the concretization fonction Cc associates 
each element of A with the set of values it represents. 

A simple way to design an abstract domain is to define a partition 
{ S1, . . .  , Sn} of C, an arbitrary set A = { a1, . . .  , an} and to define 
the concretization fonction Cc: A ➔ P (C), by 

1 ::;  i ::;  n .  

We call these abstract domains flat domains since their elements are not 
comparable. 

An example of such a domain is the classical domain for sign analysis 
defined as: 

C = z,  
A =  { - , 0 , + } ,  

Cc ( -) { i I i < 0 } , 
Cc (0) 
Cc (+) 

{ 0 } ' 

{i I i > 0 } . 

We can complete a fiat domain such as each pair of abstract values has an 
upper bound. The ordering is introduced by the concretization relation. 
Note that it is not absolutely required to have a unique least upper bound, 
although this additional requirement is natural. 

Once upper bound has been added, one may remove some original 
elements because they can be approximated by one of the upper bounds. 
The idea is to keep only elements that bring "interesting" information. 
Hence there are many ways to complete a fiat domain A. 

The most complete is -:P ( A )  with Cc: P ( A )  ➔ -:P ( c) defined by 

Such a completed domain is called a power set domain. Obviously if n is 
the number of elements of A, -:P (A )  contains 2 n elements. Therefore power 
set domains can only be used for small values of n.  

An other systematic way to complete a fiat domain is to only add one 
"top" element T with Cc (T) = c. Notice that { T }  is itself a completed 
(albeit not very interesting) domain. 
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The power set domain for sign analysis is defined as: 

C = Z, 
A =  { � , - , o , + , s , * , � , T} , 

Cc (�) { } , 
Cc (-) {i I i < O } , 
Cc ( 0) { 0 } , 
Cc ( + )  { i I i > 0 }  , 
Cc (S )  { i I i S O } , 

Cc (*) 
Cc (�) 

{i 
{i 

i * 0 } , 
i � 0 } , 

The Fig. 2-1 depicts the order between elements in a Hasse diagram. 
A Hasse diagram is made up of nodes and edges in such a way that there is 
an edge between nodes a and b iff a s b and there is no c such that a s c 
and c s b. 

Fig. 2 -1 :  Hasse diagramfor sign analysis . 

In the procedure ( 1), c = P (Z) . An example of abstract domain A 

would be the set x of intervals. An interval [ i . .  s], where i, s E z u 
{ -00 , +00 } , is the set of integers e such that i s e :=;; s. The set n is a 
complete lattice for the set inclusion ç. { } is the smallest element (bottom) 
and [ -00 • •  +00 ] the greatest (top). Ab s ( x )  is the interval 
[ min ( X )  . .  max ( X ) ] .  Cc ( X )  is the inclusion of x in P (Z) . 

It is possible to rewrite the former procedure so that it maps an in
terval of inputs to an interval of results. 
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f (  [ i . . s]) = [max (91,  i - 1 0) . .  (s - 1 0)] Q 
f (f ( [ (i + l l) . .  min (s + l l, 1 1 1)])) . (2) 

where Q approximates the union of two intervals by the smallest interval 
which includes both of them. From this definition we try to approximate the 
set of values produced by the fonction. We get the two following equa
tions: 

f ( [ -oo , , +oo] } = [ 9 1 . , +oo] Q f ( f ( [ -oo , , 1 1 1  ] } } , 
f ( [ -oo . . 1 1 1  ] ) = [ 9 1  . . 1 0 1  ] Q f ( f ( [ -oo . . 1 1 1  ] ) } . 

These equations demonstrate that the usual computation method is impossi
ble: it generates an infinite loop since f ( [ -oo . .  1 1 1] } recursively triggers 
off the computation of itself. We just pointed out the second difficulty. 
Computation over abstract domains cannot blindly simulate computation 
over the standard domain. We separate the difficulty into two levels. First, 
we give an accurate (mathematical) meaning to the procedures such as ( 1) 
and (2), thanks to the notion of the least fixpoint of monotonie transforma
tion. We then expose the problem of computing least fixpoints. 

2.1 .3 .3 .  LEAST FIXPOINT OF A TRANSFORMATION 

We reason over the abstract domain of intervals u, but the same 
process could be applied over any abstract domain. Let x ➔ x be the set of 
monotonie and continuous fonctions from x to x; that is to say, such that: 
- V I, I '  E )[: I ç; I '  ⇒ f (I }  ç; f (I ' } ;  

- for all finite series of embedded intervals I 1  ç; I 2  ç; 
we have 

These conditions express that f is really an abstraction of a fonction from z 
to z. The set J[ ➔ n can be endowed with an order: 

f ::;; g iff V I E H: f ( I }  ç; g ( I }  . 

This order relation means that the procedure corresponding to g produces at 
least as many results as the procedure corresponding to f.  The definition 
(2) can be replaced by a transformation of fonction: 

'C :  ( X  ➔ X }  ➔ ( X  ➔ U }  • 

with 

('C f }  ( [i . .  s]} [max (91 ,  i - 1 0) . .  (s - 1 0)] Q 
f ( f ( [ ( i + 1 1  } . . min ( s + 1 1  , 1 1 1  } ] } } . 
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Hence, the equation (2) simply means that the fonction f is a fixpoint of the 

transformation 't; that is to say: 

't (f) = f .  

It is possible to demonstrate the following results. 

Provided that the concrete and abstract domains verify the formerly 

mentioned properties, every fixpoint of 't gives a correct approximation 

of the properties of the associated procedure. 

The transformation 't has necessarily a least fixpoint (the most accurate). 

The least fixpoint of 't is equal to the limit of an increasing series of ap

proximations :  

where fa ( I )  = { } V I E K ,  

fk+l = 't (fk) V k 2:: o .  

In our example, we can verify after a drudgery computation that 

fk ( [i . .  s]) = [ max (91, i-1 0) . .  max (91, s-10)] 
{ } 

if s 2:: l (k) 
if s <  l (k) 

with 

1 (k) +oo if k 0,  
1 0 2  - k if 1 ::;; k ::;; 1 2 ,  
2 2 2  - l lk if k 2:: 1 3 . 

As 1 (k) tends to -00 when k tends to +00 , the series of functions converges 

to the function f such that 

f ( [ i .  . s] ) = [ max ( 9 1, i-1 0)  . .  max ( 9 1 ,  s-1 0) ] . ( 3) 

This function is the least fixpoint of the transformation 't in our example. 

The interest of such a function is that the computation of a single value 

gives us information about an infinity of executions of the original proce
dure (from z to z) . We have for example 

f ( [ -oo . .  +oo ) } = [ 9 1  . .  +oo ) , 

which indicates that all the values produced by the standard procedure are 

greater or equal to 91. We can also compute that 

f ( [ -00 • • 1 0  1 ] ) = { 9 1  } , 
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which means that for all input smaller or equal to 1 O 1 ,  the procedure returns 
9 1  or does not terrninate8

• 

However, the way we proceeded to compute these results is not sat
isfactory for an automated processing: the deterrnination of an explicit form 
of the fixpoint such as (3) can only be realized by a specific reasoning. In
stead, we must find methods of fixpoint computation based only on the re
cursive definition (2). It is the purpose of the next section. 

2.1 .4. G ENERAL ALGORITH MS OF FIXPOINT COMPUTATION 

Fixpoint computation of some transformations associated with pro
grams according to an abstract semantic is close to computations of recur
rent procedures in a prograrnrning language. There are however two major 
differences: 

the computation must terrninate in all possible cases; 
- it is generally sufficient to compute an approximation of the fixpoint9

• 

2.1 .4.1 . BOTTOM-UP AND TOP-DOWN EVALUATION OF RECURSIVE 
DEFINITIONS 

Fixpoint computation algorithms are a generalization of the methods 
used to compute the values of fonctions defined recursively. That is why we 
first expose these methods before generalizing them for abstract interpreta
tion. Let us consider the following recursive definition: 

f (x )  i f  X E { Q ,  1 }  
then x 
else f (x - 1) + f (x - 2). 

To compute a particular value f (v), we can first evaluate the fonc
tion bottom-up, starting with "small values" o and 1 for which the value of f 
is irnrnediate, and then by progressively propagating these results to 2 ,  3 ,  4 ,  
. . .  until we obtain the desired value. If we want to compute f ( 4 )  ; it looks 
like this: 

8 In effect, our abstract domain does not deal with the issue of termination. 
9 Note that the fixpoint itself, in general , gives only an approximation of the actual 

properties. 
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f (0 )  0 

f (l )  1 

f (2 )  f ( l )  + f ( 0 )  1 + 0 1 

f (3 )  f (2 )  + f ( 1 ) 1 + 1 2 

f ( 4 )  f (3 )  + f (2 )  2 + 1 3 

We can also evaluate the fonction top-down, starting from the ex
pression f (v )  to compute, and by further developing it until we obtain an 
expression completely computable. Again, to compute f ( 4 ) , it looks like: 

f ( 4 ) = f (3 )  + f (2 )  

( f ( 2 ) + f ( l ) ) + ( f ( l ) + f (0 ) ) 

( (f ( l )  + f (O )  + f (l ) ) + ( f ( l ) + f ( 0 ) ) 

( ( 1  + 0 )  + 1 ) + ( 1  + 0 )  

3 

The bottom-up method seems to be more efficient on the example 
above. However, it is difficult to systematize it because we need to find the 
right series of values to compute so that ail the needed values are already 
computed. It is not always possible. The top-down method has the advan
tage of being systematic. Unfortunately, it is very inefficient because the 
same value can often be reevaluated. Above, f ( 2 )  is computed twice. 
Generally, top-down computation is exponential in time whereas bottom-up 
is linear. 

Fortunately, the top-down method can be improved to be generally 
as efficient as the bottom-up method. This improvement, know as memo
ization, is enhanced for the abstract interpretation algorithms. The idea is to 
record in a table the values already computed in order to prevent them from 
being reevaluated. Our example, using this improvement, gives: 

f ( 4 )  f (3 )  + f ( 2 )  

( f ( 2 ) + f ( l ) ) + f (2 ) 

( (f ( l )  + f (0 ) ) + f (l ) ) + f (2 )  

( ( 1 + f ( 0 ) ) + f ( l ) ) + f (2 )  { f ( l )  l } 

( ( 1 + 0) + f ( l ) ) + f ( 2 ) { f (0 )  0 }  

( 1  + f ( l ) ) + f ( 2 )  { f (2 )  l } 

2 + f ( 2 ) { f (3 )  2 }  

3 { f ( 4 )  3 } 

Now, this modified algorithm is linear since every expression f ( v ) is 
only evaluated once. 
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2. 1 .4.2. ABSTRACT INTERPRETATION ALGORITHMS 

The issue is to compute the least fixpoint of the abstract transforma
tion: 

'C :  ( A  ➔ A )  ➔ ( A  ➔ A )  . 

Remember that we want an algorithm able to compute f (a) for all 
abstract values a. 

A. Bottom-up algorithm 

The simplest way to compute such f (a) value can be done by a se
ries of approximations: 
- fo (a) = ..L V a E A, 

- fk+l = 'C ( fk )  V k � 0,  

- f = fn such that fn+l = fn . 

This bottom-up method demands that the domain A be finite10
• 

Moreover, the results produced by this algorithm are sometimes less accu
rate with regard to the top-down. 

B. Top-down algorithm 

The algorithm explained here is based on the top-down method and 
uses an enhanced memo-ization; we store intermediate and partial results of 
computation. We start with the recursive definition of the fixpoint and then 
try to recursively compute the value f (a) . During the computation, we 
keep an up-to-date table of values ai for which a recursive call has been al
ready initiated (whether terrninated or not) together with its associated 
lower approximation of f ( ai )  . When the same recursive call is reconsid
ered, it is not developed but its current approximation stored in the table is 
returned. At each end of a call, the content of the table is updated with the 
last value computed. As this later is generally an approximation (since the 
value in the table are so), we repeat the same computation until the result 
cannot be further improved (i.e., the result is stable) .  

Let us illustrate this top-down algorithm with the fixpoint computa
tion of the 91-function. We have to compute f ( [-00 • •  +00 ] ) for the trans
formation 

10 A widening can be use in the case of infinite domains. 
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('C f) ( [ i. .s]) = [ max (91 ,  i - 1 0) .. (s - 1 0)] lJ 
f ( f ( [ ( i + 1 1) .. min ( s + 1 1, 1 1 1) ] ) ) . 

Each time a recursive call is initiated, a value is added in the table with the 

associate current "approximated" result { } . Hence, when we start the com

putation, the approximated value of f ( [ -00 • •  +oo J ) in the table is { } . After 

the first iteration, we get 

f ( [ -oo , . +oo ] } = [ 91. . +oo ] /J f ( f ( [ -oo . . 1 1 1  ] } } . 

Thus a call for f ( [ -00 • •  1 1 1  J ) (whose current approximation is { } ) is ini

tiated. This call can be further developed in 

f ( [ -oo . . 1 1 1  ] ) = [ 9 1.  . 1 0 1 ] lJ f ( f ( [ -oo . . 1 1 1  ] ) ) . 

The same recursive call should be initiated but we instead pick up its current 

approximated value in the table (i.e. , { }  ); this would have otherwise en

tailed an infinite loop. So we get 

f ( [ -oo . . 1 1 1  ] } = [ 9 1. . +oo ] /J f ( { } } 

= [ 9 1.. +oo ] . 

The new result for this call is used to update the table for that entry and 

then the same computation is reconsidered just in case we could improve the 

current result due to the new information just obtained. 

f ( [ -oo . . 1 1 1  J ) = [ 9 1. . +oo J JJ f ( f ( [ -oo . . 1 1 1  J ) ) 

= [ 9 1. . +oo ] /J f ( [ 91.  . 1 0 1 ] } . 

This new iteration triggers off the computation of f ( [ 9 1  .. 1 O 1 J ) . Again, 

the same method is applied to compute the successive approximations of 

f ( [ 9 1  .. 1 O 1 J ) • Since it is quite long, it is not mentioned. The least fix

point computation finally stabilizes and terminates with the best possible re

sult 

f ( [ -oo . . +oo ] } = [ 9 1  . . +oo ] . 

This algorithm can be systematically implemented for any kind of 

programming language, provided it has been endowed with an abstract se

mantic allowing to associate with any program a transformation rc. This is 

theoretically always possible. 

C. Approximation, termination and acceleration of convergence 

The abstract domain J l  of intervals is infinite. With such a domain, 

the top-down algorithm can loop. This is the case if an infinity of different 
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calls are initiated. It is not the case if the same call is recursively repeated. 
This is avoided by the table. The previous example was not concerned with 
this eventuality but this is not always the case. To avoid such problems, we 
could limit ourselves to finite abstract domains but it is not always possible 
to find a better finite domain approximating the infinite domain we wish to 
use. A much cleverer approach consists of dynamically choosing those ap
proximations, according to the particular example. The idea is to replace 
the virtually infinite set of values being considered by a finite set which cov
ers them; that is to say we widen

1 1  it. The results obtained this way are gen
erally safe (or consistent) approximations of the fixpoint values. The use of 
these approximations, moreover, enables faster convergence. We can illus
trate this again with the computation of f ( [-00 • •  +00 ] ) • We first compute 

f ( [ -oo , , +oo ] } = [ 9 1  , , +oo ] /J f ( f ( [ -oo , , 1 1 1  ] } } , 

As [ -oo . . 1 1 1  ] ç [ -oo . • +oo ] ) , we can replace f ( [ -oo . . 1 1 1  ] ) by 
f ( [ -00 • •  +00 ]  ) (with, of course, the risk of losing accuracy); that gives us 

f ( [ -oo , , +oo ] } :: [ 9 1  , , +oo] /J f ( f ( [ -oo , , +oo ] } } 
_ [ 9 1 . , +oo] /J f ( { } ) 

_ [ 91 , , +oo] , 

When reconsidering the computation, we finally get 

f ( [ -oo , , +oo ] ) = [ 9 1 , .  +oo ] 
- [ 9 1 , , +oo] 
- [ 9 1 , , +oo] 
- [ 9 1 . .  +oo ] 
- [ 9 1 . , +oo ] , 

IJ 
IJ 
IJ 
IJ 

f ( f ( [ -oo , , +oo ] ) ) 
f ( [ 9 1 , , +00 ] )  

f ( [ -oo , , +oo ] ) 
[ 91 , , +oo ] 

The computation stops after two iterations with the best possible result, 
while the "exact" algorithm would have required lots of iterations. Our ex
ample is well tailored for the account. Unfortunately, it is possible to find 
less satisfying ones. Let us compute, for example, f ( [ -00 • •  1 O O] ) and re
place the recursive calls by a widened call. We get: 

f ( [ -oo . . 1 0  0 ] ) = { } /J f ( f ( [ -oo . . 1 1 1  ] ) ) 
f ( [ -oo . . 1 1 1  ] ) = [ 9 1  . . 1 0 1 ] IJ f ( f ( [ -oo . . 1 1 1  ] ) ) 

_ [ 9 1 . . 1 0 1] .  

11  This operation presupposes the existence of an underlying least upper bound fonction. 
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So, 

f ( [ -00 • • 1 0  0 ] ) = f ( [ 91  . . 1 0  1 ] ) 
_ f ( [ -oo • • 1 1 1  ] ) 
_ [ 9 1 . . 1 0 1 ] . 

The result is less accurate than previously but obtained much more quickly. 
The design of operations allowing the convergence to speed up without 
losing too much precision is an intricate task, depending heavily on the spe
cific abstract domain. 

D. Monovariant and polyvariant algorithms 

When computing an abstract interpretation, a decision must be made 
about keeping track of the input and output values. We can either store all 
values or "lump" them. The second case implies in general that the under
lying domain be complete. We respectively call them polyvariant and 
monovariant algorithms. 

In general, monovariant algorithms imply a loss of accuracy because 
of the upper bound operation. 

For instance, in the previous example, when computing 
f ( [ -00 • •  +00 ] ) , a polyvariant algorithm would keep track of two recursive 
calls, f ( [-00 • •  1 1 1 ] )  and f ( [9 1  . .  1 0 1 ] ). On the other hand, a 
monovariant algorithm would only remember f ( [ -00 • •  +oo ] ) . 

2.2. ABSTRACT INTERPRETATION OF PROLOG PROGRAMS 

2.2.1 . INTRODUCTION 

We now particularize the above notions to the case of the abstract 
interpretation of Prolog programs. 

In this section, we first explain the way we transform Prolog pro
grams to make them more convenient to handle. We then introduce a ty
pology for Prolog terms and the abstract operations needed for abstract in
terpretation. Finally, we discuss different types of abstract interpretation al
gorithms and consider the different benefits they bring. 

2.2.2. NORMALIZED PROGRAMS 

As we do not want to miss any operations, for example unification in 
the head, we have to normalize the input Prolog program before any other 
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processing. As we will see, a normalized program is also more convenient 
to handle. 

Given a Prolog program, we normalize it with the help of an ordered 
set of variables { X1 , . . .  , Xn , . . .  } . These variables are called pro gram 
variables. A normalized pro gram is a set of clauses 

where p ( X1 ,  . . .  , Xn) is called the head, and 11, . . .  , lr the body. If a 
clause con tains m variables, these variables are necessarily X1, . . .  , Xm. The 
literai in the body of the clause are of the form 

q ( Xu ,  . . .  , Xim) where Xu , . . .  , Xim are distinct variables; 
Xu = Xi2 with Xi1 -::/:. Xi2; 

Xu = f (Xi2 , . . .  , Xin) where f is a fonction of arity n-1 and Xi2 , 
. . .  , Xin are distinct variables. 

For instance, the following text of append/ 3 is the normalized ver
sion of the pro gram defined above: 

append (Xl , X2 , X3) :
Xl = [ ]  , 
X2 = X3 . 

append (Xl , X2 , X3) : -
Xl = [ X4 I X5 ] , 
X3 = [ X4 1 X6 ] , 
append ( X5 , X2 , X6) . 

The translation process from a raw Prolog program into its normal
ized version is automatic. The advantage of normalized programs is that an 
abstract substitution for a procedure p/n is always expressed in terms of 
variables X1, . . .  , Xn , This greatly simplifies all the traditional problems en
countered with renaming. 

2.2.3. I NSTANCIATION DEGREE OF A TERM ~ MODES 

In abstract interpretation, we are often interested in the instanciation 
level of a term. A term can be a constant, a variable or made of term(s) 
structured by the mean of a fonction. We now explore the groundness of 
the term. 

If a term contains only constants, it is called ground. On the other 
hand, if a term is only made of variables, its mode is called var. Between 
these two extremes, we can define several variations: 
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nor ground nor var: partially instanciated, 

ground or var: not partially instanciated, 

not ground, 

not var, 

any: any term. 

2.2.4. ABSTRACT OPERATIONS ON THE DOMAINS 

ln this section, we explain the abstract operations that are needed by 

the abstract interpretation algorithms to handle the substitutions and thus 

perform their job properly. We have two types of abstract operations:  some 

operations are abstract versions of concrete operations which are performed 

by a Prolog compiler to extract the semantic of a Prolog program, whereas 

the others are peculiar to the abstract interpretation algorithms. 

We define the following operations on the abstract domains: 

UNION ( 131, 132) : where 131 and P2 are abstract substitutions on the same 

domain; this operation returns an abstract substitution representing all 

the substitutions satisfying at least P1 or P2. It is used to compute the 

output of a procedure given the outputs for its clauses. More formally it 

is the least upper bound of the cpo' s elements P1 and P2. 

AI_ VAR ( p )  : where p is an abstract substitution on { X1, X2} ; this opera

tion returns the abstract substitution obtained from p by unifying vari

ables X1 and X2. 

AI FUNC ( 13, f )  : where p is an abstract substitution on { X1, . .. , Xn} 
and f is a predicate symbol of arity n-1 ;  this operation returns the ab

stract substitution obtained from p by unifying X1 and f ( X2, . . .  , Xn). 

EXTC ( c ,  p )  : where p is an abstract substitution on { X1, . . .  , Xn} and 

c is a clause containing variables { X1, . . . , Xm} (m 2:: n) ; this opera

tion returns the abstract substitution obtained by extending P to accom

modate the new free variables of the clause. It is used at the entry of a 

clause to include the variables in the body not present in the head. 

RESTRC ( c ,  p ) : where p is an abstract substitution on the clause vari

ables { X1, .. • , Xm} and { X1, . .. , Xn} are the head variables of 

clause c (m 2:: n); this operation returns the abstract substitution ob

tained by projecting P on variables { X1, . . . , Xn} . lt is used at the 

exit of a clause to restrict the substitution to the head variables only. 

RESTRG ( 1 ,  P) : where p is an abstract substitution on { X1, . .. , Xn} ,  
and l is a literai p (Xi1, . .. , Xim) or Xi1 = Xi2 or Xi1 = f ( Xi2, 
. . . , Xim); this operation returns the abstract substitution obtained by: 
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1. projecting P on ( Xi1 , . . .  , Xim ) obtaining P ' ; 
2. expressing p '  in terms of { X1 , . . .  , Xm } by mapping Xh to xk, 

It is used before the execution of a literai in the goal of a clause. The 
resulting abstract substitution is expressed in terms of { X1 , . . .  , Xm } ,  
as an input abstract substitution for p /n . 
EXTG ( 1 ,  P ,  p '  ) : where p is an abstract substitution on D = { X1 , 
Xn } ,  the variables of the clause where 1 appears, 1 is a literai 

p ( Xii , . . .  , Xim ) 
or Xii Xi2 

f ( Xi2 , . . .  , Xim ) with ( Xi1 , . . .  , Xim ) ç D 

. . .  , 

and p '  is an abstract substitution on ( X1 , . . .  , Xm ) representing the 
result of p ( X1 ,  . . .  , Xm ) P" where P"  = RESTRG ( 1 ,  P ) ; this opera
tion returns the abstract substitution obtained by instantiating 
(abstractly) p to take into account the result p '  of the literai 1 .  It is 
used after the execution of a literai to propagate the results of the literai 
to ail variables of the clause. 

2.2.5. ABSTRACT INTERPRETATION ALGORITHMS 

In this section, we discuss the engine of a Prolog abstract interpreta
tion algorithm: the computation of the least fixpoint. We explain how we 
keep track of the interesting results of the computation (i.e., the set of ab
stract tuples). Another important part of the conception of an abstract in
terpretation algorithm is to avoid redundant computations; this point is thus 
tackled too. After these discussions, the generic algorithms are exposed. A 
big part of this section is based on [LEV A94]. 

2.2.5.1 . ABSTRACT SEMANTICS 

The abstract semantics are defined in terms of abstract tuples. An 
abstract tuple is of the form: ( P1n , p, Pout )  where p is a predicate of arity n 
and P1n and Pout are abstract substitutions on variables X1 , . . .  , Xn, 

UD is the underlying domain of the program, i.e. , the set of pairs 
( P1n , p)  where p is a predicate symbol of arity n and P1n is an abstract sub
stitution on variables X1 , . . .  , Xn, 

Let us denote sat, a set of abstract tuples. There exists at most one 
Pout for each pair ( Pin , p )  such that ( P1n , p,  Pout l  and we indicate that sub

stitution by sat(P1n , p). A set of abstract tuples is endowed with a structure 
of cpo by defining: 
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.L = { (P , P , .Lo }  
(ASo ,  S }  } ; 

( p ,  p } e uo and is the smallest element in 

- sat S sat' a V (P , P }  E UD: sat (P , P }  S sat' (P , P } , 

where ASo is the set of abstract substitutions on the set of variables o 
{ X1 , . . .  , Xn} .  

The abstract semantics is defined as the least fixpoint of the trans
formation TSAT, depicted below (Fig. 2-2). Informally speaking, the fonc
tion Tp (P , P ,  sat} executes all clauses defining p on substitution P and 
takes the union of the results. The fonction Tc executes one clause by ex
tending the substitution, executing the body, and restricting the substitution. 
The fonction Tb executes the body of a procedure by considering each literal 
in turn. When the literal is a procedure call, a lookup in the sat is per
formed; otherwise the operations AI_ VAR or AI _FUNC are executed. Op
eration RESTRG is used before calling any literal and operation EXTG is per
formed after each call. 

TSAT (sat} = { (P , P , P2): (P , P }  E UD and P2 

Tp (p , p , sat} = UNION (P1 , , ,  . , Pn } 
where Pi = Tc (P , Ci , sat} , 

c1 , . . .  , en are the clauses of p .  

Tc (P , c , sat} = RESTRC (c , P2 }  
where P2 = Tb (EXTC (c , P }  , b , sat} , 

b is the body of c .  

Tb (P , <> , sat} = p .  
Tb (p , 1 . g , sat} = Tb (P3 , g , sat } 
where P3 = EXTG (l, P , P2 }  

P2 = sat (P1 , p }  if l is p ( . . .  } 
AI_ VAR (P1 } 
AI _FUNC (P1 } 

P1 = RESTRG (l, p } . 

if 
if 

l is 
l is 

Xi Xj 
Xi = f ( . . .  } 

Fig. 2-2 : The abstract semantics. 

2.2.5.2. MANIPULATION OF THE SET OF ABSTRACT TUPLES 

Mainly two operation need to be defined on the set of abstract tu
ples: the extend and adjust operations. Informally speaking, the EXTEND 
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operation is intended to extend a set of tuples with a new element while the 

AD JUST is intended to update the result of a pair ( p ,  p) . 

