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Part 1 

Preface 

It's always bard to put on paper ones experience in a foreign country doing something 
new and exciting as logic programming. My previous interest in this particular field 
was somewhat limited and through this ERASMUS stage, I have gained the sensibility 
to the problems and possibilities offered by this dynamic research area. 

Despite the fact that almost ail the written code was in the C language, the study 
of the W AM allows me to better understand the process of logic programming, which 
I believe is an add-on for the future. 

Abstract 

This thesis is about a client server application using the concepts of logic, constraint 
and concurrency. lts main goal is to built a framework to exchange data using 
blackboards in concurrent constraint programming. 

Organization of the Thesis 

The thesis is devised in four logical parts: 

-❖- Introduction, states the author forewords about the thesis; 

-❖- Background, where an insight is given into the foundations ofLogic 
Programming, Constraint Logic Programming and 
Concurrent Programming; 

-❖- W ork Report, states the work done during the stage; 

-❖- Summary, where the conclusion, bibliography, index and other 
information of the sort is putted. 



The thesis is also organized by chapters: 

• Chapter One, introduces the thesis and it's objectives; 

• Chapter Two, gives a background on Logic Programrning; 

• Chapter Three, Constraint Logic Programrning is explained; 

• Chapter Four, is about Concurrent Programrning; 

• Chapter Five, states the work done by the author; 

• Chapter Six, draws conclusions. 
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Chapter 1 -- Introduction 

1.1 Introduction 

One of the interesting features of logic programming is probably its appeal to first­
order logic. Hence in contrast with imperative languages such as Pascal, C or Fortran, 
the programmer is not faced with assignments and loops but with logic formulae . This 
declarative appeal turns the programming task in specifying the problem to be solved 
as opposed to expliciting how to solve it. This has lead to an easy yet efficient way of 
solving many complex problems. 

A generalization of unification to constraint solving has pushed this idea 
further, with the result that nowadays constraint programming is employed in the 
industry to selve such problems as scheduling for factories and for computer 
instructions sets; options and portfolio analysis, modeling water usage, DNA and 
electrical circuits analysis. 

The development of parallel architectures for computers and networks of 
computers have evidenced, if need still be, the interest of parallel computations. One 
natural next step is thus to parallelize constraint logic programming. Our thesis takes 
place in this context; we shall indeed propose a new model based on blackboards. 

Understanding the differents concepts used in the thesis is important to better 
understand the work performed during the stage. The background knowledge is given 
in part II and is divided in chapters in which logic programming, constraint 
programming and concurrent programming are explained. 

The chapter dedicated to logic programming presents its three components: 
syntax, operational semantics and declarative semantics. Syntax introduces the reader 
to the construction of well formed formulas and to the heart of logic programming -
the unification mechanism. Operational semantics presents how formulas are 
processed, the model of execution of programs and the possible states. Declarative 
semantics deals with true values, with models and logical consequences in regard to 
formulas . The implementation section was written to explain the breakthrough that 
occurred in LP ( Prelog) - the definition of the Warren' s Abstract Machine. 

The constraint logic programming chapter off ers a view of this very active field . 
The main idea of CLP is to replace the unification mechanism of LP with a solver of 
constraint in a particular demain. The solver can be seen as a "black box" responsible 
to test the satisfiability of the constraints and to possibly reduce them to a normal form. 
A different approach is presented there called "glass box", which uses a constraint X in 
r over finite demains. 
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Parallel systems requires concurrent programming which is the subject discussed 
in chapter four. The chapter presents a new interesting framework (µLog) using logic 
programming to achieve concurrency through blackboards. Using blackboards avoids 
problems like for instance the synchronization and mutual exclusion. Two categories of 
abjects are described as well as the operations that can be performed on them. 
Processes are also differentiated. 

1.2 Contributions 

The differents concepts explained in part II are putted into practice in part III through 
the development of a client server application using blackboards. In chapter five, the 
application development steps are stated. 

The inclusion in a program of the client functions created, makes it a client 
program capable of communicate with the server. To exemplify the use of clients 
functions on different programming languages, the Wamcc(fd) is changed. Moreover 
functions interfacing the code generated by Wamcc(fd) for a given program and the 
functions on the client side, are added. 

To allow a better debugging of any errors occurring during the execution of the 
daemons server, the system logger is used. 

An attempt was made to make the code as much as possible POSIX 1 compliant, 
which gives us some guaranties that it will run on most machines. Making the code 
more portable has its backsides, namely when a FIFO 1 was chosen instead of a more 
efficient solution (for instance shared memory which would speed up the process of 
reading / writing the blackboard). 

Finally, for ending the continuous reading in the several fifos either by the server 
and client, a signal solution was found so that when a client has send a request ( or the 
answer by the server) a signal is sent to make the corresponding sleepy process active. 

1.3 Conventions 

The following symbols are used throughout the thesis to denote a particular class of 
textual expression (i. e. definition, proposition, question, enumeration) : 

o,e, .. . ,CD,0 , ... , The first symbols denotes an enumeration of items, if 
there is a sub-numeration than the seconds are used; 

~ , • When there is no need for an enumeration of items, this symbol is used. 

1 Also called named pipes. 

Stage Thesis 
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• Denotes a question; 

✓ Denotes a definition or a proposition; 

□ Used in the beginning of definitions, propositions and questions; 

W Introduces a note, a remark or a comment. 

r&I Gives a warning, when a danger of any sort occurs; 

T Capital T - Indicates a theorem 

The use of an expression in italic has the purpose of making clear its use. 

1.4 Credits 

The author acknowledge the sources for the chapters in the thesis, as the following: 

❖ Chapter two - the authors and books referenced in [4], [5], [6] ; 

❖ Chapter three - [4], [10], [l l], [12] ; 

❖ Chapter four - [7] ; 

❖ Chapter five - [2], [3], [10]. 

All the numbered references belong to the bibliography. 

Stage Thesis 



Part Il 

Chapter 2 -- Logic Programming 

This chapter is dedicated to the introduction of logic programming to pro vide 
background knowledge to understand in what context this work was achieved. 
Logic programming has three components: syntax, operational semantics and 
declarative semantics. 

2.1 Syntax 

Syntax specifies the wellformedformulae. 

Logic programming uses first-order logic, but from a programmer point of view 
this means first-order formulae . These are built from variables and from atomic 
formulae. Variables must be quantified either existentially or universally (using the 
quantifier 3 or V, respectively). An atomic formulae is composed of an atom. 

Example 1 

m 

VX VY (grand_son(X,Y) <=> ( 32 (son(X,Z) /\ (son(Z,Y))) 

X, Y ,Z are variables; 
grand_ son(X, Y), son(_,_) are atoms; 
grand_ son, son are predicates. 
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Atoms may be linked together by logical connectives, 

-, (negation), A (conjonction), v (disjonction) , ⇒ and ç (implication) and <=> (equivalence) . 

For grouping formulas we canuse the quantifiers (V,:3) and brackets, but to 
avoid their intricate use, an association rule is used, with the usual left to right and 
top to bottom precedence. 

-.,V,:3 
V 

/\ 

<=, ⇒ , <=> 

Table 1 : Precedence Operators 

After introducing the logical connectives and quantifiers the definition of the well 
formed formulae is the next step. 

✓ Weil formed formulae 

0 Well formed formulae or wff, for short, are inductively defined as follow: 

G) atomic formulae are wff' s; 

(2) if F and Gare wff's, then -.F, (F), F AG, Fv G, F<:=G, F⇒G, F<=:>G 
are wff 's; 

(3) if X is a variable and F is a wff, then VX(F) and :3X(F) are wff' s. 
The scope of VX and :3X in the above formulae is the wff F. 
An occurrence of X is said to be bound if it is under the scope of a 
quantifier; otherwise it ' s free. 

0 A closed wffis a wffwith no free occurrences of any variable. For 
notation convenience, we shall use V(F) and :3(F) to denote the universal 
closure ofF and the existential closure of F, respectively, that is the wff 
obtained by respectively adding a universal or an existential quantifier for 
every variable having a free occurrence in F. 

Example 2 

Weil formed formulae 

VX(p(X,Z))<=>( q(Y)Aa) 

Using the Edinburgh Syntax several concepts are now explained. 

Stage Thesis 
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The atoms and their negation are important in logic programming as we shall see 
below. 

✓ Literai 

□ A literai is an atom or the negation of an atom. The first is called positive 
literai and the last negative literai. 

7 

Full first-order logic is limited to wff composed of definitive and normal clauses for 
efficiency purposes. The following definitions are first required. 

✓ Clauses 

□ A clause is a wff of the form VX1 ... Xn (L, v ... v Lm), where Li is a literai 
and X 1, .. . ,Xn are ail variables. 

Example 4 

VXVY ( odd(X) v even(Y)) 

✓ Horn Clauses 

□ A Horn clause is a clause with at most one positive literai. 

Example 5 

VXVY( -,even(X) v -,odd(Y) )1 

✓ Definite Clauses 

□ A definite clause is a clause containing exactly one positive literai. 
They are normally denoted as follows in the view of the equivalence between 
the formula -,Av B and A⇒B: 

His called the head of the clause and B1, ... ,Bn the body of the clause. 
Note that the atom His the positive literai of the clause and the atoms 
B1, ... ,Bn are the conjunction of the positive literais associated with the 
negatives literais of the clause. 

Example 6 

odd(3) ~even(2), even(O) 

1 In this particular case there is no positive literai. 

Stage Thesis 
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Any computation in logic programming consists essentially of proving that the 
variables of a given goal can be replaced by terms such, that the goal becomes a logical 
consequence of a given logic program and, of actually delivering only the most general 
terms to variables. To that end, the computation attempts to progressively transform 
the given goal to empty goal □ . Each step of the transformation consists of 
substituting the variables of the current goal and of a program clause by terms such 
that the head of the clause identifies with an atom of the goal. In this case a atom is 
replaced by the body of the clause. 

Example 8 

Goal: ~ a,b,c. 

Clause: b~d,f,g . 

Result 1: ~ a,d,f,g,c. 

The substitutions are the classical way of reporting values for variables. 
The process of identifying an atom and the head of a clause is called unification. 

Substitutions 

Substitutions may be presented in three ways: 

0 Set of bindings 

8 Functions 

8 Solutions of Equations 

The first approach is the usual one in the logic programming community, so it is 
also adopted here. 

✓ Substitution 

0 A substitution is a (possibly empty) finite set of the form {X1/t1, .. . ,Xn/tm} 
where X1 , ... ,Xm are distinct variables and t1, ... ,tm are terms respectively 
distinct from their corresponding variables. Each element X/ti is called a 
binding or an instantiation for X . The empty set of bindings is called the 
identity substitution1 

. 

1 Represented by the letter e. Substitutions are typically denoted by Greek letters. 

Stage Thesis 
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m 

The set of variables appearing in a term, a literai, a wff or 
more generally in any construct C is represented by var(C). 
The set of variables of a substitution 8 = {X1/t1, ... ,Xrn/tm} is 
referred by dom(8); the set of terms of the substitution e, 
{t1, ... ,tm} is named cod(8). The set of variables appearing 
in t 1, ... ,tm is designated by varcod(0) . 

In the computation process, generally, auxiliary variables are calculated but whose 
values are irrelevant to the final result; so a restriction of substitutions to the given 
set of variables must be defined. 

✓ Restriction of Substitutions 

0 The restriction of substitution 8 = { X1/t1, ... ,Xrn/tm} to the set of variables S, 
denoted by 81s is the substitution obtained from e by deleting ail the 
bindings X/ti for which Xi rt. S. 

Substitutions take their essential meaning through their application to expressions. 

✓ Expression 

0 An expression is a term, a literai, a disjunction of literais or a conjunction of 
literais. 

✓ Instance 

w 

0 Let 0 = { X1/t1 , ... ,Xrn/tm} be a substitution and E an expression. 
The construct E0 denotes the expression obtained from E by simultaneously 
replacing in E each occurrence of the variable Xi by the corresponding term 
ti (1 ~ i ~ n). lt is called an instance ofE. 
This situation is also referred to as 8 being applied to E . 
After such an operation, Xi is said to be bound or instantiated to t; . 

Let cr and 't be two substitutions. The following propositions are equivalent: 
CD the substitutions cr and 't are identical; 
0 for any expression E, the expression Ecr and E -r are identical; 
(3) for any variable X of dom( cr )u dom(-r ), the terms Xcr and X-r are identical. 

Stage Thesis 
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Substitutions can be composed. 

✓ Composition of Substitutions 

m 

0 The composition of the substitutions cr= {X1/ti, .. . ,Xn/tm} and -c = {Yi/u1, ... , 
Y Jun}, denoted by cro-c, or cr -c for short, is the substitution obtained from 
the set {Xi/ti-c, ... ,Xmltm -c, Y i/u1, ... , Y Jtn} by deleting any binding X/ti't for 
which Xi = ti-c (1::; i ::; m) as well as any binding Y/uj for which Yj E 

X1, ... ,Xm. 

Three elementary properties of the composition of substitutions: 
CD 0E = e = E0; 
0 for every expression E, (Ecr)-c = E(cr -c); 
(3) (0cr)-c = 0(cr -c). 

Closely related to equations, the idempotent substitutions, which form a particular 
class of substitutions bas some interesting properties. 

✓ Idempotent Substitution 

0 A substitution 0 is idempotent if, and only if, 0 = 0 o 0 . 

✓ Properties of the Idempotent Substitution 

0 A substitution e is idempotent if, and only if, dom(0) n varcod(0) = 0; 

8 Let cr and -c be substitutions. Suppose -c is idempotent. Then cr 2 -c if, and 
only if, cr= -c ocr; 

e Let cr and -c be substitutions. If cr c -c then cr::; -c . 

Unification 

Since the structures of atoms and terms are similar, in the unification process 
they have a common behavior. That is the reason of the next definitions. 

✓ E-term 

0 An e-term is either a term or an atom. 

Stage Thesis 
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✓ Most General Unifier 

0 A substitution 0 unifies 2 e-terms E and F if, and only if, the instances ofE0 
and F0 are syntactically identical. If so, E and F are said to be unifiable and 
0 is called a unifier ofE and F. If 0 is more general than ail unifiers ofF and 
E it is called a most general unifier1 . 

The unification mechanism is the core of first-order logic. Severa! algorithms 
have been proposed2

, the one presented here is due to Herbrand ([Her67]) . 

Trying to unify E and F is trying to solve the equation E=F ( or solving systems 
of equations). 

23 

Let S be a system of equations. Repeat the following actions as long as possible. 
Choose an equation Eq non-deterministically from S in one of the following forms and 
perform the associated action. 

EQUATION 

Eq is.f(t1 , ... ,tm) = g(u1, ... ,un) 
with m,n 2'. 0, and f syntactically different from g 

Eq is.f(ti, ... ,tm) = g(u1, ... ,Un) 
with m,n 2'. 0, and mt=n 

Eq is.f(t1 , ... ,tm) = g(u1, ... ,Um) 
with m 2'. 0 

Eq is X = X 
with X a variable 

Eq is t = X 
with X a variable and t a non-variable term 

Eq is X= t 
with X a variable appearing in another equation 
and t a term containing no occurrence of X 

Eq is X = t 
with X a variable appearing in another equation 
and t a term different from X but containing an 
occurrence of X 

1 Or mgu, for short. 
2 See for instance [R 1, R 4, R 6, R 10). 

Stage Thesis 

ACTION 

Hait with failure 

Hait with failure 

Replace Eq by the equations 
t1=u1, ... ,tm=um 

Remove the equation 

Replace Eq by the equation 
X = t 

Replace X by t in every other 
equation than Eq 

Hait with failure 
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• How to recognize a solved system of equations ? 

0 A system of equations is in solved form if it has the form 

{ 
where the Xi' s are distinct variables that do not appear in any of the tj , s. 

• How to unify an atom and a normal clause ? 

0 An atom A and a normal clause C unify with most general unifier 0 if, and 
only if, 0 is a most general unifier of A and of the head of C. It is assumed 
that, ifnecessary, variables of C have been renamed so that no variable of 
A appears in C. 

2.2 Declarative Semantic 

Declarative Semantics de.fines the meaning of formulas in terms of true values, of 
models and of logical consequences. 

The following notions of interpretation and model are essentially addressed to 
definite programs. 

✓ Interpretation 

0 An interpretation consists of four parts: 

0 a nom empty set D, called the domain of the interpretation; 

8 for each constant, the assignment of an element in D ; 

t) for each n-ary function, the assignment of a mapping from D n to D; 

e for each n-ary predicate, the assignment of a mapping from D n to 
{ true, false} . 

Stage Thesis 
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✓ Variable assignment 

✓ 

0 Let I be an interpretation. A variable assignment with respect to I is an 
assignment to each variable of an element in the domain of I. 

F G -,F FAG FvG F⇒G F<=G F<:::>G 
true true false true true true true true 
true · false false false true false true false 
false true true false true true false false 
false false true false false true true true 

Table 3 : Truth tables for logical connectives 

Term assignment 

0 Let I be an interpretation and V be a variable assignment. The term 
assignment with respect to I and V of the terms is defined as follows: 

0 each variable is given its assignment according to V; 

8 each constant is given its assignment according to / ; 

8 ift1 , ... ,În are the term assignments ofti, .. . ,tn with respect to I and 
V and 7 is the assignment off with respect to I, then f ( t 1 , ... , Î n ) 
is the term assignment of./lti, ... ,tn) with respect to I and V 

✓ True value of a wff 

0 Let I be an interpretation with domain D and let V be a variable assignment. 
Then a wff is given a truth value, true or false, with respect to I and V as 
follows. 

0 If the wff is an atom p(ti, .. -,tn) then the truth value is obtained by 
calculating the value P(t1 , .•• ,În) where i' is the mapping assigned 
top by / and t 1 , ... , Î n are the term assignment of t1, ... ,tn with respect 
to I and V 

8 If the wffhas the form--, F, F AG, FvG, F<=G, F⇒G, F<:::>G, then the 
truth value of the wff is given by the usual truth values for the logical 
connectives, listed in table 1. 

e If the wff bas the form :lX(F), then the truth value of the wff is true 
if there is some d in D such that F bas as truth value with respect to / 
and vlX/d], where vlX/d] is V except that X is assigned to d; 
otherwise, its truth value is false. 

Stage Thesis 
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e If the wff has the form VX(F), then the truth value of the wff is true 
if, for ail d in D, the truth value of F with respect to I and J/[X/d] 
is true; otherwise, the truth value is false . 

As we can deduct frorn the last two items frorn definition 26, the truth value of a 
closed wff does not depend on a variable assignrnent. 

✓ Model 

0 Let S be a set of closed wff 's. An interpretation J is a rnodel for S if the 
truth value of any formula of S with respect to I is true. 

With all this concepts we can define the declarative sernantics oflogic prograrnrning. 

✓ Logical Consequence 

0 Let S be the set of closed wff 's. A closed wff is a logical consequence of 
S if, and only if, every rnodel for Sis a rnodel for F too. This situation is 
denoted by S I= F, for any unclosed wffF, to really rnean S I= V(F). 

✓ Declarative Semantics 

28 

29 

30 

0 The function V : Sdprog➔Sgoal➔Ssubst, for any prograrn P E Sdprog, any 

goal G E Sgoal, defines the following declarative sernantics: 

Z>(P)(G) = {0 E Ssubst : P i= G0 } 

The basic problern frorn the declarative point of view is to deterrnine whether 
P I= G holds for sorne given prograrn P and goal G. The following propositions allows 

to reduce this problern to the problern of checking that P u {-,G} has no rnodel. 

m 

Let S be a set of wff 's and F be a closed wff. 
Then F is a logical consequence of S, if and only 
if, Su {-,F} has no rnodel. 

Using Herbrand interpretations, a particular interpretation, sirnplify the checking of 
rnodels. Before defining Herbrand interpretation a few prelirninary notions are 
necessary. 

✓ Ground Term 31 

0 A ground term is a term containing no variables. 

Stage Thesis 
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✓ Ground Atom 32 

0 A ground atom is an atom containing no variables. 

✓ Ground Instance 33 

0 A ground instance of a clause C is a clause obtained from C by removing the 
universal quantifiers and by replacing each variable of C by a ground term. 
The set of ground instances of the clauses of the pro gram P is subsequently 
denoted by ground(P). 

✓ Herb rand U niverse 

0 Set of all ground terms. 

✓ Herbrand Base 

0 Set of all ground atoms. 

✓ Herbrand Interpretation 

0 An interpretation is an Herbrand interpretation if the following conditions 
are satisfied: 

0 the domain of the interpretation is the Herbrand universe UH; 

8 constants are assigned to themselves in UH; 

9 if f is an n-ary function, then f is assigned to the mapping 7 from 
(UH)" into UH defined by 7 (ti, ... ,tn) = ./(t1, ... ,tn)-

34 
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It is possible to identify an Herbrand interpretation by a set of ground atoms since the 
assignments of constants and functions is fixed . These atoms are considered to be true 
with respect to the interpretation 

✓ Herbrand Model 

0 Let S be a set of closed wff 's. An Herbrand model for S is an Herbrand 
interpretation which is a model for S. 

✓ Proposition 

0 A set of clauses S has no model, if and only if, it has no Herbrand model. 

The least Herbrand model is a particular model that is used to reduce the 
checking of Herbrand models. 

Stage Thesis 
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✓ Least Herbrand Model 

0 Let P be a definite program and {Mi}i e I be the set of Herbrand models. 

T 

Then rîï e 1 {Mi} is an Herbrand model, called the least Herbrand model. 
It is denoted by Mp. 

The least Herbrand model Mp of a definite program 
P satisfies the equality Mp = { A E BH : P ~ A} . 

39 

It is possible to further characterize the least Herbrand model with the help of the 
immediate consequence operator, denoted by Tp. 

✓ Definition 

0 Let P be a Horn clause program. The mapping Tp: P (BH) ➔ P (BH) is 
defined as follows, for any Herbrand interpretation I. 

Tp = {A E BH : (A~ A1, ... ,Am) E ground(P), {A1, ... ,Am} c I} 

The following auxiliary notions are needed to characterize the operator Tp. 

Notation 

Let A be a set and let T:P (A)➔ P (A) be a function from P (A) to P (A). 
We define: 

ex: 

Tt O = 0; Tt n = T(Tt(n-1)); Ttco = U Ttn. 
n = O 

40 

For any set of interpretations S c P (BH), the least upper bound is the union and 
the greater lower bound is the intersection of the interpretations of S. The least 
Herbrand model can be linked to the immediate consequence operator as follows . 

T Let P be a Horn clause program. Then, 
Mp = lfp(Tp) = Tp Îco 

where lfp(Tp) is the least fixed point of Tp. 

Stage Thesis 
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2.3 Operational Semantic 

Operational Semantics refers to a mode! of execution and states, in a abstract way, 
how formulae are processed 

There are many methods of computing logic programs, each of them defining a 
logic programming language. The refutation proof procedure from Robinson I and 
Kowalski procedural interpretation, which is a specialized version ( of the first) adapted 
to the context of Hom clauses is the source for most methods. 

We will show how it applies to definite and normal programs. 

Definite Programs 

A computation in logic programming consists in trying to solve, in a sense to be 
made precise in a moment, a given conjunction of atoms ~A1, ... ,Am with respect to a 
given definite program. More specifically, it consists of trying to find instantiations for 
the variables appearing in A1, .. . ,Am that conjointly solve these atoms. This can Iead to 
two opposite results: success or failure. In the first case, the values assigned to the 
variables constitute the output of the computation. In the later case, no output is 
generated. Note that several successful computations may exist, each resulting in a 
different output. 

The computation steps are non-deterministic. 

Reduction steps 

Given ~G1, .. . ,Gj, .. . ,Gn (n2: 1) and a clause H~B1, ... ,Bk. 

0 Select an arbitrary Gi; 

8 Let 0 be the most general unifier of Gi and H. 
Try to unify Gi with the clause H~B1, ... ,Bk; 
If needed, the variables of the clause are previously renamed to avoid their 
appearance in the computation and specially in G. 

8 Transform the conjunction: 

~G1, ... ,Gi, • .. ,Gn 
into 

~G1, ... ,B1, ... ,Bk,Gi+J, ... ,Gn 
Reduction / Deduction step 

0 End the reduction when the current conjunction is empty or when 
no further reduction can be made. 

1 ln [R 5) . 

Stage Thesis 
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Be aware that infinite reduction processes may exist. 
~ They correspond to imperative infinite loops and do 

not produce any result . 

Any sequence of the above transformation steps is called a SLD1 
- derivation. 

A complete SLD-derivation is successfuI2 when it ends with the empty goal. It 
is qualified as a failure, otherwise. 

The computation terrninates successfully if the conjunction +-A1, ... ,Am can be reduced 
to the empty conjunction. It faits if whatever atom and clause are selected at each step, 
the reduction process ends with a non-empty conjunction of goals. 

The operational semantics may be defined using the following concepts: 

✓ Computed Answer Substitution 

0 Let 01, ... ,en be the successive mgu's involved in a (successful) SLD -
- refutation for the query +-A1, .. . ,Am and let S be the set of variables of this 
query. The restriction of the substitution 01 o ... o 0n is called a computed 
answer substitution for +-A1, ... ,Am. 

✓ Derivation relation 

0 Let P be a definite program, G a goal and 0 a substitution. 
The expression P f- G[0] means that there is a SLD-refutation of G with 
respect to P giving as result the computed answer substitution 0 . In other 
words, G is successful completed after n steps using the definite clauses 
of program P, yielding 0 as a set of instantiated variables. 

The derivation relation itself is defined by rules of the form: 

Assumptions 
Conclusion 

if Conditions 

that states that a Conclusion is reached if the Assumptions and the Conditions hold. 

The derivation relation can be express by: 

0 (no Assumptions, no Conditions) 
Pf- D [e] 

which states that the empty conjunction D is derivable from any program 
with the empty substitution E as a computed answer substitution. 

1 for Selection Linear Derivation. 
2 Also called a SLD-refutation. 
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f) PC: (A1 ... .. Ai-1,B 1, ... ,Bk. Ar+1 ... . Am)0 [cr] 

P ~ A1, ... ,Am [(0cr)1 vars ({A, ... . ,A.n})] 

If (H~B1, ... ,B0 is a fresh renaming of the clause P) AND (Ai and H unify with mgu 0) 

which express the reduction step explained in 37. 

Example 9 

Program 

p(3)~q(Y). 
q(4). 

Goal: p(X) 

Resolution 

Unification ofp(X) and p(3) giving 0 = {X/3} . 
Unification of q(Y) and q( 4) giving cr = {Y/4} . 
Restriction to the composition (0cr) = [ {X/3 }{Y/4}] 1 {X} giving {X/3} . 

✓ Operational Semantics 

0 The operational semantics can be define as the following function 0 : 
Sdprog1 ➔ Sgoai2 ➔ 'P (Ssubst3 

) : for any program P E Sdprog, any 

goal G E Sgoal, 

O(P)(G) = {0 E Ssubst : P ~ [0]} 

Normal Programs 

Many proposai have been made to treat normal clauses4
. An early proposa! 

([R 81) which is simple and easy to implement consists in the reduction of atoms (as 
describe above) and of reducing negative literais by reducing the associated positive 
litera! and by inverting the computation results, thus reporting success if failure and 
vice-versa. In the reduction of atoms the empty conjunction is reported as the 
computed answer substitution. 

1 Set of definite programs. 
2 Set of goals. 
3 Set of substitutions. 
4 See for instance [R 2, R 3, R 7, R 9, R 11, R 13, R 14]. 
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The type of negation described here is know as negation as failure. 

not(p(a)) q p(a) q not(false/true) 
D, 

True/False 

Negation as failure is not, in general, the real logical negation except when no 
variables appear in the negative literai, so it is usual programming practice to make 
sure that reduction progresses in such a way that, when they are selected for reduction, 
negative literais do not contain any variables. Altematively, some logic programming 
languages delay the reduction of negative literais until they do not embody variables. 

Search Tree 

Prolog uses what is call a search tree. A search tree is defined by the following 
concepts. 

✓ Search state 

0 A search state is defined as: 

< n, 0, C > where 
• n is the number of the clause; 
• 0 is a substitution; 
• c is the continuation atoms B1, ... ,BP. 

✓ Search Tree 

0 A standard search tree having Q1, ... ,Qm as initial goals, is a finite or infinite 
tree, where each node is an instance of a search state. 

The root is an instance of <O, {} , Q1, ... ,Qm>. 

A instance node of < n, 0, c > where c is empty is called a success leaf 

For every other instance node v of < n, 0, c > and for every v' (son of v), 

instance of < n', 0', c' > then: 

• The mapping v' ➔ n' is a one-to-one mapping from the set of nodes 
sons of v to the set of numbers of clause n' such that, B 1 is unifiable 
with the head of the clause numbered n' (Cn'); 

• v is a failure leaf if there is no n'; 

• V v' :l ~ , ~ A1 ', ... ,An' a variant of Cn' (clause renaming) without 
common variables with the goals of nodes states prior to v'; 

• 0 ' is the mgu of B1 and~', c' is the result of the replacement in 
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2. 5 W AM Implementation 

The W AM is an abstract machine consisting in a memory architecture and instruction 
set tailored to Prolog1 . 

This words from D. Warren are certainly the best description of what is know as 
the Warren' s Abstract Machine, or for short, the W AM. To understand why the W AM 
is so important we must realize that Prolog programming language was built using the 
concepts of logic prograrnming set by Kowalski, and before Warren' s report2 in 83, 
writing compilers for Prolog was, at least, a hard task. 

The W AM is certain/y a good starting point for studying Prolog implementation 
technology1

• 

w 

Alain Colmerauer and colleagues conceived Prolog in the 
beginning of the seventies at the University of Marseille. 

One of the features that distinguishes the W AM is its memory architecture map, which 
is presented in figure 1. 

There is, as we can see in the memory map, a Code Area, a Heap, a Stack, a 
Trail and a Push Down List. The purpose of the code area is, like the name suggest, 
the storage area for code; the Heap is used as a global stack to store any permanent 
information3

; the Stack is where variable data are putted; the Trail supports Prolog's 
mechanism of backtracking and finally the Push Down List is a global dynamic area 
used as unification stack. 

The registers arguments Al , ... ,An are used (in a query or body goal) as auxiliary 
and temporary storage areas for passing information between the calier and the called, 
like arguments to a function. The same registers are used to store the contents of 
temporary variables in which case a different notation X 1, . . . ,Xn is used to differentiate 
the use. These registers also exist in the choice point frame as a backup to allow a full 
restoration of an early state of the computation. 

Opposed to the temporary and auxiliary registers there are others which are local 
and permanent (Yl , ... ,Yn), in the environment frame. Facts uses the temporary 
registers and rules uses the permanents. 
T o understand the utility of the choice point and environment frames we must first 
explain how Prolog search is done, with an example. 

1 Quoted from David H. D. Harren, forewords in [5]. 
2 In which the principles of the W AM are set. 
3 Namely, variables and structures. 
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High 
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Figure 1 : W AM memory layout and registers 
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Example 10 

Let :-q(X) be a query1
, q(Y):- p(Y,Z),t(Z) be a rule and p(3 ,6), t(6) be facts . 

Prolog will try to find an answer for the query in a tree like search. 
q(X) 

/ 
q(Y):-p(Y,Z),t(Z) 

/ "" p(3,6) t(6) 

In the example above we must make a choice in the rule, what goal do we try 
first p(Y,Z) or t(Z) ? Prolog always tries the left one first, continuing as deep as 
possible and proceed with the others (in the example t(Z)) . Since the variable Z 
appears in more than one goal it must be made permanent, because it must outlive the 
goal in which it was first created (i. e. p(Y,Z)). The storage is done in the environment 
frame, for each variable appearing in more than one body goal, the head atom is 
considered as part of the first body goaI2 for this purpose. 

An environment frame is created by the first body goal and removed by the last goaI3 . 

Environment frames are also called AND-stack since each environment is created for a 
body goal and as we know they are all linked by the logical connective AND. 

The previous example will be changed to explain choice point frames . 

Example 11 

q(X) 

/ 
q(A):-p(A),t(Z) 

/ "" -------p(B):-g(C) p(D):-f(E) t(6) 

1 1 
g(3,4) f(5) 

1 A query is a rule with no head. 
2 That's why Y, in the example, is nota permanent variable. 
3 In reality, for efficiency purposes, the environment is destroyed before the call to the last goal. 
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Now there are two rules for the definition of clause p. Since Prelog tries the left 
one first and goes as deep as possible to find a match1

, the sequence q(X), q(A):-p(A), 
p(B):-g(C), g(3 ,4) is first tried, but since the unification fails at this point (in the goal 
g(C) and g(3,4)), Prelog must clime in the search tree so that the clause p(D):-f{E) can 
be explored downwards. The preblem here is that if the computation state at q(A):­
p(A),t(Z) is not saved, it's impossible to go back when there is a failure in the 
unification precess. For this purpose, when more than one definition of a clause exist it 
is necessary to create a choice point to save the current state and restore it upon failure 
using backtracking ( return to a previous state where a choice, of what clause definition 
to try, was made). 

Choice point frames have also another name: OR-stack, given by the fact that the 
different alternatives are logically or-alternatives, since if one fails the next is tried and 
so on until one succeeds or the last one fails, in this way succeeding the goal or failing 
otherwise. 

A choice point frame is created by the first alternative, updated by intermediate2 

alternatives ( as far as which alternatives to try next) and finally discarded by the last 
alternative. 

A closer look to the choice point frame and envirenrnent frame, in fig. 1, will call 
the attention to the cells named B and CE, pointer to last choice point and pointer to 
last envirenrnent respectively, forming in this manner a linked list of frames of the same 
type; furthermore both kinds of frames are mixed. 

An explanation of the others components of the W AM follows . 

The need for choice points is to restore a previous state with everything that defines 
that state: contents of variables, registers, integers, and so on. Our concern is with 
unbound variables that are instantiated with values or memory references in one 
alternative and upon backtracking they need to be set to unbound again, to allow a full 
reposition of a previous state; as in the last example , where the variable A is unified 
with B in the first alternative and when backtracking is performed, due to unification 
failure of g(C) with g(3,4), p(D):-f(E) is tried, but a preblem occurs since A can not be 
tied to D sin ce it is already tied with B. What to do ? 
The best way to handle this situation is to store the location of the variable A in a heap 
called Trail. 

When a variable previous to the last choice point must be tied, its address is 
putted in the trail. To make this arrangement work we must put, in the choice point 
frame, the location of the top of the trail. When backtracking it ' s only necessary to set 

1 A successful unification between a query or body goal and a atom (i.e. fact or head atom of a rule). 
2 But not ultimate alternatives. 
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to unbound all memory cells referenced in the trail, between the previous top ( stored in 
the last choice point frame) and the current top pointed by the register TR. 

When two variables are tied, as in the last example, A and B, the variable that 
will contain the reference to the other must be the one that belongs to the current 
clause, so B+--A, avoiding in this way the storage of the location of variable A in the 
trail. 

As seen before, variables are either stored in temporary registers or in environment 
frames, but where to store the terms specially those whose arity is greater than one ? 
They must be stored in the Heap, whose top is given by the base register H1

. Upon 
backtracking, ail the terms created after the last choice point are removed like a 
garbage collector. To allow this, each point frame has a cell named H that points to a 
previous top of the heap, everything between the current top and the previous, 1s 
disposed. 

W e now know where terms are stored, but how are they built ? 

Term representation 

There are several term types to store so the need arises to represent them with the help 
of a tag to identify each term type. 

TERM TAG 
Variable REF 
Integer INT 
Constant CST 
Empty list 
Non empty list LST 

Structure STR 

1 Pointer to nex1 free cell. 
2 The Head of the list. 
3 The remainder of the list. 

VALUE 
Pointer to an address in the Heap 
Integer 
Pointer to a table of constants 
Represented by the constant '[] ' 
Pointer to an Heap cell containing the CAR2

. Next cell will 
always be the CDR3 

. 

Pointer to an Heap cell containing the functor4 and arity. 
Next to them cornes the n sub-term elements. 

Table 4 : Definition of Terms 

4 More precisely, a pointer to hash-code table of constants. 
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The representation of terms is as follows: 

J Argument CDRI 
_I L_ST_I ___ -_ __._1.._ _____ , Argument CAR_ 

1 INT I integer 1 

Argument n-1 

Argument 0 

STR Functor / arity 

1 CST -------------
Heap 

1 
I ________ ____ 1 

Table of Constants 

Figure 2 : Term representation in the WAM 

An unbound variable points, by convention, to itself 
The operation of following linked variables until one 
unbound variable or a term different from a variable 
is found is called dereferentiation. 

Unification of structured terms 

- 34 -

Suppose that we have a program p, a query q that bas build a term on the heap and a 
register Xl to contain the term' s address. Thus unifying p to q can proceed by 
following the term structure already present in X 1 as long as it matches functor for 
functor the structure of p . The only complication is that when an unbound REF cell is 
encountered in the query term in the heap, then it is to be bound to a new term that is 
built on the heap, as an example of the corresponding sub-term in p . 
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As we can see, two different modes are used in the unification process: 

-❖- Read mode, in which data on the heap is matched against. The base 
register S is set to contain at all times the heap address of the next 
term to be matched. 

-❖- Write mode, in which a term is copied to a new location in the heap. 

To avoid the use of another register to identify the mode, the register S is used 
since in write mode Sis set to Null (i.e. if S>O then mode is read, otherwise it's write). 

lndexing 

Each time choice points are created variables must be put in the Trail; to save memory 
it would be useful to reduce their number. The principle of indexing is to <livide the set 
of clauses of the same predicate using the possible values of certain arguments as keys 
and to generate the instructions for the management of choice points, for each sub-set 
separately. Since there is only a concem with one part of the set, the probability of 
creating choice points is reduced. 

In the W AM, the key for indexing is the main functor of the first argument of the 
head, which can be: 

-❖- a Variable, 

-❖- a List (not empty), 

-❖- an Integer, 

-❖- a Constant ( including the constant for the empty list), 

-❖- a Structure. 

In the last three items, another division is made using their value. 

Instruction Set 

A predicate may be compiled independently of any context as a result of using the 
register arguments for exchanging data and there is no need for a predicate clause to be 
aware of the others; only the instructions who manage choice points needs to know ail 
clauses. Studying predicates at compile time allows the W AM to produce code more 
efficient, faster and that saves memory. As an example, choice point management is 
done by specialized instructions as is the unification that is decomposed according to 
the arguments of the head of the clause to avoid using the general unification 
algorithm. 
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The W AM instruction set may be grouped in four categories: 

-❖- Registers recovery instructions, 

-❖- Registers setting instructions, 

-❖- Control instructions, 

-❖- Indexing1 instructions. 

Registers recovery instructions 

These instructions are produced by the compilation of the head of clauses. For reasons 
of performance they are decomposed; their type, comments and respective instruction 
follows . 

Let V be a temporary or permanent variable and A a register argument . 

First occurrence of a variable Makes a copy from V to A. 
get_ variable V,A 

Other occurrence of a variable Unify V with A. 
get_ value V,A 

constant C Checks that A is tied to C or to an unbound 
get_constant C,A variable, in which case this variable is tied to C. 

The instruction for the integers, get _integer N,A is like get _ constant. 

_em__.__pty......._l_is_t _______ ~1 Abbreviation of get _ constant ' [] ',A. 
get_nil A 

The recovery of a structured term uses the unify instructions. The unification of a 
composed term behaves in two different ways depending upon the type of argument 
being unified with the term: 

- If the term has the same functor and the same arity then a real unification 
takes place regarding the sub-terms (Read mode). 

- If it is an unbound variable then the term is created in the Heap and the 
variable is tied to it. 

1 Choice point management. 
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list not em t These instructions dereference A; if the dereference ----~....._ _____ _ 
get_list A word is an unbound variable, it is tied to a list created 

unify _.. . ( Car) in the Heap; if the word is a list, the instructions 
unify_ ... (Cdr) unify_ ... will unify the head and the rest of the list. 

structure FIN These instructions dereference A; if the dereference ------------g et_ structure F/N,A word is an unbound variable, it is tied to a structure 
unify _... created in the Heap; if the word is a structure the 

instructions unify _ ... will unify the sub-terms. 
unify_ ... 

The code produced in the compilation of a sub-term depends of its nature, as follows: 

first occurrence of variable V This instruction ties V to the cell pointed by S ----------,-------
If V is not singleton 1 

: unify _ variable in Read mode and ties V to an unbound variable 
else K2 :unify _ void(K) putted in the Heap, in Write mode. 