The two operations can be specified as follows, assuming that the 

domain of a set of abstract tuples sat,  denoted dom ( sat ) , is the set of 

pairs ( P , P )  for which there exists a P ' such that ( P , P , P ' ) E sat. 

EXTEND ( P ,  p, sat ) , given an abstract substitution p, a predicate symbol 

p, and a set of abstract tuples sat which does not contain ( P ,  p )  in its 

do main, returns a set of abstract tuples sa t ' containing ( p ,  p) in its 

do main. According to the implementation, the value sa  t ' ( p ,  p) can be 

defined as the least upper bound of all sa  t ( p ' , p) such that p ' ::; p or 

it can be defined as . .L 

AD JU s T ( p ,  p, p ' , sa t )  , where p ' represents a new result computed for 

the pair ( p ,  p ) , returns a sa t ' which is sa t updated with this new re

sult. Here, the ADJUST implementation depends upon the sat imple

mentation12. The minimal goal of this operation is to adjust the result of 

( P , P )  with P '  the following way: the value of sat ' (P , P )  is equal to 

lub ( P ' , sat ( P , P ) ) .  

2.2.5.3. OVERVIEW OF THE ABSTRACT INTERPRETATION ALGORITHM 

A brute-force approach to the generic abstract interpretation algo

rithm would be to compute the least fixpoint of TSAT entirely. We can eas

ily understand that such an approach would involve much unnecessary work. 

The purpose of the abstract interpretation algorithm is to converge 

toward a set of abstract tuples that includes ( Pin ,  p,  Pout )  E least fixpoint of 

TSAT but as few other elements as possible. The algorithm computes a se

ries of lower approximations sat o ,  . . .  , sat n such that sat i  < sat i+1 

and sat n contains ( Pin , p, Pout ) . The algorithm then moves from one set to 

another by selecting 

an element (a ,  q ) which is not present but needs to be computed, or 

an element (a ,  q) whose value sati  (a ,  q) can be improved because the 

values of some elements it depends upon have been updated. 

There are still many decisions to take into account, including the de

tection of termination and the choice of the elements to work on. 

lnformally, the algorithm works as follows. Given an initial pair 

( Pin , p), it executes the fonction T
p of the abstract semantics. At some 

12 For more information about these implementation see section 11 .6. 1 .  
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point, the computation may need the value of (ain , q )  which may not be 
defined or is just approxirnated at that stage of the computation. In this 
situation, the algorithm starts a new subcomputation to obtain the value of 
(ain , q) or a lower approximation of it. This computation is carried out in 
the same way as the primary computation except in the case where a value 
for ( Pin , p) is needed. In that case, instead of starting a new computation 
(that may generate an infinite loop), the algorithm simply looks up the cur
rent value of ( Pin , p). The execution of the initial pair ( Pin , p) is only re
sumed once the computation of (ain , q) is completed. Note that if the 
computation of (ain , q) has required the value of ( Pin , p) then its resulting 
substitution may only be approximated and hence (ain , q )  has to be recon
sidered if the value of < Pin , p )  is updated. In the algorithm, a dependency 
graph is used to detect when an element needs to be reconsidered. 

2.2.5.4. PROCEDURE CALL DEPENDENCIES 

The goal of the data structure described below is to avoid redundant 
computations during the abstract interpretation. 

Redundant computations may occur in a variety of situations. For 
instance, the value of a pair ( a, q) may have reached its definitive value 
(the value of (a, q) E least fixpoint of TSAT) and hence subsequent con
siderations of ( a, q) should only look up its value instead of starting a new 
subcomputation. Mutually recursive programs are another important case. 
For those programs, we would like the algorithm to reconsider a pair (a, q )  

only when some elements which i t  is depending upon have been updated. In 
other words, keeping track of the procedure call dependencies may substan
tially improve the efficiency of some classes of programs. 

A. The dependency graph 

The basic intuition of the dependency graph is that dp ( p ,  p) repre
sents at some point the set of pairs upon which ( p ,  p) directly depends. 

A dependency graph dp is a set of tuples of the form < ( p ,  p) , l t >, 
where lt is a set { ( a1 ,  q1 ) , . . .  , (an , qn ) } (n ;;:: 0), such that, for each 
< P ,  p), there exists at most one l t such that < ( P ,  p) , l t> E dp. 

We denote by dp ( P ,  p) the set lt such that < < P ,  p), lt> E dp if it 
exists. We also denote by dom ( dp) the set of all ( p ,  p) such that 
< ( P ,  p), lt> E dp and by codom (dp) the set of all (a, q) such that there 
exists a tuple < < P ,  p), lt> E dp satisfying (a, q) E lt. 
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B. Transitive closure of the dependencies 

The trans dp (P, p, dp) represents all the pairs which, if updated, 
would require reconsidering ( p ,  p) . ( p ,  p) will not be reconsidered unless 
one of these pairs is updated. 

Let dp be a dependency graph and assume that ( p, p) E dom ( dp) . 
The t r ans_ dp ( p, p, dp) is the smallest subset of codom ( dp) closed by 
the following two rules: 

if (a, q) E dp (p, p) then (a, q) E trans dp (p, p, dp); 

if (a, q) E dp (P, P), (a, q) E dom (dp), and (a ' , q ' )  E 

trans_dp (a, q, dp) then (a ' , q ' )  E trans_dp (P, p, dp). 

C. Operations 

Let us specify the three following operations: 
REMOVE_DP ( { ( <X1 ,  qi), ... , ( <Xn ,  qn) } ,  dp) removes from the depend
ency graph dp all elements < ( a, q) , l t > for which there is a ( <X1 , qi) E 

trans_dp (a, q, dp} . 

EXT _DP (P, p, dp) inserts an element < (P, p) , 0> in dp. 

ADD _DP (P, p, a, q, dp) simply updates dp to include the dependency of 
(P, P) with regard to (a, q). After its execution (a, q) E dp (p, p). 

The main intuition here is that the algorithm makes sure that the ele
ments ( p ,  p) that need to be reconsidered are such that ( p ,  p) � 
dom ( dp) . Conversely, elements of dom ( dp) do not (as yet) require recon
sideration. 

2.2.5.5. TOP·DOWN ALGORITHM 

We are now in a position to present the generic abstract interpreta
tion algorithm. The algorithm is composed of three procedures and is 
shown in Fig. 2-3. 

The top-level procedure sol ve which, given an input substitution Pin 
and a predicate symbol p, returns the final dependency graph and the set of 
abstract tuples sat containing (P1n, p, Pout l E least fixpoint of TSAT. 

Procedure sol ve _ call receives as inputs an abstract substitution 
Pin,  its associated predicate symbol p, a set suspended of pairs (P, q), sat, 
and a dependency graph dp. The set suspended contains all pairs (P, q) 
for which a subcomputation has been initiated and not completed yet. The 
procedure considers or reconsiders the pair (Pin, p }  and updates sat and 
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dp accordingly. The core of the procedure is only executed when ( Pin , p }  
is not suspended and not in the domain of the dependency graph. In effect, 
if ( Pin , p )  is suspended, no subcomputation should be initiated and if 
( Pin , p )  is in the domain of the dependency graph, it means that none of the 
elements upon which it is depending have been updated. Otherwise a new 
computation with ( Pin , p )  is initiated. The core of the procedure is a repeat 
loop which computes the lower approximation of ( Pin , p )  given the ele
ments of the suspended set. Local convergence is attained when ( Pin , p )  is 
in the domain of the dependency graph. One iteration of the loop computes 
each of the clauses defining p and computes the union of the results. If the 
result produced is greater or not comparable to the current value of 
( Pin , p )  , then the set of abstract tuples is updated. The dependency graph 
is also adjusted accordingly by removing ail elements which depend (directly 
or indirectly) on ( Pin , p ) . Note that the calls to the clauses are done with 
an extended suspended set since a subcomputation has been started with 
( Pin , p )  . Note also that, be fore executing the clauses, the dependency 
graph has been updated to include ( P1n , p )  ( which is guaranteed not to be in 
the domain of the dependency graph before that update). ( Pin , p)  can be 
removed from the domain of the dependency graph during the execution of 
the loop if a pair which it is depending upon is updated. 

Procedure solve_clause executes a single clause for an input pair 
and returns an abstract substitution representing the execution of the clause 
on that pair. It begins by extending the substitution with the variables of the 
clause, then executes the body of the clause, and terminates by restricting 
the substitution to the variables of the head. If a literal is concerned with 
unification, the operations AI_ VAR and AI_FUNC are used. Otherwise, pro
cedure solve_call is called and the result is looked up in sat . Moreover, 
if ( Pin , p )  is in the domain of the dependency graph, it is necessary to add a 
new dependency. Otherwise, ( Pin , p )  needs to be reconsidered anyway. 
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procedure solve (in P1n , p ; out sat, dp) 
begin 

sat:= 0 ;  
dp:= 0 ;  

solve _ call (Pin , p ,  0 ,  sat , dp) 
end . 

procedure solve_call (in Pin , p , suspended; inout sat, dp) 
begin 

P1n:= WIDEN (Pin , P ,  suspended } ;  
if (Pin , P) � (dom (dp) U suspended) then 
begin 

if (P1n , P } � dom (sat) then 
sat:= EXTEND (Pin, p , sat); 

repeat 
Pout:= J.; 
EXT DP (Pin , P ,  dp); 
for i:= 1 to m with c1 , . . .  , cm clauses-of p do 
begin 

sol ve _ clause (Pin , p , Ci , suspended u { (Pin , p) } , 
Paux , sat, dp); 

Pout:= UNION (Pout , Paux) ; 
end ; 
(sat , modified) : = ADJUST (Pin , P , Pout ,  sat } ; 
REMOVE_DP (modified , dp) ; 

until (Pin , P) E dom (dp) 
end 

end . 
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procedure solve_clause (in 13in, p, c, suspended ; out Pout ; 
inout sat, dp) 

begin 
13ext:= EXTC (c, l3in) ;  
for i:= 1 to m with b1, . . .  , bm body-of c do 
begin 

13aux: = RESTRG (bi, 13exd ; 
switch (b1) of 

case Xj = xk : 

l31nt:= AI VAR (l3aux) ;  
case Xj = f ( . . .  ) : 

l31nt: = AI _FUNC (13aux, f) ; 
case q ( . . .  ) : 

solve_call (13aux, q, suspended, sat, dp) ; 
l31nt: = sat (13aux, q) ; 
if (l31n, P) E dom (dp) then 

ADD_DP (13in, p, 13aux, q, dp) ; 
end ; 
13ext: = EXTG (bi, 13ext, 13int }  

end ; 
Pout:= RESTRC ( C, 13ext }  

end . 

Fig. 2 -3 :  The generic abstract interpretation top down algorithm. 

As explained earlier, an abstract interpretation algorithm may not 
terminate if the computation is made over an infinite domain. The use of a 
widening is useful to limit the number of abstract inputs to be considered. 

The intuition behind this is that an element cannot be refined infi
nitely often. Each time a call ( 131n, p) is encountered, the last element of 
the form ( 13 '  1 n, p) inserted in the suspended set ( which now has to be con
sidered a stack) is searched. If such an element exists, the computation 
continues with ( 13 '  in u 131n, p) instead of ( 131n, p) ; otherwise, the compu
tation proceeds normally. 

This operation is executed at the beginning of the procedure 
solve call. 

2.2.5.6. BOTTOM-UP ALGORITHM 

The bottom-up algorithm uses the same underlying operations such 
as the manipulation of the dependency graph, the abstract operations, etc. 
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One major difference is that the bottom-up algorithm is divided in 
two phases. The first one computes the outputs whereas the second one 
catches the inputs. 

In the first phase, when it solves a call to a predicate, it forgets its 
actual input substitution and replaces it with a substitution where each term 
is bound to any. This is thus a bottom-up approach of the problem. This 
implies that the RESTRG operation is skipped. 

The second phase complete the set of abstract tuples with the input 
substitutions for every predicate encountered during the computation. This 
second phase is very useful because we are in fact more interested by the in
puts than the outputs. 

The fondamental principles are explained on the following example. 
Suppose the Prolog program: 

p ( X1, X2 , X3 , X4 } : - . • . , q ( X2 , X4 } , . . . 

q ( X1, X2 }  : - X1 = X2 . 

The abstract domain used here is able to represent the groundness of 
a term and binding of terms13

. We suppose that the abstract substitution 
while computing p/ 4 associates X2 to ground and X4 to any. The abstract 
substitution resulting from the computation of q/ 2 tells us that X2 and X4 are 
both associated to any (because of forgetting the input) and are bound to
gether. Now, thanks to the EXTG operation performed after the returning 
from the call to q/ 2 ,  we know that X4 is ground (in effect, as X2 is ground 
and X2 and X4 are bound, we can deduce that X4 is ground) . 

Notice that in general, the bottom-up algorithm can lose some accu
racy with regard to the top-down algorithm. On the other hand, as the 
number of iterations is often smaller, the bottom-up algorithm is faster. 

2.2.5. 7. SEQUENCE BASED TOP·DOWN ALGORITHM 

When using a sequence of substitutions as an abstract domain for the 
output, the algorithm gets a little different. The problem is to have accurate 
sequence of substitutions; that is to say, we do not want to make a simple 
least upper bound after the interpretation of clause. Instead, we prefer to 
use the CONC operation which performs the concatenation of substitutions. 
This operation is quite complex but the main idea is to refine the exclusion 

13 This is in fact the PROP abstract domain explained later. 



Improving the genericity of an abstract interpretation algorithm through Object Oriented design 53 

between clauses of a predicate. These exclusions may be due to an executed 
eut, arithmetic predicates, incompatibility between the input substitutions of 
the clauses, etc. ln fact, it depends on what the abstract domain is able to 
catch. 

For example, let us consider a predicate made of two clauses. If the 
abstract interpretation of the first clause binds a variable x to a predicate 
f ( . . .  ) while g ( . . .  ) is bound to the second and we know that this predi
cate will be called with X/ ground; we can deduce that these two clauses 
are exclusives because if one of them leads to a result, the other will surely 
fail. 

Here are some more examples. In the following piece of program, 
the first and the second clause of predicate p are obviously exclusives. 
There is thus no way to compute the result as the least upper bound; it is 
cleverer to take this fact into account. 

p (X, Y) : - X >  Y, 
p (X, Y) : - X <  Y, 

In the next example, we notice that, as the eut of the first clause is 
surely executed, the abstract result of the next clause does not even have to 
be considered. 

p : - ! , 

p : -

2.3. RESULTS OF AN ABSTRACT INTERPRETATION 

2.3. 1 . I NTRODUCTION 

The algorithms terminate when all the predicates are stables; i.e., no 
more result can be refined. It is now time to examine these results. They 
are stored in the set of abstract tuples. The problem is that this set may 
contains raw materials that are in fact useful for the fixpoint computation 
but not relevant for the abstract interpretation itself. In effect, our major 
concern is to know all possible inputs for a given predicate; but sometimes 
intermediate computations are developed. Let us have a look at the fol
lowing example: 
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p ( [H I T], X) : - p (T, Y),  q (Y) . 
p ( [], []) . 
q ( [] ) 

If we start the abstract interpretation of p (ground , any) on the Prop do

main, we notice14 that q ( ground} is computed although it is obviously not 

called because the result of the predicate p ( ground, any), called before q 
in the first clause of p, is ( ground , any) . It is bec a use this last result is the 

"stable" result, but before we obtained this result, we had a non-stable result 

for p, telling us the Y might be ground. 

That is why, to separate the good from the bad, so to speak, we in

troduce the notion of foundation (computed by the mean of a post

processing algorithm) . 

2.3.2. POST-PROCESSI NG ALGORITHMS ~ TH E FOUNDATION 

Many abstract interpretation applications need more information than 

input/output pairs. Additional information can be computed easily by a 

post-processing step once the fixpoint has been reached. This approach is 

attractive for various reasons. On the one hand, it allows the abstract se

mantics and the fixpoint algorithm to be kept as simple as possible15
. On the 

other band, the additional information can be computed easily given the re

sults of the fixpoint algorithm. Most of these post-processing steps are 

based on variations of the algorithm depicted in Fig. 2-3. 

procedure collect ( in Pin , p ,  sat) 
begin 

collect_call (Pin , p ,  0 ,  sat) 
end . 

14 In the set of abstract tuples. 
15 In particular, the fixpoint algorithm will be computed more efficiently. 
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procedure collect call (in P1n , p ,  suspended , sat) - -
begin 

Pin:= WIDEN (Pin ,  p ,  suspended) ; 
if (Pin ,  p )  rt. suspended then 
begin 

for i:= 1 to m with c1 , . . .  , cm clauses-of p do 
collect_clause (P1n , P , Ci , suspended U { (P1n , P ) } ,  sat) 

end 
end. 

procedure collect clause (in Pin , p , c , suspended, sat) 
begin 

Pext: = EXTC ( C,  P1n ) i 
· for i: = 1 to m with b1 , . . .  , bm body-of c do 

begin 
Paux:= RESTRG (b1 , Pext ) i 
switch (bi ) of 

case Xj = Xk : 

Pint: = AI_ VAR (Paux ) i 
case X j  = f ( . .. ) : 

Pint: = AI FUNC ( Paux , f )  i 
case q ( .. . ) : 

collect_call (Pam , q , suspended, sat) ; 
end ; 
Pext := EXTG (bi , Pext , P int ) 

end 
end. 

Fig. 2-4 :  The basic schema for post-processing algorithms. 

The post-processing algorithm is closely related to the generic algo-
rithm. The main differences are: 

all the instructions manipulating the dependency graph are removed; 
the repeat loop of procedure sole call has been removed and re
placed by a single execution of the body of the loop; 
the RESTRC operation is removed because collect_clause does not 
need to return a result; 
the set of abstract tuples is not updated. 

We used a post-processing algorithm to compute the foundation. 

The foundation is the set of tuples (Pin ,  p ,  Pout l required to answer the 
query which triggered the computation. 
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The Fig. 2-5 shows the modified collect call procedure for 

foundation algorithm. 

procedure collect_call (in Pin, p, suspended, sat, foundation) 
begin 

Pin:= WIDEN (Pin, p, suspended) ; 
if (Pin, p) � foundation then 
begin 

foundation: = foundation U { (Pin, p)} ; 
for i:= 1 to m with c1, . . . , cm clauses-of p do 

collect_clause (Pin, P, Ci, suspended u 
{ (Pin, P)} , sat, foundation) 

end 
end. 

Fig. 2 -5:  The collect call  procedure for foundation computation. 

Additionally, the set foundation is initialized with the empty set in 
collect procedure and then passed to collect _ call and finally to 
collect _ clause. The set suspended is replaced by the set 
foundation in the membership test of (Pin, P). In effect, if the pair 
(Pin, p) is already in the foundation, there is no need to further compute 
this call. 

In fact, speaking about implementation, we do not need a set to store 
the tuples. We just add a Boolean for each tuple which is true iff the tuple 

is in the foundation. 

2.4. SOME GOALS OF PROLOG ABSTRACT 

INTERPRETATION 

Abstract interpretation is not only a theoretical application; it is use

ful to optirnize Prolog programs during the compilation. In effect, the 

knowledge of some data properties at some program points perrnits, for ex

ample: 
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replacing the general unification algorithm (less efficient) with a spe
cialization which takes into account the specificity of the actual situa
tion; 
a better use of the memory; 
etc. 

Here are a few examples of possibilities created by the abstract inter
pretation of Prolog. 

2.4.1 . SPECIALIZATION OF THE UNIFICATION ALGORITH M  

When the Prolog compiler encounters an instruction like: 

where Xi, X2, . . .  , Xn are bound respectively to the terms t1, t2, . . .  , tn, it 
builds a term f (t2, .. . , tn) and then applies the general unification al
gorithm to t1 and f (t2, . .. , tn), because in general t1, t2, . . .  , tn may be 
any terms. But in practice, these terms are not any and that is why it is pos
sible to generate a more efficient code. 

2.4. 1 . 1 .  MODE ANAL VSIS 

If the abstract interpretation reveals the following mode associations 
for the terms of the previous example: Xi/var and X2/ ground, . . .  , 
Xn/ ground, the compiler can replace the general unification algorithm by 
the following code: 

begin 
new (X1, f/n) ; 
X1 Î [ 1 ]  : = X2 ; 

X1Î [n-l ] := Xn ; 
end. 

{memory allocation for a predicate f/n} 
{ as signment in X1 '  s 1 st cell of X2} 

This code boils down to a simple sequence of assignments and skips several 
consistency tests like occur checks. The final situation is depicted in Fig. 2-
6 which schematizes the memory. 
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1 
... 

f/n 

1 • 1 > t2 � 
. . 
. . 
. . 

1 • 1 > tn � 

Fig. 2 -6: State of the memory after the unification. 

Another abstract interpretation could reveal that the following modes 
are associated: X1/ground and X2/var, . . .  , Xn/var. In that case, the com
piler could generate the code: 

begin 
if struct (X1 , f/n) 

then begin 

{tests the consistency of the 
predicate} 

X2 : = X1 Î [ 1 ] ; 

end 
end 

Again, we profit from the same advantages as the one we won in the previ
ous example and the memory situation is the same. 

But we forgot to take into account the sharing. That is to say if two 
variables Xi and Xj (i :f:. j ;  i, j � 2) are unified, this unification algorithm 
leads to an incorrect situation. That is why the sharing analysis is also an 
important part of Prolog abstract interpretation. 

2.4. 1 .2 .  SHARING ANAL YSIS 

As we saw previously, the sharing analysis is an important matter 
when trying to replace the general unification algorithm by a more efficient 
one. 

We define the relation noshare as: 

noshare (Xi, Xj) <=> vars (ti) n vars (t j) = 0 ,  

where ti and tj are respectively the terms bound to xi and Xj and 
vars (td is the set of all the variables present in the structure of the term 
ti, 
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Thus, if we add the following condition (i.e . , raised by the abstract 

interpretation) : no share (X1 ,  X2 ) /\ . . .  /\ no share (X1 ,  Xn ) then the last 

specialized unification algorithm is correct. 

2 .4 .1 .3. PATTERN ANALYSIS 

If we define the relation form as: 

form ( X )  = f / n  {:::} t i s  formed l ike f ( u 1 ,  . . .  , U n ) ,  

where t is the term bound to x, and ui  are terms, and if the abstract inter

pretation of the previous example reports also that form (X1 )  = f / n; then 

we can skip the structure test in the specialized algorithm. 

2.4.2. CARDINALITY ANAL YSIS 

It is sometimes useful to know if a predicate is (strictly) determinist 

or not .  

In the Table 2-2, there are some example of cardinality analysis for 

the well-known append (X1 ,  X2 , X3 ) procedure: 

X1 

list  

ground 

var 

X2 X3 

list  var 

ground var 

var list  

cardinality 

1 

O or 1 

at least 1 

condition 

noshare (X1 ,  X3 ) Ano share (X 2 ,  X3 ) 

no share ( X1 ,  X2 , X3 ) 
1 6 

Table 2-2 : Cardinality analysis for append (Xl ,  x2, X3) . 

2.4.3. STATIC REUSE OF THE MEMORY 

Memory allocation is  a long process for an operating system; that is 

why it can be useful to detect if some parts of it are never referenced after a 

certain program point so that it is possible to recycle them. 

16 noshare (X1 , X2 , X3)  � noshare (X1 , X2)  A noshare (X2 , X3 )  /\ 

nos hare (X1 , X3 ) 
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For example, if the abstract interpretation of append ( X1 ,  X2, X3 ) re
veals that : 

the following modes are associated: Xi / l i st,  X2/ l i s t  and X3/var; 

noshare ( X1,  X2, X3 ) ; 
- X1 is never used afterwards ,  

then X3  can point to the same memory zone a s  X1 as  showed in Fig. 2 -7 .  

Fig. 2-7: Memory recycling for append(Xl ,X2,X3). 
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3. OBJECT ORIENTED PROGRAMMING AND C++ 

The purpose of  this chapter i s  to allow a non-Object Oriented pro

grammer or a non-C++ programmer to read this whole report. It delivers 

the main Object Oriented concepts such as encapsulation, inheritance, poly

morphism and dynamic bindings. The last part of this chapter is a brief in

troduction to the C++ language. 

Contents of this chapter: 
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3 .1 .  INTRODUCTION 

The goal of our work was to integrate several applications. These 
applications all did the same thing (i.e., a Prolog abstract interpretation), but 
they were using different abstract interpretation options: that is to say dif
ferent algorithms, different domains, different ways of storing data, etc. 
Our plan was to build one application that could compute a Prolog abstract 
interpretation with any combination of the existing options, according to the 
user choice. 

To achieve this, a well-suited technology is the Object Oriented pro
gramming. It is an excellent way to represent algorithms and domains as 
objects because it provides some notable benefits. Encapsulation, inheri
tance and specialization improve the code cleanness, comprehensibility and 
reusability. Dynamic bindings allow one to write, for example, generic algo
rithms that do not need to be changed when we add new domains to the ap
plication. 

We now review the general notions of Object Oriented programming 
in order to use these notions freely in this report. 

3 .2 .  NOTIONS OF OBJECT ORIENTED PROGRAMMING 

3.2.1 . CLASS AND OBJECT 

We can define an object as a variable (i.e. ,  a region of storage with 
associated semantics); it is something material (as opposed to a value) 
which can be created, transformed and destroyed. 

As with all variables in typed programming languages, the object 
proceeds from a type. To be as clear as possible and to distinguish the ob
ject and its type, we call a class the object type. An object is an example of 
a class. 

3.2.2. E NCAPSULATION,  INHERITANCE AND SPECIALIZATION. 

The basic feature of Object Oriented programming is the encapsula
tion .  That is to say that all the data needed by an object can be bundled in
side. An object can also have its proper procedures, one calls them meth
ods. This has essentially a methodological effect; the encapsulation permits 
a more readable program because it separates the interface from the imple
mentation (as shown on Fig. 3- 1). This way, the user is able to use the ob-
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ject in a relatively safe and predictable rnanner without being ternpted to 

peek at the object's irnplernentation. The properties of an object are far 

more valuable and reusable than the code used to irnplernent thern. 

non-Object Oriented Object Oriented 

Interface of 
procedure 1 Interface of 

m ethod 1 
lmplementation of 

procedure 1 Interface of 
method N 

Interface of 
procedure N lmplementation of 

method 1 
lmplementation of 

procedure N lmplementation of  
method N 

Fig. 3-1 : Encapsulation. 

It is possible to link two objects with an inheritance relationship. 

The inheritance relationship lets the programmer rnodel the "kind of' rela

tionship between a son and a father object. This notion can be extended to 

multiple inheritance: a son can have several fathers. Note that it does not 

leave out the fact that a father can have several sons. A son object owns the 

data and rnethods defined in its father and inherited by its fathers. Inheri

tance allows the factorization of the code. 

An inherited rnethod can be rewritten in the purpose to adapt it to 

the new object; this is the notion of specialization. Notice that this rnethod 

always keeps its original signature. 



64 

Example: 
Let Shape be a class which encapsulates one data and one method: 

class Shape { 
Data: 

} 1 

center: point 
Methods: 

Move 

where point is a type for representing spatial position. Let Circle inherit 

from Shape. Because of that inheritance, the class Circle owns implicitly 

the data (center) and methods (Move) which are present in the class 

Shape. Circle is the following class :  

class Circle inherits from Shape { 
Data: 

} . 

radius : integer 
Methods: 

D raw 

Let P olygon inherit from S hape and be the following abject (which con

tains implicitly the data and methods of Circle) : 

class P olygon inherits from Shape 
Data: 

} . 

number of side: integer 
Met hods: 

none 

Let Triangle inherit from P olygon. The abject Triangle inherits from 

the data of P olygon. The method Move is specialized. 

class Triangle inherits from Polygon { 
Dat a :  

} . 

pl, p2 , p3: point 
Met hods: 

Move 
D raw 
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Our example's inheritance graph is now as Fig. 3-2: 

Circle Polygon 

Triang le 

Fig. 3-2 : Inheritance graph. 

3.2.3.  POL YMORPHISM 

The inheritance and specialization notions together allow polymor
phism. A polymorphie method is a method which can be applied to several 
classes. Notice that a polymorphie method is defined by several distinct 
methods which have the same names but belong to different classes. In ef
fect, if an object inherits from another and if one of its methods is special
ized, this method can be called on both objects (but the method's code is 
different with regard to the object's type). 

For instance, in the previous example, we can apply the method 
Move on an instance of class Shape, Circle, P o lygon or T r i angle.  The 
methods defined in the class Shape will be called if we have a Shape, 

Circle or Po lygon object type. The methods defined in the class 
Triangle will be called if we have an object Triangle type. The method 
Move is polymorphie. 

3 .2.4.  GENERICITY 

3 .2.4. 1 .  GENERIC PROCEDURE (DYNAMIC BINDINGS) 

A generic procedure is a procedure which can be applied to several 
types. It is different from a polymorhpic procedure because only one code 
exists and can be executed with different types. For instance in the previous 
example, a generic procedure could be a procedure that moves and prints 
any figure. To achieve this, we need two new concepts: the dynamic bind

ings and the dynamic type. 
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U sually, the binding between the method call and the method code is 

static; it is defined at compilation time. But we can postpone that binding to 

run time; that kind of method is called dynamic (or virtual). 

The dynamic type is a type that can be, at run time, a specialization 

of the type at compilation time. A type is static if all its methods (including 

the inherited methods) are static, otherwise this type is dynamic. 

For instance, if we want this procedure17 

procedure D rag& Drop (fig : reference to a Shape) 

fig->Move 
fig->Draw 

to be generic, the class Shape must be a dynamic type (to allow fig to be 

a reference to a specialization of Shape) and the methods Move and Draw 
must be dynamic (to call the right one with regard to the object ' s  type). 

Practically, we just need to declare the Move and Draw methods of 

the class Shape as dynamic in the class Shape; thanks to this declaration, 

the class Shape is dynamic. Note that the Draw method did not exist in the 

first version of the class Shape. We have to declare it as virtual in the 

class Shape to avoid a compilation error at the second line of the proce

dure Drag& D rop. The problem is that we have no implementation of this 

method at the Shape level. The solution is to declare the Draw method as a 

pure virtual method which is a virtual method without implementation. The 

class Shape is now as follows: 

class Shape { 
Data : 

} . 

center : point 
virtual Methods : 

Move 
pure virtual Methods : 

Draw 

We call a class that has at least one pure virtual method a pure vir
tual class, (example : the classes Shape and Polygon) . As opposed to 

17 Where o->M represents the application of a method M on an object o. 
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this, we call any classes that are not pure virtual classes concrete classes 

(example: the classes Circle and Triangle) . 

We can say that a pure virtual method specifies that a method exists 
on every concrete derived class. It forces concrete derived classes to pro
vide a definition for this method. 

Notice that the pure virtual classes cannot be instanciated (be an ob
ject), they are only abstractions and they can only be used to manipulate 
concrete specializations. For instance, in the procedure Drag& Drop, fig is 
now a reference to an object which cannot be instanced (Shape is pure vir
tual class). That is why, during the execution, fig can only be a specializa
tion of Shape. 

An advantage of a generic procedure is that it can call a future code. 
In effect, old polymorphie methods can dynamically bind to new codes. A 
new derived class can be used by an existing generic procedure without 
modifying this procedure. For instance, in the previous example, we can 
add a new derived class from the class P olygon:  the class Square, sup
posing we implement the inherited pure virtual method Draw (if we do not 
make this implementation, the class Square would be pure virtual!). With
out modifying anything to the procedure Drag&Drop, it works with a 
square shape. 

3 .2.4.2. G ENERIC TYPE 

The definition of a generic type is one which contains one or more 
undefined types. The goal is to allow the user to create an instance and to 
choose a type for the undefined type. That notion is very interesting for 
code reuse. Let us see the following generic class definition: 
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class List of t 
data : 

head : reference to a type t 
tail : reference to a List of t abject 

methods : 
Insert (in data : t)  
GetHead (out data : t )  
GetTail (out next : reference to a List of t 

abject) 

The undefined type of this generic class is t .  When we create an object 

List we must provide t 's type. Thus, we have one code for the object 

List and we can use it to manage lists which store whatever we need. 

The use of generic type increases the code reuse and simplifies 

maintenance because the algorithms are defined once, and then instanciated 

several times for each type that is needed. 

3.3. THE C++ LANGUAGE 

3.3. 1 . C++, A WELL-KNOWN OBJECT ORIENTED LANGUAGE 

Every fifteen seconds a non-C++ programmer switches to C++. In 

October 199 1 ,  the number of C++ users was estimated at 400,000. At that 

time, the C++ community was doubling every seven and a half months. To 

be ultra-conservative, let us assume that the rate has slowed to doubling 

every twelve months. Based on these assumptions, on May 2005 every 

man, woman and child on planet Earth will be a C++ programmer (and the 

following year we will discover life on Mars, no doubt) .  

The C++ language supports every general characteristic provided by 

an Object Oriented language. Encapsulation, inheritance (and multiple in

heritance) ,  specialization, polymorphism, generic fonctions and generic 

types (which are called "template" in the C++ dialect). 

3.3.2. C++,  A COMPLEX LANGUAGE 

3.3.2. 1 . INTRODUCTION 

The conception of an application is always something difficult to 

achieve. Even at a high conception level, identifying abjects and organizing 

a correct inheritance graph often takes a lot of time. And it is still more 
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complicated when we must pay attention to the language we use. In effect, 
a complex language often contains a lot of complications or restrictions be
cause at times, some programming concepts are incompatible. 

In this section, we want to illustrate the difficulty of designing a 
complex language like C++. As an example, we clarify in this section that 
multiple inheritance is sometimes incompatible with pointer casting in C++. 

3 .3 .2.2. AN EXAMPLE OF C++ LIMITS 

One of the first C++ limitations we encounter is the prohibition of 
some object pointer casting. This part can be skipped by the reader not in
terested in technical C++ information. On the other hand, we think it inter
esting to develop because it causes us some troubles to achieve our goals. 

In fact, the C++ compiler does not allow us to cast an object that is 
issued from a rhombus inheritance. That was our first C++ nightmare. We 
finally found out the reasons for this incompatibility, which we briefly ex
plain here. 

In order to make this example clear, we first review what is a pointer 
casting; then explain the multiple inheritance and finally reveal that recon
ciling these two notions is difficult in a programming language like C++. 

A. Pointer casting 

a. Review 

Casting a pointer means changing the type of the memory zone it ref
erences. Let us have a look at the Shape example depicted above: 

Let us declare c a reference to an object Circle. It means that the memory 
that begins at the address referenced by c is divided as follows (the first 
field represents the data inherited from the class Shape -the shape 's center
and the second represents the data from the class Circle -the circle 's  ra
dius-): 

(field  1 )  
point 

(fi el d  2 )  
integer 

Now, if we cast (change the pointer's  type) c to an object Shape, the 
memory (pointed by c) is interpreted with the following mask: 
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r- - - - - - - - - - - - -7 
1 (fi e l d  1 )  1 
1 1 
�---- point ____  _! 

As we can see, this memory interpretation (resulting from a casting) seems 
to be correct because the mask maps the right data in memory (which is the 
circle's center). In this example, the casting is done correctly. A bad cast
ing example could be the casting of the c pointer to a character, because the 
memory would be interpreted with the following mask: 

r - - - - - - - - - - - - - 7 
1 (fi e l d  1 )  1 
1 1 
1 character 1 

Here, the data pointed by c would be interpreted as a character (and is, in 
fact, a point). We have what we call a wild pointer. 

Pointer casting can sometimes be useful. For example, suppose class 
S quare is derived from Shape, and the method GetSides exists on the 
class S quare but not on the class Shape. As a Square can be manipulated 
in terms of a Shape (because the class Shape is dynamic), a developer might 
downcast an object Shape reference to an object S quare in order to ac
cess the method GetSides. 

Notice that the use of pointer casting must be done very carefully be
cause it makes the code difficult to read. Moreover, as shown above, a 
wrong casting may result in a wild pointer. 

b. Upcast ing and downcast ing with language C++ 

If a derived class inherits from a base class, C++ lets you convert a 
reference to a derived class in a reference to a base class because the de
rived class is a "kind of' the base class; the upcasting is implicit. As op
posed to this, converting a reference from a base class to a derived class is 
not allowed in C++. To do this we need to explicitly cast the pointer; it is a 
dowcasting. 

B.  Multiple inheritance and the C++ virtual base class 

As multiple inheritance is allowed, we can imagine the following 
situation: a class D can inherit from the classes B and c which, in turn, both 
inherit from the class A. We have the following inheritance graph (Fig. 3-3): 
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Class A 

Class C 

Class D 

Fig. 3-3 : The rhombus inheritance graph. 

Classes B and c do not specialize any methods . The problem is that 
the class D inherits class A' s data twice (and needs these data only once) . 
The C++ solution (to have the class A 's data only once in the class D) is to 
declare the class A as a virtual base class. This way, the class D is as fol
lows :  the data inherited from the class A are shared by the methods inherited 
from classes B and c. 

We can generalize this problem of the rhombus inheritance graph to 
any class that inherits from two (or more) classes if these classes inherit 
from the same class .  

C. The i ncompat ib i l ity of C++ pointer casting and multiple 
inheritance 

C++ does not allow casting a reference to a virtual base class or a 
derived class .  Here is why. 

Let us have a look at the memory allocation for the rhombus inheri
tance ' s classes (see Fig. 3-3) .  
- The memory allocation for the abject A of a rhombus inheritance: 

(field  1 )  
cla s s  A ' s dat a 

The memory allocation for the abject B of a rhombus inheritance: 

(fi e l d  1 )  
cla s s  A ' s data 

(fi e l d  2 )  
class  B ' s dat a 
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- The memory allocation for the object c of a rhombus inheritance: 

(fi e l d  1 )  
class A' s data 

(fi e l d  2)  
class C ' s data 

The memory allocation for the object o of a rhombus inheritance: 

(field  1 )  (fi e l d  2 )  
class A' s data class B ' s data 

(fi e l d  3 )  (fi e l d  4 )  
class C ' s data class D ' s data 

Now let us create an object o and initialize the several fields of this 
object. Imagine that we cast a reference to this object to a pointer to an 
object c. As explained above, the memory interpretation is done with the 
object c mask. We now can easily see the problem: the second field in 
memory represents the class B data (because an object o has been created) 
and the interpretation of this field is the class c data (because of the new 
pointer type). 

Notice that, with a recent C++ compiler, the problem of casting a 
virtual base class can be avoid by using a "dynamic casting" which solves, by 
means of some computation, this problem. 

This example was used to show that designing a complex language 
sometimes leads to some complications or restrictions; here the language 
must prohibit some classical pointer casting because of the acceptance of a 
rhombus inheritance graph. A complex language cannot be as didactic as a 
simple one. It is often more complicated and less intuitive to use. 
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Part KK g Design and 

im.plem.entation 

This part mainly focuses on the work we did at Brown University 
under the supervision of Pascal Van Hentenryck. We explain the features 
wanted for such a system. We then explain how we built the whole applica
tion, component by component and step by step. 
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4. INTRODUCTION TO THE ABSTRACT INTERPRETER 

APPLICATION 

In this chapter, we lay the foundation of the design of the applica
tion. It is an introduction to the global design that is studied thoroughly in 
the next chapters. 
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4.1. DESIGNING THE APPLICATION 

So now we are ready to start the design of the Prolog abstract inter
preter. As shown in the previous sections, there are a lot of properties we 
want to find out about a Prolog program. Our main objectives concerning 
the design were: 

Conceiving a lone system able to include all existing features1 8  (i.e. , dif
ferent fixpoint algorithms, several domains of abstract substitutions, 
different organizations of the set of abstract tuples, etc). 
Not only should the system integrate the existing features but it has to 
be opened enough to be easily extendible. The interfaces between the 
different components ( especially the abstract domains) must suggest a 
natural way to write add-ons. 
The abstract interpreter project was mature enough to stand a wide dis
tribution. This software tool reveals its power when combined with a 
Prolog compiler. Again, a convenient interface to the fixpoint algo
rithms is a key concept to achieve this goal. 
As one gets nothing for free, some concessions in terms of performances 
should be adrnitted to fulfill the above objectives. This possible loss of 
efficiency must be kept into reasonable bounds. 
Without being a real objective but rather a consequence, we hoped the 
final product would open new kind of results obtained by abstract inter
preter units made of components never gathered together. 

The core of the application is the fixpoint algorithm. Following the 
first objective, a perfect way for integration would be to design them as ge
neric procedures. As polymorphism and dynarnic bindings allow genericity, 
our concern is now to find a tool offering these concepts. On the other 
hand, the interface feasibility would be greatly simplified by data and proce
dures encapsulation. 

The object oriented programrning paradigm implements all these 
concepts and seems thus an appropriate framework to sustain the design of 
a multi-services provider system. 

To achieve the goals of efficiency and wide distribution, we searched 
in the field of object oriented programming language and realized that C++ 
was suitable to accomplish this task. 

18  A lot of specific abstract interpreters are already implemented. 
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Being faced for the first time with such a complex assignment, we 
did not really know where to start. We could have spent our time trying to 
create a perfect design on paper by considering every component and find
ing a correct, integrated solution. But then we would not have fulfilled the 
other part of the task, which was an obligation to get results by means of an 
executable code. 

We first identified the main components to treat as objects: 
the abstract domain, 
the fixpoint algorithm, 
the set of abstract tuples. 

So we began to design the interfaces of these various cornponents 
and pasted the appropriated code behind them. The result was a first ver
sion of the application having all the generic features needed for the future 
but where only one specialization for each of them was implemented. 

We then extended this embryonic system with further specialization 
of the generic components. More than once, we felt that issues were not 
possible to solve without a complete design reorganization. That was the 
price to pay for a method close to "trial and error" .  But, on the other hand, 
we have a solid result; tested and proven for future extensions. 
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5. DOMAINS 

As one of the most likely extensions of the system is the addition of 
new domains, their design is an important matter. This chapter retraces the 
thought process that came before the final design. It also briefly describes 
the domains already included in the system. 
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5.1. ABSTRACT SUBSTITUTIONS AS OBJECTS 

As the execution of an abstract interpretation algorithm is a series of 

actions on abstract substitutions19 following the Prolog program, we need to 

have a handy way to manipulate them. That is why it is a good idea to have 

an object to represent them. 

One of the goals of our work was to permit every abstract interpre

tation algorithm to be executed with any abstract domains. To achieve this, 

we needed to define a model of abstract substitutions on which the inter

pretation algorithm can perform the abstract operations. So we came to 

create a pure virtual object which owns all the abstract operations defined in 

section 1.2.2.4. These methods are the interface that permits modifications 

or queries of an abstract substitution. 

Moreover we can exploit another aspect of object oriented pro

gramming (the specialization) to easily extend a domain already imple

mented. In effect, we can specialize some of its methods in order to create 

more efficient and/or accurate domains without having to rewrite it from 

scratch20
• 

The consequence on the computational level is that when a specific 

abstract domain is chosen out of the existing ones, the method call resulting 

from the application of an abstract operation on a substitution is solved at 

run-time. We thus lose some efficiency but we win genericity. 

5.2. BUILDING THE INHERITANCE GRAPH 

The object "abstract substitution" is quite complex. lt ongmates 

from a long maturing process based on notions such as efficiency, polymor

phism and other constraints that are discussed in this section. 

We choose to explain its building step by step instead of a straight

forward presentation. We begin with a simple model adapted to the abstract 

substitutions alone. We will soon find that this model is too poor to include 

the abstract sequence of substitutions notion and that it has to be refined. 

Finally, it becomes obvious that sometimes the interpretation algorithms 

19 We will distinguish abstract substitutions and abstract sequences of substitutions 
later. 

2
° For example Pattern + arithmetic lists is a specialization of Pattern . 
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need other data than the substitutions when computing and that these data 
are not part of the substitutions. 

5.2.1 . THE OBJECT "ABSTRACT SUBSTITUTION" 

We define a pure virtual object to represent the abstract substitutions 
and name it SUBST. Every domain that would be implernented must be de
picted by an object that inherits from SUBST and thus respect its interface. 

Note that this specialized object can no longer be pure virtual if it 
has to be used by the abstract interpretation algorithrn. But it can sorne
times be useful to generate other models (thus pure virtual objects) based on 
SUBST. It can serve, for example, the following purposes: 

An intermediate model. This kind of model can be used to factorize the 
code when two (or more) domains are similar. It rneans that some 
methods of the object SUBST would be specialized at this level and in
herited by these domains. 
A model needed for particular interpretation algorithrns. It is possible 
that some algorithms need more operations or knowledge about a sub
stitution than the ones available in the SUBST model. Such a model re
strains this particular algorithm genericity because all dornains not in
herited from this new model cannot be utilized in this case. 

In fact, we never use the last possibility because it is incompatible 
with our will of genericity of the algorithms. In effect, such a design would 
restrict the set of combinations of domains and algorithms. 

Instead, we define some methods by default at the SUBST level. 
When it is impossible to avoid it, those kinds of methods throw an error 
message and abort the computation (which finally is the same as restraining 
the genericity, as above). But sometimes we can write a method which it 
returns the less definite result with respect to its knowledge. Of course, it is 
possible (and even recommended) to specialize this method to gain accu
racy. 

5.2.2. ADDING THE ABSTRACT SEQUENCES OF SUBSTITUTIONS 

I t  is sometimes useful to have not only a single substitution 
(computed as the least upper bound of all the results) as an abstract inter
pretation of a Prolog query but also to have an abstract sequence of all the 
solutions generated. Including this notion in the abstract interpreter leads 
us to distinguish input value and output value. We also distinguish the pro
gram point value in order to take the eut operation into account. 
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5 .2 .2 . 1 . INPUT AND OUTPUT VALUES 

Because an abstract sequence of substitutions cannot be used as an 
input for a query, this new concept forces us to make a difference between 
the input data and the output data of the interpretation algorithm. We now 
have two new pure virtual objects which are: 
- V ALUE_IN: virtual object for representing concrete inputs; 
- VALUE_OUT: virtual object for representing concrete outputs. 

In effect, it is methodologically correct to distinguish the inputs and 
the outputs because, in a concrete execution of a Prolog program, an input 
for a clause is a substitution, while its output is a sequence of substitutions 
(possibly boiled down to a lone substitution). These two concepts are thus 
two different objects in our design. 

We call SEQ, the abstract sequence of substitutions, a pure virtual 
object which inherits from the VALUE_OUT object. As an abstract sub
stitution can be both input and output, the object SUBST inherits from both 
VALUE_IN and VALUE_OUT (see Fig. 5-1). 

VALUE_:JN VALUE_OUT 

SUBST SEQ 

Fig. 5-1 : Distinction of VALUEJN and VALUE_OUT in the inheritance graph of sub

stitutions & sequences. 

5.2.2.2.  CAPTURING INFORMATION AT PROCEDURE LEVEL 

At this stage, the interpretation algorithm manipulates VALUE_OUT 
objects (that can be either an abstract substitution or an abstract sequence of 
substitutions) because its behavior is to refine the result of a query for a 
predicate (that is to say output data) through the iterations. On the other 
hand, the eut predicate has not "directly" an effect on the structure of out
put but influences the behavior of the execution. An execution of the eut 
leads to two effects which are the following (review): 
- Effect at the clause level: the execution does not backtrack beyond the 

eut. 
- Effect at the procedure level: the next clauses are not executed. 
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Thus the eut also influences the abstract interpretation at the procedure 
level. To capture this effect, it is necessary to hold the eut information from 
the clause level. 

We therefore introduce a third kind of value: VALUE_PRG. This 
object is manipulated by the algorithms during interpretation in order to 
hold the information relevant to the computation. Although we currently 
only need such a value to store the eut information, we choose to create this 
general object that can be specialized to take into account other information 
relevant to the procedure level. This object contains a reference to a 
V ALUE_OUT object that represents the abstract (sequence of) substitution 
in itself. 

As a consequence, we immediately specialize VALUE_PRG in 
VALUE_CUT that contains a Boolean which indicates the encounter of an 
executed eut. 

We have now a new non-virtual object VALUE_PRG that represents 
a program point value. That object contains a reference to a VALUE_OUT 
object. That object is specialized into V ALUE_CUT to add the eut infor
mation to the output value manipulated during the computation. The col
lection of data that are in use can now be schematized as follows (Fig. 5-2): 

VALUE_IN 

SUBST SEQ 

VALUE_PRG 

reference to a 

VALUE_OUT 

VALUE_CUT 

Fig. 5-2 : Insertion of the abjects VALUE_FRG and VALUE_CUT in the data structure. 

5.3. CONCLUSION S  AND IMPLICATIO N S  

In this section, we leave the virtual part to enter into the real world; 
that is to say objects which are implementations of abstract domains. 
Moreover, we discuss the addition of new domains. 
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5.3. 1 . DOMAI NS ALREADY IMPLEMENTED 

We depict in Fig. 5-3 the final result of our work. The PROP, 
PATTERN, PATTERN + Arithmetic Lists, TYPE_GRAPH, CARTESIAN 
PRODUCT non-virtual objects inherit from the SUBST virtual object. The 
CARDINAL non-virtual object inherits from the SEQ virtual object. These 
abstractions of concrete domains are explained in a few words below. 

PROP 

VALUE_IN 

SUBST 

TYPE GRAPH PATTERN 

PATTERN 
+ arithm. lists 

CARTESIAN 
PRODUCT 

Fig. 5-3: Hierarchy of the implemented domains. 

VALUE_OUT 

SEQ 

CARDINAL 
Reference to 

a SUBST 

In this section, we have a closer look at each implemented domain. 
We first explain in a few words the properties they are able to represent; 
then we illustrate them with an abstract interpretation of the predicate ap
pend with the basic top-down polyvariant algorithm. 

5.3.1 . 1 . THE DOMAIN PROP 

The abstract domain Prop gives information about the groundness of 
a variable. The concrete substitution over o = { X1, . . . , Xn } is abstracted 
by a Boolean formula using variables from o. Every variable is assigned a 
truth value to denote its groundness (true means ground and false, not 
ground). This Boolean formula is also built with logical connectives (and, 
or) and ordered by implication. For example X1 {=} X2 abstracts the substi-
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tutions { X1, /Y1, X2/Yi } , { X1, /a ,  X2/ a } ,  but not { X1, / a, XdY } nor 
{ X1, / Y1, Xd Y2 } ,  

The following sat is the result of the abstract interpretation of 
append ( any, any, any ) . The number of goal iterations was three while 
the number of clause iterations was six. 

P redicat e : append/ 3 

- Couple # 1 : 

Bin : 

( any any any 

Bout : 

--> 1 

( any any any --> ( ~X3 & ( ~X2 ) + ( X2 & ~Xl ) ) 

+ ( X3 & X2  & X l ) 

We can concretize the resulting output abstract substitution with, for 
example: 

{ X1 / [ ]  , X2 /Y,  Xd Z }  

{ Xi / Y, X2/ [ a ] , X3 / Z }  

{ Xi / [ a ] , Xd [ b ] , X3/ [ c ] }  

But not with: 
{ Xi / Y, X2/  [ b ]  , X3 /  [ c ] } .  

5.3.1 .2. THE DOMAIN TVPE-GRAPH 

instanciation of ( ~ X3 & ~ X2 ) ; 

instanciation of ( ~X3 & X2 & ~Xl ) ; 

instanciation of ( X3 & X2 & Xl ) .  

Although Prolog is an untyped programming language, type analysis 
is important since it allows us to specialize the general unification algorithm, 
for example. 

The domain Type-graph permits us to infer in a term its disjunctive 
and recursive structures by the means of subterms. Its grammar can be de
scribed, using the BNF rules, as: 

<T> : : = < constant> 

where: 

1 @ ( <T> ) any 

< const ant> E const ant , the set of the constants, 
0R ( <T>1, <T> 2 )  represents the disjunction between <T>1 and <T>2 ,  

p ( <T>1, . . . , <T>n ) indicates that the subterm is instanciated by a 
predicate p / n  containing the subterms <T>1, . . .  , <T> n, 
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@ ( <T> ) indicates that the term <T> is recursively present in the subterm, 

any represents any term. 

The following sat is the result of the abstract interpretation of 

append (any, any, any ) . The number of goal iterations was four while 

the number of clause iterations was eight. 

P redicate: append/3 

- Couple # 1 :  
Bin: 

( [ 1 ] , [ 2 ] , [ 3 ] ) --> 
graph: 

[ 1] 1 :Any 
[ 2] 1 :Any 
[ 3] 1 :Any 

Bout: 
( [ 1 l , [ 2 l , [ 3 l ) --> 
graph: 

[ 1] 1 :OR ( 

[ 2  l 1: Any 
[ 3] 1:Any 

2 : . ( 

4 : [ l 

3:Any , 
@ (1 ) 

We notice that the structure of the subterm [ 1 J is recursive and is, in 

any case, a list while the two other subterms [ 2 J and [ 3 J are any. 

We can concretize the resulting output abstract substitution with, for 

example: 

{ Xi/ [] , X2/Y, X3/ Z} ; 

{ X1/ [ a l [X I []]] , Xz/Y, X3/Z} . 

5.3. 1 .3 .  THE DOMAIN CARDINAL SEQUENCE 

The idea of the abstract sequence of substitutions is to catch all the 

successive results of a Prolog query. The goal here is to capture the number 

of solutions (minimum and maximum) and the termination (sure termination, 

sure non-termination and possible termination) of the execution. It also in-
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cludes an abject SUBST which represents the substitution like in the previ
ous domains. 

The following sat is the result of the abstract interpretation of 
append ( any , any , any) computed with abstract sequence of substitu
tions Prop. The number of goal iterations was four while the number of 
clause iterations was eight. 

P redicate: append/3 

- Couple # 1: 
Bin: 

( any any any ) --> 1 
Bout : 

[ 0 , oo] possible termination 
( any any any ) --> (~X3 & (~X2) + (X2 & ~Xl)) + (X3 

& X2 & Xl) 

With regard to the interpretation with substitution, the interpretation with 
sequence adds the following information: the Prolog program can produce 
an infinity of solutions and may terminate. 

5.3 . 1 .4. THE DOMAIN PATTERN 

The key concept of the abstract domain Pattern is the notion of sub
term. Given a substitution on a set of variables, an abstract substitution as
sociates the following information with each subterm appearing in the sub
stitution: 

its mode, 
its pattern which specifies the main functor as well as the subterms 
which are its arguments, 
its possible sharing with other subterms. 