The instruction unify _ void allows to optimize the singleton variables in the 
structures. In Read mode, adds K to Sand in Write mode puts K unbound variables in 
the Heap. 

T o use the instruction unify _local_ value we 
must first be sure that a connection will not 

other occurrence of V occur from the Heap to the Stack. --------------
If it is possible to know if in the first In Read mode: unify _local_ value behaves 

occurrence V was tied with the exactly as the instruction unify_value. In Write 
Heap3 : mode : if the dereference word of V is an 

unify _ value(V) unbound permanent variable do a globalization 
else: unify_local_value(V) of the last, else put the word in the Heap. 

constant C In Read mode this instruction behaves like ------------i 
unify _ constant C get _ constant, but instead of S is the word pointed by S. In 

write mode, puts a constant in the Heap. 

The instruction for the integers is like the one for constants 

_e_m_p'-ty-"---h_· s_t ------------11 A shortcut to unify _ constant '[] ' . 
unify_nil 

As we can see, there are no unification instructions for recovering composed terms, 
they are unified with temporary variables X using the instruction unify _ variable X, 
these instructions are decomposed by the get _ ... X instructions. 

1 A variable occurring only once in the clause. 
2 Number of successive singleton variables. 
3 First occurrence of V in a structure, or iftemporary, first occurrence in the body. 
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Example 12 

A[i] ➔ f(h(b,Y)) becomes A[i] ➔ f(X) and X ➔ h(b,Y) 

In the registers setting, the new temporary variables are set by the put_ ... X 
instructions before being unified by unify _ value X 

Ex.ample 13 

A[i] +- f(h(b,Y)) becomes X+- h(b,Y) and A[i] +- f(X) 

Registers setting instructions 

Here there are also different instructions depending of the argument to set. As before, 
A references A[i] and V a temporary or permanent variable. 

first occurrence of V If V is permanent then sets V and A with an --------------
put_ variable V,A unbound variable else V and A are tied to an 

unbound variable putted in the Heap. 

The instruction put_ value copies V to A. If is in 
the last goal, we must confirm that the copy will 
not link A to the current environment. 

other occurrence of V The instructionput_unsafe_value takes care of 
-----------------1 If V is a safe variable and the current the dangling references. If the dereferenced 

goal is not the last: put_ value V,A word of V belongs to the current environment 
else : put_unsafe_value V,A then the variable is made global, else copy the 

word to A. 

An unsafe variable with n occurrences in the last goal will need n 
put_unsafe_value instructions. The first will make the probable globalization and the 
others will copy the dereferenced word. 

_c_o_n_s_ta_n_t_C _________ ----11 Put the constant C in A. 
put_ constant C,A 

The instruction put _integer is similar to the constant instruction. 

_e_m""""p,__t-=--y_li_st _________ --11 Abbreviation of put_ constant '[] ',A. 
put_nil A 

list not em t ____ ...........,.___ _______ ----1 
put_list A 

Sets A with <LST,H> and having set the 
mode to Write so that the unify instructions 
that follows may copy again the Car and Cdr. 
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The instructionput_structure F/N,A works also in this way. 

Control instructions 

The control instructions manages the call and return from procedures as well as the 
environments. The call to the last goal bas a different instruction since it must do the 
return. Coming next are the prototypes for facts and rules. 

• for a fact p(...). 

1 

registers recovery 
proceed 

• for a clause p(...):-q(...). 

1 

registers recovery 
registers setting for q 
execute(q) 

• for a clause p(. . .):-q1 (...), q2(...J, ... , qn (. .. ). 
allocate(N) 
registers recovery 
registers setting for the 
call(qi) 
registers setting for the 
call ((!2) 

goal q1 

goal q2 

registers setting for the goal qn 
deallocate 
execute (~) 

The instruction allocate (N) creates an environment for N variables and the 
deallocate removes it from memory. 

The instruction cal 1 ( P /N) sets the base register CP to the code address that 
follows the call and gives control1 to the predicate PIN. The instruction 
execute (P/N) does the same but without changing the register CP. 

The return from a procedure is done by the instruction proceed that only sets the 
register P to the value of register PC. 
Indexing instructions 

These instructions are used to group the code for the each clause of a predicate and 
because of this they are the top level instructions. They manage the choice points. They 

1 By setting the register P to the address of the first instruction of predicate PIN. 
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may create up two choice points in the beginning of a predicate, that ' s why we can 
speak of two levels of indexing. The two levels exist because a variable that appears in 
the heads first argument can not be used as a key type in the indexing. 

For the clauses C1, .. . ,Cn several groups (Go, .. . ,Gm) are created. If the first 
argument of the head is a variable then a level 1 type code is generated, otherwise a 
level 2 code is produced. In level one, each group contains only the code for a clause. 

• Level 1 

ifm=O 

else 

code for Go 

try_me_else Li 
c ode f o r Go 

retry_me_else L2 
c ode f o r G1 

Lm: trust me else fail 
code fo r Gm 

The instruction try_me_else L..1se has the mission of creating the choice 
points where L..1se is the next clause code address. The retry _me_ el se Leise 

instruction resets the base registers, as the previous instruction it sets the next 
altemative' s code. The final instruction resets the base registers and removes the 
choice point. 

• Level 2 

In level two, each group contains the following instructions: 

switch_on_term(Lvar , Lcte , Lint , List , Lst r l 

Accordingly to the argument type a L alternative is chosen. 

For instance, if there are no constants then Lcte = fail, else 

Lcte : switch_on_constant(N,[( cte1,Lctel ), ... , (cteN,LcteNi ] ) 

For each constant ctej (j = 1,2, ... ,N) the code produced is the following: 

if there is only a clause which has the constant ctej as first argument then 
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Lc1e-=Lj1 (beingj; the number of the clause having ctej as first argument), 
J 

else: 

Lcte- : 
J 

try (L jl ) 
retry (L j2 ) 

The integers and structures produce the same code. 

If there is no list List = fail else the following code is generated: 

List : try (L j1 ) 
retry (L j2 ) 

where ji is the clause number I . 

If Gi has only one clause then Lvar = L,, else : 

Lvar 

Lvar : p 

Lp 

try_me_else (Lvar) 
code for clause 1 

retry_me_else (Lvar
3

) 

code for clause 2 

trust me else fail 
code for clause p 

The instruction switch on term(Lvar , Lcte , Lint , List , Lstr l 
gives control to the L address according to which word type is register A[O] tied. 

The swi tch_on_constant (N, [ (cte1, Lcr:e il , ... , (cteN, LcteN i]) 

instruction associates to a constant, using a table, an address L. L is the address of the 
clause in which it' s first argument is cte or to a level 2 code1 when several clauses 
have cte as the first argument of the head. The same holds for the integers and 
structures. 

1 Try, retry and trust. 
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The instructions try(L ), retry(L) and trust(L) behave like try _me_ else(Le1se), 
retry_me_else(Leise) and trust_me_else_fail respectively; the only difference is that in 
the cell of the choice points, it is the next instruction and not the Le1se that is stored 
there. The next code to be executed is the one lying at Laddress-

Memory release and savings 

Saving memory in Prolog is essential due to the enormous memory needed, since the 
solutions choice is made at runtime. There are several ways of releasing memory, for 
instance, in the process of backtracking a part of the Heap is released when the top is 
reset to it's former position; Stack frames are also released through this process. 

Other processes are used to save memory, for instance, facts and rules with only 
a body goal do not need environrnents 1 . Rules with more than a body goal need an 
environrnent until the end of the clause. 

Example 14 

Rule with more than a body goal 

p(A,B):-q(B,A),r(A,B). 

is transformed into 

p/2: allocate 2 
get _ variable Y 2,A1 
get_variable Y1,A2 
put_ value Y1,A1 
put_ value Y 2,A2 
call q/2 
put_value Y2,A1 
put_ value Y 1 ,A2 
deallocate 
execute r/2. 

As we can see, the deallocate instruction (that releases the environrnent) is put before 
those of the continuation (i.e. proceed, execute) since the argument registers are 
already loaded, no further references to the environrnent will be made. Obviously, the 
release of an environrnent has only an interest as long as no choice points have been 
created above it, in which case the environrnent will only be released after the disposai 
of the choice point. 

[gJ If a reference to the released environrnent exist it is a potential danger. 

1 Since putting the { allocate 0, ... , deallocate} instructions is useless. 
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T o prevent situations of this kind, some rules are imposed: 

W AM Binding Rules 

0 Always make the variable of higher address reference that of lower address; 

8 Heap variables must never be set to a reference into the Stack. 

e The Stack must be allocated at higher addresses than the Heap, in the same 
global address space. 

W AM binding rule number 3 is a logical consequence of the first two. The rules 
mentioned above cover two possibilities of variable bindings, namely heap-heap and 
heap-stack, but unfortunately this rules are not sufficient to prevent dangling references 
in a stack-stack binding, so unsafe variables appear. 

Unsafe variables 

Any permanent variables initialized with a put_ variable instruction are called unsafe 
variables. The explanation for this, is that since the variable is permanent it must be in 
the Stack ( environment frames) but to spare space the environment is released before 
the call to the last goal in which the permanent variable may appear and the danger is 
that the predicate may reference that variable. 

Example 15 

p/1: allocate n 

put_ variable Yi,A1 

deallocate 
execute r/2 

r/2: allocate m 
get _ variable Y k,A 1 

If the predicate p/1 is executed first, the register A1 will have the reference to 
the permanent variable Yi and let suppose that nothing changes Yi or A1, then the 
environment is deallocate and r/2 is called; Y; will be set with the contents of register 
Ai, in other words, there will be in the environment of r/2 an reference to another 
environment that as already been disposed off. T o prevent it, the variable of Y; is put 
if necessary in the Heap, which has the effect of making the value of Y; global so as to 
guarantee that it may be discarded without leaving a nonsensical reference in A1. To 
accomplish this the instruction put _unsafe _ value is used at the place of put_ value in 
the.first occurrence of the variable in the Last goal. 

Another source of danger is when a permanent variable appears in the last goal 
nested in a structure whether or not it is also an argument. T o solve it, it is only 
necessary to set the permanent variable to point to an unbound variable created in the 
Heap. 
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The basic idea of CLP is ta replace unification by constraint solving over a particular 
domain of interest1 . 

3 .1 Introduction to CLP 

The declarative nature of Logic Programming combined with the ability to reason and 
compute with partial information on specific domains allows Constraint Logic 
Programming to be used in a wide range of real life applications. One usual class of 
domains found in CLP are finite domains which where first introduced by Pascal van 
Hentenryck at the end of the eighties. 

Finite domains are simply a set of values containing numbers or symbols with a 
fini te cardinality, like for instance { 1,2,3 ,20, 100} , { sun, moon, earth} or 1 .. 100. 

The constraints to be used on finite domains are arithmetic constraints 
( equations, inequations, disequations) between linear terms, as well as symbolic 
constraints. For instance the relation atmost(N, [X1, .. ,,Xm}, J1 means that at most N 
variables X, are equal to the integer V. In finite domains, constraint solving is done by 
propagation and consistency techniques belonging to Artificial Intelligence originated 
from Constraint Satisfaction Problems. 

The general idea is to build a network of constraints between a finite number of 
variables, each with a number in a finite domain. It is usual to represent this scheme as 
a graph where variables are represented by nodes and constraints by arcs. The 
satisfiability of the set of constraints is assured by the propagation from neighbors 
nodes (local propagation), the possible values of the variables between the connected 
constraints. 

The resolution of the constraints is done by several techniques, like for instance, 
the broadcast of the domains of variables through the network (arc consistency) or by 
a more general technique, the propagation of the relations between variables 
(k-consistency). 

The responsability for checking the consistency of a set of constraints and, 
possibly for reducing it into some normal form is done by the constraint solver 
considered as a ''black box". The black box approach does not give any control to 
programmers about the execution of the constraints. 

A "glass box" approach was proposed2 to give programmers a better control of 
the complexity of the methods needed to ensure the consistency of the constraints. It is 
based in a limited number of simple primitive constraints. The basic idea is to have a 
single constraint X in r, where Xis the finite domain variable and r is a set of integers. 

1 Quoted from [ 11] 
2 In [R 12) . 
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Complex constraints are translated at the compilation time in a set of primitive 
constraints. 

The semantic ofthis constraint enforcesXto belong to the domain denoted by r. 
The constraint X in r can be seen as a way of specifying the propagation mechanism. 
More precisely, it allows to specify what is to be propagated. 

Any modification in a constraint is propagated in one of two ways through the 
network of constraints, by partial lookahead or by full lookahead. Partial lookahead 
occurs when the changed limits of variables are propagated; if a hole occurs in the 
middle of the domain, the hole is not propagated. Full lookahead occurs when any 
modification in the domain of the variables are propagated. 

Example 16 

The equation X=Y+C is define in CLP as: 

'x=y+c' (X, Y,Z):- X in min(Y)+C .. max(Y)+C, 
Y in min(X)-C .. max(X)-C. 

Example 17 

The equation Z= X+ Y is define as: 

'x+y=z' (X, Y,Z):- X in min(Z)-max(Y) .. max(Z)-min(Y), 
Y in min(Z)-max(X) .. max(Z)-min(X), 
Z in min(X)+min(Y) .. max(X)+max(Y). 

The last example is a full lookahead example. The equation X=Y+C which is 
defined in partial lookahead can be also define in full lookahead. 

Example 18 

'x=y+c' (X, Y,Z):- X in dom(Y)+C, 
Y in dom(X)-C. 

An extension to the W AM for finite domains based in the X in r constraint is 
developed subsequently without touching the W AM' s architecture and data structures. 
The constraint solving is done by the language X in r . 

3 .2 Language 

The notions of finite demains and constraints are first formally defined. The 
syntax of this constraint system (X in r) follows. 
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✓ Finite Domains 

0 A finite domain is a (non empty) set of natural numbers (i .e. a range) . 
A range is a subset of {0,1, ... ,infinity} where infinity denotes the greatest 
integer that a variable can take. 

49 

We use the interval notation k1, ... ,k2 as a shorthand for the set {K1,K1+ l, ... ,K2}. In 
a ranger, min(r) (resp. max(r)) is defined as the lower (resp. upper) bound of r. 

Dom is the set of ail domains. Vd is the set of FD variables. 

As usual all the standard operations on sets (e.g. union, intersection, etc.) are 
defined as well as the following pointwise operations. 

✓ Pointwise operations on sets 50 

0 A pointwise operation (+,-, * ,/) between a ranger and an integer i is defined 
as the set obtained by applying the corresponding operation on each element 
of d i.e. develop for+, -, *, /. 

Being r a range and ; an integer, then the range of r • i with • E { +, -, *} 
is defined as r • i ={k = k'• i, k'E r} . The special case r/i is equal to 
{k=Lk'/iJ E r} 1

. 

Syntax of the X in r Constraint 

In the FD (finite domain) constraint system, there are three kind of syntactic objects: 

~ constraints; 
~ ranges; 
~ arithmetic terms. 

The following sets are also define. 

Constr 
SynDom 
S Term 

Set of syntactic constraints 
Set of syntactic domains 
Set of s tactic terms 

Table 5 : Definition of Sets 

1 An integer i resulting from a division is surrow1ded by the symbols L J, which indicates a lower 
rowiding. 
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The definition of the constraints cornes next. 

✓ Constraint 

- 47 -

51 

0 A constraint is a formula of the form X in r where XE Vi and r E SynDom. 

The notation X=n is a shorthand for X in n .. n. A range r can have a constant 
range ( e.g. 1..10) or an indexical range as those listed in the next table: 

dom(Y) 
min(Y) 
max Y 

represents the current domain of Y 
represents the minimal value of the current do main of Y 
re resents the maximal value of the current do main of Y 

Table 6: Definition of Indexical ranges 

A check must be made each time the domain of a variable Y is updated if a 
constraint X in ruses an indexical of such variable Y (e.g. X in dom(Y)) . A reason for 
the necessity of the checking is given by the next example. 

Example 19 

The constraint X:t:Y is define in CLP as: 

'x:t:y'(X,Y):- X in -dom(Y), 
Y in -dom(X). 

The dornain given by -dom(Y) grows according to the domain of Y; when 
the domain of Y decreases the complement -dom(Y) grows accordingly. A 
problem arises in the implementation since an inconsistent value of X (i.e. not 
belonging to the complement of the domain of Y) may became consistent if Y is 
reduced. Such constraints (X in -dom(Y)) must wait then for Y to be instantiated. 
The process that checks if a domain of a variable must be updated is named 
forward checking. 

In addition to the indexical range, a constraint can also use run-time constant 
values as parameters. The constraint -X in ris just X in -r, due to the fact that the FD 
system is closed under negation. 

The following definitions are important to the FD constraint system. 

✓ store 52 

0 A store is a finite set of constraints. 

✓ Normal form of a store 53 

0 A store is in normal form if, and only if, it contains at most one constraint X 
in r for each variable X EVa. 
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c: := X in r 

r::= t1 .. t2 interval 
{t} singleton 
R range parameter 
dom(Y) indexical domain 
r1 : r2 uruon 
r1 & r2 intersection 
-r complementation 
r + et pointwise addition 
r - et pointwise subtraction 
r * et pointwise multiplication 
r / et pointwise division 

t::= min(Y) indexical term min 
max(Y) indexical term max 
et constant term 
t1 + h I t1 - h I t1 * h I t1 /< h I t1 /> h integer operations 

ct: :=C term parameter 
Il I infinity greatest value 
cti + ch I ct1 - cti I ct1 * cti I ct1 /< ch I ct1 /> ch 

Table 7 : Syntax of the X in r constraint 

Any store Sis transformed into its normal form when all constraints X in r 1, X 
in r2, ... , X in rn on X are replaced by a single constraint of the form X in r1 & r2 & rn . 
The resulting set is equivalent to the others since they have the same tuples of 
solutions. All the stores that wil1 be used from this point forward are considered to 
be in normal form. F urthermore, the expression Su { c} is use to express the addition 
of the constraint c to the store S. 

m 

The set of all stores is: Store. 

3 .3 Semantics of the X in r constraint 

An important aspect of the semantics X in r is the tell operation 

Stage Thesis 



Chapter 3 - Constraint Logie Programming 

SynDom 
SynTerm 
Dom 
N 
Constr 

Syntaetie domain 
Syntaetie terms 
Domains 
N atural numbers 
X in r eonstraints 

Store stores 

T : Constr ➔ Store ➔ Store 
T' : Constr ➔ Store ➔ Store 

t r : DomSyn ➔ Store ➔ Dom 

€ 1 : TermSyn ➔ Store ➔ N 

T[e] s = fix(Â. S . Uc' e S v {c} T' [e'] s) 

T' [x in r] s = let d = [Er [t1 .. h] s] insu {x in d} u{x in r} 

tr [t1 .. h] s = t1 [ti] s .. t1 [h] s 

tr [{t}] s = {t1 [t] s} 

t r [R] s = lookup _range(R) 

tr [dom(Y)] s 

tr[r1:r2]s 

tr[r1&r2]s 

t r [-r] s 

tr[r + ct]s 

Er[r-et]s 

Er[r*et] s 

Er[r/et] s 

E1 [n] s 

E 1 [ilif,nity] s 

E1 [C] s 

E 1 [rnin(Y)] s 

E 1 [max(Y)] s 

E1 [t1 + t2] s 

E1 [t1 - h] s 

E 1 [t1 * t2] s 

E1 [t1 /< h] s 

E1 [t1 /> h] s 

= eur_domain(X,s) 

=Er[ri]suEr[r2]s 

= Er [ri] s n tr [r2] s 

= 0 . . infini ty \ E r [ r] s 

= E r [ r] s + E 1 [et] s 

= Er [r] s - E 1 [et] s 

= E r [ r] s * E 1 [et] s 

= t r [ r] S / t t [et] S 

= n 

= infinity 

= lookup_term(C) 

= rnin(eur_domain(X,s)) 

= max(eur_domain(X,s) 

= E 1 [r] s + E 1 [et] s 

=E1[r]s-E1[et]s 

= €1[r]s*t1[et]s 

=E1 [r] s/Et[ct] s 

= Er [r] s / t1 [et] s 

eur_domain(X,s) = Er lookup_store(X,s) 

lookup_store(X,s) = if 3 X in r then r else O .. infinity 
lookup _range(R) returns the domain bound of R 
lookup term( C) returns the integer bound to C 

Table 8 : Denotational Semantics of the Tell operation 
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✓ Tell operation 

0 A tell operation results in the addition of its argument (constraint) in the 
current store. 

54 

The semantics of a tell operation is expressed in table 8 by the function T[X in r] S 
which adds a constraint X in r to the store S. The tell operation updates X, with respect 
to r evaluated in S and reactivates all the constraints depending on X through the 
propagation mechanism. X is updated by intermediary function T ' [X in r] and the 
propagation is done using a fix point operator on the result of T[X in r] that 
reevaluates all the constraints in Su{X in r} until a stable state is reached. 

The function T' [X in r] adds two versions of the constraint X in r to the given 
store which allows to take care of the indexical constraints. The versions are: 

0 r is evaluated in S; 

6 ris unchanged to allow future reconsideration ofthis constraint in 
presence of an indexical range. 

An indexical range can only be evaluated thanks to the current domain of a 
variable. So it is possible with the help of the first version to obtain the constraint X in r 
associated to X; and to evaluate r in an empty store (to avoid the evaluation of the 
indexicals of r) . 

The following notations are used. 

• Xs = cur_domain(X,S) (i.e. the value of the domain of Xin S). 
• rnin(X)s = rnin(Xs). 
• max(X)s = max(Xs). 

• rs = Er [r] S (i.e. domain denoted by r in S). 

• ts = E1 [r] S (i.e. integer denoted by tin S). 

Sorne important definitions follows. 

✓ Consistency of a store 

0 A store S is consistent if, and only if, does not contain any empty domain 
(i.e. vx E vd Xs -:t:- 0). 

✓ Instance of a variable 

0 A variable Xis instantiated to n in the store S if, and only if, Xs = { n} . 
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✓ The relation stronger 

0 Let Sand S' be two sets of constraints, S' is stronger than S (S'c S) if, and 
only if, VX E Vi Xs· ç Xs. 
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The tell operation needs to be a monotone operation. This ensures the existence 
of a fix-point because ail domains are finite . So it is possible to remove impossible 
values as soon as they appear and when performing the operation tell the 
reconsideration of accumulated information is avoided. 

The operation tell of a constraint X in r is monotone if the range denoted by r is 
monotone. In other words, the range can only decrease when there is an addition of 
more constraints. 

✓ Monotone in a range 

0 A ranger is monotone (resp. anti-monotone) if, and only if, VS,S' 
S'c S ⇒ rs• c rs (resp. rs c rs,). 

✓ Monotone in a constraint 

0 A constraint c = X in r is ( anti-)monotone if, and only if, r is 
( anti-)monotone. 
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The removal of impossible values of X which do not belong to r in a tell 
operation, is accomplished by the intersection operation between X and r . This is 
schematized in the next figure . 

domain of X 

inconsistent 
values for X 

range denoted 
by r (monotone) 

T o ensure that r is monotone it is necessary that a tell operation in a constraint 
containing an incorrect indexical term on X be delayed until Xis instantiated (see next 
example). In clp(FD) this is done using a new index.ical term val(X) which delays the 
activation of a constraint until is instantiated. 
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Example 20 

' x:t:y'(X,Y):- X in -{val(Y)}, 
Y in - { val(X)} . 

3 .4 Constraint Systems 
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A recent formalization bas been proposed by V. Saraswat1 to define constraints. It can 
be seen as a first-order generalization of Scott's information systems. The emphasis is 
put on the definition of an entailment relation between constraints, which is enough to 
define ail the constraint system .. This allows to define the constraint system ex nihilo by 
verifying some properties as well the entailment relationship. 

Entailment is a rule based relation that mak:es possible to define a kind of 
operational semantics of the entailment between constraints. 

✓ Constraint System 

0 A constraint system is a pair (D, r) satisfying the following conditions: 

0 Dis a set of first-order formulas closed under conjunction and 
existential quantification. 

8 r is a entailment relation between a finite set of formulas and a 
single formula satisfying the following inference rules: 

S,d rd (Struct) S1 t d S2,d te (Cut) 
S1,S2 r e 

S, d, et f 
S,d A e r f 
S,d te 

S, :3X.d r e 

(A r) S t d S t e ( r A) 
Srd A e 

(=l r) srd(t/XJ <r:3) 
Sr :3X.d 

In (:3 r ), X is assumed not free in S,e. 

8 ris generic: that is S[t/X] r d[t/X] whenever Sr d, for any term t . 
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A definition of a pre-constraint system (D, r) satisfying only Struct, eut and the 
genericity condition, when existential quantification and conjunction are added, is 
enough to build constraint systems. 

1 In [R 15]. 
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T Let (D ' , r') be a pre-constraint system. Let D be the closure of 
D' under existential quantification and conjunction, and of r ' 
under basic inference rules. Then (D, r) is a constraint system. 

The entailment relation is defined next, which proves that Finite Domains is a 
Constraint System. 

✓ Entailment Relation 

0 A store S entails a constraint c = X in r if, and only if c is true in any store S' 
stronger than S, i.e. 

s r C if, and only if, VS' S' Cs ⇒ Xs· ç rs• 

A store S disentails a constraint c = X in r if, and only if, S entails -,c, 
i.e. S r X in-r. 

(Constr, r) is a pre-constraint system due to the following proposition. 

✓ Proposition 

0 r satisfies (Struct), (Cut) and is generic. 

If D is defined as the existential closure and conjunction of Constr and using 
the basic inference rules, r is defined as the closure of the entailment relation, then 
FD=(D, r) is a constraint system. 
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The next proposition proves that two constraints are equivalent when they share 
the same tuples of solutions. 

✓ Equivalence between constraints 63 

□ Two constraints C1 and C2 are equivalent if, and only if, VS Sr C1 <=>Sr C2. 

3 .4 Clp(FD) lmplementation 

Implementing clp(FD) requires to study all the alterations to the W AM (in this 
particular case W AMCC) as well as the introduction of a new data type: FD variables. 
This type of variables is capable of storing a set of integers. FD variables will be stored 

Stage Thesis 



Chapter 3 - Constraint Logic Programming - 54 -

in the heap and are distinguished from other data types by a new tag (FDV). The 
necessary changes to the W AM will slightly affect data manipulation, unification, 
indexing and trailing instructions. 

Data manipulation 

The duplication process of a variable to a register for constants is done by 
copying the constant to the register; whereas unbound variables are bind to the register. 
A problem occurs in the loading of registers since FD variables can not be duplicated. 
There are two solutions to solve it: 

• Using the same loading process of the W AM (i.e. same copy instruction + 
self reference ); but this scheme has the disadvantage of slowing down the 
dereferentiation algorithm since it has to deal with a new tag word <FDV,a>, 
where a is the word' s self address. 

• In the second solution the algorithm is not modify. So FD variables are not 
copied; instead a binding is made from the destination word to the FD word. 

In clp(FD), the second alternative was chosen since dereferentiation is an 
operation performed very often. A FD variable< FDV, a> is self referenced because 
the value a is used to obtain the address of the variable. The associated information 
with the FD variable follows the tagged word .. 

Unification 

A FD variable X can be unified with the elements present in the next table. 

Indexing 

Element 
unbound variable Z 
integer n 
FD variable Y 

Comment 
Z is just bound to X 
equivalent to X in n..n 
e uivalent to X in dom and Y in dom X . 

Table 9 : FD unifiable elements 

FD variables are managed like unbound variables. So ail clauses are tried. A more 
complex indexing could be used based on the current value of the domain. 

Trailing 

A single entry trail is used in the W AM for unbound variables; however in 
clp(FD) a multiple entry trail is required to restore some values (min, max, etc.) of the 
FD variable. Trait frames are a composition ofthree form types, as shown next. 
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address I Trail Unbound Variable ~--~----~ TUV 

value 1 

TOV I addre~ 

value n 

value 1 Trail Multiple Values 
n 

TMV 1 address 

Applying the W AM standard criterion when trailing FD variables leads to useless 
trailing everytime a domain is reduced; instead in each choice point only a trailing is 
required for each FD variable. This requires the creation of a register (ST AMP) that 
gives the number of the current choice points. Each time a choice point is created, the 
register increases by one and when it is removed the register is decreased. For each FD 
variable in the choice point, a record is used to store the number of the choice point 
where the variable was last put in the trail. A FD variable X_is trailed (inclusive the 
stamp record) if Stamp(X):t=STAMP. 

• How are the X in r constraints implemented ? 

- The X in r constraints are implemented thanks to a new data structure 
coupled with an instruction set to compile the constraints. 

An execution of the X in r constraint is achieved by three operations, which are: 

• Evaluation of r - computing the range r. 

To achieve this, the address of the compiled code responsible for the 
evaluation is stored. It is also necessary to record the context in which r 
must be evaluated since the range depends on some arguments (i.e. 
index:ical terms or parameters). The context is called an environment 
where argument values, that need to be used by the code that computes 
the range r, are recorded. 

• Modification of X. 

This operation updates X from the previous evaluation operation. The 
address of the variable X needs to be stored. 

• Propagation of the changes - reexecute ail constraints depending on X 

A list of constraints depending on X as well as the its domain must be 
kept for that purpose. 
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Constroints (X in r) 
r_: _____________ ___ _______________ __ : ! 

' 
PTT to code 

ptr to variable X 
' ' 

ptr to envlronment _r-· 
Environments 
: : 

' c;=~~;;~:i· ·· 1 • 

integer 
or 

ptr to ronge 

Argument O 

---- ------------------------------' ' ,-.J-------- ------------ -------- -- , : 

' ! i 
~I cstr(] U 
evol(r); 
Tell(X,r) : 
} 

FDVorlobles 
------------------------------------ --
' ' ' ' --.J--------------------------------- 1 

' ' ' ' ' ' 

Dependency lists 

Domain information , , 

FDV 
_ _r--· 

Figure 3 : Data Structures for the X in r constraint 

Environments 

An environment in which constraints are called are represented by an argument 
frame (A_Frame) where the address of the FD variables and parameter values are 
stored. Ail the constraints defined in a clause share the same A Frame. The new 
register AF points to the current frame. 

AF ► 

Argument n-1 

Argument n-2 

. . 
Argument 0 

Pointer to FD variable 
or 

integer 
or 

pointer to range 

Figure 4 : Argument Frame 
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Constraints 

A constraint frame (C_Frame) is created for each constraint. The following 
information is recorded inside a C frame: 

• pointer to the associated A _Frame; 

• the address of the constrained FD variable; 

• the address of the associated code. 

The new register CF references the current C _Frame. 

CF ► 

Ranges 

Cstr Address -
Tell Fdv Adr -
AF Pointer -

Pointer to associated code 

Pointer to constrained variable 

Pointer to the A Frame 

Figure 5 : Constraint Frame 

Two structures may be used to represent ranges. 

• Min-Max. Thanks to the recorded min and max, intervals (included in a 
O . .infinity) are encoded. 

• Sparse. Each value of the range can be record in a bit-vector from O to 
vector-max1 

, where vector _ max is redefined through an 
environment variable or through a built-in predicate. 

A hole in an interval forces the initial representation (Min-Max) to switch to a 
sparse representation. In the transformation process from interval to sparse, values can 
be lost since vector _ max is Jess than infinity. So a flag (extra_ cstr) for a range exist to 
indicate that information has been lost due to the constrained operation done by the 
solver (via an imaginary constraint operation X in O .. vector _max) . The user is informed, 
thanks to the flag, when there is an incompleteness in the solutions due to a variable 
that has been extra-constrained. 

1 Vector_max is by default 127. 
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empty range 
(min> max) 

,; .. •. 
Pointett -- ' . - . -~-

Max 

Min 

Extra constraine d? 

interval range 
(bit-vector unused) 

~ -

10010001111010110 

: 

10001110101000110 

01110011010100111 

bit-vector 

Pointer to bit-vector 

Max 

Min 

Extra constrained? 

sparse range 
(bit-vector allocated) 

Figure 6 : Representations of a range 

An empty range is represented by min> max. 
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Using the above notation it is possible to perform the intersection operation 

between two ranges because the result returned is min > max when R1 or R2 is empty. 

Example 21 

0 if for instance R1 = 0 and R2 = { 1 .. 5} then 

max(0,1) .. min(0 .. 5) is {1..0} (min> max). 
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Dependency Part 

Domain Part 

FD Variables 

Chain Val 
Chain Dom 
Chain Min Max - -
Chain Max 
Chain Min 
Chain Mask 
Chain_ Stamp 

Vector 
Max 
Min 
Extra Cstr 

Nb Elem 
Range_ Stamp 

FDV 

FDVariable 

Lists of constraints 
depending on the variable 

Mask of non empty lists 
Time stamp 

Range 

Size of the Domain 
Time stamp 

Figure 7 : DF variable frame 

A FD variable frame has two main parts: 

• the domain recording the range together with the number of elements 
present in the range; 

• the dependency X constraints pointers to lists of constraints. 

The domain is modified during execution whereas the lists of dependent 
constraints are created during the installation phase of the compilation. Both parts have 
their own stamps and it is possible to trail them independently. Several lists of 
constraints (see table below) are separated to avoid useless propagation. 

Name Definition 
Chain Min list of constraints depending on min(X) and not on max(X) 
Chain Max list of constraints depending on max(X) and not on min(X) 
Chain Min Max list of constraints depending on min(){) and on max(){) - -
Chain Dom list of constraints depending on dom(X) 
Chain Val list of constraints depending on val(X) 

Table 10 : Dependency X constraints pointers 
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Propagation Queue 

Awaking and executing a set of constraints, in the propagation phase, adds new 
constraints to the set. For flexibility reasons, an explicit propagation queue is 
introduced which is feasible since the order of execution of the constraints is irrelevant. 
T o manage the queue two new registers BP and TP (pointing to the base and top of the 
queue, respectively) are added to the system. 

Instead of enqueuing all the constraints, a pair < X, mask > is just required; with 
X the variable that is updated and mask a bit-mask of the dependency lists to awake. 

Registers 

New registers are created to handle ail the required DF data structures. 

Remarks 1 

Re ·sters 
BP 
TP 
AF 
CF 
cc 

STAMP 
T(t) 
R r) 

Definition 
Base Pointer to the propagation queue 
Top Pointer to the propagation queue 
Pointer to the current A Frame 
Pointer to the current C Frame 
Continuation after Constraint 
Choice Point number 
T erm registers 
Ran e re · sters 

Table 11 : Clp(FD) Registers 

The CC register points to the next instruction to execute after the call constraint. 
T(t) and R(r) are bank registers that contain the min, max and bit-vector. 

Compilation scheme 

The compilation of any clause having at least one X in r constraint creates the 
three groups of instructions found in the next table. 

Group Name Purpose 
Interface with Prolog clauses Create and load the A Frame 
Installation code Install a Constraint 
Constraint Code Generate a procedure for each X in r constraint 

Table 12 : Clp(FD) instructions type 
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Remarks 1 

The necessary space for the A_Frame is reserved in the heap and the parameters 
values are loaded into the frame. 
Code is produced to create and load the C_Frame. Ail the dependent list of 
constraints are initialized. 
The procedure is composed of four parts: 

• loading parameters, indexical tenns and ranges into the appropriate 
registers. 

• evaluating the ranger through a syntactical tree. For each leaf and each 
node a instruction is created. 

• Telling the constraint X in r. 
• Returning. 

Telling the constraint X in r 

A constraint is told by the following algorithm. 

If Xis an integer, there are two possibilities: 
0 X E r c:::> success 
8 X rl r c:::> failure 

else (Xis an FD variable whose range is rx) let r' be r nrx : 

• r' = 0 c:::> failure 
• r'=rx (i.e. rx c r) c:::> success 
• otherwise 

The domain of X is replaced by r' (X possibly becomes instantiated) 
and some propagation occurs. Since the demain has been modified, 
some constraints are required to be reexecuted. The current CC must 
be pushed into the stack to restore it after propagation. 

A compiler implementing clp(FD) was developed at INRIA ([4] [10] [11])) in 
1991 using the X in r language. It translates Prelog to C functions via the W AM. 
Predicates are translated to C macros. An extension to clp(FD) takes care of Boolean 
values by making C Boolean functions for the X in r constraints. 
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4 .1 Introduction 

In response to the great computational power needed to solve some problems, like for 
instance the n-queens problem, parallel systems are used. Parallel systems are grouped 
in two categories: 

~ Distributed systems, with a great number of processors interconnected; 

~ Centralized systems, with a limited number of processors (normally 2 to 4) 
sharing the same memory space and having for communication a common 
bus. 

In distributed architectures at the software level, the communication mechanism 
used is message passing; instead centralized architectures use semaphores and shared 
variables for the same purpose. 

Concurrent programming languages are needed to fully exploit the power offered 
by parallel systems. Logic programming languages are natural well suited for 
parallelism since the goals to succeed can be resolved independently. Our attention will 
be focused on the shared memory systems because they are easier to implement . 

There are several frameworks whose aim is to make shared memory visible in a 
structured and safe way; the most popular of them all is certainly Linda which covers 
imperative, functional and logic programming languages. An instantiation of Linda to 
logic programming was proposed in [7], a combination of blackboards and logic 
programming which includes a description of basic control mechanisms. lts name: 
µLog 1

. 

The µLog framework 

The µLog framework contain two categories: 

~ Active objects - logic programming goals - the resolution of each goal 
being interpreted as the behavior of a process. 

~ Passive objects - logic programming terms - they act as usual data. 

1 Pronounced as 'myülôg' according to the Webster dictionary ofpronunciation. 
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Three operations can be perfonned on them: 

~ Tell - puts objects on the blackboard; 

~ Get - removes objects from blackboard; 

~ Read - tests the presence of an object on the blackboard. 

The above operations are the only possible communication mechanisms. 
Moreover, processes can not share variables and thus objects are first renamed before 
performing the operations. 

In Active objects, two sorts of processes exist: 

~ F oreground pro cesses - created at start up time - that correspond to the 
parallel resolution of some list of logic programrning queries sharing no 
variables. 

~ Background processes - created at run time - that act as daemons on 
the blackboard. 

The whole computation is successful when a successful termination is reached by 
all foreground processes. 

Advantages of Blackboards 

The main advantage ofblackboards is the modular approach which allows the creation 
and testing of programs independently, but that will work together depending on the 
infonnation existing in the blackboards. A common problem in parallel systems is the 
synchronization and mutual exclusion which can be avoid using blackboards since the 
get and read operations suspends execution avoiding in this manner the use of 
suspension rules. Moreover, mutual exclusion is obtained by the access to blackboards. 
Furthennore, variables may be shared by arguments regardless of their input and 
output positions. 

In µLog, process goals and clause bodies may involve 
sequential and parallel composition operators denoted 
by ; and Il respectively. 

This framework (µLog) was conceived to be as general as possible so that would be 
possible to instantiate it with any logic programming language and any language using 
constraints. 
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4.2 Language 

The µLog language contains the sets introduced in chapter 2: 

Svar Set of variables 
Sfunct Set of functions 
Spred Set of predicates 
Sterm Set of terms 
Satom Set of atoms 
Ssubst Set of substitutions 

Table 13 : µLog sets 

Several blackboard concepts are explain below. 

✓ Blackboard primitives and goals 

0 Blackboard primitives and goals are inductively defined as follows: 

0 blackboard primitives are constructs of the form: 
• tellt(t), readt(t), gett(t) 
• tellp(p ), readp(p ), getp(p) 

where t is a term and p a atom; 

6 any atom and any blackboard primitive is a goal; 

8 ~ is the empty goal; 

0 If G1 and G2 are goals, then G1;G2 is a goal and GdlG2 is also a goal. 

The initial goals1 or igoats, for short, are non-empty lists of goals [G1, .. . ,Gm] 
sharing no variables. Programs are set of clauses of the form H:-G, where is an atom 
and Ga goal. As seen before, the set of programs is called Sprog. 

✓ Foreground and background processes 

• F oreground and background pro cesses are constructs of the form ~G and 
.JG, respectively, where Gis a goal. 

• A process is either a foreground or a background process. When there is no 
concern of the qualification of the process it is represented by the arrow <= 
followed by the goal. 

• The set of processes is subsequently denoted by Sproc. 
• The set { ~ ,.J} of background and foreground process arrows is referred 

to as Sarrow. 