Each subterm is identified unambiguously by indices. For instance, 
the substitution 

{ Xl/ [a, b], X 2 /  [ c , d],  X3/Ls} 

could have for instance the following indices association: 

{ (l , [a , b]) , (2 , a) ,  (3 , b) , ( 4 , [c , d]) , (5 , c) ,  (6 , d) ,  
( 7 , Ls)} . 
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In this domain, the mode is taken from the following set M = { J_, 
2 1  Th' ground, var, ngv, novar, gv, noground, any} . 1s set satis-

fies the ordering depicted in the Hasse diagram at Fig. 5-4. An oriented 
vertex from one node to another denotes that the first is greater than the 
second. 

Fig. 5-4: The ordering of the modes. 

The mode association for the example substitution would be: 

{ ( 1, ground) , ( 2, ground) , ( 3, ground) , ( 4, ground) , 
(5, ground), (6, ground), (7 , var)} . 

The pattern component possibly22 assigns to an indice an expression 
f ( i 1, . . .  , in) where f is a fonction symbol of arity n and i 1, . . .  , in 

are indices. In our example, the pattern component makes the following as
sociations : 

{ ( 1 ,  . ( 2 ,  3) ) , ( 2 ,  a) , ( 3, b) , ( 4 ,  . ( 5, 6) ) , ( 5, c) , ( 6, d) } 23 
• 

Finally, the sharing component specifies which indices, not associ
ated with a pattern, may possibly share variables. Attention is restricted to 
indices without patterns since the patterns already express some sharing in
formation and we do not want to introduce inconsistencies between the 

2 1  Ngv stands for "no ground no variable" ,  gv for "ground or variable" and any is the 
top element. 

22 In fact, the pattern is optional. 
23 

• ( head , tai l )  is the usual list constructor. 
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components. In our example, the only sharing is the couple ( 7 ,  7)  , ex
pressing that variable Ls shares a variable with itself. 

In order to clarify the concept, a more appealing representation is 
given for the predicate append/ 3 instanced with the above substitution: 

append (ground (l) : .  (ground (2) : a, ground (3) : b), 
ground (4) : .  (ground (5) : c, ground (6) : d), var (7)) 

with the sharing information { ( 7 , 7 ) } . 

The following sat is the result of the abstract interpretation of 
append (var, var, var). The number of goal iterations was four while 
the number of clause iterations was eight. 

Predicate: append/3 

- Couple # 1 : 
Bin : 

(Var (l), Var (2), Var (3)) 
ps : {1, 1}  {2, 2} {3, 3} 

Bout : 
(Novar (l), Any (2), Noground (3)) 

ps: {1, 1}  {1, 2}  {1, 3} {2, 1} {2, 2}  {2, 3} {3, 1} {3, 2}  
{ 3, 3} 

We can concretize this resulting output abstract substitution with, for 
example: 

{ Xi/ [ ]  , X2/Y, X3/ Z} ; 

{ X1 / [ a I X ] , Xz/ Y, X3 / [ a I Z ] } . 

5.3.1 .5.  THE DOMAIN PATTERN + ARITHMETIC LISTS 

The domain Pattern + arithmetic lists is a specialization of the do
main Pattern. It inherits from this last and thus owns all its features. How
ever, it can hold more information about the terms of a substitution in the 
form of an arithmetic list. As a consequence, some of the methods inherited 
from the domain Pattern are specialized to take this information into ac
count24 . 

24 The implementation of the Pattern + arithmetic list domain was facilitated by the ab
ject oriented programming. 



90 

Prolog permits the insertion of arithmetic built-ins like <, ::;, >, 2, -:t

and = .  They can be used to ensure some data properties within a clause be

cause if they fail, the execution of the current clause stops. 

Adding information about arithmetic built-ins is only useful when 

computing abstract interpretation over a domain of abstract sequences .  In 

effect, arithmetic lists are used to detect exclusive clauses. 

In the following example, the domain Pattern + arithmetic lists is able 

to catch the fact that the two clauses are exclusives. 

p { X):- X <  0 ,  
p (X) : - X 2 0 ,  

This example is quite obvious but this domain is more clever and is able to 

catch the same information in the following modified program which has the 

same semantic. 

p (X) : - lt (X, 0), . . .  
p (X) : - get (X, 0), 

lt (X, Y) : - X <  Y .  
get (X) : - X 2 Y . 

Moreover, this do main will compute the transitive clos ure of the 

arithmetic conditions in order to avoid missing information. In effect, if we 

have the two arithmetic relations x > Y and Y > z ,  we can deduce x > z .  

To  illustrate this domain, we do not use the classical append/ 3 
predicate because the results are the same as the domain Pattern. Instead, 

we want to point out the gain of accuracy given by the arithmetic lists in 

cardinality analysis .  We thus first compute an abstract interpretation of the 

pro gram partition/ 4 with an abstract sequence using the domain Pattern 

and then compare the results with the addition of arithmetic lists. 

The predicate partition/ 4 ,  given a number X, splits a list L into 

two lists L1 and Lz where all the elements of L1 (respectively L2) are smaller 

or equal (respectively greater) to X. The text of partition/ 4 is : 
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partit ion ( [] , X, [], []) . 
partit ion ( [ F I T], X, [ F I S], B )  :

F <= X, 
partit ion (T, X, S, B ) . 

partition ( [ F I T], X, S, [ F I B])  : -
F > X, 
partition (T, X, S, B ) . 

The result of the abstract interpretation of part i t ian ( ground, 
ground, var, var ) with a sequence algorithm based on Pattern tells us, 
in four goal and twelve clause iterations, that 

the output substitution is ( ground, ground, ground, ground ) , 

the query may terminate, 
the number of solution is between O and +oc. 

On the other hand, adding the arithmetic lists to the domain Pattern 
leads to the following conclusions in three goal and nine clause iterations: 

the output substitution is (ground, ground, ground, ground ) , 

the query may terminate, 
the number of solution is between o and 1. 

To sum up, this last domain informs us that part it ion (ground, 
ground, var, var ) is deterministic. Moreover, the result is reached in 
less iterations than with the domain Pattern. 

5.3. 1 .6.  THE CARTESIAN PRODUCT OF DOMAINS 

The Cartesian product of domains is what we (almost) got for free25 

with object oriented programming. It is a Cartesian product of two domains 
(both can be Cartesian product also). The algorithm executes "in parallel" 
both components. 

Every domain present in a Cartesian product does not communicate 
with another, except if a substitution turns to bottom then they all become 
bottom. That is why sometimes it is possible to gain accuracy with a Carte
sian product compared to a domain executed alone. In effect, if a domain 
catches the bottom and forwards it to the other component then, when a 
least upper bound is performed (at the end of each clause) on this last, the 
result could be less general. 

25 
It was coded in a few lines. 
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For example: suppose that we use only the domain Prop and the in

terpretation of the first clause returns ( ground, var, any ) and the sec

ond returns ( var,  var, var ) , then the least upper bound is ( any, var,  

any ) . In a second interpretation, we use a Cartesian product of the Prop 

and domains Pattern. Let us say that the result for the first clause is differ

ent from bottom and the second is bottom for the domain Pattern. So Pat

tern communicates this bottom result to Prop. Then, on the Prop side, the 

least upper bound would be between ( ground, var, any ) and 1-, and 

will lead to ( ground, var ,  any ) which is more precise than previously. 

It is possible to have another type of product where the communica

tion would be more intense26
• A domain could ask, for example, if a vari

able is ground to another one and consequently act. 

5.3.2. THE ADDITION OF N EW DOMAINS 

In order to add a new domain, one must of course implement a non

virtual object which inherits from SUBST (or SEQ) and specialize the pure 

virtual methods. As told earlier it is also possible to start from an already 

implemented domain and to specialize it. 
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6. ALGORITHMS 

This chapter describes the design and implementation of the algo
rithms. As the algorithms manipulate several generic types that have not 
been explained yet, we first discuss the implementation of these concepts, 
that is to say the management of the set of abstract tuples and the Prolog 
program code. To finish this chapter, we expose the advantage of a post
processing treatment. 
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6.1. DATA STORAGE ~ SET OF ABSTRACT TUPLES 

6.1 .1 . I NTRODUCTION 

The results of an abstract interpretation computation are incremen
tally built. We must choose a way to store these results gradually. The 
management of this storage has already been introduced in the theoretical 
part of this report: the organization of the set of abstract tuples. 

The representation of this set of abstract tuples is an important 
choice in the implementation. There are different ways to implement the 
two main operations that are necessary: operations EXTEND and AD JUST.  

Remember that a set of abstract tuples (sat) is a set ( P1n , p ,  Pout ) 
where p is a predicate of arity n and P1n, Pout are abstract substitution on 
variables X1 , . . . , Xn, P1n represents the input substitution for the predicate 
p and Pout the output substitution. 

To be more efficient, we distinguish the global sat and the local sat. 
A local sat for a predicate p is a set of couples of input and output substitu
tion (P1n, Pout ) for this predicate. We call the global sat (for a Prolog pro
gram P), the set of local sat { 1 s1, . .. , l sm } where m is the nufnber of 
predicates declared in the program P; 1 s 1  is a local sat of a particular P's 
predicate (we have only one local sat per predicate recorded in the program 
p ) .  

Note that in our application, the global sat is implemented by means 
of a hash table pointing to the local sat's. 

6.1 .2 . SAT I N  MONOVARIANT AND POLYVARIANT ALGORITHMS. 

When perforrning an abstract interpretation, a decision must be made 
about keeping track of the (P1n, Pout ) couples of local sets of abstract tuples. 
In a local sat, we can either store a couple for each different P1n or store 
only one couple (P1n, Poud where P1n is the union of the input substitutions 
for the predicate of the local sat. We use these sat in a polyvariant and a 
monovariant algorithm respectively. 

6.1 .2.1 . SAT IN A POL YVARIANT ALGORITHM 

As told above, a sat used in a polyvariant algorithm contains several 
tuples (one for each different P1n of the local sat 's  predicate). There are 
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different ways of managing that set of tuples. Our application contains a 
Hasse diagram implementation and a hash table implementation. 

A. Hasse d iagram 

A local sat for a predicate p can be represented by a Hasse diagram 
(see section 1 .2 . 1 . 3 .2) .  Each abstract tuple (relevant to p) encountered by 
the algorithm is a node of the diagram. If a and b are respectively the nodes 
( a.in , <Xout )  and ( Pi n ,  Pout )  ' then a � b iff a.in � Pin• 

With this kind of implementation, the two main sat operations 
(EXTEND and ADJUST) are implemented as : 

EXTEND ( P ,  local_sat ) :  this operation looks up in the local_sat ' s  
Hasse diagram if a couple (P ,  Pout )  exists. I f  it doesn't, extend returns a 
local s at '  which is extended (with regard to the local s at) with a 
new couple (P ,  ..l) . (Notice that instead of ..l as the output substitution, 
we could access the tuple's descendants to compute an initial approxi
mation) . 
ADJUST ( P ,  P ' , local_sat ) :  this operation find the couple (P ,  Pout l in 
the local_ s at and returns a local_ sat ' which is updated with this 
new result. More precisely, the value of sa t '  ( p " )  for all p "  � p is 
equal to lub ( P '  , sat ( P " ) ) and all other values are left unchanged. 

Let us illustrate the way that kind of sat is managed. The abstract 
domain used in this example is able to find out if a term is ground, var or 
any. Imagine we look in the local sat of a predicate p / 3. Suppose we have 
already interpreted p/  3 with the following input substitutions (it means also 
that we extended the sat with them) : ( any , any , ground ) , ( any ,  
ground, var ) , ( any ,  ground, ground ) , ( ground, any , ground ) , 
( ground,  ground, ground) . The Hasse diagram local sat would look 
like Fig. 6- 1 (Notice that on that figure, only the input substitution of a 
node are shown, not the output substitution) . 
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T 

( any , any , ground ) ( any , ground, var ) 

( any , ground, ground ) (ground, any , ground ) 

(ground, ground, ground) 

j_ 

Fig. 6-1 :  Example of a Hasse diagram local sat. 

Now, if we execute the ADJUST operation on the node ( ground,  
ground , ground) with Pout ,  the following points would happen: 

the output substitution of the node ( ground,  ground, ground ) , 
would be updated with Pout ;  
all the nodes in which its input substitution is more general C>) than 
( ground, ground, ground) would be updated with the result of the 
least upper bound of the node ' s old output substitution and Pout •  That is 
to say that the following nodes would be updated: (T) , ( any , any , 
ground ) , ( any , ground,  ground) and ( ground ,  any , ground ) . 
In fact, more precisely, AD JUST updates the output substitution of a 
node and then starts a depth-first search algorithm to update its ances
tors . Each time a node is updated, each father is considered for possible 
updating. 

B. Hash table 

The hash table implementation simply stores each couple ( Pin , Pout )  
in a hash table. The Pin is the key of that hash table and must then be 
hashable. 

Here, the implementations of the two main operations are : 
EXTEND ( P ,  local_sat ) :  this operation looks up in the local_sat ' s  
hash table if a couple CP ,  Pout ) exists. If it does not,  it returns a 
local_ s at '  which is extended Cwith regard to the local_ sat) with a 
new couple CP , J_ ) . Note that it is quicker to extend the hash table be-
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cause there is no order; here we simply must hash the input substitution, 

and add the new node. 

ADJUST ( P ,  P ' , local_sat ) : this operation finds the couple (P , Pout )  in 

the local_ sat and returns a local_ sat' which is updated with this 

new result. More precisely, the value of sat' ( P ) is equal to 

lub ( P ' , Pout l  and all other values are left unchanged. This adj ust op

eration is quicker than the one implemented for the Hasse diagram be

cause here we must simply modify one node (not its ancestors) . 

As the hash table type is widely used in our application, notice the 

hash table is designed as a generic type (a template in the C++ jargon) . 

6.1 .2.2. MONOVARIANT SAT 

Instead of storing several abstract couples in the local sat, we can 

store only one couple (Pin, Pout l , where Pin is the union of the input substi

tutions for the predicate of the local sat. 

The main operations are implemented the following way: 

EXTEND ( P ,  local_sat) : this operation looks up the couple (Pin , Pout ) 

of the local sat and returns a local sat' . The couple of the 

local_sat ' is: (lub ( P ,  Pin ) ' Pout ) .  

ADJUST ( P ' , local_sat) : this operation looks up 

(Pin , Pout l of the local sat and returns a local_ sat ' . 
of the local sat ' is : ( Pin , lub ( P '  ' Pout l ) .  

6.1 .2.3. COMPARISON OF THE DIFFERENT SAT IMPLEMENTATION 

A. Polyvariant versus monovariant 

the couple 

The couple 

Using a sat used in a monovariant or a polyvariant algorithm may, in 

general, lead to different results. With the first one, the Pout substitution for 

a given Pin can be less accurate than with the second one because of the 

"least upper bound" in the ADJUST operation. Moreover, using sat running 

with a monovariant algorithm sometimes leads to fower algorithm iterations 

than a polyvariant sat. 

Let us show these differences with an illustration. Consider the fol

lowing Prolog program (but don 't try to catch the meaning of this pro

gram! ) :  
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q ( A, B) :-

p ( X). 

p ( A } , 
p ( B) . 

Consider that the above Prolog program is interpreted with the following 

options: a top-down algorithm, a substitution output, the domain Prop and 

an input substitution: ( any, ground). We show that interpreting q with a 

polyvariant algorithm (using a hash table sat) leads to three goal iterations 

and with a monovariant algorithm leads to only two goal iterations. 

As we can see on the trace, an interpretation of q with a polyvariant 

algorithm (Fig. 6-2) is as follows. The first literal to call during the com

putation of q is p ( any) -line 04-. The result of this call is any -line 1 1 - .  

At this moment, the local sat of p con tains one tuple { ( ( any) , ( any) ) } . 
Then the second literal p ( ground) is computed. The result of this call is 

ground -line 20- . Now, the local sat of p contains two tuples 

{ ( ( any), ( any)), ( (ground), ( ground)) } . 

( 0 1) Cal l P RO-GOAL q: ( any ground ) --> X2 
( 0 2)  Try clause 1 
( 0 3) Exit EXTC: ( any ground ) --> X2 
( 0 4) Cal l PRO-GOAL p: ( any ) --> 1 
( 0 5) Try clause 1 
( 0 6) Exit EXTC: ( any ) --> 1 
( 0 7) Exit RESTRC: ( any ) --> 1 
( 0 8) Exit clause 1 
( 0 9) Exit LUB: ( any ) --> 1 

Adj ust ( 1 0) 
( 1 1) Exit PRO-GOAL p: any ) --> 1 
( 1 2) Exit EXTG: ( any ground ) --> X2 
( 1 3) Cal l PRO-GOAL p :  ( ground ) --> Xl 
( 1 4) Try clause 1 
( 1 5) Exit EXTC: ( ground ) --> Xl 
( 1 6) Exit RESTRC: ( ground ) --> Xl 
( 1 7) Exit clause 1 
( 1 8 ) Exit LUB: ( ground ) --> Xl 
( 1 9) 
( 2 0) 

Adj ust 
Exit PRO-GOAL p: ( ground --> Xl 

( 2 1) Exit EXTG : ( any ground ) --> X2 
( 2 2) Exit RESTRC: ( any ground ) --> X2 
( 2 3) Exit clause 1 
( 2 4) Exit LUB: ( any ground ) --> X2 



Improving the genericity of an abstract interpretation algorithm through Object Oriented design 99 

(2 5) Adj ust 
(2 6) Exit PRO-GOAL q: ( any ground ) --> X2 

Fig. 6-2 : Trace with a polyvariant algorithm. 

Let us now use a monovariant algorithm (Fig. 6-3). After the first 

call to p -line 04- , the local sat contains { ( (any), (any)) } . Then we have 

to call for the second time p -line 13- with the substitution ( ground) . The 

difference with the polyvariant algorithm is here. Remember that only one 

couple can be inserted in a sat of a monovariant algorithm and that to 

EXTEND the local sat we just take the least upper bound of the inputs. In 
our example, the new input is ( ground) and ground < any (and so 

lub ( ground, any) = any). Because ( (any) , p} E dom (dp), no com

putation is done and the result of p (any) is sat ( (any) , p) which is 

(any). 

(0 1) Call PRO-GOAL q: ( any ground ) --> X2 
( 0 2)  Try clause 1 
(03) Exit EXTC: ( any ground ) --> X2 
(04)  Call PRO-GOAL p: ( any ) --> 1 
(0 5) Try clause 1 
(0 6) Exit EXTC: ( any ) --> 1 
( 0 7)  Exit RESTRC: ( any ) --> 1 
( 08)  Exit clause 1 
(0 9) Exit LUB: ( any ) --> 1 
( 1 0) Ad j ust 
(1 1) Exit PRO-GOAL p: any ) --> 1 
( 12)  Exit EXTG: ( any ground ) --> X2 
(13) Call PRO-GOAL p: ( ground ) --> Xl 
( 1 4)  Exit PRO-GOAL p: ( any ) --> 1 
(1 5) Exit EXTG: ( any ground ) --> X2 
(1 6) Exit RESTRC: ( any ground ) --> X2 
(17)  Exit clause 1 
( 1 8) Exit LUB: ( any ground ) --> X2 
( 1 9) Adj ust 
(2 0) Exit PRO-GOAL q: ( any ground ) --> X2 

Fig. 6-3 : Trace with a monovariant algorithm. 

We notice that the result of p ( ground) is different according to the 
sat used. With the monovariant algorithm, the result is less accurate. In 
this case, the result of the computation ( q ( any, ground)) is the same 
thanks to the EXTG operation. 
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For example, we would lose some accuracy if we were trying to in
terpret the same predicate with the Pattern domain and with the input sub
stitution ( ground, var )  . U sing the polyvariant algorithm, the result would 
be ( ground, var ) . It is different with the monovariant algorithm; the re
sult would be ( ground , gv ) . Let us think about this interpretation. At the 
time of the first call to p (i. e . ,  p ( ground ) ), the sat would be { ( ( ground) , 
( ground) ) } . At the second call to p (i.e . ,  p (var ) ) , the sat would become 
( lub ( ground , var ) ,  lub ( ground , var ) ) which is equal 
( ( gv) , ( gv ) ) .  So sat ( ( ground) , p ) = ( gv ) . Notice that because 
sat ( ( any )  , p ) has been modified, ( ( ground , va r )  , q ) � dom ( dp )  and 
so needs to be reconsidered; in this case, this reconsideration does not 
change any of the results. 

To conclude about the comparison of polyvariant and monovariant 
algorithms, we notice that in general, the monovariant algorithm allows the 
interpretation computation to be quicker. On the other hand, some results 
can be less accurate with this algorithm. 

B. Hasse diagram versus hash table 

We can also sometimes see some differences between the Hasse dia
gram and the hash table implementation. 

The Hasse diagram implementation stores the tuples in such a way 
that the sat operations EXTEND and ADJUST take more time than in the hash 
table implementation (because of the order and of the ancestors updating) .  
On the other hand the Hasse diagram implementation sometimes leads to 
fower goal iterations.  In effect, it is possible that due to the Hasse diagram 
organization, the output substitution for a tuple does not need to be com
puted because it has been updated by ADJUST operations on some of its 
sons ' nodes. 

6.2. MANAGEMENT OF THE PROLOG CODE 

6.2. 1 . BASIC CODE MANIPULATION 

Once the Prolog program text is  parsed, i t  i s  compiled and stored in 
an object named CODE. Because the algorithms need to peel the Prolog 
text from the program to the literal, this object can be queried. 
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For instance, let us take a Pro log pro gram in which the append/ 3 
procedure27 appears. First, we can ask to CODE abject for that predicate. 
We receive an abject 1 that contains the append procedure: 

Obj l: append (Xl, X2, X3) :
Xl = [], 
X2 = X3 . 

append (Xl, X2, X3) :-
Xl = [X4 I X5], 
X3 = [X4 I X6], 
append (X5, X2, X6) . 

Now, we can query this abject 1 to obtain the first clause of this procedure, 
and we get an abject 2 containing 

Obj 2: append (Xl, X2, X3) :
Xl [], 
X2 = X3 . 

We can ask, for instance, the abject 1 the clause following the abject 2 and 
we get 

Obj 3: append (Xl, X2, X3) :-
Xl = [X4 I X5], 
X3 = [X4 I X6], 
append (X5, X2, X6) . 

We can ask the abject 3 the number of temporary variables in the clause (it 
returns three in this case) or the first litera! and we get an abject 4: 

Obj 4: Xl [X4 I X5] .  

We can ask the literal 's opcode; here it is a unification. We can ask the ab
ject 3 for the litera! following the abject 4. And if we ask it again, we have 
the last litera!: 

Obj 5: append (X5, X2, X6) . 

Here, the operating code is a call to a goal and thus we can ask more to ab
ject 5 :  the name of the called predicate, the list of arguments, etc. In fact, 
we can obtain from that kind of abject everything relevant for its specific 
interpretation; it is of course based on its operating code. 

27 Thal append procedure is normalîzed. 
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6.2.2. PREFIX ING THE CLAUSES 

Another way to query a clause object is to consider it formed from 

three different parts (instead of a list of litera!) : a prefix, a predicate call and 

a suffix. Each of them could be possibly empty. 

When we parse a clause, we receive a prefix which is the longest list 

of built-ins, the first predicate call, and the suffix. The parsing operation 

can be repeated on the prefix. In other words, when considering the pre

fixes of clauses, it cornes to the same thing as peeling in reverse; i.e . ,  begin

ning with the last litera! of a clause and heading towards the first. 

For example, if we parse the object 3, we receive the three following 

objects: 

Obj 6 :  Xl 

X3 

[X4 I X5], 
[X4 / X6], 

Obj 7 : append (X5, X2, X6) . 

Obj 8 : <empty> . 

Where the object 6 is the prefix, 7 is the predicate call and 8 is the suffix. 

This way to consider clauses leads us to a more efficient algorithm 

rightly nicknamed "prefix" .  We now only explain the topics relevant to the 

clauses; the rest of this algorithm is explained later. 

Let us consider the following piece of Prolog program28
: 

@ p ( . . .  ) : - 11, 12 . 0 

where l i  and 12  are built-ins. For a given input abstract substitution @, the 

output abstract substitution 0 is stable; i.e . ,  never has to be computed 

again. If we add to this program a call to a goal g1 as last literai of the 

clause, we obtain the program 

@ p ( . . .  ) : - li , 12 ,  (j) g1 . 0 

we notice that the only way for the output substitution 0,  given an input 

substitution @, to be modified is if the result of g1 is refined for the input 

substitution <D. Thus, if the result is refined, all we have to do to (maybe) 

28 The circled numbers like @ ,  CD, CD, . . .  represent the substitution for this program 
point. 
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refine p is to take the result of the computation of g1 .  We now modify this 
program again and add the literai 13 and 1 4  that are not predicate calls: 

Again, if the output substitution Cll of the predicate g1, given the input sub
stitution <D,is modified, all we have to do when reconsidering the predicate 
p is to compute the result of the sequence of literai 1 3 ,  1 4  for the input Cll. 

In short, if we modify an algorithm to take these observations into 
account (i.e. , adding on the one hand a set of abstract tuples where predi
cates are replaced by prefixes, and on the other hand dependencies between 
goals and prefixes), we can gain significant computation time by skipping 
unnecessary computations. 

6.3. ALGORITHMS AS OBJECTS 

At first, the advantage of an object oriented algorithm seems obvious 
for the factorization of the code and because the paradigm of object ori
ented programming helps us to express the idea of an algorithm easier. AU 
the data concerning the computation are hidden in the encapsulation and the 
inheritance property helps us to implement several algorithms that are simi
lar. 

Moreover, the algorithms themselves need to be manipulated by the 
main program, which is independent from the kind of algorithm used. That 
is why the algorithms need to be generic types in such a way that we can 
apply a virtual method that asks to solve a query. 

6.4. ALGORITHMS ALREADY IMPLEMENTED 

6.4.1 . I NTRODUCTION 

As explained earlier, our system wants to be suitable for a large 
number of ways to tackle abstract interpretation. Several domains fulfill this 
objective, but several algorithms complete it. In this section, we describe 
the algorithms that are part of our application. 

6.4.2. ALGORITHMS H IERARCHY 

We depict the algorithms objects hierarchy in Fig. 6-4. The object 
named SOL VE is the top pure virtual object that represents the abstract in
terpretation algorithms. The TOP-DOWN, BOTTOM-UP and SEQUENCE 
(top down) objects inherit from SOLVE and are pure virtual. For each of 
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them, we have four algorithms which are the Cartesian products of { prefix, 
no prefix } and { monovariant, polyvariant } .  Thus,  we have sixteen non
virtual objects which represent the algorithms. 

( 

The algorithm named SEQUENCE is a top-down algorithm that re
turns sequences of substitutions. We distinguish the algorithms that return 
substitutions and those that return sequences; these two kind of algorithins 
are slightly different. 

This structure was built gradually. We first laid the foundation for 
the basic top down polyvariant non-prefix algorithm, and then expanded that 
foundation little by little to corne to this final inheritance graph. 

[ SOLVE 1 "" 
' ' 

1 1 

TOP.;.DOWN 1 [ BOTTOM�UP 1 [ SEQUENCE 1 •.•· ' , ' ' ' 

/ r 
- No prefix - - No prefix 

f---
- No prefix 

-
- Monovariant - Monovariant - Monovariant '- ./ 

r , 

- No prefix - No prefix - No prefix 
- - Polyvariant - - Polyvariant f--- - Polyvariant 

,I ,I '-

,. / / - Prefix - Prefix - Prefix 
- Monovariant 

-
- Monovariant f-- - Monovariant '- '-'-

/ r - Prefix - Prefix - Prefix � -
- Polyvariant - Polyvariant - Polyvariant '- '-

,I 

Fig. 6-4: Inheritance graph of the algorithms. 

In general, we can observe that the bottom-up algorithms sometimes 
lose accuracy with regard to the top-down algorithms as predicted in the 
theoretical part of this report. On the other hand the benchmarks show that 
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these bottom-up algorithms are often quicker than the top-down algorithms. 

For general comparisons see the evaluation chapter III. 9. and for a full algo

rithm trace see the section III .7 .4. 
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Part III g  U tilization and 

evaluation 

In this part, we expose the results of our work. That is to say how a 
"final user" can consider the application. We explain how to handle the ap
plication (with a basic text interface) and how a programmer can integrate it 
in a compiler. We also evaluate the efficiency of several parameters within a 
series of benchmarks. We then outline some possible future extensions. 
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7. HANDLING THE APPLICATION 

This chapter depicts the existing interface between our application 

and a user. The last part of this chapter describes the full trace of a Prolog 

abstract interpretation. 

Contents of this chapter: 

7 .1 .  INTRODUCTION 110 

7. 2. WHAT THE USER MUST SPECIFY TO COMPUTE AN ABSTRACT 

INTERPRETATION 110 

7. 3. HOW THE USER CAN QUERY THE RESULTING SAT 

7. 4. A FULL EXAMPLE 

112 

112 
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7.1. INTRODUCTION 

Remember that the object of our work was to integrate several ex-
1stmg applications. The goal of these existing applications were to ab
stractly interpret a Prolog program; but each application had some particular 
features like a particular algorithm, domain or data storage. Our plan was 
to build one system that could compute a Prolog abstract interpretation with 
any combination of the existing features, according to the user's choice. 

More precisely, before thinking about the conception of the new ap
plication, we noticed the following existing features for an abstract inter
pretation (reminds). 

The output of the interpretation computation can be either a abstract 
substitution or a abstract sequence of substitutions. 

- An interpretation can be computed with a top-down or a bottom-up al
gorithm. Moreover, either a prefix or no-prefix algorithm version can be 
used. 

- The algorithm can keep track of the set of abstract tuples in two differ
ent ways: It can be monovariant or polyvariant. Moreover, the polyvari
ant algorithm data can be stored in a Hasse diagram or a hash table. 
Various domains can be used to compute an abstract interpretation: the 
Prop domain, the Pattern domain, the Pattern and arithmetic list domain 
and the Type Graph domain. 

Our application is able to compute an abstract interpretation with any 
combination of these options. 

7.2. WHAT THE USER MUST SPECIFY TO COMPUTE AN 

ABSTRACT INTERPRETATION 

Because we wanted the new application to support each of the fea
tures depicted above, to compute an abstract interpretation the user has to 
specify the features to be used. 

We had to keep in mind that the new application could be extended 
in the future and that this application was designed to be incorporated in a 
Prolog compiler. That is why we allowed the possibility for adding other 
compilers to our application. 

Finally, we summarize the application options as follows: 
- the compiler type, 
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the algorithm type (top down with a substitution output, bottom up with 

a substitution output, top down with a sequence of substitutions output) , 

a prefixed algorithm or not, 

the algorithm data storage type (monovariant or polyvariant) , 

if using a polyvariant algorithm, a Hasse diagram or a hash table imple

mentation can be used, 

the domain (Prop, Pattern, Pattern+la, Type-graph or Cartesian product 

of two other domains). 

A dialog between the application and the user could be: 

Abstract interpretation options: 
Ente r the file name ? 
> append . p  
Enter the predicate name 
> append 
Enter the arity ? 
> 3 
Enter the mode nb . 1 ? 
> ground 
Ente r the mode nb . 2 ? 
> ground 
Ente r the mode nb . 3 ?  
> var 
Ente r the compile r type 

(1) builtin 
> 1 

Ente r the algorithm type 

? 

(1) top down (abstract substitution output) 
(2) bottom up (abstract substitution output) 
(3) top down (abstract sequence output) 

> 1 

P refix ? 
(1) no prefix 
(2) prefix 

> 2 
Enter the kind of sat ? 

(1) monovariant 
(2) polyvariant 

> 2 
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Enter the implementation of SAT 
(1) hasse_diagram 
(2) hash table 

> 2 

Enter the implementation of substitutions 
( 1 }  prop 
( 2 )  pattern 

( 3 }  pattern+list arithm 
( 4 )  type_graph 

( 5 ) cartesian_product 
> 2 

7.3. HOW THE USER CAN QUERY THE RESUL TING SAT 

The result of a Prolog query is the output substitution. But in order 

to detect the properties inherent in the input Prolog program after an ab

stract interpretation, it can be useful to examine the set of abstract tuples. 

That is why when the abstract interpretation is computed by the application, 

the user can query the resulting set of abstract tuples. 

The next queries are available after the execution: 

- get the inputs for a predicate; 

get the input least upper bound for a predicate; 

- get the outputs for a predicate; 

- get output least upper bound for a predicate; 

- print all the set of abstract tuples; 

- compute the foundation. 

7.4. A FULL EXAMPLE 

We introduce a full example of an abstract interpretation. Fig. 7- 1 is 

the trace of the interpretation upon the append Prolog program. The fol

lowing interpretation options were chosen: 

- the top-down algorithm, 

- a no-prefix version of the algorithm, 

- a polyvariant algorithm with a hash table to implement the set of abstract 

tuples, 

- the Prop substitution domain, 

- the query is : append (ground, ground, any } . 
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The first iteration of the top-down algorithm is shown at lines 0 1 to 

23 . The first clause extends the input substitution (it has no effect since all 

variables appear in the head) -line 03-. It then binds the first argument with 

[ ] -line 04- and the second argument with the third -line 06-. Then the sub

stitution is restricted to the head variables (this has again no effect in this 

case) . The union of the previous result with the new one is done on line 10: 

lub ( J_, (ground, ground, ground) ) . The algorithm then computes 

the second clause with the input substitution. It extends the input substitu

tion, performs some unifications and calls itself recursively with the same 

substitution -line 17-. As the algorithm is currently computing 

append (ground, ground, any), no computation can be initiated for 

that predicate; that is why the output substitution (i.e. , j_) is simply picked 

up in the set of abstract tuples. The second clause then returns J__ After, 

the union -line 22- of the results, the output substitution is 

( ground, ground, ground) and the set of abstract tuples is updated -line 

23-. 

A second iteration is necessary since the predicate depends on itself 

and sat ( (ground, ground, ground), append) has been modified 

(with ( ground, ground, ground) ). This second iteration does not pro

vide more accurate result. The interesting point is at the time of the recur

sive. The look-up in the set of abstract tuples now returns ( ground, 
ground, ground) -line 40- and then, it produces the result (ground, 
ground, ground) -line 42-. Notice that this new result is the same as the 

one already stored in the set of abstract tuples (computed at the first itera

tion) . 

(0 1) Call P RO-GOAL append : ( ground ground any ) --> X2 & 
Xl 

(02) Try clause 1 -iteration # 1-
(03) Exit EXTC: ( ground ground any ) --> X2 & Xl 
(04) Call UNIFFUNC: ( ground ground any ) --> X2 & Xl 
(0 5) Exit UNIFFUNC: ( ground ground any ) --> X2 & Xl 
(0 6) Call UNIFVAR: ground ground any ) --> X2 & Xl 
(07) Exit UNIFVAR: ( ground ground ground ) --> X3 & 

X2 & Xl 
(0 8) Exit RESTRC: ( ground ground ground ) --> X3 & X2 

& Xl 
(0 9) Exit clause 1 -iteration # 1-
(10) Exit LUB: ( ground ground ground ) --> X3 & X2 & 

Xl 
( 1 1) Try clause 2 -i teration # 1-
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( 12)  Exit EXTC: ( ground ground any any any any ) --> 

X2 & Xl 
(13) Call UNI FFUNC: ( ground ground any any any any ) 

--> X2 & Xl 
( 1 4)  Exit UNIFFUNC: ground ground any ground ground 

any ) --> X5 & X4 & X2 & Xl 
( 1 5) Call UNIFFUNC: ground ground any ground ground 

any ) --> X5 & X4 & X2 & Xl 
( 1 6) Exit UNIFFUNC: ground ground any ground ground 

any ) --> (~X6 & X5 & X4 & ~X3 
& X2 & Xl) + (X6 & X5 & X4 & X3 
& X2 & Xl) 

( 1 7)  Call P RO-GOAL append: ( ground ground any ) --> 

X2 & Xl 
( 1 8)  Exit P RO-GOAL append: bottom 
(1 9) Exit EXTG: bottom 
(2 0) Exit RESTRC: bottom 
(2 1) Exit clause 2 -iteration # 1-
(2 2) Exit LUB: ground ground ground ) --> X3 & X2 & 

Xl 
(23) Ad j ust 
(2 4)  Try clause 1 -iteration #2-
( 2 5) Exit EXTC: ( ground ground any ) --> X2  & Xl 
(2 6) Call UNIFFUNC: ( ground ground any ) --> X2 & Xl 
(2 7) Exit UNIFFUNC: ( ground ground any ) --> X2 & Xl 
(2 8) Call UNIFVAR: ( ground ground any ) --> X2 & Xl 
(2 9) Exit UNIFVAR: ( ground ground ground ) --> X3 & 

X2 & Xl 
(3 0)  Exit RESTRC: ( ground ground ground ) --> X3 & X2 

& Xl 
(3 1) Exit clause 1 -iteration #2-
(3 2) Exit LUB: ( ground ground ground ) --> X3 & X2  & 

Xl 
(33) Try clause 2 -iteration #2-
(3 4) Exit EXTC: ( ground ground any any any any ) --> 

X2 & Xl 
(3 5) Call UNIFFUNC: ground ground any any any any ) 

--> X2 & Xl 
(3 6) Exit UNIFFUNC: ground ground any ground ground 

any ) --> X5 & X4 & X2 & Xl 
(3 7) Call UNIFFUNC: ground ground any ground ground 

any ) --> X5 & X4 & X2 & Xl 
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(38) Exit UNIFFUNC: ground ground any ground ground 
any ) --> (~X6 & X5 & X4 & ~X3 
& X2 & Xl) + (X6 & X5 & X4 & X3 
& X2 & Xl) 

(3 9) Call PRO-GOAL append: ( ground ground any ) --> 
X2 & Xl 

( 4 0 )  Exit PRO-GOAL append: ground ground ground ) -
> X3 & X2 & Xl 

( 4 1) Exit EXTG : ground ground ground ground ground 
ground ) --> X6 & X5 & X4 & X3 & X2 
& Xl 

(4 2) Exit RESTRC: ( ground ground ground ) --> X3 & X2 
& Xl 

(43) Exit clause 2 -iteration #2-
(4 4) Exit LUB : ground ground ground ) --> X3 & X2 & 

Xl 
( 4 5) Adjust 
(4 6) Exit PRO-GOAL append : ground ground ground ) --> 

X3 & X2 & Xl 

Fig. 7-1 : Trace of append (ground, ground, any) . 
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8. INTEGRATION IN A PROLOG COMPILER 

An abstract interpretation algorithm can be fun as a standalone pro
gram but this application may be more useful when integrated into a Prolog 
compiler. That is why, when designing the application, we always kept in 
mind the interconnection feature. 

This chapter describes a possible design where the abstract inter
preter is seen as a server. 



1 18  

8.1. INTEGRATION IN A PROLOG COMPILER 

The current compiled version of the application is sufficient to itself. 
But the main procedure (i.e. , the control of different parts of the program: 
compilation of the program, fixpoint algorithm and results exploitation) 
could be easily rewritten to take the interfacing with a compiler into ac
count. 

We now expose a possible design for a collaboration between a 
Prolog compiler and the abstract interpreter. The solution would be to con
sider our application as a server29 for the compiler. The compiler would ask 
the interpreter to compute an abstract interpretation with some parameters 
(the Prolog program code and the interpretation options). Then the com
piler could query the interpreter to have some particular details of the re
sulting set of abstract tuples. 

Remember that the input Prolog pro gram code must be parsed before 
either the compilation or the interpretation. Instead of doing that work 
twice, we choose, in this design, the Prolog Compiler to do these parsing 
operations. As a consequence, the interpreter must use the resulting parsed 
data. To allow our interpreter to read the parsing Prolog program, a solu
tion is to make the Prolog code data of the compiler be an object and inherit 
from the pure virtual methods of our virtual class CODE. This way, the 
Prolog compiler specializes these methods and our interpreter is able to 
query the object that contains the Prolog program code. The methods that 
must be specialized are simply the ones needed to peel the Prolog text from 
the pro gram to the literal. 

An example of this partnership is depicted in Fig. 8-1. 

29 Referring to the Client/Server relationship. 
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Queries 

Answers 

reter 

Answers 

Queries 

Fig. 8-1 : Example of design. 

With such a partnership, the following operations can be made by the 
two components: 

first, the compiler parses the input Prolog program, and obtains an ob
ject (code) that is readable by the interpreter; 
then, the compiler can ask an abstract interpretation of a predicate (p) of 
the input Prolog program. The compiler must provide the object code, 
the predicate p to compute, the input substitution and the interpretation 
options; 
the interpreter computes p according to the object code. 

if the compiler needs some details of the computation (i.e., inputs for a 
predicate, outputs for a predicate, etc), it can ask the interpreter, which 
then consults the set of abstract tuples to answer. 
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9. EXPERIMENTAL RESULTS 

This chapter contains general comparisons between several interpre
tations coupled with particular options. The Prolog code of the benchmarks 
and their goals are described in the annex. 

Contents of this chapter: 

9.1. DOMAIN PROP 
9.2. DOMAIN PATTERN 
9.3. DOMAIN PATTERN+ ARITHMETIC LISTS 
9.4. DOMAIN TYPE-GRAPH 
9.5. DOMAIN CARTESIAN PRODUCT 
9.5 . 1 .  CARTESIAN PRODUCT OF PROP AND PATTERN 

122 
124 
125 
127 
128 
1 28 

9.5.2. CARTESIAN PRODUCT OF PATTERN AND TYPE-GRAPH 1 30 

9 .5 .3 .  CARTESIAN PRODUCT OF PROP, PATTERN AND TYPE-GRAPH 1 3 1  
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The tables of this chapter depict the cpu time needed when using 
particular options of the abstract interpretation. As a consequence of the 
algorithms' genericity, almost every combination of options is possible. We 
can use any domains combined with any algorithms. The benchmarks natu
rally show that using an improper combination of options often leads to 
huge and unnecessary cpu time. 

9.1. DOMAIN PROP 

Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ··· · · · . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

JJeeJJhole 2 . 2 8 1 .  7 1  2 . 1 5 1 .  9 0  

read 2 . 2 4  2 . 94 2 . 8 1 3 . 1 4 

]Jress 4 . 3 2 6 . 3 4 4 . 1 8 6 . 2 0 

kalah 1 . 2 3  1 . 2 6  1 .  4 2  1 .  4 2  

Table 9-1 : Cpu time (sec) for top-down algorithm with Prop. 

The following table depicts an improper abstract interpretation. In 
effect, using abstract sequence with the Prop domain is not interesting be
cause the Prop domain is not able to catch the exclusivity of clauses. The 
algorithm thus spends unnecessary time trying to catch information that the 
Prop domain cannot manage. 
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Prefix No No Yes Yes ................................ · · · · · · · · · · · · · · ······· · · · · · · · · .. , ,  ...... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 1 1 . 1 9  6 . 7 9 1 1 . 0 2  7 . 1 0 

read 5 . 3 0 6 . 0 5 5 . 3 8 6 . 2 8 

press 6 . 4 6 1 0 . 7 2 6 . 2 4 1 0 . 0 2 

kalah 1 .  6 6  1 .  7 0  1 .  7 5  1 .  7 8  

Table 9-2 : Cpu time (sec) for top down algorithm with Prop sequences. 

Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 3 . 0 9 3 . 2 7 2 . 8 5 2 . 9 1 

read 2 . 4 3 3 . 4 0 2 . 5 4 3 . 5 7 

press 2 . 63 5 . 0 2 2 . 4 6 4 . 9 5 

kalah 1 .  6 8  1 .  9 2  1 .  7 2  1 .  9 3  

Table 9-3: Cpu time (sec) for bottom up algorithm with Prop. 
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9.2. DOMAIN PATTERN 

Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 3.8 8 3.7 5 3.1 8 4.0 0 

read 4.3 9 1 4. 5 7  3.4 5 1 3.90  

press 4.3 9 1 8.53 4.1 9 1 6.0 0 

kalah 3.3 9 4.4 1 2.7 0 3.3 7 

Table 9-4 : Cpu time (sec) for top-down algorithm with Pattern. 

Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 1 1.7 1 1 1.59  1 1.12  1 1.7 5 

read 1 0.4 7  3 0.7 7 9.92 3 1.4 1 

press 8.2 2 3 0.68  8.03  2 7.97  

kalah 4.61  5.7 4 3.8 8 5.1 7 

Table 9-5 : Cpu time (sec)for top down algorithm with Pattern sequences. 
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Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . .... . . . . . . . . .... . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

veevhole 2.7 2 4.11  2.65  4.1 5 

read 3.7 0 1 2.4 9 3.53 12.58  

vress 2.8 2 7.0 3 2.68  6.62  

kalah 2.8 6 8.0 2 2.3 9 7.52  

Table 9-6: Cpu time (sec) for bottom up algorithm with Pattern 

9.3. DOMAIN PATTERN + ARITHMETIC LISTS 

Prefix No No Yes Yes ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

veevhole 4.2 2 4.1 4 3.53 4.4 7 

read 4.3 7 1 5.4 0 3.9 9 1 4.94  

vress 4.92  1 9.61  4.7 4 1 7.3 7 

kalah 3.4 7 4.55  2 . 8 7 3.8 3 

Table 9-7: Cpu time (sec) for top-down algorithm with Pattern+la. 
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Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . ... . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 1 4 . 1 8 1 3 . 7 7 1 3 . 5 0 1 3 . 6 5 

read 9 . 7 4 2 8 . 8 7 9 . 2 1 2 8 . 4 8 

press 8.96  3 2 . 8 3 8 . 6 9 3 0 . 1 7 

kalah 5 . 6 9 5 . 8 4 4 . 5 5 5 . 3 2 

Table 9-8: Cpu time (sec) for top down algorithm with Pattern+la sequences. 

Prefix No No Yes Yes ................................ ........................................ ...... . . . . . . . . . . . . . . ... ... . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · · · ··· · · · · · · · · ············ ............. 

SAT Monovariant Polyvariant Monovariant Polyvariant 

veevhole 2 . 9 0 4 . 4 3 2 . 8 7 4.3 4 

read 4 . 0 2 1 3 . 1 7 3 . 9 1 1 3 . 2 9 

press 3 . 0 2 7 . 5 8 2 . 9 4 7 . 5 0 

kalah 3 . 0 1 8.3 6  2 . 5 1 7 . 7 9 

Table 9-9: Cpu time (sec)for bottom up algorithm with Pattern+la. 
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9.4. DOMAIN TYPE-GRAPH 

Prefix No No Yes Yes · · · · · · · · · · · · · ······ ·· · · · · · ·· ··· · ··· · · · · · · · · · .. ,, . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ... . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 4.0 9 3.1 2 4.0 1 3.8 1 

read / / / / 

press / / / / 

kalah 0 . 0 8 0 . 0 6  0.1 2 0 . 0 8 

Table 9-10: Cpu time (sec)for top-down algorithm with Type-graph. 

The following table depicts an improper abstract interpretation. As 
the Type-graph domain is not able to catch the exclusivity of clauses, using 
abstract sequences with the Type-graph domain is stupid. The algorithm 
spends unnecessary time trying to catch information that the Type-graph 
domain cannot manage. 

Prefix No No Yes Yes · · ··· · ·· · ····"······ · ·· ·· · ·· · · · .... . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . ... . . ... . . . . . . . . ... .. . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 1 7 4 9 4.5 1 7 6 4 0 . 4  1 7 8 8 2.2 2 1 3 3 5 . 7  

read / / / / 

press / / / / 

kalah 0.13 0 . 1 5 0.1 6 0 . 2 5 

Table 9-11 : Cpu time (sec) for top down algorithm with Type-graph sequences. 
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Prefix No No Yes Yes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ........................ ........................................ · · · · · · . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

veevhole 2.0 2 2.4 5 2.2 9 2.8 9 

read / / / / 

press / / / / 

kalah 0.15  0.1 6 0.1 9 0.2 1 

Table 9-12 : Cpu time (sec) for bottom up algorithm with Type-graph. 

9.5. DOMAIN CARTESIAN PRODUCT 

The Cartesian product is not efficient since the components do not 
communicate30

• In effect, the following tables often show that a computa
tion for a Cartesian product of A and B takes more time than the sum of the 
times to compute A and B. This phenomenon is explained by the fact that 
during the computation, the two domains are waiting for each other instead 
of warning. 

9.5.1 . CARTESIAN PRODUCT OF P ROP AND PATTERN 

Prefix No No Yes Yes · · · · · · · · · · · · · · · · · · ·· ·"·· · •"''' ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .... . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

veevhole 7.96  8.0 6 6.8 7 8.3 7  

read 8.2 8 3 4.1 2 7.66  32.95  

press 1 0.4 4 4 6  .15  9.8 7 4 0.2 8 

kalah 5.1 5 6 . 8 6 4 . 7 2 6.4 2 

Table 9-13 : Cpu time (sec) for top-down algorithm with Cp(Prop, Pattern). 

30 See section 10. 1 . 1 .  for an open product of domains. 
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Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 7 0 . 9 4 63 . 4 8 6 8 . 4 5 6 3 . 7 4 

read 3 5 . 4 8 8 5 . 6 1 3 4 . 93 8 1 . 8 5 

press 1 8 . 0 2 7 0 . 4 2 1 7 . 63 6 2 . 4 0 

kalah 6 . 7 8 8 . 7 4 6 . 0 9 8 . 3 4 

Table 9-14: Cpu time (sec)for top down algorithm with Cp(Prop, Pattern) 

sequences. 

Prefix No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Pol:vvariant Monovariant Pol:vvariant 

peephole 7 . 1 0 8 . 7 7 6 . 4 0 8 . 2 1 

read 1 0 . 7 0 2 7 . 62 1 0 . 4 4 2 7 . 3 6 

press 9 . 1 8 1 9 . 6 9 8 . 5 5 1 9 . 0 3 

kalah 7 .  68  12 . 6 6 7 . 1 6 1 1 . 8 3  

Table 9-15 : Cpu time (sec) for bottom up algorithm with Cp(Prop, Pattern). 
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9.5.2. CARTESIAN PRODUCT OF PATTERN AND TYPE-GRAPH 

Prefix No No Yes Yes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ········ · · · · ······· · · ···· ... . . . . . . . . . . . . ··················· ... . . . . . . . . . . . . . . . . . . · · · · · · · · ·· ······· · · · ········· · · · · · · · · ··· ······································· 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 1 0 . 6 1 8 . 6 0 9 . 2 1 9 . 4 0 

read I I I I 

press I I I I 

kalah 0 . 1 2 0 . 0 8 0 . 1 5  0 . 2 1  

Table 9-16: Cpu time (sec)for top-down algorithm with Cp(Pattern, Type
graph). 

Prefix No No Yes Yes ···················· .. . . . . . . . . . . ... . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

peephole 3 5 . 9 5 2 4 . 7 4 3 4 . 3 6 2 4 . 9 5 

read I I I I 

press I I I I 

kalah 0 , 1 0  0 . 1 4 0 . 2 2 0 . 2 0 

Table 9-17: Cpu time (sec) for top down algorithm with Cp(Pattern, Type
graph) sequences. 
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Prefix No No Yes Yes ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . , ............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT Monovariant Polyvariant Monovariant Polyvariant 

veevhole 6.3 8 7.67  6 . 2 9 7 . 5 0 

read / / / / 

vress / / / / 

kalah 0.2 8 0 . 3 2 0.37 0.4 3 

Table 9-18: Cpu time (sec) for bottom up algorithm with Cp(Pattern, Type

graph). 

9.5.3. CARTESIAN PRODUCT OF PROP, PATTERN AND TYPE

G RAPH 

Prefix · · · ··· · · · · · · · ... . . . . . . . . . . . . . . . . 

SAT 

veephole 

read 

vress 

kalah 

No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Monovariant Polyvariant Monovariant Polyvariant 

1 7 . 0 9 1 4. 0 1  1 4 . 1 9 1 4 . 4 4 

/ / / / 

/ / / / 

0.1 4 0.18  0 . 1 7 0 . 1 8 

Table 9-19: Cpu time (sec) for top-down algorithm with Cp(Prop, 

Cp(Pattern,Type-graph)). 
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Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT 

veevhole 

read 

press 

kalah 

Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SAT 

peephole 

read 

press 

kalah 

No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Monovariant Polyvariant Monovariant Polyvariant 

1 2 7 . 0 0 7 6 . 53 1 2 1 . 6 7 7 6 . 4 7 

/ / / / 

/ / / / 

0 . 1 9 0 . 1 5 0 . 3 4 0 . 2 9  

Table 9-20: Cpu time (sec) for top down algorithm with Cp(Prop, 
Cp(Pattern,Type-graph)) sequences. 

No No Yes Yes . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Monovariant Polyvariant Monovariant Polyvariant 

1 0 . 7 2 1 2 . 7 4 9 . 5 7 1 1 . 7 9 

/ / / / 

/ / / / 

0 . 5 1 0 . 5 0 0 . 5 4 0 . 6 3 

Table 9-21 :  Cpu time (sec) for bottom up algorithm with Cp(Prop, 
Cp(Pattern,Type-graph)). 
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10. CONCLUSIONS AND FUTURE WORKS 

As the main goal of our work was to lay the foundation of an ex

tendible system, there are still a lot of possible enlargements and optimiza

tions that could be added to the system. This chapter doesn' t  pretend to 

quote every possible extension but only provides some of them. 

Contents of this chapter: 

10.1. CONCLUSION 
10.1.1. OPEN PRODUCT DOMAIN 

10.1.2. REFINING INPUT SUBSTITUTIONS 

10.1.3. CACHING THE OPERATIONS 

134 

134 

135 

135 
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10.1. CONCLUSION 

Overall, we laid the foundation for an extendible abstract interpreter. 
We fulfilled the assignment: namely, improving genericity of a Prolog ab
stract interpreter through object oriented design. We built several objects to 
model the different parts that we were able to identify as components of an 
abstract interpretation system. When we began to work on this project, we 
had lots of disparate materials (i.e., several versions of abstract interpreters) 
and when we had to stop we left a new framework able to be extended in 
the future. 

In effect, there is still a lot of material which could be integrated 
within the framework. For instance, one might want to add new algorithms 
in order to catch other information. On the other hand, it is also possible to 
insert other implementations of the set of abstract tuples in order to store 
the information differently or to increase efficiency. 

Obviously, a major interest could be the insertion of other domains. 
Sorne of them are already implemented in other applications (and thus have 
to be adapted to the actual matrix) while others are still in the world of 
thoughts and still to be built. The fantasy would be to have an application 
where one can choose from a huge list of domains. Every domain having its 
specificity and its strength, it is now possible to fine-tune the abstract inter
pretation of a given Prolog program and a particular goal. Moreover, as we 
are in a world of communication, why not let the domains communicate 
with each other. We thus introduce the notion of open product. 