1 The set of goals and the set of initial goals are referred as Sgoal and Sigoal, respectively. 
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✓ Other definitions 

• lproc - non-empty lists of processes. 
• Slproc - Set of non-empty list of processes. 
• Sbg - Set of possibly empty processes. 

By convention, we denote an initial goal: ig 
and the associated list of processes: 1g, 
considering all of ig as foreground processes. 

4. 3 Operational Semantics 
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As seen in chapter 2, the operational semantics can be expressed by rules of the form: 

Assumptions if Conditions 
Conclusion 

In this transition system the configurations are in the form of triplets. 

< bt, 1,0 > where : 

• bt is a list of terms representing the terms on the blackboard; 
• l is a lproc representing the (background and foreground) 

processes currently running in the blackboard; 
• 0 is a substitution representing the values computed so far. 

Sorne remarks are due. 

Despite the fact that l is a list there is no order in the selection of processes. The 
notation /[] denotes a list of processes where a place holder has been introduced at 
some places. So /[ cG] is a list of processes G obtained from l[J by replacing the 
place holder by cG. 

The notation /1+/2 represents the concatenation of two lists. 
Sbt represents the set oflists bt. 
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Chapter 4 - Concurrent Programming - 66 -

In µLog, transitions occur as a result of the reduction of atoms and blackboard 
primitives. These reductions are called transitions rules. The reduction of compound 
goals is made by the use of classical rules of composition. The classical rules here can 
also be expressed by the transition rules thanks to the notion of contexts. 

A context is a reduction of atoms or blackboard primitives selected thanks to the 
place holder o. The reduced goal is obtained from the goal under consideration by the 
atoms and blackboard primitives by their corresponding subgoals according to their 
reduction. 

✓ Contexts 

a The contexts are functions inductively defined on the goals by the following 
rules. They are typically represented by the letter c, possibly subscripted. 

0 A nullary context is associated with any goal. It is represented by the 
goal and is defined as the constant mapping from Sgoal0 to the goal 
with the goal as value. 

e Dis a unary context that rnaps any goal to itself For any goal G, this 

application is subsequently referred to as o[G] . 

e If c is a n-ary context and if G is a goal, then ( c;G) is a n-ary 
context. Its application is defined as follows, for any goal G1, ... ,Gn: 

0 If c1 and c2 are rn-ary and n-ary contexts respectively, then c1llc2 is 
an (rn+n)-ary context. Its application is defined as follows, for any 
goal G1 , ... ,Gn: 

✓ Transition relation 

a Define the transition relation ➔ as the srnallest relation of (Sbt x Slproc x 
Ssubst) x (Sbt x Slproc x Ssubst) satisfying the following rules. As usual, 

for the ease of reading, the more suggestive notation < bt, l, 0 > ➔ < bt' , 

l', 0' > is subsequently employed instead of (bt, 1, 0, bt', l' , 0 ' ). 
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Atom reduction 
Rule A 

< bt,l <=[A]],e > ➔ < bt,l <=[B)],e y> if 

{ 
(H:-B) is a fresh renaming of a clause of P 
H and AB uni with m 

Comments 

Tell reduction 1 

Rule Tt 

{ 

Comments 

Tell reduction 1 

Rule Tp 

{ 

Comments 

Read reduction 
Rule Rt 

{ 
Comments 

Read reduction 
Rule Rp 

{ 
Comments 

The atom A is reduced to the body goal B, inside a process, if A0 
unifies with H with m 1 . 

< bt,1[ <=c[tellt(t))],e > ➔ < bt+[u],1[ <=c[~)],e > if 

u is a fresh renaming of t0 
A term u is putted in the blackboard bt. t0 is renamed to u to 
ensure that the processes communicate only via the writing and 
reading of terms on the blackboard and not implicitly by means of 
shared variables. 

< bt, If <=c[tellp(p)]], 0 > ➔ < bt, If <=c[~)]+[.Jq], 0 > if 

q is a fresh renaming ofp0 
A background process p is putted in the list of processes with the 
computed variables 0. The renaming is needed to prevent the 
appearance of shared variables. 

1 

< bt, 1[ <=c[readt(t)]], 0 > ➔ < bt, 1[ <=c[~]], 0y > if 

:3 v E bt: any fresh renaming of v' of v unifies with t0. 
y is the mgu corresponding to the unification of t0 and some fresh 
renaming of such a term v. 
The process readt(t) checks for the presence of a term t with 0, 
leaving the blackboard and the list of processes unchanged. 

1 

< bt, If <=c(readp(p)]], 0 > ➔ < bt, If <=c[~]], 0y > if 

:3 (.JA) Et[ <=c[readp(p))]e : any fresh renamingA 'of A unifies 
withp0. 
y is the mgu corresponding to the unification of p0 and some fresh 
renaming of such a process A. 
The process readp(p) checks for the presence of a process p with 0 
in the list of processes /. 
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Get reduction 1 

Rule Gt < bt, If ç:c[gett(t)]], 0 > ➔ < bt', 1[ ç:c[Li]], 0y > if 

{ 
:l v E bt: any fresh renaming of v' of v unifies with t0. 
u is such a term vin bt. 
y is the mgu corresponding to the unification of t 0 and of some 
fresh renaming u. 
bt' is bt where u has been removed 
If the blackboard bt contains a term which unifies with t0, then the 

Comments term is removed, leaving the blackboard with a new configuration 

Read reduction 
Rule Rp 

bt'. 

< bt, 1 ç:c[getp(p))], 0 > ➔ < bt, l' ç:c[Li]], 0y > if 

:l (.JA) E ![ ec[readp(p)]le: any fresh renamingA 'of A unifies 

withp0 . 

.JG is such a process .JA in t[ ec[readp(p))]e. 
y is the mgu corresponding to the unification of p0 and some fresh 
renaming of G. 
l' is / where the rocess corres ondin to .JG has been removed. 

Comments 
If the list of processes / contains a background process A which 
unifies with p0 , then the process is removed from the list of 

rocesses, resultin in this wa a new list / '_ 

The rules (Li;G), (LillG) and (GIILi) are interpreted as G. In any rule, if an 
occurrence of the arrow "e" exista replacement must be made by the arrow ".J" or by 
the arrow "~"-

A successful computation is one for which ail foreground processes have been 
reduced to the empty conjunction, white some background processes are possibly 
running on the background. 

A derivation relation can be derived directly from the transition system. 

✓ Derivation relation 

0 Define the derivation relation P r ig with 0 as the following relation 
on Sprog x Sigoal x Ssubst: for any P E Sprog, any ig E Sigoal, any 0 E 

Ssubst, P r ig with 0 holds if, and only if, there exist m 2: 0, bt0, ... ,btrn E 

Sbt, lo, -.. ,lm E Slproc and 00, ... , 0m E Ssubst such that: 

0 < bto, lo, 0o > ➔ · · · ➔ < btm, lm, 0m > 
8 < bto, lo, 0o > = < [],ig;E > 
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0 lm is successful terminated 

0 h, .. .,lm-1 are not successful terminated. 

✓ Operational semantics 

0 Define the operational semantics as the following function ô: Sprog ➔ 

Sigoal ➔ P (Ssubst): for any P E Sprog, any ig E Sigoal, ô (P)(ig) = {0Jig : 

P r ig with 0} . 

4. 4 Declarative Semantics 

70 

Declarative semantics is concerned with truth, but truth in µlog depends, in general, of 
the current state of the blackboard. The actions performed in the blackboards are 
called events. There are three types of events: addition, removal and check ( for the 
presence) of objects; where objects may be either terms or goals. The history of 
blackboard actions is modeled by sequences of events called blackboard traces. 

✓ Events 

0 The set of blackboard events is defined as (Sterm u Sgoal) x { +, -, *}. 
Each of them is associated to a partial function which modifies the 
blackboard (composed ofterms and goals) in the above associated way. A 
blackboard trace is a possibly empty sequence ofblackboard events. The 
empty sequence is referred to as A. The set ofblackboard traces is referred 
to as Str. 

✓ Validity of traces 

0 A trace a1. ·· ·.amis valid if, and only if, it is either empty (m=O) or the 

composition of functions am o · · · o a1 is defined on the empty blackboard. 

Let t1 , h be two traces. Their concatenation is 
represented by t1 œ h and their merge by t1 ® h. 
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An interpretation, in µLog, depends on the status of the blackboard and consists 
of a set of triplets of the form (trace, goal, goal). These triplets describe the transition 
traces between the first goal to the second. 

Stage Thesis 
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The set of all interpretations is called µhase . 

✓ µbase 

0 The µbase set is defined as the set P (ground(Str) x (ground(Sgoal) x 
(ground(Sgoal)), where for any set S, ground(S) denotes the set of all 
ground instances of S. An interpretation is a member of µbase . 

Truth is defined with respect to an interpretation and a trace. 

✓ Definition 

0 Given a trace t, an interpretation / and a formula/, the fact that/ is true 
with respect to t and/, denoted by t F 1/, is defined by the cases below. 

• Formula: t Fr/ if, and only if, t° F r/0
, for any ground instance (t0

, f 0) 

of (t, t) . 

• Ground Goal: t Fr Gif, and only if, (t, G, ~) E I. 

• Ground Clause: t F 1 (H:-B) if, and only if, t Fr H whenever t Fr B. 

• Ground initial goals: t Fr [G1, ... ,Gm] if, and only if, there exist t1, ... ,tm 
and U1, . . . ,Um E ground(Str); Pi,---,Pn, r1, .. . ,rn E 

ground(Sgoal) such that: 

0 t fr Gi, i=l , ... ,m; 

8 (ui, Pi, ri) E I, i= l , ... ,m; 
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Thanks to the previous definition, truth can be directly defined for an interpretation. 

✓ Definition 

0 Given an interpretation / and a formula/, the fact that/ is true with respect 
to 1, denoted by Fr/, is defined by the cases below. 

• Set offormulae: Fr {f1, ... ,fn} if, and only if, for any J;, F 1J;. 

• Clauses: Fr (H:-B) if, and only if, for any t E Str, t F 1 (H:-B). 
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• Initial Goals: I= 1 [G1, ... ,Gm] if, and only if, there is t valid such that 

t f I [G1, ... ,Gm]. 

The next definition presents the concept of satisfiability of an interpretation. 

✓ Satisfiability of an interpretation 

0 Let Sg be the set of atoms and blackboard primitives occurring in the bodies 
of the ground instances of the clauses of P. The interpretation J satisfies the 
program P if, and only if, the following properties hold. 

• Empty trace: (A, G, G) E I for any G E ground(Sgoal). 

• Transitive closure: if (t1, G1, G2) E I and (h, G2, G3) E I, then 
(t1 EB h, G1, Ü3) . 

• Ground atom: if (A:-B) is a ground instance of a clause of P such that 
(t, B, G) E I, then (t, A, G) E I. 

• Ground tells, reads, gets: for any tellt(t), tellp(p ), readt(t), readp(p ), 
gett(t), getp(p) of Sg, 

((, tellt(t), d) E I 

(p\ tellp(p), d) E I 

(t*, readt(t), d) E I 

(p*, readp(p), d) E I 
(t-, gett(t), d) E I 

, ,1 E I 

• Ground sequential composition: 

0 if(t, G1, G1') E I, then (t, (G1;G2), (G1' ;Gi')) E I, for 
any G2 E Sgoal; 

@ if (t1, G1, d) E I, and (h, G2, Gi') E I, then 
(t1 + t2, (G1;G2), Gi'). 

• Ground parallel composition: 

0 if (t, G1, Gi') E I, then (t, (Gd!G2), (Gi'IIG2)) E I, for 
any G2 E Sgoal; 

@ if (t, G2, Gi') E I, then (t, (Gd!G2), (G1IIGi')) E I, for 
any G1 E Sgoal. 

Next cornes the notion of model and logic consequence. 

✓ Model 

0 A model of a set of formulae S is an interpretation J such that I= 1 S. 
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Part Ill 

Chapter 5 -- Blackboard Client Server Application 

5 .1 Introduction 

Using backboards in a client-server application has only one goal: sharing data among 
several clients. The blackboard concepts discussed in chapter four were adapted to 
fulfill this mission thanks to data encapsulation. Each blackboard has its own name and 
structure. The three classical operations, seen in the previous chapter, can be 
performed on them: Tell, Get and Read. Since blackboards are just an abstraction for 
data lying in the server, they are well suited to implement concurrency between 
programs. Complex programs may be written in more simple programs to take 
advantage of blackboards. Data calculated in one program is at hand for others that 
may require it, to continue their own calculations. 

Implementing this kind of application requires a communication mechanism -
InterProcessing Communication - capable of e:fficiently handling huge amounts of data 
since the server must be able to deal with a great number of client requests. From the 
different mechanisms available only the FIFO was su:fficiently spread through the 
different operating systems and POSIX 1 compliant. Moreover, a typical use for FIFOs 
is to send data between a client and a server. The usual way to work with FIFOs and 
that was used in this application, was to use special files created by the server to listen 
to requests and another for each client. The special files, also called named pipes, have 
a know name and pathname to both server and clients; for example, the server can 
create a FIFO with the name ltmplserv 1 to listen to requests and others with 
ltmp/clientxxx, where xxx is the process ID of the client. 

To prevent the continuous reading of the FIFO in the server, a signal (SIGUSR2) 
is sent from the client to awake the server. 
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Since the server must be implemented as a background process and due to the 
fact that it may live for a long time, the best way to code it is as a daemon. Daemons 
do not have access to controlling terminais, so when errors or when the need for 
information arises the system log must be used to report it. 

5 .2 Data structures and data communication 

The storage of blackboards is done in the server after a tell operation performed in the 
client. This type of action requires several data types in both the client and server. The 
data structures are described next. 

Data structures in the Server 

The first structure of data present in the server is obviously needed to store 
blackboards. It contains the blackboard name, its data size, the type of each component 
of the blackboard along with its size. They are represented in figure 8. 

1 □H-1-_,,-/-_/ ... ~I,_ -----1 oJ-------._ , •:~ ~ 

Blackboard data ···-... __ _ 

bkbName dt dsz auxd next bb 

Data cells 

l 000 1111 000 

' 

1111 0011 0 11 

Aux. data 

next 1 

Figure 8 : Blackboard structures 

The blackboard data are connected as a linked list containing pointers to both the 
next element in the list as well as a pointer to the first data cells and another to an 
auxiliary list. The auxiliary list contains the type and size of each element present in the 
data cells. The full description of all elements of the blackboard data structure follows. 
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Data name 
bkbName 
dt 
dsz 
auxd 
next bb 

Data name 

Blackboard data 
Descri tion 

Blackboard name. 
Pointer to the memory zone containing the Blackboard data. 
Blackboard data size. 
Pointer to first element of the auxiliary list. 
Pointer to the next element in the blackboard list. 

Auxili 
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type 
ts 
next 

Type (Number/String) of the corresponding element in the data cells. 
Size of the corresponding element in the data cells. 
Pointer to the next element in the list. 

Another structure, show in figure 9, is needed when managing clients since the 
server must know where to send the answers back to a given request. 

~----~la_.e1-I --_-,/-.i~-1 _____ laf--+-__ ••• 

' 

' Client data 

1 fdc cli _ name I next_ cli 1 

Figure 9 : Client Structure 

This simple list contains all necessary information to contact the clients. The 
structure is composed of three records. 

Data name 
fdc 
cli name 
next cli 

Client data 
Descri tion 

Client file descriptor. 
Name of Client. 
Next element of the client list. 

To support both data structures a few records are needed. 
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Data name 
fd 
fdp 
buffer[] 

proc id 

Global data 
Description 

Server descriptor 
Server auxiliar file descriptor 
FIFO' s buffer 

ServerPID 

Comment 
U sed to listen to requests. 
The aux. file holds server's PID. 
Holds the read, write information of the 
server and client, respectively. 

Data structure in the Client 

The client data structure is similar to the server, only the record names in 
blackboard changes. Their names are, respectively: bname, bbf, bcsz, bst and bnext. 

The blackboard list in the client allows the building of several blackboards inside 
the client (private blackboards) and when necessary they can be sent to the server; they 
will be globalized so as to be disponible to any other client. From the list only one is 
send each time and any blackboard can be send. 

There is no counterpart to the client structure of the server. T o support the client 
structures the following records were added to the program. 

Data name 
buffer[] 

pid 

pids 

cli name 
size str 
GP 

Client Global Data 
Description Comments 

Array of characters for FIFO Buffer to send and receive data to server 

Client PID 

ServerPID 

Name of client 
Size of buffer 
Global Pointer 

and from server, respectively. 
PID used in the creation by the server of 
client's FIFO. 
PID used when a signal is send to the 
server. 

Client buffer current size. 
If needed, points to a memory zone 
containing the unformated data as well as 
its atributes: type and size. 

Data communication 

The communication between server and client requires some communication protocols 
to be understood by bath server and client. The differents protocols are a reflexion of 
the different purpose aimed by the communication data, as we can see later. Ali the 
above operations can succeed or fail; when they succeed the required information is 
returned whereas the failing returns an error code to the client. The protocol for all 
operations as well as the returned error code are presented next. 
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Client Message Format 

• Creating Clients 

@narne_of_client_pid_of_client. 

• Destroying Clients 

#narne_of_client_pid_of client. 

• Creating Blackboards 

$narne_of_blackboard[size_of_blackboard;data). 

where da ta may be either: 

- Numbers 

... ;size of number_in_bytes,number; ... 

- Strings 

... ;string; ... 

• Reading blackboards 

?narne of client[narne of blackboard;blackboard structure]. - - - - -

• Getting blackboards 

*narne _of_ client(narne _ of _blackboard;blackboard_ structure). 

where blackboard structure is composed oftwo connect fields: 

... Type I Size ... 

- 78 -

being Type the type of element (number or string) and being Size the size 
of the element in bytes. 

Both data and blackboard_structure may have more than one recorded in 
which case they are separated by a semicolon. 
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Server Message Format 

The server only sends information when there is a request to read or to get a 
blackboard. The message has the following format: 

?name_of_blackboard{numbe r_of_e lements ;Element, 

first _ element; .. . ;Element,last _ el ement}. 

where Element is composed oftwo connected fields : 

Type of elementjsize of element - - - -

The server can also send error messages with the following format : 

Er ror code. 

Error codes and all other messages identifiers can be customized in the defs.h 
header file . 

5 .3 Integrating the application with user code 

The client-server application can be used by any C program or by a program that can 
call C code. The principle of this application is to integrate the client functions into a 
user program. Each program is them a client of the server. 

T o make less dificult using the client functions inside a user pro gram, several 
macros were added. They are explained next. 

• EXPORT 

Macro used to obtain the name of the program (client) . 

• CREATE CLIENT 

Sends a request for client creation to the server. 

• ADDB(x, y, w, z) 

Macro used to create a blackboard with some information or if the 
blackboard already exists, then simply add information to it. The 
macro parameters have the following meaning: 

Parameter Descri tion 
x Blackboard name; 
y Data to put in the blackboard; 
w Type of data (number or string); 
z Size of data to add. 
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• SEND_BLACKBOARD(name) 

Sends the blackboard name to the server. 

A blackboard may be read by the client that creates it or by another client. The 
first case usually uses the next macro and the second case must use the next function. 

• READB(n, t, w, p) 

The meaning of the macro parameters is as follows . 

Parameter Descri tion 
n Name ofblackboard. 
t Type of action to perform - read or get. 
w Does the reading (getting) of the blackboard suspends the 

program or not? 
p Address of the pointer that contains the adress of the 

array of pointers that point to the individual elements of 
the blackboard. 

The action read, get (parameter t) uses the symbol T _ NORMAL and 
T _ KILL, respectively. Parameter w requires either T _ W AIT or 
T _ NOW AIT. Parameter p is used by the client functions to store inside 
a pointer the address of the structure created. Figure 10 is a scheme of 
the final structure obtained after a read or get operation. 

User ointer Arra of Pointers Strin 

5 Namur 
Global Pointer 

Inte cr 

4 5000 
NULL 

Figure 10 : Ending structure 

It is possible to use the last macro with parameter p being NULL. A global 
pointer GP is used instead to store the location of the array of pointers. 

The following function is used whenever we wish to read or get a blackboard. It is 
defined in uppercase so as to be used like a macro. 

• DEF _STR(n, b, t, structure); 
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where: 

- 11 is the number of arguments of the function 1 
; 

- b is the name of the blackboard; 

- t indicates if this action will suspend the pro gram until the 
server retums an answer; 

- structure is a set of argument parameters in the form: 

... , S_INT or S_STR, ... 

• GET_DATA(p, i, d). 

The meaning of the macro parameters follows . 

Parameter Descri tion 
p Pointer to array of pointers to data. 
1 Number of requested element. 
d Pointer to re uested data. 

T o better understand how all macros work two examples are given. 

Example 22 

Sending a blackboard 

# include "client.c" 

int main(int argc, char *argv[]) 
{ 
int i=007; 
EXPORT 
CREATE CLIENT 
ADDB("SS", "James", S_STR, strlen("James")) 
ADDB("SS", &i, S_INT, sizeof{i)) 
ADDB("SS", ' 'Bond", S_STR, strlen(' 'Bond")) 
SEND _ BLACKBOARD("SS") 
KILL CLIENT 
retum(0); 
} 

1 The number of arguments are needed bccause tlùs is a function with a variable number of 
arguments. 
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Example 23 

Reading and printing a blackboard 

# include "client.c" 

int main(int argc, char *argv[]) 
{ 
void ** p; 
void * dt; 
EXPORT 
CREATE CLIENT 
DEF_STR(6, "SS", T_NORMAL, S_STR, S_INT, S_STR); 
READ _ BLACKBOARD(&p, T _ W AIT) 
GET_DATA(p, 1, dt) 
printf("\n ¾s", dt); 
GET_DATA(p, 2, dt) 
printf("\n ¾d", Ri1 (dt)); 
GET_DATA(p, 3, dt) 
printf("\n ¾s", dt); 
KILL CLIENT 
retum(0); 
} 
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Through the C macros it is possible to use the client-server application in 
constraint logic prograrnming thanks to clp(FD) which transforms Prolog code into C 
code. This allows to edit the C code to make the necessary changes to use the client­
server application. To support this scheme it was necessary to slightly change two 
clp(FD) header files by adding new code. Interface functions were created to be called 
from the clp(FD) C code originated ftom Prolog code. Figure 11 presents this scheme. 

The changes needed to be made in the C code are only two. The first is done 
inside the main function: insert in, the macro EXPORT as the first instruction. The 
second is made after the line of code that deals with putting values, lists or constants in 
the heap. 

Example 24 

allocate( 1) 
put_y _ variable(0,0) 
call( ... ) 
put_y _ value(0,0) 
put_ in_ server("Example") 
call( ... ) 
deallocate 
proceed 

1 Ri( ) is one of the created functions to get numbers through the pointer dt; the others are named: Rs, 
RI, Rf, Rd, Rld for the types short, long, float, double and long double, respectively. 

Stage Thesis 



Chapter 5 - Blackboard Client Server Application 

libclp _fd.a 

Header files * 

gcc clp_fd 

C files* 

libclp _fd _pp.a 

* lncluding the changed files: wam _ engine.c and wam _ engine.h 

libclp _ fd.a 

Prolog 
code 

libclp _ fd _pp .a 

Edited 
Ccode 

Interface 
functions 

Client 
functions 

clp_fd C code 

gcc 
Client · · · · · ., Server 
Pro gram Pro gram 

Figure 11 : Linking the Application and clp(FD) 
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The macro put _in_ server("Example '') puts the value of argument register AO in 
the blackboard and sends the blackboard to the server. 
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5. 4 En ding notes 

Despite the fact that the application works well in a reliable way several points are 
worth observing. Due to the nature of the communication channel (FIFO) the overall 
speed of the application is a:ffected. To increase the performance, other forms of 
communication are best suited like for instance shared memory, messages queues and 
semaphores. T o increase the power of the application, the clients could be anywhere in 
the local network requesting information from the server in there machine and if, there 
were no requested blackboards, then the server could contact the other servers present 
in the network as seen in figure 12. 

First Machine 

Daemon Server 

Second Machine 

Daemon Server 

Client 

clp_fd 

Interface 
funclions 

Client 
functions 

clp_fd 

Interface 
fonctions 

Client 
functions 

Client 

Figure 12 : A possible extension to the application 
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A powerfull communication mechanism to explore is Remote Procedure Calling 
(RPC, for short). Another way to improve the application is to increase the data types 
currently supported by the interface routines. 

There is plenty of possibilities to explore in the course of a future work ... 
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Part IV 

Chapter 6 -- Conclusion 

6.1 Summary of the work 

The end of this type of paper is not complete without a reference to the main aspects 
that make up the thesis. After the overview on logic programming, with its unification 
mechanism, the constraint programming is explained. Its main features are the 
introduction of a new language X in r that makes the constraint solver more 
transparent to programmers. The next presentation step is a new framework - µLog -
in concurrent programming. It is caracterized by the use of blackboards as a new 
communication mechanism for parallel systems. 

6.2 Main f eatures 

The simplicity in the use of the application, namely when manipulating blackboards, 
through the use of macros makes the Client Server Application a powerful one. 
Moreover, there is a real possibility in extending the application into the area of 
constraint logic programming. To exemplify, functions were created with the purpose 
of allowing Prolog language, when transformed in C code, to send blackboards to the 
server. The client-server design of the application centralizes the information, making 
more easily accessible to any client that may request it. 

To prevent the possibility of slowing down other applications, due to the 
continuous reading of the FIFO by the server, a signal system was implemented. Each 
time a client has a request, it sends a signal to awake the server. 

Flexibility is given by the structure built each time a requested blackboard arrives 
to the client since each data element can them be treated separately. More flexibility is 
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provided when the need arises to change both the path and name of the server FIFO 
and the path of the client FIFO. They can both be changed in a header file. 

An effort was put in making the application portable, capable of running on 
different machines with different operating systems. 

6.3 Problems and future work 

Problems may arise when the communication protocols and clients are using the same 
codes; to overcome this situation it is possible to change them in a header file. The 
application problems are reported in the file created by the system log to that purpose. 

Future versions of the application could include a multi-machine system capable 
of delivering to clients the answers to their requests, independently of the machine in 
which clients and servers are running. 
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Appendix A - W AM instruction set 

A brief reference to the complete set is given here. The algorithms used by the 
instructions goes next. The notation Vn represents either a temporary or permanent 
variable indifferently. 

Put instructions 

put_ variable Xn,Ai 
put_ variable Y n,Ai 
put_ value V n, Ai 
put_ unsafe _ value Y n,Ai 
put_ structure f,Ai 
put_list Ai 
put_ constant c,Ai 

Set instructions 

set variable Vn 
set value Vn 
set local value V n - -
set constant Vn 
set void n 

Control instructions 

allocate 
deallocate 
call P,N 
execute P 
proceed 

Indexing instructions 

switch_on_term V,C,L,S 
switch _on_ constant N, T 
switch_on_structure N,T 

Get instructions 

get_variable Vn,Ai 
get_value Vn,Ai 
get _ structure f,Ai 
get_list Ai 
get_constant c,Ai 

Unify instructions 

unify _ variable V n 
unify _ value Vn 
unify _local_ value V n 
unify _ constant c 
unify _ void n 

Choice instructions 

try_me_else L 
retry _me_ else L 
trust me 
tryL 
retryL 
trust L 

Cut instructions 

neck eut 
get _level Y n 
eut Yn 
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Put instructions 

put variable Xn,Ai 1 

Push a new unbound REF cell onto the HEAP[H] ~ <REF ,H> 
heap and copy it into both register Xn and Xn ~ HEAP[H] 
register Ai. Continue execution with Ai~ HEAP[H] 
following instruction. H ~ H + 1 

put variable Y n,Ai 1 

Initialize the n-th stack variable in the 
current environment to 'unbound' and let 
Ai point to it. Continue execution with the 
following instruction. 

put value Vn,Ai 1 

Place the contents ofVn into register Ai. 
Continue execution with the following 
instruction. 

put unsafe value Y n,Ai 1 

P ~ P + instruction size(P) 

addr ~E +n +1 
STACK[addr] ~ <lŒF,addr> 
Ai ~ ST ACK[ addr] 
P ~ P + instrnction size(P) 

Ai~Vn 
P ~ P + instrnction _size(P) 

addr ~ deref(E+n+l) 
if addr < E 

If the dereference value of Yn is not an then Ai~ STORE[addr] 
unbound stack variable in the current 
environment, set Ai to that value. 
Otherwise, bind the referenced stack 
variable to a new unbound variable cell 
pushed on the heap, and set Ai to point to 
that cell. Continue execution with the 
following instruction. 

put structure f,Ai 1 

else 
begin 

end 

HEAP[H] ~ <lŒF,H> 
bind(addr,H) 
Ai~HEAP[H] 
H ~ H +l 

P ~ P + instrnction size(P) 

Push a new functor cell containing f onto HEAP[H] ~ fin 
the heap and set register Ai to an STR cell Ai~ <STR,H> 
pointing to that functor cell. Continue H ~ H + 1 
execution with the following instruction. p ~ p + instruction size(P) 

put list Ai 1 

Set register Ai to contain a LIS cell 
pointing to the current top of the heap. Ai ~ <l.JS,H> 
Continue execution with the following P ~ P + instruction _size(P) 
instruction. 
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put constant c,Ai l 
Place a constant cell containing c into Ai ~ <CON,H> 
register Ai. Continue execution with the P ~ P + instruction_ size(P) 
following instruction. 

Get instructions 

get variable Vn,Ai 1 

Place the contents of register Ai into Vn ~ Ai 
variable Vn. Continue execution with the P ~ P + instruction_size(P) 
following instruction. 

get value V n,Ai l 
Unify variable Vn and register Ai. unify(Vn,Ai) 
Backtrack on failure, otherwise continue if fail 
execution with following instructions. then backtrack 

get structure /,Ai 1 

If the dereferenced value of register Ai is 
an unbound variable, then bind that 
variable to a new STR cell pointing to f 
pushed on the heap and set mode to write; 
otherwise, if it is a STR cell pointing to 
functor J, then set register S to the heap 
address following that functor cell's and 
set mode to read. If it is not a STR cell or 
if the functor is different than J, fail. 
Backtrack on failure, otherwise continue 
execution with the following instruction. 

else P ~ P + instruction size(P) 

addr ~ deref(Ai) 
case STORE[addr] of 

<REF,_> : HEAP[H]~ <STR,H+l> 
HEAP[H+ 1] ~ / 
bind(addr,H) 
H~H +2 
mode~ write 

<STR,a>: ifHEAP[a] = f 
then 

begin 
S~a+l 
mode ~ read 

end 
else /ail~ true 

other : /ail ~ true 
endcase 
if /ail then backtrack 

else P ~ P + instruction size(P) 
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get list Ai 1 

If the dereferenced value of register Ai is 
an unbound variable, then bind that 
variable to a new LIS cell pushed on the 
heap and set mode to write; otherwise, if 
it is a LIS cell, then set register S to the 
heap address it contains and set mode to 
read. If it is not a LIS cell, fail. Bactrack 
on failure, otherwise continue execution 
with the following instruction. 

get constant c,Ai l 

If the dereferenced value of register Ai is 
an unbound variable, bind that variable to 
constant c. Otherwise, fail if it is not the 
constant c. Bactrack on failure, otherwise 
continue execution with the following 
instruction. 

Set instructions 

set variable Vn l 

addr ~ deref(Ai) 
case STORE[addr] of 
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<REF,_> : HEAP[H]~ <LIS,H+ 1> 
bind(addr,H) 
H~H+ 1 
mode~ write 

<LIS,a> : S ~ a 
mode~ read 

other : fait ~ true 
endcase 
if fai l then backtrack 

else P ~ P + instruction size(P) 

addr ~ deref(Ai) 
case STORE[addr] of 

<REF,_> :STORE[addr]~<CON,c> 
trail(addr) 

<CON,c '> : fait~ ( c -::f::. c') 
other : fail ~ true 

endcase 
if f ail then backtrack 

else P ~ P + instruction size(P) 

Push a new unbound REF cell onto the HEAP[H] ~ <REF, H> 
heap and copy it into variable Vn. Vn ~ HEAP[H] 
Continue execution with the following H ~ H + 1 
instruction. P ~ P + instruction size(P) 

set value V n l 
Push Vn's value onto the heap. Continue HEAP[H] ~ Vn 
execution with the following instruction. H ~ H + 1 

P ~ P + instruction size(P) 

Stage Thesis 
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set local value V n 1 

If the dereferenced value of Vn is an 
unbound heap variable, push a copy of it 
onto the heap. If the dereferenced value is 
an unbound stack address, push a new 
unbound REF cell onto the heap and bind 
the stack variable to it. Continue 
execution with the following instruction. 

set constant c 1 

addr +-- deref(Vn) 
if addr < H 
then HEAP[H] +-- HEAP[ addr] 
else 

begin 

end 

HEAP[H] +-- <lŒF,H> 
bind(addr,H) 

H+.--H+l 
P +-- P + instruction size(P) 

Push the constant c onto the heap. HEAP[H] +-- <CON, c> 
Continue execution with the following H +-- H + 1 
instruction. P +-- P + instruction size(P) 

set void 11 1 

Push n new unbound REF cells onto the for i +-- H + n - 1 do 
heap. Continue execution with the HEAP[H] +-- <lŒF, i> 
following instruction. H +-- H + 1 

P +-- P + instruction size(P ) 

Unify instructions 

unifv variable Vn 1 

case mode of 
read : Vn +-- HEAP[S] 
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In read mode, place the contents of heap 
address S into variable Vn; in write mode, 
push a new unbound REF cell onto the 
heap and copy it into Xi. 
In either mode, increment S by one. 
Continue execution with the following 
instruction. 

write : HEAP[H] +-- <lŒF,H> 
Vn +.--HEAP[H] 
H+.--H + 1 

endcase 
S+.--S+l 
P +-- P + instruction size(P) 

Stage Thesis 
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unify value V n 1 

In read mode, unify variable Vn and heap 
address S; in write mode, push the value 
of Vn onto the heap. In either mode, 
increment S by one. Baclctrack on failure, 
otherwise continue execution with the 
following instruction. 

unify local value Vn 1 

case mode of 
read : uni f y(Vn, S) 
write : HEAP[H] ~ Vn 

H~H+l 
endcase 
s~s+ 1 
iffail 

then backtrack 
else P ~ P + instruction size(P) 

case mode of 
read : uni f y(Vn, S) 
write : addr ~ deref(Vn) 
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In read mode, unify variable Vn and heap 
address S. In write mode, if the 
dereferenced value of Vn is an unbound 
heap variable, push a copy of it onto the 
heap. If the dereferenced value is an 
unbound stack address, push a new 
unbound REF cell onto the heap and bind 
the stack variable to it. In either mode, 
increment S by one. Baclctrack on failure, 
otherwise continue execution with the 
following instruction. 

if addr < H then 
HEAP[H]~HEAP[ addr] 

else 

unify constant c 1 

In read mode, dereference the 
heap address S. If the result is 
an unbound variable, bind 
that variable to the constant 
c; otherwise, fail if the result 
is different than constant c. ln 
write mode, push the constant 
c onto the heap. Baclctrack on 
failure, otherwise continue 
execution with the following 
instruction. 

begin 
HEAP[H] ~ <lŒF,H> 

end 
H~H +l 

endcase 
S ~ S+ 1 
iffail 

then backtrack 
else P ~ P + instruction size(P) 

case mode of 
read: addr ~ deref(S) 

case STORE[addr] of 
<lŒF,_>: STORE[addr]~<CON,c> 

trail(addr) 
<CON,c '> : fail ~ ( c :/:- c') 
other : fail ~ true 

endcase 
write : HEAP[H] ~ <CON, c> 

H~H + l 
endcase 
iffail 

then backtrack 
else P ~ P + instruction size(P) 
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unify void n 1 

In write mode, push n new unbound REF 
cells onto the heap. In read mode, skip 
the next n heap cells starting at location S. 
Continue execution with the following 
instruction. 

Control instructions 

allocate 1 

Allocate a new environment on the stade, 
setting its continuation environment and 
continuation point fields to current E and 
CP, respectively. Continue execution 
with the following instruction. 

deallocate 1 
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case mode of 
read : S ~ S + n 
write : for i ~ H to H + n -1 do 

HEAP[i] ~ <IŒF, i> 
H~H+n 

endcase 
P ~ P + instruction size(P) 

if E > B then 
newE~E+CODE [STACK[E+l]-1]+2 

else newB ~ B + STACK[B] + 8 
STACK[newE] ~E 
STACK[newE + l] ~CP 
E~newE 
P ~ P + instruction size(P) 

Remove the environment frame at stack location 
E from the stack by resetting E to the value of its CP ~ ST ACK[E + 1] 
CE field and the continuation pointer CP to the E ~ ST ACK[E] 
value of its CP field . Continue execution with the p ~ p + instruction_ size(P) 
following instruction. 

call P,N 1 

If P is defined, then save the current 
choice point' s address in BO and the value 
of current continuation in CP, and 
continue execution with instruction 
labeled P, with N stack variables 
remaining in the current environment; 
otherwise backtrack. 

if defined(P) then 
begin 

CP ~ P + instruction _size(P) 
num_of_args ~ arity(P) 
B0~B 
P~@(P) 

end 
else backtrack 
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execute P 1 

If P is defined, then save the current 
choice point's address in BO and continue 
execution with instruction labeled P; 
otherwise backtrack. 

proceed 1 

Continue execution at instruction whose 

if defined(P) then 
begin 

num_of_args ~ arily(P) 
B0~B 
p ~ @(P) 

end 
else backtrack 

address is indicated by the continuation P ~ CP 
register CP. 

Choice instructions 

try me else L I 
if E > B then 
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newB ~ E + CODE[ST ACK[E + 1] -1 ]+2 
else newB ~ B + STACK[B] + 8 
STACK[newB] ~ num_args 

Allocate a new choice point frame 
on the stack setting its next clause 
field to L and the other fields 
according to the current context, 
and set B to point to it. Continue 
execution with the following 
instruction. 

n ~ STACK[newB] 
for i ~Iton do STACK[newB + i] ~ Ai 
STACK[newB + n + I] ~ E 
STACK[newB + n + 2] ~ CP 
STACK[newB + n + 3] ~ B 
STACK[newB + n + 4] ~ L 
STACK[newB + n + 5] ~ TR 
STACK[newB + n + 6] ~ H 
STACK[newB + n + 7] ~ BO 
B~newB 
HB~H 
P ~ P + instruction size(P) 
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retrv me else L 1 

Having backtracked to the current 
choice point, reset all the 
necessary information from it and 
update its next clause field to L. 
Continue execution with the 
following instruction. 

trust me 1 

Having backtracked to the current 
choice point, reset ail the 
necessary information from it, 
then discard it by resetting B to its 
predecessor. Continue execution 
with the following instruction. 

try L 1 

Allocate a new choice point frame 
on the stack setting its next clause 
field to the following instruction 
and the other fields according to 
the current context, and set B to 
point to it. Continue execution 
with instruction labeled L. 
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n~ STACK[B] 
for i ~Iton do Ai~ STACK[B + i] 
E ~ ST ACK[B + n + I] 
CP~ STACK[B + n + 2] 
STACK[B+n+4]~L 
unwind_ trail(STACK[B + n + 5], TR) 
TR ~ STACK[B + n + 5] 
H ~ STACK[B +n+ 6] 
HB~H 
P ~ P + instruction size(P) 

n ~ STACK[B] 
for i ~Iton do Ai~ STACK[B + i] 
E ~ ST ACK[B + n + I] 
CP~ STACK[B + n + 2] 
unwind_trail(STACK[B + n + 5], TR) 
TR ~ STACK[B + n + 5] 
H ~ STACK[B +n+ 6] 
B ~ STACK[B + n + 3] 
HB ~ STACK[B + n + 6] 
P ~ P + instruction size(P) 

if E > B then 
newB ~ E + CODE[STACK[E + l] -1]+2 

else newB ~ B + STACK[B] + 8 
STACK[newB] ~ num_args 
n ~ STACK[newB] 
for i ~ 1 ton do STACK[newB + i] ~ Ai 
STACK[newB + n + 1) ~ E 
ST ACK[newB + n + 2] ~ CP 
STACK[newB + n + 3] ~ B 
STACK[newB + 11 + 4] ~ P +instruction_size(P) 
STACK[newB + n + 5] ~ TR 
STACK[newB + n + 6] ~ H 
STACK[newB + n + 7] ~ BO 
B ~newB 
HB~H 
P~L 
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retrv L 1 

n ~ STACK[B] 
for ; ~ 0 to n -1 do Ai ~ STACK[B + i] 
E ~ STACK[B + n + 1] 
CP~ STACK[B + n + 2] 
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Having backtracked to the 
current choice point, reset ail the 
necessary information from it 
and update its next clause field 
to the following instruction. 
Continue execution with 
instruction labeled L. 