1 0 .1 .1 . OPEN PRODU CT DOMAI N 

The idea behind the open product domain is the combination of sev
eral domains; it is thus close to the Cartesian product domain. The major 
difference is that while the components of a Cartesian product stupidly per
form the abstract interpretation in parallel, the open product allows them to 
communicate to speed up the execution time and refine the result. 

A domain able to take advantage of the open product feature, would 
query other components of the open product in order to collect information 
not in its possession (e.g. , groundness of a term, sharing information, . . .  ). 

Notice that the domains queried must be able to answer; i.e. , they 
must own new methods to collect that kind of information. In general, if 
one does not want to change the domain to offer this feature, it is possible 
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to define these methods by default returning less precise information (e.g. , 
"I do not know"). 

1 0.1 .2. R EFIN ING I NPUT SUBSTITUTIONS 

In the current version of the abstract interpreter, one can only enter 
an abstract substitution made of modes although a lot of domains can handle 
more information (pattern, sharing, etc). A more convenient input interface 
should help the user to specify more complex queries. 

1 0. 1 .3 .  CACHING THE OPERATIONS 

In order to decrease the computation time lost in abstract operations, 
another extension to the system could be to cache them. 

Although substitutions are implemented in terms of instanciation of 
objects (i.e., variables), it is possible to consider them as values3 1

• From 
that notion, we can introduce the abstract operations caching. The idea is 
to store the result of a given abstract operation on a given abstract substitu
tion so that if the same operation occurs afterwards, simply looking in a ta
ble is sufficient to get the result. 

Obviously, to implement the caching of abstract operations, none of 
them could be destructive32

• Note that this implementation already exists in 
other frameworks. 

31 i.e. , an abstract and immaterial value like a number, a set, etc. 
32 This is due to the persistence of a value. 
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A1. LISTINGS OF SOME BENCHMARK PROGRAMS 

The programs we use are hopefully representative of « pure » logic 
programs. They are taken from a number of authors and used for various 
purposes as explained later. 

A1 .1. PEEPHOLE 

Peephole is a program written by S. Debray to carry out the peep
hole optimization in the SB-Prolog compiler. 
comp peepopt (Pil , OptPil , Preds ) : 

-comp_poptl (Pil ,  Pill ) , 
comp_popt4 (Pill,  [ ] , _, Preds , OptPil) . 

comp_poptl ( [ l ,  [ ] ) .  
comp_poptl ( [ Inst l Rest ] , Pill)  : - comp_poptll ( Inst , Rest , Pill) . 

comp_poptll_aux ( T , R, Ins t , PRest , OptinstList)  : -
T = R ,  ! , 

comp_poptll ( Inst, PRest, OptinstList) . 
comp_poptll_aux ( T , R, Ins t , PRest , OptinstLis t )  : -

popt movreg ( Inst , R, T, PRest , OptinstLis t ) . 
comp_poptll_auxl (PRest , R, OptinstList , S , OptPRest)  : 

peep chk (PRest , R) , ! , 
OptinstList = [unitvar ( S )  I OptPRest ] .  

comp_poptll_auxl (PRest, R, OptinstList , s , optPRest)  : 
OptinstList = [unitvar (R) , movreg (R, S )  I OptPRest] . 

comp_poptll (puttvar (T ,  R) , [getstr ( S ,  R) 1 PRest ] , [putstr ( S ,  T) 1 OptPRest ] ) : -
! ,  
comp_poptla (PRest,  OptPRest) . 

comp_poptll (puttvar (T , R) , [getlist (R) I PRest ] ,  [putlist (T)  I OptPRest ] ) : 
! ,  
comp_poptla (PRest , OptPRest ) . 

comp_poptll (movreg (T , R) , [ Inst l PRest ] , OptinstList ) : 
! ,  

comp_poptll_aux (T, R, Ins t , PRest, OptinstLis t ) . 
comp_poptll (putpvar (V, R) , [getpval (V, R) I PRest ] ,  [putpvar (V, R) I OptPRest ] )  : -

! ,  
comp_poptl (PRest,  OptPRest ) . 

comp_poptll (putpvar (V, R) , [getstr (Str, R) I PRes t ] , [putstrv (Str , V) I OptPRest ] )  : 
! ,  
comp_poptla (PRest,  OptPRest ) . 

comp_poptll (putpval (V, R) ,  [getst r ( Str, R) I PRest ] ,  [getstrv ( Str, V) I OptPRest ] )  : 
! ,  
comp_poptl (PRest , OptPRest ) . 

comp_poptll (getlist (R) , 
[unitvar (Rl)  , unitvar (R2 ) I PRest ] ,  [ getlist tvar tvar (R, Rl , R2 )  I OptPRest ] )  : -

! , - -
comp_poptl (PRest, OptPRest ) .  

comp_poptll (getcomma (R) , 
[unitvar (Rl ) , unitvar (R2 ) I PRest ] ,  [getcomma tvar tvar (R, Rl , R2 )  I OptPRest ] )  : -

! ,  - -
comp_poptl (PRest, OptPRest) . 

comp_poptll (getlist_k (R) , 
[unitvar (Rl)  , unitvar (R2 ) I PRest ] ,  [getlist k tvar tvar (R, Rl , R2 )  I OptPRest ] ) : -

! , - -
comp_poptl (PRest , OptPRes t ) . 

comp poptll (gettval (R, R) , PRest , OptPRest)  : -
- ! ,  

comp_poptl (PRest ,  OptPRest ) . 
comp poptll (unitvar (R) , [movreg (R, S )  I PRest ] ,  OptinstList)  : 

- ! ,  
comp poptll auxl (PRest , R, OptinstList, S , OptPRest ) , 

comp_poptl (PRest ,  OptPRest) . 
comp_poptll ( jump (L) , [label (L )  I PRest ] , [ label ( L )  I OptPRest ] ) : -
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! ,  
comp_poptl (PRest , OptPRest ) .  

comp_poptll ( jump (Addr ) , [ jump (_) I PRest ] ,  [ jump (Addr) I OptPRest ] )  : 
! ,  
comp_poptl (PRest, OptPRest ) .  

comp_poptll  ( jumpz (_, L ) , [ label (L )  1 PRest ] , [ label ( L )  1 OptPRest] ) : -
! ,  
comp_poptl (PRest , OptPRest) . 

comp_poptll ( jumpnz (_, L ) ,  [ label (L)  I PRest l ,  [ label ( L ) I OptPRest ] ) : -
' . , 
comp_poptl (PRest , OptPRest ) .  

comp_poptll  ( j umplt (_, L ) , [ label (L )  I PRes t ] , [ label ( L )  I OptPRest ] )  : 
! , 
comp_poptl (PRest , OptPRest) . 

comp_poptll ( j umple (_, L ) , [ label (L )  I PRest ] , [ label ( L ) I OptPRest ] )  : 
! ,  
comp_poptl (PRest , OptPRest ) .  

comp_poptll ( jumpgt (_, L ) , [ label (L)  I PRest ] , [ label (L )  I OptPRest] ) : 
! ,  
comp_poptl (PRest , OptPRest ) .  

comp poptll ( jumpge ( , L ) ,  [ label (L)  I PRest ] , [ label ( L )  I OptPRest ] )  : -
- ! ,  -

comp_poptl (PRest, OptPRest ) .  
comp_poptll ( Inst,  PRest ,  [ Inst l OptPRest] ) : 

comp_poptl (PRest , OptPRest) . 

comp_poptla ( [ ] ,  [ ] ) . 
comp_poptla ( [ Inst l PRest ] , OptPList ) : -

popt uni2bld ( Inst, Bldinst ) , ! , 
OptPList = [Bldinst l OptPRest] , 
comp_poptll ( Inst , PRest, OptPList ) . 

comp_poptla ( [ Inst l PRest ] , OptPList ) : 
comp_poptla (PRest , OptPRest ) , 
comp_poptll (Inst, PRest, OptPList ) .  

popt uni2bld (unipvar (X) , bldpvar (X) ) .  
popt-uni2bld (unipval (X) , bldpval (X) ) .  
popt-uni2bld (unitvar (X) , bldtvar (X) ) .  
popt-uni2bld (unitval (X) , bldtval (X) ) .  
popt-uni2bld (unicon (X) , bldcon (X) ) . 
popt-uni2bld (unini l ,  bldnil ) . 
popt-uni2bld (uninumcon (X) , bldnumcon (X) ) .  
popt=uni2bld (unifloatcon (X) , bldfloatcon (X ) ) . 

comp_popt4_aux (El , OList, ORest , Inst ) : -
El = 1 ,  ! , 
OList = ORest . 

comp_popt4_aux (El , OList , ORest, Inst ) : -
OList = [ Inst l ORest ] . 

comp_popt4 ( [ ] , _, _, Preds , [ ] ) .  
comp_popt4 ( [Inst l IRest] , RCont , Seen , Preds , OList)  : 

popt builtin ( Inst, Preds , OList , ORest ) ,  ! ,  
RContl = RCont , 
comp_popt4 ( IRest , RContl , Seen , Preds , ORest) . 

comp_popt4 ( [ Inst l IRest ] , RCont , seen , Preds , OList)  : 
peep redundant ( Inst, IRest , RCont , RContl , Seen , E l ) , 

comp_popt4_aux (El , OList , ORest , Inst ) , 
comp_popt4 (IRest , RContl , Seen , Preds , ORest ) .  

popt builtin (call ( P , N ,  ) , Preds , [builtin (Bno) I IRest ] , IRest ) : -
- comp builtin (P , N, Bno) , 

not_memberl ( s lash (P , N) , Preds ) , 
! . 

popt builtin (calld (P , N, ) , Preds , [builtin (Bno) I IRest ] , IRest)  : -
- comp builtin (P , N-;-Bno ) , 

not_memberl ( s lash ( P , N ) , Preds ) , 
! . 

popt builtin ( execute (comma (P , N) ) , Preds , [builtin (Bno ) , proceed l IRest ] , IRest)  : -
- comp builtin (P , N , Bno ) , 

not_memberl ( s lash ( P , N ) , Preds ) . 

popt movreg ( Inst , R, T , PRest , OptinstList )  : 
- popt movregO (Inst , R , T , Optinst ) ,  

pe;p chk (PRest , R) ,  ! ,  
OptinstList = [Optinst l OptinstRest ] , 
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comp_poptl (PRest,  OptinstRest) . 
popt_movreg ( Inst , R, T , PRest , OptinstList)  : 

OptinstList = [movreg (T , R) , Inst j OptinstRe s t ] , 
comp_poptl (PRest, OptinstRest ) .  

popt_movregO (getstr ( S , R) , R, T , getstr ( S , T ) ) .  
popt_movregO (puttbreg (R) , R, T , puttbreg (T) ) .  
popt_movregO (addreg (R, S ) , R, T , addreg(T , S ) ) .  
popt_movregO (subreg (R, S ) , R, T , subreg(T, S ) ) .  
popt_movregO (mulreg (R, S ) , R, T , mulreg (T , S ) ) .  
popt_movregO (divreg (R, S ) , R, T , divreg (T, S ) ) .  
popt movregO (idivreg (R, S ) , R, T , idivreg (T , S ) ) .  
popt=movregO ( get_tag (R, S ) , R, T , get_tag (T, S ) ) .  
popt_movreg0 (arg (R, R2 , R3 ) , R, T , arg (T, R2 , R3 ) ) .  
popt_movreg0 ( arg (Rl , R, R3 ) , R, T , arg (Rl , T , R3) ) .  
popt_movreg0 (arg (Rl , R2 , R) , R, T , arg (Rl , R2 , T) ) . 
popt_movregO (argO (R, R2 , R3 ) , R, T, arg0 (T, R2 , R3 ) ) .  
popt_movregO (argO (Rl , R, R3 ) , R, T , argO (Rl, T , R3 ) ) .  
popt_movregO (argO (Rl , R2 , R) , R, T , arg0 (Rl , R2 , T ) ) . 
popt movregO ( test unifiable (R, R2 , R3) , R, T, test unifiable (T, R2 , R3 ) ) .  
popt-movreg0 (test-unifiable (Rl , R, R3 ) , R, T , test-unifiable (Rl , T , R3 ) ) .  
popt=movreg0 ( test=unifiable (Rl , R2 , R) , R, T , test=unifiable (Rl , R2 , T ) ) .  

popt chkmember aux (P , Pl , Flag, Ll )  : -
- P = Pl , - ! , 

Flag = O .  
popt chkmember aux (P , Pl , Flag, Ll )  : 

- popt_chkmember (P , Ll , Flag) . 

popt_chkmember (P , L , Flag) : -
var (L ) , ! , 

L = [P l l , 
F lag = 1 . 

popt_chkmember (P,  L, Flag) : 
nonvar ( L ) , 

L = [Pl j Ll ] , 
popt_chkmember_aux (P , Pl, Flag, Ll) . 

peep use (getcon ( , R) , R) . 
peep-use ( getnumcon ( , R) , R) . 
peep-use (getfloatcon (  , R) , R) . 
peep-use ( getpval ( , R) �R) . 
peep-use (gettval (-, R) , R) . 
peep-use ( gettval (R, ) , R) .  
peep=use (gettbreg (R), R) . 
peep_use (getpbreg (R) , R) .  
peep use (getstr (  , R) , R) . 
peep-use (getstrv( , R) , R) . 
peep=use (getlist (R) , R) . 
peep use (getlist tvar tvar (R, , ) , R) .  
peep=use (getcomma (R) , R) . - -
peep use (getcomma tvar tvar(R,  , ) , R) .  
peep -use ( get tag (R, ) , R) . - -
peep=use (unitval (R)�R) . 
peep_use (unipval (R) , R) .  
peep_use (bldtval (R) , R) .  
peep_use (bldpval (R) , R) .  
peep use (arg (R,  , ) , R) .  
peep-use ( arg ( , R, -) , R) . 
peep-use (arg (-, , R) , R) .  
peep-use (argO(R� , ) , R) .  
peep -use (argO ( , R, -) , R) . 
peep-use (argO (-, , R) , R) .  
peep-use (test unifiable (R,  , ) , R) .  
peep-use (test-unifiable ( , R, -) , R) . 
peep-use (and (R, ) , R) . - -
peep=use (and (_, R) , R) . 
peep use ( negate (R) , R) . 
peep-use (or (R, ) , R) .  
peep-use (or ( , R) , R) .  
peep-use ( lshiftl (R, ) , R) .  
peep -use ( lshiftl ( , R) , R) . 
peep-use ( lshiftr (R, ) , R) .  
peep -use ( lshi ftr ( , R) , R) . 
peep-use (addreg (R� ) , R) .  
peep=use (addreg (_, R) , R) . 
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peep use ( subreg (R, ) , R) .  
peep -use ( subreg ( , R) , R)  . 
peep-use (mulreg (R, ) , R) .  
peep -use (mulreg ( , R) , R)  . 
peep-use (divreg (R, ) , R ) .  
peep-use (divreg ( , R) , R)  . 
peep-use ( idivreg(R, ) , R) .  
peep-use ( idivreg ( , R) , R) .  
peep-use (movreg (R; ) , R) .  
peep-use ( switchont;rm (R, , ) , R) .  
peep-use (switchonlist (R, -, -) , R) . 
peep-use ( switchonbound (R; ; ) , R) .  
peep-use ( jump ( ) ,  ) . 
peep-use ( jumpeq (R;L ) , R) : - L \== abs (-1 ) . 
peep=use ( jumpne (R, L ) , R) : - L \== abs (-1 ) . 
peep use ( jumplt (R, L ) , R) : - L \== abs (-1 ) . 
peep-use ( jumple (R, L ) , R) : - L \== abs (-1 ) . 
peep-use ( jumpgt (R, L ) , R) : - L \== abs (-1) . 
peep=use ( jumpge (R, L ) , R) : - L \== abs (-1) . 

peep chk ( [ ] , ) . 
peep-chk ( [ Inst l Rest ] , R) : -

- peep use (Inst , R) , ! ,  fail . 
peep chk ( [Inst l Rest ] , R) : -

- peep term ( Inst , R) ,  , .-
peep chk ( [ Inst l Rest ] , R) : -

- peep_chk (Rest , R) . 

peep term (call ( , , ) , ) . 
peep-term (calld( ; ;  ) ;  ) . 
peep-term (execut; (-) ; ) �  
peep-term ( '  execmarker ' ,  ) . 
peep-term (putcon (R) , R) .  
peep-term (putnumcon (R) , R) . 
peep=term (putfloatcon (R) , R) .  
peep term (puttvar (R, ) , R) . 
peep-term (putpvar ( , R) , R) .  
peep-term (putdval (-, R ) , R) . 
peep-term (putuval (-, R) , R) . 
peep-term (puttbreg(R) , R) . 
peep-term (putpval ( , R) , R) . 
peep-term (putstr (  ;R) , R) . 
peep-term (putstrv( , R) , R) . 
peep-term (putlist (R) , R) . 
peep-term (putnil (R) , R) . 
peep-term (get tag ( , R) , R) . 
peep-term (movreg ( ;R) , R) . 
peep-term (bldtvar(R) , R) . 
peep=term (test_unifiable (_, _, R) , R) . 

peep redundant ( '  execmarker ' ,  , R, R, , 1 ) .  
peep-redundant (Inst, IRest, RCont , RCont l , Seen, El )  : -

- peep elim (Inst, IRest, RCont , RContl , Seen, El ) , ! .  
peep_redundant (Inst, IRest, RCont, RContl , Seen, El )  : -

RContl = RCont , El = O .  

peep elim ( jumpz ( , L ) ,  , RO , Rl ,  , 0 ) : - L == abs (-1 ) , ! ,  Rl RO . 
peep-elim ( jumpz (-, L ) , -, RO , Rl , -, O )  : - Rl = [ ] . 
peep-elim (getpvar(V, R), , RCont, [ r (R, v (V) ) I RCont ] , , 0 ) . 
peep-elim (getpval (V, R) , -, RCont , RContl , seen , E l )  : - -

- memberl ( r (R, v (V ) ) ;Rcont ) ,  ! ,  
El = 1 ,  RContl = Rcont . 

peep elim (getpval (V, R) , , RCont, RContl , Seen , El )  : 
- El = O ,  RContl ;;; [ r (R, v (V) ) I RCont ] . 

peep elim ( getcon (C , R) , , RCont, RContl , Seen, El )  : -
- memberl ( r (R, c ( C ) ), RCont ) , ! ,  

El = 1 ,  RContl = Rcont . 
peep elim ( getcon (C , R) , , RCont , RContl, Seen , El )  : 

- El = O ,  RContl =-[ r (R, c ( C ) ) I RCont] . 
peep elim (getnumcon (N, R) , , RCont , RContl , Seen , El )  : -

- memberl ( r (R, n (N) ) , RCont ) ,  ! ,  
El = 1 ,  RContl = Rcont . 

peep elim (getnumcon (N, R) , , RCont, RContl, Seen , El )  : 
- El = O ,  RContl = [ r(R, n (N) ) I RCont] . 

peep_elim (getfloatcon (N, R) , _, RCont, RContl , Seen, El )  : -
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memberl ( r  (R,  nf (N) ) ,  RCont) , ! , 
El = 1 ,  RContl = Rcont . 

peep elim (getfloatcon (N, R) , , RCont, RContl, Seen , El )  : 
- El = O ,  RContl = [ r (R;nf (N) ) I RCont ) . 

peep elim ( getnil (R) , , RCont , RContl , Seen , El )  : -
- memberl ( r (R, c (ni l ) ) , RCont ) , ! ,  

El = 1 ,  RContl = Rcont . 
peep elim (getnil (R) , , RCont , RContl , Seen , El )  : 

- El = O ,  RContl-= [ r (R, c (nil ) ) I RCont ] . 
peep elim (putpvar (V, R) , , LO , Ll ,  , 0 ) : -

- peep elim upd ( LO , R, v (V) , Ll) . 
peep elim (putpval (V, R) , , RCont , RContl , , El ) : -

- memberl ( r (R, v (V) ) ;Rcont ) ,  ! ,  -
El = 1 ,  RContl = RCont . 

peep elim (putpval (V, R) ,  , RCont , RContl ,  , El ) : -
- El = O ,  peep elim-upd (RCont , R, v (V) , RContl ) . 

peep elim (puttvar (R, Rl ) -;- , LO , Ll ,  , 0 ) : -
- peep del ( LO , r (R, ) ;L2 ) , peep del (L2 , r (Rl , ) , Ll ) . 

peep elim (putcon ( C , R) , -, RCont , RContl , , El ) : - -
- memberl ( r (R, c (C ) ), RCont ) , ! ,  -

El = 1 ,  RContl = RCont . 
peep elim (putcon ( C , R) , , RCont , RContl , , El) : -

- El = O ,  peep elim upd (RCont , R, c(C) , RContl ) .  
peep elim (putnumcon (N, R),  , RCont, RContl , , El) : -

- memberl ( r (R, n (N) ) , RCont ) ,  ! ,  -
El = 1 ,  RContl = RCont . 

peep elim (putnumcon (N, R ) , , RCont , RContl , , El ) : 
- El = O ,  peep elim upd (RCont , R, n (N) ;Rcontl) . 

peep elim (putfloatcon (N-;-R) , , RCont, RContl ,  , El ) : -
- memberl ( r (R, nf (N) ) , Rcë;°nt ) ,  ! ,  -

El = 1 ,  RContl = RCont . 
peep elim (putfloatcon (N, R) , , RCont, RContl ,  , El ) : 

- El = O ,  peep elim upd(RCont , R, nf (N) , RContl ) . 
peep elim (putnil (R), , RCont , RContl ,  , El) : -

- memberl ( r (R, c (nil ) ) , RCont ) , ! ;  
El = 1 ,  RContl = RCont . 

peep elim (putnil (R) , , RCont , RContl ,  , El ) : -
- E l = O ,  peep elim upd (RCont , R;c (nil) , RContl ) . 

peep elim (puts t r ( F-;-R) , -;-LO , Ll ,  , 0 ) : - peep del (LO , r (R, ) , Ll ) . 
peep-elim (putlist (R) , ;LO , Ll ,  ;o ) : - peep del ( LO , r (R, ), Ll) . 
peep-elim ( and ( , R) ,  , LO , Ll ,  , 0) : - peep de\ (LO , r (R, ) -;-Ll ) . 
peep-elim (or ( -;-R) , -;-LO , Ll ,  ;o ) : - peep del ( LO , r (R, ), Ll) . 
peep-elim (negate (R), , LO , Ll, , O ) : - peep del (LO , r (R, ) , Ll ) . 
peep-elim ( lshiftr ( , R) , , LO , Ll ,  , 0 ) : - peep del (LO , r(R, ) , Ll ) . 
peep-elim ( lshiftl (-, R) , -, LO , Ll , -, O )  : - peep-del (LO , r (R,-) , Ll ) . 
peep-elim (addreg ( ;R) , ;LO , Ll ,  ;o )  : - peep del ( LO , r (R, ), Ll) . 
peep-elim ( subreg (-, R) , -, LO , Ll , -, O )  : - peep-del (LO , r (R,-) , Ll ) . 
peep-elim (mulreg (-, R) , -, LO , Ll, -, O )  : - peep-del (LO, r (R,-) , Ll ) . 
peep-elim (divreg (-, R) , -, LO , Ll , -, O )  : - peep-de l ( LO , r (R ,-) , Ll ) . 
peep-elim ( idivreg( , R) ;  , LO , Ll; , 0 ) : - peep del ( LO , r (R-;- ) , Ll ) . 
peep-e lim (movreg (R;Rl ) , -, LO , Ll , -, 0 )  : - peep-elim upd (LO;Rl, r (R) , Ll ) . 
peep-elim (gettbreg (R) , -;-LO , Ll ,  -;-o ) : - peep del (LO, r (R, ) , Ll ) . 
peep-elim (putdval (V, R )-;- , LO , Ll-;- , 0 ) : - peep del ( LO , r (R-;- ) , Ll ) . 
peep-elim (putuval (V, R) , -, LO , Ll , -, O ) : - peep-del (LO , r (R, -) , Ll ) . 
peep-elim (label ( comma (P-;-N , K) ) , ; ,  [ ] , Seen , 0) : - -

- N >= O ,  ! ,  memberl (comma(P;N) , Seen) . 
peep elim ( label (comma ( P , N , K) ) , , , [ ] , Seen, O ) . 
peep-elim (call ( , , ) ,  , , [ ] ,  -;-of . 
peep-elim (proceed; -;- , Î]-;- , O ) � 
peep-elim ( execute (�omma (P;N) ) , IRest,  , [ ] , Seen, El)  : -

- !Rest = [ label (comma ( P , N , K) ) I  Î, N >= O ,  ! ,  
popt chkmember (comma ( P , N ) , Seen, El ) . 

peep elim (execute (comma ( P , N) ) , IRest , , [ ] , Seen, El)  : -
- E l  = 0 .  -

peep elim (calld (  , , ) , , , [ ] ,  , 0 ) . 
peep-elim (builtin (-) ; , -, Îl , , O) . 
peep-elim (trymeelse ( -;- ), , ; [ ] ,  , 0 ) . 
peep-elim ( retrymeelse (-, ), -, , [Î, , 0 ) . 
peep-elim (trustmeelsefail( ), -, , [Î, , 0 ) . 
peep-elim (try (  , ) ,  , , [ ] ,-, 0) . - -
peep-elim ( retry (-, ), -, , [Î, , 0 ) . 
peep-elim (trust (-) ; , -, Îl , , 0) . 
peep-elim ( jump ( ), ; ; [ ] ,  ;o ) .  
peep-elim ( jumpnz ( ;L), , RO, Rl, , 0 ) : - L == abs (-1 ) , ! ,  Rl = RO . 
peep-elim ( jumpnz (-, L ) , -, RO , Rl , -, O )  : - Rl = [ ] . 
peep=elim ( jumplt (=, L) , =, RO , Rl , =, O )  : - L == abs (-1 ) , ! ,  Rl = RO . 
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peep_elim ( j umplt (_, L) , _, RO , Rl , _, O ) : - Rl = [ ) . 
peep_elim ( jumple (_, L ) , _, RO , Rl , _, O )  : - L -- abs (-1 ) , 
peep_elim ( jumple (_, L ) , _, RO , Rl , _, O ) : - Rl = [ ) . 
peep_elim ( jumpgt (_, L ) , _, RO , Rl , _, O )  : - L -- abs (-1 ) , 
peep_elim ( j umpgt (_, L ) , _, RO , Rl , _, O )  : - Rl = [ ) . 

peep_elim ( jumpge (_, L ) , _, RO , Rl , _, O )  : - L == abs (-1) , 
peep_elim ( jumpge (_, L ) , _, RO , Rl , _, O ) : - Rl = [ ) . 

peep_ elim ( switchonterm ( _, _, _) , _, _, [ l  , _  ' 0 ) .  
peep_elim ( switchonlist ( _, _, _) , _, _, [ l  , _  , 0 ) . 

peep_elim ( switchonbound ( _, _, _ ) ' _ ,_ ' [ ) '  ' 0 ) . 

peep del ( [ J , , [ J ) . 
peep=del ( [X I L) , Y , Ll )  : 

X == Y ,  ! , 
Ll = LlRest,  
peep del ( L , Y , LlRest ) . 

peep del ( [X I L ) , Y, Ll )  : -
- Ll = [ X I LlRest ) ,  

peep_del (L , Y , LlRest ) . 