STACK[B + n + 4] ~ P + i11struction_size(P) 
unwind _ trail(STACK[B + 11 + 5], TR) 
TR ~ STACK[B + n + 5] 

trust L 1 

Having backtracked to the current 
choice point, reset ail the 
necessary information from it, 
then discard it by resetting B to its 
predecessor. Continue execution 
with instruction labeled L. 

Indexing instructions 

switch on term V,C,L,S 1 

H ~ STACK[B + n + 6] 
HB~H 
P~L 

n~ STACK[B] 
for i ~ 1 to n do Ai ~ STACK[B + i] 
E ~ STACK[B + n + 1] 
CP~ STACK[B + n + 2] 
unwind _ trail(STACK[B + 11 + 5], TR) 
TR ~ STACK[B + 11 + 5] 
H ~ STACK[B + n + 6] 
B ~ STACK[B + n + 3] 
HB ~ STACK[B + n + 6] 
P~L 

Jump to instruction labeled, respectively, 
V, C, L or S, depending on whether the 
dereferenced value of argument register 
Al is variable, a constant, a non-empty 
list, or a structure, respectively. 

case STORE[deref(Al)] of 
<lŒF, _> : P ~ V 
<CON,_:> : P~C 
<LIS, _> : P ~ L 
<STR, _> : P ~ S 

endcase 

switch on constant N,T 1 

The dereferenced value of register Al < tag, val>~ STORE[deref(Al)] 
being a constant, jump to the instruction < found, inst > ~ get_hash(val,T, N) 
associated to it in hash-table T of size N. if found 
If the constant found in A 1 is not one in 
the table, backtrack. 

then P ~ inst 
else backtrack 
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switch on structure N,T 1 

The dereferenced value of register Al <tag, val>~ STORE[deref(Al)] 
being a constant, jump to the instruction < found, inst > ~ get_hash(val,T, N) 
associated to it in hash-table T of size N. if found 
If the functor of the structure found in Al then p ~ inst 
is not one in the table, backtrack. else backtrack 

Cut instructions 

neck eut 1 

If there is a choice point after that 
indicated by BO, discard it and tidy the 
trail up to that point. Continue execution 
with following instruction. 

get level Y n 1 

If B > BO then 
begin 

B~BO 
tidy_trail 

end 
P ~ P + instruction size(P) 

Set Yn to the current value of BO. STACK[B + n + 2] ~ BO 
Continue execution with following P ~ P + instruction _size(P) 
instruction. 

eut Yn 1 

Discard all (if any) choice points after that 
indicated by Yn, and tidy the trail up to 
that point. Continue execution with 
following instruction. 

If B > STACK[B + n + 2] then 
begin 

B ~ STACK[B + n + 2] 
tidy_trail 

end 
P ~ P + instruction size(P) 
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W AM ancillary operations 

procedure backtrack 
if B = bottom of stack 

then fail _and_ exit _pro gram 
else 

begin 
BO~ STACK[B + STACK[B] + 7] 
P ~ STACK[B + ST ACK[B] + 7] 

end 
end backtrack 

fonction derefta : address) : address 
begin 

< tag, value > ~ STORE[a] 
if (tag = REF) /\ (value -:1; a) 

then return deref(value) 
else return a 

end deref 

procedure bind(a1, a2 : address) 
< t1 , _ > ~ STORE[ai] 
< h , _ > ~ STORE[a2] 
if (t1 = REF) /\ ((h = REF) v (a2 < a1)) then 

begin 
STORE[a1] ~ STORE[a2] 
trail(a1) 

end 
else 

begin 
STORE[a2] ~ STORE[ai] 

trail 
end 

end bind 
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c:: 
0 

-~ 
QJ 

o. 
0 

procedure trail(a :address) 
if (a< HB) v ((H < a)/\ (a < B)) then 

begin 
TRAIL[TR] ~ a 

TR~TR+ 1 
end 

end trail 

procedure unwind_trail(a1 , a2: address) 
for i ~ a1 to a2 -1 do 

STORE[TRAIL[i]] ~ < REF, TRAIL[i] > 
end unwind trail 

procedure tidy _trail 
i ~ ST ACK[B + ST ACK[B] + 5] 
while i < TR do 

if (TRAIL[i] < HB) v ((H < TRAIL[i]) /\ (TRAIL[i] < B)) 
then i ~ i + 1 
else 

begin 

end 

TRAIL[i] ~ TRAIL[TR + 1] 
TR~TR-1 

end tidy _ trail 
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procedure unify(a1 , a2 : address) 
push(a1 , PDL) 
push(a2, PDL) 
f ail ~ false 
while -,( empty(PDL) v /ail) do 

begin 
d1 ~ deref(pop(PDL)) 
d2 ~ deref(pop(PDL)) 
if d1 -:t: d2 then 

begin 
< ti , V1 > ~ STORE[ di] 
< ti, V2 > ~ STORE[d2] 

else 
case t2 of 

REF : bind(d1 , d2) 
CON : fait~ (t1 -:t: CON) v (v1 -:t: v2) 
LIS : if t1 -:t: LIS thenfail ~ true 

else 
begin 

push(v1, PDL) 
push(v2, PDL) 
push(v1 + 1, PDL) 
push(v2 + 1, PDL) 

end 
STR : if t1 -:t: STR thenfai/ ~ true 

else 

endcase 

begin 
f1/n1 ~ STORE[vi] 
.filn2 ~ STORE[v2] 

end 

if (/1 -:t: j 2) v (n1 -:t: n2) thenfail ~ true 
else 

for i ~ 1 to n1 do 
begin 

end 

push(v1 + i , PDL) 
push(v2 + i, PDL) 

end 

end 
end 

end unify 
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lnterfacing with Prolog Clause 

These instructions are responsible for creating and loading the A _Frame. Mainly, the 
space is reserved at the top of the heap, the addresses of FD variables and values of 
parameters are loaded into this new frame. 

I t f ns rue 10n p urpose 
Reserves space on the top of the heap, for 

fd_set_AF(nb_arg, Vi) A_Frame, whose size is nb_arg. AF and the Vi 
variable point to the start of the A Frame. 
Binds Vj to an FD variable created on top of 

fd _ variable _in_ A_ frame(Vj) the heap (whose range is 0 . .infinite). Puts its 
address into the cell pointed by AF. AF is 
incremented. 
Let w be the dereferenced word ofVj, if it is: 

• an unbound variable: similar to 
fd _ variable _in_ A_ frame( w). 

• an integer: it is pushed on the heap and 
fd value in A frame its address is stored into the cell pointed - - -

by AF. AF is incremented. 
• an FD variable: its address is stored 

into the cell pointed by AF. AF is 
incremented. 

The dereferenced of Vj must be a list of 
fd _range _parameter _in_ A_ frame(Vj) integers and a corresponding range is created 

on top of the heap whose address is copied 
into the cell pointed by AF. AF is incremented. 

fd _term _parameter _in_ A_ frame(Vj) The dereferenced of Vj must be an integer and 
its value is copied into the cell pointed by AF. 
AF is incremented. 
Restores AF with Vi, sets CC to the next 

fd _install _ constraint(install _proc, Vi) instruction and gives control to the install 
procedure. 
Sets CC to the next instruction and gives 

fd call constraint control to the code of the constraint pointed by -
CF. 

The last two instructions are produced for every constraint. 
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Installing Constraints 

For every constraint, an installation procedure is generated. It is responsible for 
creating and loading the C _Frame. It also initializes the appropriate chain lists for ail 
FD variables used by this constraint. 

Instruction 
fd create C frame - - -

( constraint _proc, tell_ fv) 

fd _ install _ind _ min(fv) 
fd install ind max - - -

fd _ install _ ind _min_ max( fv) 
fd _ install _ind _ dom( fv) 
fd install dly val(fv) 

fd oroceed 

Computing Constraint 

Purpose 
Creates, on top of the heap, a C _Frame associated to 
the constraint whose code is located at the address 
constraint _yroc and whose constrained variable is 
tell fv. CF points to this C Frame. 

These are used when the constraint ( currently pointed 
by CF) uses the min( or max, or both the min and max, 
etc) of the fvth variable. 

Gives control to the address pointed by CC. 

For every constraint X in r a constraint procedure is generated which is decomposed 
into four parts: 

• loading parameters, indexical terms and ranges into appropriate registers; 
• computing the range r; 
• telling the constraint X in r; 
• retuming. 

Loading parameters, indexical terms and ranges 

Instruction 

Loads the min and the max of the fvth variable in 
T ti and T tz. 

fd _ind _ dom(R( r ), fv) Loads the domain ( a range) of the fvth variable into 
R(r . 

fd_dly_val(T(t),fv, lab_else) If thefv variable is an integer, it is copied in T(t), 
or else the control is iven to the label /ab else. 
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Computing the range 

Instruction 

fd_union(R(r), R(r1)) 
fd_union(R(r) , R(r1)) 

fd_compl(R(r)) 
fd_compl_of_singleton(R(r), T(t)) 

fd_add(R(r), T(t)) 
fd_sub(R(r), T(t)) 
fd_mul(R(r), T(t)) 

fd_floor_div(R(r), T(t)) 

fd_range_copy(R(r), R(r1)) 
fd_integer(T(t), n) 

fd_add(T(t), T(t1)) 
fd_sub(T(t), T(t1)) 
fd_mul(T(t), T(t1)) 

fd_floor_div(T(t), T(t1)) 
fd_ceil_div(T(t) , T(t1)) 

fd_term_copy(T(t), T(t1)) 

Telling the constraint X in r 
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Pur ose 

Execute R(r) +- R(r) u R(r1). 

Execute R(r) +- R(r) +pointwise T(t). 
Execute R(r) +- R(r) - pointwise T(t). 
Execute R(r) +- R(r) * pointwise T(t). 
Execute R r +- R r / ointwise T t . 

Execute T(t) +- T(t) + T(t1). 
Execute T(t) +- T(t) - T(t1). 
Execute T(t) +- T(t) * T(t1). 
Execute T(t) +- T(t) L;J T(t1) . 
Execute Tt +-Tt 1/l T t1 . 

The current constraint is pointed by CF and X can be reached from the C_Frame. So 
only r must be provided to tell. In order to optimize the execution two particular cases 
can be distinguish: X in t1 .. tz and X in r. The complete description of the tell operation 
has already been given in chapter 3. 

Instruction 

Tells X in t1 •• t2 i.e. ris an interval . 
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The following fonctions can be used by any client program to communicate with the 
server. 

#include <unistd.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <limits.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdarg.h> 
#include "conv.h" 
#include "defs.h" 

/* Macros definition * / 
#define EXPORT strcpy(cli_name,argv[0]); 
#define CREATE _ CLIENT create _ client(); 
#define KILL _ CLIENT kill _ client(); 
#define ADDB(x,y, w,z) add _to _ blackboard(x,y, w,z); 
#define SEND _ BLACKBOARD(n) send _ blackboard(n); 
#define FREE_BB(b) free_blackboard(n); 
#define READB(n,t,w,p) (t?(read_and_kill_bb(n,w,(void ***) p)): 

read_bb(n,w,(void ***) p)); 
#define READ _BLACKBOARD(p,w) (w?(nowaiting_read((void ***) p)): 

waiting_read((void ***) p)); 
#define GET _DATA(p,i,d) get_data(p,i,&d); 

#define POINT ".\0" 
#define USCR " \0" 
#define AT "@\0" 
#define CS "#\0" 
#define MONEY "$\0" 
#define LSB "[\0" 
#define RSB "]\0" 
#define IMS "?\0" 
#define AST "*\0" 
#define BFSZ size_str=strlen(buffer) 
#define BUF &buffer[size_str] 
#define CB(x) BFSZ;strcpy(BUF,x) 
#define SZT sizeof(size_t) 
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/* Aux. data * / 

struct aux 
{ 
char type; 
int ts; 
struct aux * next; 

}; 

/* Blackboard Representation * / 

struct bkb 
{ 
char bname[l2]; 
void * bbf; 
size t bcsz; 
struct aux * bst; 
struct bkb * bnext; 
}; 

struct bkb * first_ out,first_in; 

const char Cts=S_BS; /* Constant type separator */ 
const char Cds=S_DS; /* Constant dec. separator */ 

/* Functions prototype * / 

void DEF _STR(int, ... ); 
static void sig_usr(int); 
pid_t get_server_pid(void); 
void tell_server(size_t); 
void open_ server( void); 
int open_client(void); /* Open client to check it was create by server */ 
void open_clientl(void); /* Open client to unblock server when it opens ... */ 

/* .. . client's FIFO. * / 
void create _ client( void); 
void kill_ client(void); 
void send _ blackboard( char *); 
void read_and_kill_bb(char *,char, void ***); 
void read_bb(char *,char, void ***); 
void create_bbint(void *,size_t); 
void create_bbstring(void * ,size_t); 
void add_to_blackboard(char * ,void * ,char ,size_t); 
void adds_bb(void *,struct bkb *,size_t); 
void addi_bb(void *,struct bkb *,size_t); 
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void clear _ buffer( void); 
void remove_bkb(struct bkb *); 
void remove _ aux( struct aux *); 
void remove _ail_ bkb( void); 
void put_info(struct bkb *); 
void putf _ info( char * ,char *); 
void waiting_read(void ***); 
void nowaiting_read(void ***); 
int get _ info(int ); 
void decode_info(void ***); 
void put_bkb(char *, void ***); 
size_t get_nelem(char *, struct aux**); 

/* Functions that retum an number of special type ( int, float ... ) */ 

short int Rs(void *); 
int Ri(void *); 
long int RI( void *); 
float Rftvoid *); 
double Rd(void *); 
long double Rld(void *); 

/* Global Data * / 

void ** GP; 
char buffer[PIPE_BUF]; 
int fd=-1 ; 
pid _ t pid,pids; 
char cli_name[256] ; 
size _ t size _ str; 

pid _ t get _ server _pid( void) 
{ 
int fdp; 
if((fdp=open(SVR _ ID, 0 _ RDONL Y))!=-1) 

{ 
read(fdp,&pids,sizeof(pid)); 
close(fdp ); 
retum(pids ); 
} 

else 
retum(-1); 

} 

void tell_server(size_t sz) 
{ 
if(fd>-1) 
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{ 
if((write(fd,buffer,sz))!=sz) 

printf("Error while writing to server FIFO\n"); 
sleep(2); 
kill(pids,SIGUSR2); 
} 

} 

void open_ server( void) 
{ 
pids=get _ server _pid(); 
if(pids>0) 

{ 
fd=open(SVR_FF, O_WRONLY I O_APPEND I O_NONBLOCK); 
} 

} 

int open_ client( void) 
{ 
int fda=-1 ; 
char s[256]; 
char sa[20]; 
if(pid>0 && fd>-1) 

{ 
strcpy( s, CNT _ D IR); 
strcat(s,cli_name); 
strcat( s, USCR); 
itoa(pid,sa); 
strcat(s,sa); 
if((fda=open(s,O_RDONLY I O_NONBLOCK))!=-1) 

{ 
close(fda); 
retum(l); 
} 

} 
retum(0); 
} 

void open_ client 1 ( void) 
{ 
int fda=-1 ; 
char s[256]; 
char sa[20]; 
if(pid>0 && fd>-1) 

{ 
strcpy( s, CNT _ D IR); 
strcat( s,cli _ name ); 
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} 

strcat( s, USCR); 
itoa(pid,sa); 
strcat(s,sa); 

while((fda=open(s,O_RDONL Y))=-1) {} 
close(fda); 
} 

void create _ client( void) 
{ 
char s[20]; 

pid=(int) getpid(); 
pids=get _ server _pid(); 
strcpy(buffer,AT); 
CB(cli_name); 
CB(USCR); 
itoa(pid,s); 

/* Copy to current location in buffer array, cli_name */ 
/* same thing for underscore * / 

/* put pid of this process in string s * / 
/* put string s in current buffer location * / CB(s); 

CB(POINT); 
open_ server(); 
BFSZ; 

/* same thing for a . (point) * / 
/* Is server runing ? * / 

tell_server(size_str); /* tell server that this client has a request 
open_ client 1 (); 
} 

void kill _ client( void) 
{ 
char s[20]; 
if( open_ client()) 

{ 
strcpy(buffer, CS); 
CB(cli_name); 
CB(USCR); 
itoa(pid,s ); 
CB(s); 
CB(POINT); 
BFSZ; 
tell_ server( size _ str); 
remove _ all_ bkb(); 
} 

} 

void create_bbint(void *pt,size_t sz) 
{ 
size_t a; 
if(pt!=NULL && sz!=0) 
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} 

{ 
a=sz+(2*sizeof(size_t))+2; 
first_out->bbf=(void *) calloc(l ,a); 
first_out->bst=(struct aux*) calloc(l,sizeof(struct aux)); 
memcpy( first _ out->bbf:&sz,sizeof( size _ t) ); 
memcpy( first _ out->bbf+SZT ,&Cts, 1 ); 
memcpy( first _ out->bbf+SZT + 1,&sz,sizeof( size _ t) ); 
memcpy(first_ out->bbf+(2 * SZT)+ l ,&Cds, 1 ); 
memcpy(first_out->bbf+(2*SZT)+2,pt,sz); 
( first _ out->bst )->type=S _INT; 
( first _ out->bst )->ts=sz; 
( first _ out->bst )->next= NULL; 
first out->bcsz=a· - ' 
} 

void create_bbstring(void *pt,size_t sz) 
{ 
size_t a; 
if(pt!=NULL && sz!=O) 

{ 
a=sz+ 1 +SZT; 
first_out->bbf=(void *) calloc(l ,a); 
first_ out->bst=(struct aux *) calloc(l ,sizeof(struct aux)); 
memcpy( first _ out->bbf:&sz, SZT); 
memcpy( first _ out->bbf+SZT ,&Cts, 1 ); 
memcpy(first_out->bbf+SZT+l,pt,sz); 
( first _ out->bst )->type=S _ S TR; 
( first _ out->bst )->ts=sz; 
( first _ out->bst )->next= NULL; 
first _ out->bcsz=a; 
} 

} 

void add_to_blackboard(char *np,void *bp,char t,size_t sz) 
{ 
struct bkb *bkp; 
int found; 
if(first _ out= NULL) 

{ 
first_out=(struct bkb *) calloc(l ,sizeof(struct bkb)); 
if(first_out!=NULL && strlen(np)!=O) 

{ 
strcpy( first _ out->bname,np ); 
if(t) 

create _ bbint(bp,sz); 
else 
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} 
} 

else 
{ 

create _ bbstring(bp,sz); 

bkp=first _ out; 
found=O; 
while(bkp!=NULL && found=O) 

{ 
if{ strcmp(np,bkp->bname )=O) 

{ 
if{t) 

addi_ bb(bp,bkp,sz); 
else 

adds _ bb(bp,bkp,sz); 
found=l ; 
} 

else 
bkp=bkp->bnext; 

} 
if(bkp NULL) /* or found is false * / 

{ 
bkp=first_ out; 
first_out=(struct bkb *) calloc(l ,sizeof{struct bkb)); 
if( first _out!= NULL && strlen( np) ! =O) 

} 

{ 
first _ out->bnext=bkp; 
if{t) 

create _ bbint(bp,sz); 
else 

create _ bbstring(bp,sz); 
} 

else 

} 
} 

first_ out=bkp; 

void adds_bb(void *bp,struct bkb *bkp,size_t sz) 
{ 
void *nb; 
size t t; 
struct aux * f; 

if(bkp->bbf!=NULL && bp!=NULL && sz!=O) 
{ 
f=first _ out->bst; 
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while(f->next!=NULL) 
f=f->next; 

f->next=(struct aux*) calloc(l ,sizeof(struct aux)); 
f=f->next; 
f->type=S _ STR; 
f->ts=sz; 
f->next=NULL; 
memcpy( &t,bkp->bbf,SZT); 
t+=sz; 
memcpy(bkp->bbf,&t, SZT); 
nb=( void *) calloc( l ,(bkp->bcsz )+sz+ 1 ); 