! ,  Rl RO . 

! , Rl RO . 

! , Rl RO . 

peep_elim_upd ( LO , R, Cont , [ r (R, Cont) I Ll ) ) : - peep_del ( LO , r (R,  ) , Ll ) . 

comp builtin ( P , N, Bno) : -
- ground ( P ) , 

ground (N ) , 
ground (Bno ) . 

not memberl (X,  [ ) ) .  
not-memberl (X,  [F I T ] ) : 

X \== F ,  
not_memberl (X, T ) . 

memberl (X, [X I Y) ) : - ! .  
memberl (X,  [F I T ] ) : 

memberl (X,  T )  . 

member (  X, [X I Xs ] ) .  
member ( X, [ I Xs ) ) : 

member (X, Xs ) . 

iota (N, List)  : 
iotal ( O , N , List) . 

iotal (K,  K, [ ]  ) : - ! . 
iotal (K,  N, [K i List] ) : 

Kl : = K+l , 
iotal (Kl , N , List ) . 

dif ( [ ] , , , [ ] , [ ] ) .  
dif ( [ S I Ss), Val , Mod, [ D ! Ds ] , [D2 1 D2s ] ) : 

D : = Val - S ,  
D2 : = Mod - D ,  
dif ( S s , Val , Mod, D s , D2 s ) . 

rev ( [ J , L, L ) . 
rev ( [X ! Xs ] , Y , L )  : -rev ( Xs , [X I Y ] , L ) . 

mergedelete ( [ ] , L , L ) . 
mergedelete ( [D ! Ds ) , [ D I RJ ,  L2 ) : -

mergedelete ( Ds ,  R, L2) . 
mergedelete ( [D ! Ds ] , [X I R] , [X I L2 ] ) : 

D > X, 
mergedelete ( [D 1 Ds ) , R, L2 ) . 

check ( [ ] ,  , L , L , _) : - !  . 
check ( S ,  Choice, Old, L3 , Modulus )  : 

dif ( S ,  Choice, Modulus ,  D s , Dds ) , 
mergedelete ( D s ,  Old, L2 ) , 
rev ( Dds , [ ) , Rds ) ,  
mergedelete (Rds , L2 , L3 ) , 
! . 

pdsl ( [ J , , [ J ,  ) : - ! . 
pds l ( Unu;ed, List , [Choice ! Rest] , Mod) : 

member ( Choice , Unused) , 
check ( List, Choice , Unused, U3 , Mod) , 
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ptlsl ( U3 ,  [ Choice I List ] , Rest , Motl) . 

ptls ( Ortler, [ 0 I Ans] ) : -
N : = Ortler * (Ortler + 1 )  + 1 ,  
iota ( N ,  [ 0 I List] ) ,  
ptlsl ( List , [ 0 ] , Ans , N) . 

ptlsbm (N) : - ptls (N, [ 0 , l l X ] ) . 

A1.2. READ 

The program read is the tokeniser and reader written by R. O'keefe 

and D.H.D. Warren for Prolog. 

reatl (Answer, Variables ) : 
repeat , 
reatl tokens (Tokens , Variable s ) , 
reatl=aux (Tokens ) ,  ! ,  
Answer = Term . 

reatl aux (Tokens ) : -
- reatl (Tokens , 120 0 ,  Term, LeftOver) , all_reatl ( LeftOver) , ! .  

reatl aux (Tokens ) : -
- syntax_error (Token s , X ) . 

repeat . 
repeat : -

repeat . 

all reatl ( I l ) : - ! . 
all=reatl ( S )  : -

syntax_error ( [ operator, expectetl, a fter, expression] , S ) . 

expect (Token, [ Token ! Rest l , Rest ) : - ! . 
expect (Token,  S0 , ) : -

syntax_error([Token, or, operator, expectetl] , S 0 ) . 

prefixop (Op, Prec , Prec) : -
current op (Prec, fy, Op) , ! . 

prefixop (Op, Prec,  Less ) : -
current op (Prec, fx, Op) , ! , 
Less : = Prec-1 . 

postfixop (Op, Prec, Prec) : 
current op (Prec, yf, Op ) , ! . 

postfixop (Op,-Less,  Prec)  : -
current_op (Prec, xf , Op) , ! ,  Less : = Prec-1 . 

infixop (Op,  Les s ,  Prec, Less )  : -
current op (Prec, xfx, Op ) ,  ! , Less : = Prec-1 . 

infixop (Op, Les s ,  Prec, Prec) : -
current op (Prec, xfy, Op) , ! ,  Less : = Prec-1 . 

infixop (Op, Piec, Prec , Less)  : -
current_op (Prec, yfx, Op ) , ! ,  Less : = Prec-1 . 

ambigop (F , Ll,  01 ,  Rl , L2 , 02 ) : -
postfixop (F ,  L2 , 02) , 
infixop (F ,  Ll, 01 , Rl ) , ! . 

reatl ( [Token ! RestTokens ] ,  Precetlence , Term, LeftOver) : 
reatl(Token, RestTokens,  Precetlence,  Term, LeftOver) . 

reatl ( [ ]  , , , ) : -
syntax-er�or ( [ expression, expectetl] , [ ] ) . 

reatl (var (Variable,  ) , [· ' ( '  1 S 1 ] , Precetlence,  Answer,  S )  : - ! , 
reatl (S1 ,  9 9 9� Argl , S 2 ) , 
reatl args ( S2 ,  RestArgs , S 3 ) , ! , 
exprtlO ( S 3 ,  apply (Variable,  [Argl l RestArgs ] ) ,  P recetlence , Answer,  S ) . 

reatl (var (Variable,  ) ,  S 0 ,  Precetlence , Answer,  S )  : - ! ,  
exprtl0 (S0 , Variable,  Precetlence , Answer,  S ) . 

reatl ( atom ( ' - ' ) ,  [ integer (Integer) ! S1 ] , Precetlence , Answer,  S ) : -
Negative : = -Integer,  ! , 
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exprtlO ( S 1 ,  Negative , Precedence,  Answer, S ) . 
read (atom (Functor) , [ ' ( ' 1 S1 ] , Precedenc e ,  Answer, S ) : - ! ,  

read ( S l ,  9 9 9 ,  Argl,  S 2 ) , 
read args (S2 ,  RestArgs , S3 ) , 
univ(Term, [Functor, Argl l RestArgs ] ) ,  ! ,  
exprtlO ( S 3 ,  Term, Precedence , Answer, S ) . 

read (atom (Functor) , S0 , Precedence,  Answer, S )  : 
prefixop (Functor, Prec,  Right ) ,  ! ,  
after_prefix_op (Functor, Prec, Right , S0 , Precedence,  Answer,  S ) . 

read (atom (Atom) , S0 ,  Precedence, Answer,  S )  : - ! ,  
exprtlO ( S 0 ,  Atom, Precedence,  Answer,  S ) . 

read ( integer ( Integer) , S0 ,  Precedence , Answer, S )  : - ! ,  
exprtlO ( S 0 ,  Integer, Precedence , Answer,  S ) . 

read ( '  [ ' ,  [ ' ] '  1 S1 ] , Precedence , Answer,  S )  : - ! , 
exprtlO ( S 1 ,  [ ] , Precedence , Answer,  S ) . 

read ( '  [ ' ,  S 1 ,  Precedence , Answer, S )  : - ! ,  
read ( S l ,  9 9 9 ,  Argl , S 2 ) , 
read list ( S 2 ,  RestArgs , S3 ) , ! ,  
exprtlO ( S 3 ,  [Argl l RestArgs ] ,  Precedence , Answer, S ) . 

read ( '  ( ' ,  S 1 ,  Precedence , Answer, S )  : - ! , 
read ( S 1 ,  1200 ,  Term, S2 ) , 
expect ( ' ) ' ,  S2 , S3 ) , ! ,  
exprtlO ( S3 ,  Term, Precedence,  Answer, S ) . 

read ( '  ( ' ,  S 1 ,  Precedence , Answer, S ) : - ! ,  
read ( S 1 ,  120 0 ,  Term, S 2 ) , 
expect ( ' ) ' , S2 , S 3 ) , ! ,  
exprtlO ( S 3 ,  Term, Precedence, Answer, S ) . 

read ( ' { ' ,  [ ' } ' 1 S1 ] , Precedence , Answer,  S ) : - ! ,  
exprtlO ( S 1 ,  1 { }  ' ,  Precedence,  Answer, S ) . 

read ( ' { ' ,  S 1 ,  Precedence , Answer, S )  : - ! ,  
read (S1 ,  1200,  Term, S 2 ) , 
expect ( ' } ' ,  S2 , S3 ) , ! ,  
exprtlO ( S 3 ,  1 { }  ' ,  Precedence , Answer, S )  . 

read ( string (List ) , S0 , Precedence , Answer, S )  : - ! ,  
exprtlO ( S 0 ,  Lis t ,  Precedence , Answer, S ) . 

read (Token,  S 0 ,  , , ) : -
syntax_error (ÎToken, cannot , start , an, expression] , S 0 ) . 

read args ( [ ' , ' 1 S1 ] , [Term ! Rest ] , S ) : - ! ,  
- read (S1 ,  9 9 9 ,  Term, S 2 ) , ! , 

read args (S2 , Rest ,  S ) . 
read args (Î ' ) ' I S ] ,  [ ] , S ) : - ! .  
read-args ( S ,  , ) : -

- syntax_error ( [ ' ,  or ) ' , expected, in, arguments ] ,  S ) . 

read list ( [ ' , ' 1 S1 ] , [Term l Rest ] , S ) : - ! ,  
- read ( S 1 ,  9 9 9 ,  Term, S 2 ) , ! , 

read list ( S2 ,  Rest ,  S ) . 
read list (Î ' l ' I Sl ] , Rest ,  S ) : - ! ,  

- read ( S 1 ,  9 9 9 ,  Rest ,  S 2 ) , ! , 
expect ( ' l ' ,  S 2 ,  S ) . 

read list ( [ ' ] ' I S ] ,  [ ] , S ) : - ! .  
read-list ( S ,  , ) : -

- syntax_error ( [ ' ,  1 or ] ' , expected, in, list ] , S ) . 

after prefix op (Op,  Oprec, Aprec,  S0 , Precedence , ) : -
-Precedence < Oprec, ! ,  

syntax error ( [prefix, operator, Op, in , context , 
- with, precedence,  Precedence ) , S 0 )  . 

after_prefix_op (Op, Oprec, Aprec, S0 , P recedence , Answer, S ) : 
peepop ( S 0 ,  S1) , 
prefix is atom ( S 1 ,  Oprec) , 
exprtl(S1� Oprec, Op , Precedence , Answer, S ) . 

after_prefix_op (Op,  Oprec, Aprec, S 1 ,  P recedence , Answer, S ) : 
read ( S 1 ,  Aprec , Arg, S 2 ) , 
univ (Term, [Op, Arg] ) ,  ! , 
exprtl ( S2 , Oprec,  Term, Precedence , Answer, S ) . 

peepop ( [ atom (F ) , ' ( ' I Sl ] , [ atom (F ) , ' ( ' 1 S1 ] ) : - ! .  
peepop ( [ atom (F )  1 S1 ] , [ infixop (F , L , P , R) 1 S1 ] ) : - infixop (F,  L ,  P ,  R) . 
peepop ( [atom (F)  1 S1 ] , [postfixop (F , L , P ) 1 S1 ] ) : - postfixop (F ,  L, P ) . 
peepop ( S O ,  S 0 ) . 

prefix is atom ( [Token l ] ,  Precedence ) : 
prefix is atom ( Token, Precedence ) .  

prefix_is_atom (infixop ( , L , , ) ,  P )  : - L >= P .  
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prefix is atom (postfixop ( , L , ) ,  P) : - L >= P .  
prefix-is-atom ( ' )  1 , ) • - -
prefix-is-atom ( ' l  ' ,  ) . 
prefix-is-atom ( ' } ' ,  ) . 
prefix-is-atom ( '  1 ' ,  P )  : - 1100  >= P .  
prefix-is-atom ( ' ,  ' ,  P )  : - 1000 >= P .  
prefix=is=atom ( [ ] ,  ) . 

exprtlO ( [ atom ( F )  J Sl ] , Term, Precedence , Answer, S )  : -
ambigop (F ,  Ll,  01 , Rl , L2 , 02 ) ,  ! ,  
exprtl ( [ infixop (F , Ll , Ol , Rl ) J Sl ] , O ,  Term, Precedence , Answer, S ) . 

exprtlO ( [ atom (F )  1 S l ] , Term, Precedence , Answer,  S )  : -
ambigop ( F ,  Ll , 01 , Rl, L2 , 02 ) ,  ! ,  
exprtl (  [postfixop ( F , L2 , 02 )  J Sl ] , O ,  Term, Precedence , Answer, S ) . 

exprtlO ( [ atom ( F )  J Sl ] , Term, Precedence , Answer,  S )  : -
infixop ( F ,  Ll , 0 1 ,  Rl ) , ! ,  
exprtl ( [ infixop ( F , Ll , Ol , Rl )  J Sl ] , O ,  Term, Precedence , Answer, S ) . 

exprtlO ( [ atom ( F )  J Sl ] , Term, Precedence , Answer, S )  : -
postfixop (F , L2 , 02 ) ,  ! , 
exprtl ( [postfixop (F , L2 , 02 )  J Sl ] , O ,  Term, Precedence , Answer, S ) . 

exprtlO ( [ ' ,  1 J Sl ] , Term, Precedence , Answer, S )  : 
Precedence >= 100 0 ,  ! , 
read ( S l ,  100 0 ,  Next , S 2 ) , ! , 
exprtl ( S 2 ,  1000 ,  comma (Term, Next ) ,  Precedence , Answer, S ) . 

exprtlO ( [ '  J '  J sl ] , Term, Precedence, Answer, S )  : 
Precedence >= 1 1 0 0 ,  ! , 
read (Sl ,  1 1 0 0 ,  Next , S 2 ) , ! , 
exprt l (S2 , 1 1 0 0 ,  comma (Term, Next ) ,  Precedence , Answer, S ) . 

exprtlO ( [Thing J Sl ] , , , ) : -
cant follow expr (Thing , -Culprit) , ! ,  
syntax_error ( [ Culprit , follows , expression ] , [ Thing J Sl ] ) .  

exprtlO ( s ,  Term, , Term, S ) . 

cant_follow_exp r ( atom ( ) ,  atom) . 
cant follow expr (var ( , ) ,  variable ) .  
cant-follow-expr ( integer ( ) , integer) . 
cant-follow-exp r ( string ( T, string) . 
cant-follow-expr ( '  ( ' ,  - bracket ) .  
cant-follow-expr ( '  ( ' ,  bracket) . 
cant-follow-expr ( '  [ ' ,  bracket ) .  
cant=follow=expr ( ' { ' ,  bracket ) .  

exprtl ( [ infixop (F , L , O , R) J Sl ] , C ,  Term, Precedence , Answer, S )  : -
Precedence >= O ,  C <= L ,  ! ,  
read (Sl ,  R, Other, S 2 ) , 
univ (Expr, [ F ,  Term, Other] ) ,  
exprtl ( S 2 ,  o ,  Expr, Precedence , Answer, S ) . 

exprtl ( [postfixop ( F , L , O)  J Sl ] , C ,  Term, Precedence , Answer, S )  : 
Precedence >= O ,  C <= L ,  ! ,  
univ (Expr, [ F , Term] ) ,  
peepop ( S l ,  S 2 ) , 
exprtl (S2 , O, Expr, Precedence , Answer, S ) . 

exprtl ( [ ' , ' J Sl ] , c ,  Term, Precedence,  Answer, S ) : 
Precedence >= 100 0 ,  C < 1000 , ! ,  
read (Sl ,  100 0 ,  Next , S 2 ) , 
exprtl ( S 2 ,  100 0 ,  comma (Term, Next ) ,  Precedence , Answer, S ) . 

exprtl ( [ '  J '  J Sl ] , c ,  Term, Precedence , Answer, S )  : 
Precedence >= 1100 , C < 110 0 ,  ! , 
read(Sl ,  1100 ,  Next , S2 ) ,  
exprtl ( S 2 ,  1100 ,  comma (Term, Next ) ,  Precedence , Answer, S ) . 

exprtl ( S ,  _, Term, _, Term, S ) . 

syntax error (Message, List ) : -
fail . 

univ (X, Y) : -
compound (X) , ! , 
functor (X,  F ,  A) , 
Y = [F J Args ] , 
collect args (X, l , A, Args ) . 

univ (X, L)  : - -
nonvar ( L ) , 
1 . , 
L = [F J Args ] , 
non var (Args)  , 
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lengthnovar (Args , A) ,  
functor (X ,  F ,  A)  , 
collect_args (X, l , A, Args ) . 

collect args (X, Al , A ,  [ ] ) : 
Al > A ,  ! . 

collect args (X, Al , A, [ T I Ts ] ) : 
arg (Al , X , T ) , 
A2 : = Al + 1 ,  
collect_args (X, A2 , A, Ts ) . 

lengthnovar ( [ ] , 0 ) . 
lengthnovar ( [F I T ] , N ) : 

nonvar ( T ) , 
lengthnovar (T , Nl ) , 
N : = Nl + 1 .  

read tokens (TokenLis t ,  Dictionary) : -
read tokens ( 3 2 ,  Dict , ListOfTokens ) ,  
append (Dict, [ ]  , Dict ) , ! , 
Dictionary = Dict,  
TokenList = ListOfTokens . 

read_tokens ( [ atom (end_of_file) ] ,  [ ] ) . 

p (2 6 ) . 
p ( 3 1 ) . 

read tokens (-1 , ) : - ! , 
- fail . 

read tokens (Ch,  Dict,  Tokens ) : -
- Ch <= 3 2 ,  

! ' 
get0 (NextCh) , 
read tokens (NextCh , Dict , Tokens ) . 

read_tokens ( 3 7 ,  Dict, Tokens ) : - ! ,  
repeat , 
get0 (Ch) , 
p (Ch) , 
! ,  

Ch <> 2 ,  
get0 (NextCh) , 
read tokens (Nextch, Dict , Tokens ) .  

read tokens ( 4 7 ,  Dict , Tokens ) : - ! ,  
- get0 (NextCh ) ,  

read solidus (NextCh, Dict , Tokens ) .  
read tokens ( 33 ,  Dict , [ atom ( ! )  I Tokens ] )  : - ! ,  

- get0 (NextCh ) ,  
read after atom (NextCh, Dict, Tokens ) . 

read tokens ( 4 0 ,  Dict,  [ '  ( ' I Tokens ] ) : - ! ,  
- get0 (NextCh ) ,  

read tokens (NextCh , Dict, Tokens ) .  
read tokens ( 4 1 ,  Dict , [ ' )  ' I Tokens ) )  : - ! ,  

- get0 (NextCh) , 
read tokens (NextCh, Dict , Tokens ) .  

read tokens ( 4 4 , Dict , [ ' , ' I Tokens ] ) : - ! ,  
- get0 (NextCh) ,  

read tokens (Nextch, Dict , Tokens ) .  
read tokens ( 5 9 ,  Dict,  [ atom ( ' ; ' ) I Tokens ] ) : - ! ,  

- get0 (NextCh) ,  
read tokens (NextCh , Dict , Tokens ) .  

read tokens ( 9 1 ,  Dict , [ ' [ ' I Tokens ] ) : - ! ,  

- get0 (NextCh) ,  
read tokens (NextCh , Dict, Tokens ) .  

read tokens ( 93 ,  Dict , [ ' ] '  I Tokens ] )  : - ! ,  

- get0 (NextCh) ,  
read tokens (NextCh , Dict, Tokens ) . 

read tokens ( 1 2 3 ,  Dict, [ ' ( ' I Tokens ] ) : - ! ,  
- get0 (NextCh) ,  

read tokens (NextCh, Dict, Tokens ) . 
read tokens ( 12 4 ,  Dict, [ '  1 ' I Tokens ) ) : - ! , 

- get0 (NextCh) , 
read tokens (NextCh, Dict , Tokens ) .  

read tokens ( 1 2 5 ,  Dict, [ ' ) '  I Tokens ] )  : - ! ,  
- get0 (NextCh) ,  

read tokens (NextCh, Dict , Tokens ) .  
read_tokens ( 4 6 ,  Dict , Tokens ) ! , 
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getO (NextCh) , 
read fullstop (NextCh, Dict , Tokens ) . 

read tokens ( 34 , Dict , [ string ( S )  I Tokens]  ) : - ! , 
- read string ( S ,  34 , NextCh ) , 

read-tokens (NextCh, Dict , Tokens ) .  
read tokens ( 3 9 ,  Dict , [ atom (A) I Tokens ] )  : - ! ,  

- read string ( S ,  3 9 ,  NextCh) , 
ground (A) , 
read after atom (NextCh, Dict , Tokens ) . 

read tokens (Ch, Dict,  [var (Var, Name ) I Tokens ] )  : -
- Ch >= 65 ,  Ch <= 90 , 

! , 
read name (Ch, s ,  NextCh) ,  
ground (Name ) , 

read_lookup (Dict,  Name=Var) , 
! ,  
read tokens (Nextch, Dict, Tokens ) .  

read tokens (Ch, Dict , [ intege r ( I )  I Tokens ] ) : -
- Ch >= 4 8 ,  Ch <= 57 , 

! , 
read integer (Ch ,  I ,  NextCh) ,  
read-tokens (NextCh, Dict , Tokens ) .  

read tokens (Ch , Dict , [ atom (A) I Token s ] ) : -
- Ch >= 97 , Ch <= 122 , 

! , 
read name (Ch, S ,  NextCh) ,  
ground (A) , 
read after atom (NextCh, Dict,  Tokens ) . 

read t okens (Ch , Dict , [ atom (A) I Tokens ] )  : -
- getO (AnotherCh ) , 

read symbol (AnotherCh, Chars , NextCh ) , 
ground (A) , 
read_after_atom (NextCh, Dict , Tokens ) . 

read after atom ( 4 0 ,  Dict,  [ '  ( '  I Tokens ] )  : - ! , 
- getO(NextCh ) , 

read tokens (NextCh, Dict , Tokens ) . 
read after-atom (Ch,  Dict,  Tokens ) : -

- read=tokens (Ch, Dict , Tokens ) . 

read s tring (Chars , Quote , NextCh) : -
- getO (Ch) , 

read_string (Ch, Chars , Quote, NextCh) . 

read string ( 2 6 ,  , Quote ,  2 6 )  : -
- display ( '  ! -end of file in ' ) ,  ttyput (Quote ) ,  

display ( token) , ttyput (Quote ) , ttynl,  
! , fail . 

read string (Quote ,  Chars , Quote ,  NextCh) : - ! ,  
- getO (Ch) , 

more string (Ch, Quote ,  Chars , NextCh) . 
read string (Char, [Char ! Chars ] , Quote ,  NextCh) : 

- read_string (Chars , Quote , NextCh) . 

more string (Quote , Quote, [Quote ! Chars ] , NextCh) : - ! ,  
- read string (Chars , Quote ,  NextCh ) . 

more_string (NextCh, _, [ ] , NextCh) . 

read solidus ( 4 2 ,  Dict , Tokens) : - ! ,  
- getO (Ch) , 

read solidus (Ch , NextCh) ,  
read-tokens (NextCh, Dict , Tokens ) . 

read solidus (Ch,  Dict , [atom (A) ! Tokens ] )  : -
- read symbol (Ch , Chars , NextCh ) ,  

ground (A) , 
read_tokens (NextCh, Dict , Tokens ) .  

read solidus ( 2 6 ,  2 6 )  : - ! ,  
- display ( '  ! end of file in comment ' ) ,  ttynl . 

read solidus ( 4 2 ,  LastCh) : 
getO (NextCh) , 
NextCh <> 4 7 ,  ! , 
read solidus (NextCh, LastCh) . 

read solidus ( 4 2 ,  32)  : - ! . 
read-solidus ( , LastCh) : -

- getO (NextCh) ,  
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read_solidus (Nextch, LastCh ) . 

read name (Char, [Char i Chars ] , LastCh) : -
- Char >= 9 7 ,  Char <= 122 , 

! ,  
getO (NextCh) , 
read name (NextCh , Chars , LastCh ) . 

read_name (Lastch, [ ] , LastCh) . 

current_op (X, Y, Z )  : - ground (X) , ground (Y) , ground ( Z ) . 

display (X) . 
ttyput (X) . 
ttynl . 
getO (X)  : - ground (X) . 

read symbol (Char, [Char i Chars ] ,  LastCh) : -
- check special (Char) , 

getO (NextCh) , 
read symbol (NextCh, Chars , LastCh) . 

read_symbol (LastCh, [ ) , LastCh ) . 

check special ( ' # ' ) .  
check-special ( ' $ ' ) . 
check-special ( ' & ' ) . 
check-special ( ' * ' ) . 
check-special ( ' + ' ) . 
check-special ( ' - ' ) . 
check-special ( ' . ' ) . 
check-special ( ' / ' ) . 
check-special ( ' : ' ) .  
check-special ( ' < ' ) . 
check-special ( ' = ' ) . 
check-special ( ' > ' ) . 
check-special ( ' ? ' ) .  
check-special ( ' @ ' ) . 
check-special ( ' \ ' ) .  
check-special ( ' A ' ) . 
check-special ( ' '  ' ) .  
check=special ( ' ~ ' ) . 

read fulls top ( 2 6 ,  , ) : - ! , 
- display ( '  ! end of file just after full stop ' ) ,  ttynl,  

fail . 
read fulls top (Ch, , [ ] )  : -

- Ch <= 3 2 ,  ! . -
read fullstop (Ch, Dict , [ atom (A) I Tokens ] )  : -

- read symbol (Ch, S ,  NextCh) , 
ground (A) , 
read_tokens (NextCh , Dict , Tokens ) .  

read integer (BaseChar, IntVal ,  NextCh) : -
- Base : =  BaseChar - 4 8 ,  

getO (Ch) , 
Ch <> 2 6 ,  
Ch <> 3 9 ,  read digits (Ch, Base , 1 0 ,  IntVal,  NextCh) , ! . 

read integer (BaseChar, IntVal,  NextCh ) : -
- Base : =  BaseChar - 4 8 ,  

getO (Ch) , 
Ch <> 2 6 ,  
Base >= 1 ,  read_digits ( O ,  Base , IntVal,  NextCh) , 
! . 

read integer (BaseChar, IntVal ,  NextCh ) : -
- Base : = BaseChar - 4 8 ,  

getO (Ch) , 
Ch <> 2 6 ,  
getO ( IntVal ) , IntVal < >  2 6 ,  getO (NextCh) , 
! . 

read digits ( SoFar, Base, Value,  NextCh ) : -
- getO  (Ch) , 

Ch <> 2 6 ,  
read_digits (Ch, SoFar, Base , Value , NextCh) . 

read digits (Digit,  SoFar, Base , Value , NextCh) : 
- Digit >= 4 8 ,  Digit <= 5 7 ,  
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. , 
Next : = SoFar*Base-48+Digit , 
read digits (Next , Base , Value , NextCh ) . 

read_digit; (LastCh , Value,  , Value,  LastCh ) . 

read lookup ( [X I l ,  X) : - ! . 
readlookup ( [  I T] , X) : -

- read_lookup (T,  X ) . 

append ( [ ] , L , L ) . 
append ( [ H I L1 ] , L2 ,  [H I L3 ] ) : - append ( Ll , L2 , L3 ) . 