- 112 -

memcpy(nb,bkp->bbf,bkp->bcsz); /* copy the previous contents to new location*/ 
memcpy(nb+(bkp->bcsz),&Cts,l); /* add a; to new location*/ 
memcpy(nb+(bkp->bcsz)+ l,bp,sz); /* add string to new location*/ 
bkp->bcsz+=sz+ 1; 
free(bkp->bbf); 
bkp->bbf=nb; 
} 

} 

void addi_bb(void *bp,struct bkb *bkp,size_t sz) 
{ 
void *nb; 
size_t t; 
struct aux *f; 
if(bkp->bbf!=NULL && bp!=NULL && sz!=O) 

{ 
f=first out->bst· - ' 
while(f->next !=NULL) 

f=f->next; 
f->next=(struct aux *) calloc(l ,sizeof(struct aux)); 
f=f->next; 
f->type=S _ INT; 
f->ts=sz; 
f->next=NULL; 
memcpy( &t,bkp->bbf,sizeof( t) ); 
t+=sz; 
memcpy(bkp->bbf,&t, SZT); 
nb=(void *) calloc(l ,(bkp->bcsz)+SZT+2+sz); 
memcpy( nb,bkp->bbf, bkp->bcsz ); 
memcpy(nb+(bkp->bcsz),&Cts, 1 ); 
memcpy(nb+(bkp->bcsz)+ l ,&sz,SZT); 
memcpy( nb+(bkp->bcsz )+SZT + l ,&Cds, 1 ); 
memcpy(nb+(bkp->bcsz)+SZT +2,bp,sz); 
bkp->bcsz+=sz+2+SZT; 
free(bkp->bbf); 
bkp->bbf=nb; 
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} 
} 

void send _ blackboard( char *np) 
{ 
struct bkb *p; 
char found; 
if{strlen(np )!=O) 

} 

{ 
found=O; 
p=first _ out; 
while(p!=NULL && found=O) 

{ 
if{strcmp(np,p->bname)=O && p->bbf1=NULL) 

{ 
clear _ buffer(); 
CB(MONEY); 
CB(p->bname ); 
CB(LSB); 
BFSZ; 
size _ str=strlen( np )+ 2; 
memcpy( &buffer[ size _ str ],p->bbf,p->bcsz ); 
strcpy( &buffer[p->bcsz+strlen( np )+2],RSB ); 
strcpy( &buffer[p->bcsz+strlen( np )+ 3 ],POINT); 
found=l ; 
size _ str=p->bcsz+strlen( np )+4; 
tell_ server( size _ str); 
free(p->bbt); 
} 

else 
p=p->bnext; 

} 
} 

void read_and_kill_bb(char *n, char t, void *** mp) 
{ 
if{n!=NULL && strlen(n)!=O && open_client()) 

{ 
if( t=T _ W AIT) 

{ 
putf _info(n,AST); 
tell_ server( size _ str); 
waiting_read(mp ); 
} 

else 
{ 
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} 
} 

putf _ info(n,AST); 
tell_ server( size _ str); 
nowaiting_read(mp ); 
} 

void read_bb(char *n, chart, void *** mp) 
{ 
struct bkb *p; 
char found; 

if(n!=NULL && strlen(n)!=0 && open_client()) 
{ 

} 

if( t=T _ W AIT) 
{ 
putf _info(n,IMS); 
tell_ server( size _ str ); 
waiting_read(mp ); 
} 

else 
{ 
putf_info(n,IMS); 
tell_ server(size _ str); 
nowaiting_read(mp ); 
} 

} 

void waiting_read( void * * * mp) 
{ 
int fdc=-1; 
char s[256]; 
char sa[20]; 
strcpy( s, CNT _ D IR); 
strcat(s,cli_ name); 
strcat( s, USCR); 
itoa(pid,sa); 
strcat(s,sa); 
if((fdc=open(s,O_RDONLY I O_NONBLOCK))>-1) 

{ 
sleep(20); 
get_info(fdc); 
decode_info(mp); 
close(fdc); 
} 

else 
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fprintf(stderr, "Can't open client's fifo\n"); 
} 

void nowaiting_read(void *** mp) 
{ 
int fdc=-1 ; 
char s[256]; 
char sa[20]; 
strcpy( s, CNT _ D IR); 
strcat( s, cli _ name); 
strcat( s, USCR); 
itoa(pid,sa); 
strcat( s, sa); 
if( (fdc=open( s, 0 _ RDONL Y I O _ NONBLOCK) )>-1) 

{ 
errno=0; 
sleep(20); 
get_info(fdc ); 
if( errno= 0) 

decode_info(mp); 
else 

fprintf( stderr, "Error number: ¾d\n" ,errno ); 
close( fdc ); 
} 

else 
fprintf(stderr,"Can't open client's fifo\n") ; 

} 

int get_info(int fdc) 
{ 
char c; 
ssize_t n=0; 
int i=0; 
clear _ buffer(); 
do { 

n=read(fdc,&c, 1 ); 
if(n>0) 

{ 
buffer[i]=c; 
i++· , 
} 

} while(c!=S_END && n>-1 && i<PIPE_BUF); 
if(n= -1) 

fprintf(stderr, "Error while reading fifo\n") ; 
if( c= S _ END && n>0) 

{ 
buffer[i-1 ]=NULLC; 
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} 

return(l); 
} 

else 
{ 
buffer[0]=NULLC; 
return(0); 
} 

void decode _info( void * * * mp) 
{ 
switch(buffer[0]) 

{ 
case S_RB:put_bkb(&buffer[l],mp); 

break; 
case S_KB:put_bkb(&buffer[l],mp); 

break; 
case E_NOB:fprinttrstderr,"The blackboard does not exist\n"); 

break; 
case E_CNT:fprintf(stderr,"The client does not exist\n"); 

break; 
} 

} 

void put_bkb(char *buf,void *** mp) 
{ 
int i,a; 
size_t sz=0; 
char *sa; 
size _ t tam=0; 
char ch; 
size_t nb=0; 
size_t count=0; 
void ** pt; 
i=a=0; 
while(buf:Ii]!=S_BD && i<PIPE_BUF) i++; 
i±rbuf:Ii]= S _ BD) 

{ 
sa=( char *) calloc( 1,i-a+ 1 ); 
memcpy(sa,buf,i-a); 
memcpy( &sa[i-a+ 1], "\0", 1 ); 
free(sa); 
i++; 
memcpy( &nb,&buf:Ii], SZT); 
i+=SZT; 
pt=(void **) calloc(nb+ l ,sizeo±rvoid *)); 
*(pt+nb )=NULL; 
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i~bufii)=S_BS) 
{ 
count=O; 
while(bufii)!=S_ED && i<PIPE_BUF) 

{ 

} 

i++; 
memcpy(&ch,&bufii],sizeo~char)); 
i++; 
memcpy( &tam,&bufii],SZT); 
i+=SZT; 
~bufii)=S_DS) 

} 

{ 
a=++i; 
while(bufii)!=S_BS && bufii]!=S_ED && i<PIPE_BUF) 

i++; 
i~bufii]=S _ BS Il bufii]=S _ ED) 

{ 

} 

*(pt+count )=( void *) calloc(tam+SZT +sizeo~ char), 1 ); 
i~*(pt+count)!=NULL) 

{ 
memcpy(*(pt+count),&ch,sizeo~char)); 
memcpy( (*(pt+count) )+sizeo~ char),&tam,SZT); 
memcpy( ( *(pt+count) )+SZT +sizeo~ char ),&bufI a ],i-a); 
count++; 
} 

} 

i~bufii]=S _ ED) 
{ 
if(mp!=NULL) 

*mp=pt; 
else 

GP=pt; 
} 

else 

} 

{ 
i=O; 
while(i<=nb) 

{ 
free(*(pt+i)); 
i++; 
} 

free(pt); 
} 
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} 

size_t get_nelem(char * sa,struct aux** pdt) 
{ 
struct bkb *p; 
struct aux *ap; 
size_t sz=O; 
int found=O; 
p=first_ out; 
while(p!=NULL && found=O) 

{ 

} 

if( strcmp( sa,p->bname )=O) 
{ 
found= l ; 
*pdt=p->bst; 
ap=p->bst; 
while(ap!=NULL) 

{ 
sz++; 
ap=ap->next; 
} 

} 
else 

p=p->bnext; 

retum(sz); 
} 

void putf_info(char *np,char *c) 
{ 
struct bkb *p; 
char found; 
found=O; 
p=first _ out; 
while(p!=NULL && found=O) 

{ 
if(strcmp(np,p->bname)=O && p->bst!=NULL) 

{ 
clear _ buffer(); 
strcpy(buff er, c); 
put_ info(p ); 
found= l ; 
} 

else 
p=p->bnext; 

} 
} 
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void put_info(struct bkb *p) 
{ 
struct aux *a; 
char s[20]; 
strcat(buffer,cli_ name ); 
strcat(buffer, USCR); 
itoa(pid,s); 
strcat(buff er ,s); 
strcat(buffer,LSB ); 
strcat(buffer ,p->bname ); 
BFSZ; 
memcpy(BUF,&Cts,sizeof(Cts)); 
size_str++; 
a=p->bst; 
BFSZ; 
while(a!=NULL) 

{ 
if(a->type S_STR Il a->type S_INT) 

{ 
memcpy(BUF ,&( a->type ),sizeof( a->type) ); 
size _str++; 
memcpy(BUF ,&( a->ts ),sizeof( a->ts) ); 
size _ str+=sizeof( a->ts ); 
} 

a=a->next; 
} 

strcpy(BUF ,RSB ); 
size _ str++; 
strcpy(BUF ,POINT); 
size _ str++; 
} 

/* rem oves one blackboard and the needed structures * / 

void remove_bkb(struct bkb *p) 
{ 
struct bkb *ax; 

ax=first_ out; 
while(ax->bnext! =NULL && ax->bnext!=p) 

ax=ax->bnext; 

if(p= ax->bnext) 
{ 
ax->bnext=p->bnext; 
remove _ aux(p->bst ); 
free(p->bbf); 
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} 

free(p) ; 
} 

void remove_aux(struct aux *x) 
{ 
struct aux *a; 
a=x; 
while(a!=NlJLL) 

{ 
x=x->next; 
free(a); 
a=x; 
} 

} 

void remove _ail_ bkb( void) 
{ 
struct bkb *a; 
a=first_ out; 
while( a!=NlJLL) 

{ 
free( a->bbf); 
rem ove_ aux( a->bst ); 
a=first out->bnext; 
free(first_ out); 
} 

first _ out= NlJLL; 
} 

void clear _ buffer( void) 
{ 
int i; 
for(i=O;i<PIPE _ BUF;i++) 

buffer[i]=NULLC; 
} 

void DEF _STR(int n, ... ) 
{ 
int w,i; 
size_t vi; 
char * s; 
char t,c,spid[20]; 
va_list vl; 

va_start(vl,n); 
s=va_arg(vl,char *); 
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t=va _ arg( vl, char); 
clear _ buffer(); 
if{t=T_KILL) 

buffer[O]=S _ KB; 
else 

buffer[O]=S _ RB; 
strcat(buffer ,cli_ name ); 
strcat(buffer, USCR); 
itoa(pid,spid); 
strcat(buffer ,spid); 
BFSZ; 
buffer[ size _ str ]=S _ BM; 
strcat(buff er, s); 
BFSZ; 
for(i=3 ;i<=n;i++) 

{ 
memcpy( &buffer[ size _ str ],&Cts, 1 ); 
size _ str++; 
c=va _ arg(vl,char); 
memcpy( &buffer[ size _ str++ ],&c, 1 ); 
if( c= S _ INT) 

{ 
vi=( size _ t) va_ arg( vl,int ); 
memcpy( &buffer[ size _str ],&vi,sizeof( size _ t) ); 
size _ str+=sizeof( size _ t ); 
i++; 
} 

} 
buffer[ size _ str++ ]=S _ EM; 
buffer[ size _ str++ ]=S _ END; 
tell_ server( size _ str ); 
va_end(vl); 
} 

void get_data(void ** mp, size_t ind, void ** data) 
{ 
static char cr; 
static short int si; 
static int it; 
static long int li; 
static float ft ; 
static double de; 
static long double Id; 
static char * sg; 

char tp; 
size t ts=O· 

- ' 
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ind--; 
iftmp!=NULL && ind >=O) 

{ 
memcpy(&tp, *(mp+ind),sizeoft char)); 
memcpy( &ts, *( mp+ind)+sizeof( char),sizeof( size _t) ); 
ifttp=S_STR && ts>O) 

{ 
if(ts=l) 

{ 
memcpy(&cr, *(mp+ind)+sizeoft char)+sizeoftsize _t),sizeoft char)); 
*data=(void *) (&cr); 

} 
else 

} 

{ 
if(ts> 1) 

{ 
sg=( char *) ( (*( mp+ind) )+sizeoft char )+sizeoft size _ t) ); 
*data=(void *) sg; 
} 

else 
*data=(void *) NULL; 

} 

else 
{ 
ifttp=S_INT && ts>O) 

{ 
switch(ts) 

{ 
case sizeoftshort int): 

memcpy( &si,*( mp+ind)+sizeof( char)+SZT ,sizeoftint) ); 
*data=(void *) (&si); 
break; 

case sizeoftint): 
memcpy( &it, *(mp+ind)+sizeoft char)+SZT ,sizeoftint) ); 
*data=(void *) (&it); 
break; 

/* case sizeoftlong int): 

*/ 

memcpy( &li, *(mp+ind)+sizeof( char)+SZT ,sizeoftlong int) ); 
*data=(void *) (&li); 
break; 

case sizeoftfloat): 
memcpy( &ft, *(mp+ind)+sizeoft char)+SZT ,sizeoftfloat) ); 
*data=(void *) (&ft); 
break; 
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case sizeo:ft double): 
memcpy( &de,*( mp+ind)+sizeo:ft char)+SZT ,sizeo:ft double)); 
*data=(void *) (&de); 
break; 

case sizeof(long double): 
memcpy( &Id, *(mp+ind)+sizeo:ft char)+SZT ,sizeo:ftlong double)); 
*data=(void *) (&Id); 

} 
} 

else 

break; 

*data=(void *) NULL; 

} 

} 
} 

short int Rs( void * pt) 
{ 
short int s; 
memcpy(&s,pt,sizeof(short int)); 
retum(s); 
} 

int Ri(void * pt) 
{ 
inti; 
memcpy( &i,pt,sizeo:ftint) ); 
retum(i); 
} 

long int Rl(void * pt) 
{ 
long int I; 
memcpy( &l,pt,sizeof(long int) ); 
retum(l); 
} 

float R:ft void * pt) 
{ 
float f; 
memcpy(&f,pt,sizeo:f{float)); 
retum(t); 
} 

double Rd(void * pt) 
{ 
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int d; 
memcpy( &d,pt,sizeof( double)); 
return(d); 
} 

long double Rld(void * pt) 
{ 
int Id; 
memcpy( &ld,pt,sizeof(long double)); 
return(ld); 
} 
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The follawing functions are responsible for the management of clients and 
blackboards. 

/* Needed header files*/ 

#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib. h> 
#include <syslog.h> 
#include <limits.h> 
#include <string.h> 
#include "m_signal.h" 
#include "conv.h" 
#include "defs.h" 

/* Functions prototype*/ 

int daemon _init( void); 
void error _log(int ,char *); 
void error _logint(int ); 
static void sig_usr(int); 
static void sig_term(int); 
void creat_fifo(void); 
void read_fifo(char *); 
void daemon _install( void); 
void create _ client( char *); 
void decode _ info( char *); 
int decode( char *); 
int mem_client(char *); 
void destroy _ client( char *); 
void create_blackboard(char *); 
void read_kill_blackboard(char *); 
void read _ blackboard( char *); 
void clear _ buffer(); 
void remove _ blackboard( char *); 
void send _ error _ to _ client( char *, char ); 
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/* Global data definition */ 

int fd; /* File server's descriptor witch is used to listen to resquest * / 
int fdp; /* File holding daemon's pid */ 
char buffer[PIPE_BUF]; /* Buffer for FIFO */ 
pid _ t proc _id; 

/* Constant data * / 

const char Cbs=S_BS; 
const char Cds=S _ DS; 
const char Cim=S _ RB; 
const char Cbd=S BD; 
const char Cend=S _ END; 
const char Ced=S _ ED; 

/* List of clients * / 

struct list cli 
{ 
int fdc; 
char cli_name[MaxBBname+3]; 
struct list _ cli * next _ cli; 

}; 

struct list_cli *first_cli; /* pointer to first client list member */ 

/* Aux. data * / 

struct aux 
{ 
char type; 
int ts; 
struct aux * next; 
}; 

/* Blackboard Data Representation */ 

struct list bb 
{ 
char bkbName[12]; 
void * dt; 
size_t dsz; 
struct aux * auxd; 
struct list_bb * next_bb; 
}; 
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struct list_bb * first_bb ; /* pointer to first backboard list member */ 

void remove_all_aux(struct aux*); 
int cmp_structure(struct aux *,char*); 
void sendb_client(char *, struct list_bb *); 
void put_answer_in_fifo(int, struct list_bb *); 
size_t get_nelem(struct aux*); 

/* Daemon self installation function * / 

int daemon _init(void) 
{ 
pid_t pid; 

if( (pid=fork() )<0) 
retum(-1); 

else 
if(pid!=0) 

exit(0); /* The father exits*/ 

/* The son goes on * / 

setsid(); 

if( (pid=fork() )<0) 
retum(-1); 

else 
if(pid!=0) 

exit(0); /* The son exits */ 

/* The son's son continues * / 

proc _id=getpid(); 
if((fdp=open(SVR_ID, O_WRONLY j O_CREAT j O_TRUNC, 
S _ IWUSRjS _ IRUSR))=-1) 

{ 
error_log(2,"Can't create file with Daemon's Pid"); 
exit(l ); 
} 

else 
{ 
if( write( fdp,&proc _id,sizeof(proc _id) )=-1) 

{ 

} 

error _log(2, "Can't write PID to file"); 
exit(0); 
} 
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openlog("wd" ,LOG_ ND ELA Y,LOG _ USER); 
chdir( "/"); 
umask(0); 
return(0); 
} 

/* Error handling routine * / 

void error _log(int priority,char * error _message) 
{ 
switch(priority) 

{ 
case 0: /* Information */ 

syslog(LOG_INFO,"Information message - ¾s. ",error_message); 
break; 

case 1 : /* Warning * / 
syslog(LOG_ W ARNING,"Warning message - ¾s. ",error_message); 
break; 

case 2: /* Error */ 
syslog(LOG _ ERR, "Error message - ¾s. ",error _message); 
break; 

} 
} 

void error _logint(int i) 
{ 
char s[20]; 
itoa(i,s); 
error _log(0,s ); 
} 

void creat_ fifo(void) 
{ 
if(mkfifo(SVR_FF, S_IRUSR I S_IWOTH I S_IWGRP I S_IWUSR)=0) 

{ 
if( (fd=open(SVR _FF, 0 _ RDONL Y))= -1) 

error _log(2, "Can't open fifo file"); 
} 

else 
error _log(2, "Can't make fifo file") ; 

} 

void read _ fifo( char * buf) 
{ 
char c; 
ssize _ t n=0; 
int i=0; 
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} 

do { 
n=read(fd,&c, 1 ); 
if(n=-1) 

error _log( 1, "Error while reading"); 
else 

{ 
bufti]=c; 
i++· 

' 
} 

} while(c!='.' && n>O && i<PIPE_BUF); 
if(c='.' && n>O && i<PIPE_BUF) 

{ 
bufti-1 ]='\O'; 
decode _info(buf); 
clear _ buffer(); 
i=O; 
} 

else 
buftü]='\O'; 

void decode _info( char *buf) 
{ 
switch(buft O]) 

{ 
case S _CC: if(! mem _ client( &buft 1])) create _ client( &bufl) ]); 

else error_log(O,"Client is already know to server"); 
break; 

case S _ KC: destroy _ client( &buft 1 ]); 
break; 

case S _ CB: create _ blackboard( &buft 1 ]); 
break; 

case S _ KB: read _ kill _ blackboard( &buft 1 ]); 
break; 

case S_RB:read_blackboard(&buftl]); 
break; 

} 
} 

void read _ kill_ blackboard( char *buf) 
{