A 1 .3 .  KALAH R 

The prograrn kalah is a pro gram which plays the garne of kalah. This 

prograrn is taken frorn [STSH86] . 

play (Game , Result ) : 
initialize ( Game , Position , Player) , 
displaygame (Position , Player) , 
play (Position , Player, Result ) .  

play (Position , Player, Result) : 
gameover (Position, Player, Result ) ,  ! ,  
announce (Result ) .  

play (Position , Player, Result)  : 
choosemove (Position , Player, Move ) ,  
move (Move , Position , Positionl ) ,  
displaygame (Positionl , Player) , 
nextplayer (Player, Playerl ) ,  ! ,  
play (Positionl , Playerl , Result ) .  

choosemove (Position, computer, Move ) : 
lookahead (Depth) ,  
alphabet a ( Depth , Position , 40 , 40 , Move , Value ) . 

choosemove (Position , opponent , Move ) : 
ground (Move ) ,  
genlegal (Move ) . 

alphabeta ( O , Position, Alpha , Beta, Move , Value ) : -
value ( Position, Value ) .  

alphabeta ( D , Position , Alpha, Beta , Move , Value ) : -
D > O ,  
allmoves (Position, Moves ) ,  
Alphal : = 0 - Beta , 
Betal : = 0 - Alpha , 
Dl : = D - 1 , 
evaluateandchoose (Moves, Position , Dl , Alphal , Betal , ni l , p (Move , Value ) ) .  

allmoves ( P , Re s )  : 
allmoves ( P ,  [ ] , Res )  . 

allmoves (P , Acc , Res)  : 
move (P , X ) , 
notmember (X, Acc ) , ! ,  
allmoves (P ,  [ X I Acc] , Res ) . 

allmoves (P , Res , Res ) . 

notmember (X, [ ]  ) . 
notmember (X, [F I T ] )  : -

X \== F ,  
notmember ( X ,  T )  . 

evaluateandchoose ( [Move l Moves ] , Position , D , Alpha, Beta, Record, BestMove ) : 
move (Move , Position , Positionl ) ,  
alphabeta (D , Positionl , Alpha, Beta, MoveX, Value ) ,  
Valuel : = 0 - Value , 
cutoff (Move , Valuel , D , Alpha , Beta, Moves, Position, Record ,BestMove ) ,  ! . 

evaluateandchoose ( [ ] , Position , D , Alpha , Beta , Move , p (Move , Alpha) ) .  

cutoff (Move , Value , D , Alpha , Beta, Moves, Position , Move l , p (Move , Value ) )  : -
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Value >= Beta, ! . 
cutoff (Move , Value , D , Alpha, Beta, Move s , Position , Movel , BestMove ) : 

Alpha < Value , 
Value < Beta, ! , 
evaluateandchoose (Moves, Position , D , Value , Beta, Move , BestMove ) . 

cutoff (Move , Value , D , Alpha , Beta , Move s , Position , Movel , BestMove ) : 
Value <= Alpha, ! , 
evaluateandchoose (Moves , Position , D , Alpha, Beta , Movel , BestMove ) . 

move (Board, [M I Ms ] ) : 
member (M, [ 1 , 2 , 3 , 4 , 5 , 6 ] ) ,  
stonesinhole (M, Board, N) , 
extendmove (N, M, Board , Ms ) . 

move (board ( [ O ,  0 ,  O ,  O ,  0 ,  O ] , K, Ys , L ) , [ ] ) . 

member (X,  [X I Y) ) . 
member (X,  [F I T ] ) : -

member (X, T) . 

stonesinhole (M, board (Hs , K , Ys , L ) , Stones )  : 
nthmember (M, Hs , Stones ) ,  
S tones > O .  

extendmove ( S tone s , M, Board, [ ] ) : 
Stones <> 7 - M, ! . 

extendmove ( Stones , M, Board,Ms)  : -
S tones = : = 7 - M, ! , 
distributestones ( Stones , M, Board, Boardl) , 
move (Boardl , Ms ) . 

move ( [N I Ns ] , Board, FinalBoard) : 
stonesinhole (N, Board, Stones ) ,  
distributestones ( Stone s , N, Board, Boardl ) , 
move (Ns , Boardl , FinalBoard) . 

move ( [ ] , Boardl , Board2 ) : -
swap (Boardl , Board2 ) . 

distributestones (Stone s , Hole, Board, FinalBoard) : 
distributemyhole s ( Stones, Hole , Board, Boardl , Stonesl ) , 
distributeyourholes ( Stonesl , Boardl , FinalBoard) . 

distributemyholes ( Stones, N, board (Hs , K , Ys , L ) , board (Hsl , Kl , Ys , L ) , Stonesl)  : 
S tones > 7 - N, ! , 
pickupanddistribute (N, Stones , Hs , Hsl ) , 
Kl : = K + 1 ,  
S tonesl : = Stones + N - 7 .  

distributemyholes ( Stones , N , board (Hs , K, Ys , L) , Board, O )  : 
pickupanddistribute (N, Stones , Hs , Hsl ) , 
checkcapture (N, Stones , Hsl , Hs2 , Ys , Ysl, Pieces ) ,  
updatekalah (Pieces , N, Stones , K, Kl ) , 
checkiffinished (board (Hs2 , Kl , Ysl , L ) , Board) . 

checkcapture (N, Stones , Hs , Hsl , Ys , Ysl , Pieces )  : 
FinishingHole : = N + Stone s ,  
OppositeHole : = 7 - FinishingHole,  
nthmember (OppositeHole , Ys , Y) , 
y > o ,  ! , 
nsubstitute (OppositeHole , Hs , O , Hs l ) , 
nsubstitute (FinishingHole , Ys , 0 , Ys l ) , 
P ieces : = Y + 1 .  

checkcapture (N, Stones , Hs , Hs , Ys , Ys , O )  : - ! . 

checkiffinished (board (Hs, K, Ys , L) , board (Hs , K , Hs , Ll ) ) 
z ero (Hs ) , ! ,  
sumlist (Ys , YsSum) , 
Ll : = L + YsSum . 

checkiffinished (board ( Hs , K , Ys , L ) , board (Ys , Kl , Ys , L) ) 
zero (Ys ) , ! ,  
sumlist (Hs , HsSum) , 
Kl : = K + HsSum . 

checkiffinished (Board, Board) : - ! .  

updatekalah ( O , Stones , N, K, K) : 
Stones < 7 - N ,  ! . 

updatekalah ( O , Stones , N, K , Kl )  : 
Stones = : = 7 - N, ! , 
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Kl : = K + 1 .  
updatekalah (Pieces , Stone s , N , K , Kl )  : -

Pieces > 0 ,  ! ,  
Kl : = K + Pieces . 

distributeyourholes ( 0 , Board, Board) : - ! . 
distributeyourholes ( Stones , board (Hs , K, Ys , L) , board ( Hs , K , Ysl , L) )  : -

1 <= Stones ,  
Stones <= 6 ,  
non zero (Hs ) , ! , 
distribute ( Stones , Ys , Ysl ) . 

distributeyourholes ( Stones , board ( Hs , K, Ys , L ) , board (Hs , K, Ysl , L) ) : 
Stones > 6 ,  ! , 
distribute ( 6 , Ys , Ysl ) , 
Stonesl : = Stones - 6 ,  
distributestones ( Stonesl , l , board ( Hs , K, Ysl , L ) , Board) . 

distributeyourholes ( Stones , board ( Hs , K, Ys , L ) , board (Hs , K, Hs, Ll) ) : 
zero ( Hs ) , ! , 
sumlist (Ys , YsSum) , 
Ll : = Stones + YsSum + L .  

pickupanddistribute ( l , N ,  [ H I Hs ] , [ 0 I Hs l ] ) : 
! ,  distribute (N, Hs, Hsl ) . 

pickupanddistribute (K, N,  [ H I Hs ] , [ 0 I Hs l ] ) : 
K > 1 ,  ! , 
Kl : = K - 1 ,  
pickupanddistribute (Kl , N , H s , Hsl ) . 

distribute ( 0 , Hs , Hs )  : - ! . 
distribute (N, [ H i Hs ] , (Hl l Hsl ] ) : 

N > 0 ,  ! , 
Nl : = N - 1 ,  
Hl : = H + 1 ,  
distribute (Nl , Hs , Hsl ) . 

distribute (N, [ ] , [ ] ) : - ! .  

value (board (H , K , Y , L) , Value ) : 
Value : = K - L .  

gameover (board (N, 0 , N , 0 ) , Player , draw) : 
pieces (K) , 
N = : = 6 * K, ! . 

gameover (board (H , K, Y, L ) , Player, Player) : 
pieces (N) , 
K > 6 * N, ! . 

gameover (board ( H , K, Y, L) , Player, Opponent ) : 
pieces (N) , 
L > 6 * N ,  
nextplayer (Player, Opponent) . 

announce (opponent ) .  
announce (computer) . 
announce (draw) . 

nthmember (N,  [ H I Hs ] , K) : 
N > 1 ,  ! , 
Nl : = N - 1 ,  
nthmembe r (Nl , Hs , K) . 

nthmembe r ( l ,  [ H I Hs ] , H ) . 

nsubstitute ( l ,  (X I Xs ] , Y , [Y I Xs ] ) : - ! . 
nsubstitute (N, (X I Xs ] , Y, ( X I Xs l ] ) : -

N > 1 ,  ! , 
Nl : = N -1 ,  
nsubstitute (Nl , Xs , Y , Xsl ) . 

nextplayer (computer, opponent ) .  
nextplayer (opponent , computer ) . 

legal ( [N I Ns ] ) : -
0 < N,  
N < 7 ,  
legal (Ns ) . 

legal ( [ l ) . 

genlegal ( [N I Ns ] ) : -
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member (N, [ 1 , 2 , 3 , 4 , 5 , 6 ] ) ,  
genlegal (Ns ) . 

genlegal ( [ ]  ) . 

swap (board (Hs , K, Ys , L ) , board (Ys , L , Hs , K ) ) .  

displaygame (Position, computer) : -
show (Position ) . 

displaygame (Position, opponent) : 
swap (Position , Positionl ) ,  
show (Positionl ) .  

show (board ( H , K , Y , L ) ) : 
reverse ( H ,  Hr) , 
writestones (Hr) , 
writekalahs (K, L ) , 
writestones (Y) . 

writestones (H )  : 
displayholes ( H ) . 

displayholes ( [H I  Hs J )  : -
writepile ( H ) , 
displayholes (Hs ) . 

displayholes ( [ ] ) .  

wri tep ile (N) : -
N < 1 0 ,  
write (N) . 

wri tep ile (N) : -
N > 10 , 
write (N) . 

write (X) . 

writekalahs (K, L)  : 
write (K) , 
write (L )  . 

zero ( [ 0 , 0 , 0 , 0 , 0 , 0 ] ) .  
nonzero (Hs )  : -

H s  \== [ 0 , 0 , 0 , 0 , 0 , 0 ] . 

reverse (L ,  K) : 
rev (L , [ ] , K) .  

rev ( [ J , L , L ) . 
rev ( [H I T] , L , K) : -

rev (T ,  [ H I L ] , K) . 

sumlist ( I s , Sum) : 
sumlist ( Is , 0 , Sum) . 

sumlist ( [ ] , Sum, Sum) . 
sumlist ( [ I I  I s ] , Temp, Sum) : 

Templ : =  Temp + 1 ,  
sumlist ( Is , Templ , Sum) . 

lookahead (X) : - ground (X) . 

initialize (X, Y, Z )  : - ground (X) , ground (Y) , ground ( Z ) . 

pieces (X) : - ground (X ) . 

A1.4. PRESS 

The program press 1s an equation-solver program. This program is 

taken from [STSH86] . 

p ( Z , Y, X) : - call ( test_press (X, Y) ) .  

solve_equation (A*B=0 , X , Solution) : -
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! 1 

factoriz e (A*B , X , Factors - [ ] ) ,  
remove duplicates (Factors , Factorsl ) ,  
solve_factors (Factorsl , X, Solution) . 

solve equation ( Equation , X, Solution) : 
- single_occurrence (X, Equation) , 

! 1 

position ( X , Equation, [ S ide l Position] ) ,  
maneuver sides ( Side , Equation , Equationl ) , 
isolate (Position , Equationl , Solution) . 

solve equation (Lhs=Rhs , X, Solution) : -
- is_polynomial (Lhs , X) , 

is_polynomial (Rhs , X) , 
! 1 

polynomial normal form ( Lhs-Rhs , X, PolyForm) , 
solve_polynomialyquation (PolyForm, X, Solution) . 

solve equation (Equation , X, Solution) : -
- offende rs (Equation , X , Offenders ) ,  

multiple (Offenders ) ,  
homogenize (Equation , X , Offenders , Equationl , Xl ) , 

! ,  
solve equation ( Equationl , Xl , Solutionl ) , 
solve=equation (Solutionl , X, Solution) . 

factorize (A*B , X , Factors - Rest ) : -
! ,  

factori ze (A, X, Factors - Factorsl ) ,  
factori z e (B , X, Factorsl - Rest ) . 

factorize ( C , X ,  [ C I Factors ] - Factors ) : 
subterm (X,  C ) , ! . 

factorize ( C , X , F actors - Factors ) . 

solve factors ( [Factor l Factors ] , X, Solution) : 
- solve equation (Factor=0 , X, Solution) . 

solve factors( [Factor l F actors ] , X, Solution) : 
- solve_factors (Factors , X, Solution) . 

single occurrence ( Subterm, Term) : -
- occurrence (Subterm, Term, 1 ) . 

maneuver sides ( l , Lhs 
maneuver=sides ( 2 , Lhs 

Rhs , Lhs 
Rhs , Rhs 

Rhs )  : - ! . 
Lhs )  : - ! . 

isolate ( [N I Position] , Equation, IsolatedEquation) : 
isolax (N, Equation , Equationl ) , 
isolate (Position, Equationl , IsolatedEquation) . 

isolate ( [ ] , Equation , Equation) . 

isolax ( l , Terml+Term2 Rhs , Terml Rhs-Term2 ) . 
isolax (2 , Te rml+Term2 Rhs ,  Term2 Rhs-Terml ) . 

isolax ( l , Terml-Term2 Rhs , Terml Rhs+Term2 ) . 
isolax ( 2 , Terml-Term2 Rhs ,  Term2 Terml-Rhs ) .  

isolax ( l , Terml*Term2 Rhs , Terml Rhs/Term2 ) : -
Term2 <> 0 .  

isolax ( 2 , Terml*Term2 Rhs , Term2 Rhs/Terml ) : -
Terml <> 0 .  

isolax ( l , Terml/Term2 Rhs , Terml Rhs*Term2 ) : -
Term2 <> 0 .  

isolax ( 2 , Terml/Term2 Rhs , Term2 Terml/Rhs ) : -
Rhs <> o .  

isolax ( l , TermlATerm2 = Rhs , Terml = Rhs A (Term2 ) ) .  
isolax ( 2 , Terml ATerm2 = Rhs , Term2 = log (base (Terml) , Rhs ) ) .  
isolax ( l , sin (U)  V, U arcsin (V) ) .  
isolax ( l , sin ( U )  V, U 180 - arcsin (V) ) .  
isolax ( l , cos (U)  V, U arccos (V) ) .  
isolax ( l , cos (U)  V, U arccos (V) ) .  

natural_number (N) : - N > O .  

is_polynomial (X, X) : - ! . 
is_polynomial (Term, X) : -



158 

constant (Term) , ! . 
is_polynomial (Terml+Term2 , X) : - ! ,  

is_polynomial (Te rml , X ) , 
is_polynomial (Term2 , X ) . 

is_polynomial (Terml-Term2 , X) : - ! ,  
is_polynomial (Te rml , X ) , 
is_polynomial (Te rm2 , X) . 

is_polynomial (Te rml*Term2 , X ) : - ! ,  
is_polynomial (Te rml , X) ,  
is_polynomial (Term2 , X) . 

is_polynomial (Terml/Term2 , X ) : - ! ,  
is_polynomial (Terml , X ) ,  

constant (Term2 ) .  
is_polynomial (Te rmAN, X )  : - ! ,  

natural number (N) , 
is_polynomial (Te rm, X) . 

polynomial normal form (Polynomial , X, NormalForm) : 
polynomial form (Polynomial , X, PolyForm) , 
remove_zero_terms (PolyForm, NormalForm) . 

polynomial form (X, X , [p ( l , 1 ) ] ) .  
polynomial form (XAN, X,  [p ( l , N ) ] ) .  

polynomial form (Terml+Term2 , X, PolyForm) : -
polynomial form (Terml , X, PolyForml) , 
polynomial-form (Term2 , X, PolyForm2 ) , 
add_polynomials (PolyForml , PolyForm2 , PolyForm) . 

polynomial form (Terml-Term2 , X, PolyForm) : -
polynomial form (Terml , X, PolyForml) , 
polynomial-form (Term2 , X, PolyForm2 ) ,  
subtract_polynomials (PolyForml , PolyForm2 , PolyForm) . 

polynomial form (Terml*Term2 , X, PolyForm) : -
polynomial form (Terml , X, PolyForml ) , 
polynomial-form (Term2 , X, PolyForm2 ) ,  
multiply_polynomials (PolyForml , PolyForm2 , PolyForm) . 

polynomial form (Te rmAN , X , PolyForm) : - ! ,  
polynomial form ( Term, X, PolyForml ) ,  
binomial (PolyForml , N , PolyForm) . 

polynomial form (Term, X ,  [p (Term, O ) ] )  : 
fr;e_of (X, Term) , ! . 

remove zero terms ( [p ( O , N ) I Poly] , Polyl ) : - ! ,  
- remove zero terms (Poly, Polyl ) . 

remove zero terms ( [p (C , N) I Poly] , [p ( C ,  N) 1 Polyl ] ) : -
- C <> O ,  ! ,  remove zero terms (Poly, Polyl) . 

remove_zero_terms ( [ l ,  [ ] )  . - -

add_polynomials ( [ ] , Poly, Poly) : - ! .  
add_polynomials (Poly, [ ] , Poly) : - ! .  
add_polynomials ( [p (Ai , Ni ) 1 Polyl ] , [p (Aj , N j )  I Poly2 ] , [p (Ai , Ni ) I Pol y ]  ) : -

Ni > Nj , ! ,  add_polynomials (Polyl , [p (Aj , Nj )  I Poly2 ] , Poly) . 
add_polynomials ( [p (Ai , Ni)  I Polyl] , [p (Aj , N j )  1 Poly2 ] , [p (A, Ni ) 1 Pol y] ) : -

Ni = : = Nj , ! ,  A : = Ai+Aj , add_polynomials (Polyl , Poly2 , Poly) . 
add_polynomials ( [p (Ai , Ni)  I Polyl] , [p (Aj , Nj ) 1 Poly2 ] , [p (Aj , N j )  1 Pol y] ) : -

Ni < Nj , add_polynomials ( [p (Ai , Ni )  1 Polyl ] , Poly2 , Poly) . 

subtract_polynomials (Polyl , Poly2 , Poly) : -
multiply single (Poly2 , p ( l , O ) , Poly3 ) , 
add_polynomials (Polyl , Poly3 , Poly) , ! .  

multiply single ( [p (C l , Nl )  I Polyl ] , p (C , N) , [p (C2 , N2 )  I Poly] ) : -
C2 : = Cl*C, N2 : = Nl+N, multiply single (Polyl , p ( C , N ) , Poly) . 

multiply_single ( [ ] , Factor ,  [ ] ) . -

multiply_polynomials ( [p ( C , N) 1 Polyl ] , Poly2 , Poly) : 
multiply single (Poly2 , p (C , N) , Poly3 ) , 
multiplyyolynomials (Polyl , Poly2 , Poly4 ) , 

add_polynomials (Poly3 , Poly4 , Poly) . 
multiply_polynomials ( [ ] , P , [ ] ) .  

binomial (Poly, l, Poly) . 

solve polynomial equation (PolyEquation , X , X  -B/A) : -
- linear (PolyEquation) , ! ,  

pad (PolyEquation, [p (A, l ) , p (B , 0 ) ] ) . 
solve_polynomial_equation (PolyEquation, X, Solution) : -
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quadratic (PolyEquation ) ,  ! ,  
pad (PolyEquation, [p (A, 2 ) , p (B,  1 )  , P ( C ,  0 ) ] ) ,  
discriminant (A, B , C , Discriminant ) ,  
root (X, A , B , C , Discriminant , Solution ) . 

discriminant (A, B , C , D ) : - D : = B*B - 4*A*C . 

root (X, A, B , C , 0 , X= -B/ (2*A) ) .  
root (X , A, B, C , D , X= (-B+sqrt (D) ) / ( 2 *A) ) : - D > O .  
root (X ,A , B, C , D , X= (-B-sqrt (D) ) / ( 2*A) ) : - D > O .  

pad ( [p ( C , N) I Poly ] , [p ( C , N) I Polyl ] ) : - ! ,  
pad (Poly, Polyl ) . 

pad (Poly, [p ( O , N) I Polyl ] ) : 
pad (Poly, Polyl ) . 

pad ( [ ] ,  [ ] ) . 

linear ( [p (Coeff,  1 )  1 Pol y ] ) . 
quadratic ( [p (Coeff ,  2 )  1 Poly] ) . 

offenders (Equation , X, Offenders ) : 
parse ( [Equation ] , X, Offendersl ) ,  
remove_duplicates (Offendersl , Offenders ) .  

homogenize (Equation , X, Offenders , Equationl , Xl )  : 
reduced term (X, Offenders, Type , Xl ) , 
rewrite(Offenders , Type , Xl , Substitutions ) ,  
substitute (Equation, Substitutions , Equationl ) .  

reduced term (X , Offenders , Type , Xl )  : 
-classify (Offenders , X, Type ) , 

candidate (Type , Offenders , X, Xl ) . 

classify (Offenders , X, exponential) : 
exponential_offenders (Offenders , X ) . 

exponential offenders ( [AAB I Offs ] , X) : -
fre; of (X, A) , subterm (X, B ) ,  exponential offenders (Offs , X ) . 

exponential_offenders ( [ ] , X) . -

candidate (exponential , Offenders , X, AAX) : -
base (Offenders , A) ,  polynomial_exponents (Offenders , X) . 

base ( [AAB I Offs] , A) : - base (Offs , A) . 
base ( [ ]  , A) . 

polynomial exponents ( [AAB I Offs ] , X) : -
isyolynomial (B, X) , polynomial_exponents ( Offs , X ) . 

polynomial_exponents ( [ ] , X) . 

substitute (A+B , Subs , NewA+NewB) : - ! ,  
substitute (A, Subs , NewA) , substitute (B, Subs , NewB ) . 

substitute (A*B, Subs , NewA*NewB) : - ! ,  
substitute (A, Subs, NewA) , substitute (B, Subs , NewB ) . 

substitute (A-B, Subs , NewA-NewB) : - ! ,  
substitute (A, Subs, NewA) , substitute (B, Subs , NewB ) . 

substitute (A=B , Subs , NewA=NewB) : - ! ,  
substitute (A, Subs, NewA) , substitute (B , Subs , NewB ) . 

substitute (AAB , Subs , NewAAB)  : - ! ,  
intege r (B ) , substitute (A, Subs, NewA) . 

substitute (A, Subs , B ) : -
member (A=B, Subs ) ,  ! .  

substitute (A, Subs , A) . 

rewrite ( [Off l Offs] , Type , Xl ,  [Off=Term l Rewrites ] )  : 
homog axiom (Type , Off, Xl, Term) , 
rewrite (Offs, Type , Xl , Rewrites ) .  

rewrite ( [ ] , Type , X, [ ] ) .  

homog axiom (exponential, AA (N*X) , AAX, (AAX) AN) . 
homog-axiom (exponential , AA (-X) , AAX, 1/ (AAX) ) .  
homog=axiom ( exponential , AA (X+B ) , AAX, AAB*AAX) . 

subterm (Term, Term) . 
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subterm ( Sub, Term) : -
compound (Term) , functor (Term, F , N) , subterm (N, Sub, Term) . 

member (X,  [X I Y ) ) . 
member (X,  [F I T ) ) : 

member (X ,  T ) . 

subterm (N, Sub, Term) : 
arg (N, Term, Arg) , 
subterm ( Sub, Arg) . 

subterm (N , Sub , Term) : 
N > O ,  
Nl : = N - 1 ,  
subterm (Nl , Sub, Term) . 

position (Term, Term, [ ) )  : - ! .  
position ( Sub, Term, Path) : -

compound (Term) , functor (Term, F , N) , position (N, Sub, Term, Path) , ! . 

position (N, Sub, Term, [N I Path) ) : -
arg (N, Term , Arg) , position ( Sub, Arg, Path) . 

position (N, Sub, Term, Path) : -
N > 1 ,  Nl : = N-1 , position (Nl, Sub , Term, Path) . 

parse ( [A+B J Y ) , X , Ll )  : - ! ,  
par se  ( [A, B I  Y )  , X ,  Ll )  . 

parse ( [A-B I Y )  , X ,  Ll)  : - ! , 
parse ( [A, B I Y] , X, Ll ) . 

parse ( [A=B I Y ] , X , Ll )  : - ! ,  
par se  ( [A, B I  Y ]  , X ,  Ll)  . 

parse ( [A*B I Y] , X , Ll ) : - ! ,  
parse ( [A, B I  Y ]  , X ,  Ll ) . 

parse ( [AAB J Y] , X, L ) : -
integer (B ) , ! , parse ( [A I  Y] , X ,  L )  . 

parse ( [A I Y) , X, L ) : -
free of (X , A) , ! , 

parse (Y, X , L ) . 
parse ( [A I Y ] , X , [ A I L ] ) : -

subterm (X ,  A)  , ! , 
parse (Y ,  X, L )  . 

parse ( [ ] , X, [ ] )  . 

free of ( Subte rm, Term) : -
- occurrence ( Subterm, Term, N) , N=O . 

single_occurrence ( Subterm, Term) . 

occurrence (Term, Term , 1 )  : - ! .  
occurrence ( Sub, Term,N )  : -

compound(Term) , ! ,  functor (Term, F , M) , occurrence (M, Sub, Term, O , N) . 
occurrence ( Sub, Term, O ) . 

occurrence (M, Sub , Term, Nl , N2 )  : -
M > O ,  ! ,  arg (M, Term, Arg) , occurrence ( Sub, Arg, N) , N3 : =  N+Nl , 
Ml : = M-1 ,  occurrence (Ml, Sub, Term, N3 , N2 ) . 

occurrence ( O , Sub , Term , N , N) . 

multiple ( [Xl , X2 J Xs ] ) .  

remove duplicates ( [ ) ,  [ ] ) . 
remove-duplicates ( [X I Xs ] , Ys )  : -

- member (X, Xs ) , ! , 
remove duplicates (Xs , Ys ) . 

remove duplicates ( [X I Xs ) , [ X I Ys ] ) : 
- remove_duplicates (Xs , Ys ) . 

test__press (X, Y) : - equation (X, E , U) , solve_equation (E , U, Y ) . 

equation (X, Y, Z )  : - ground (X) , ground (Y) , ground ( Z ) . 




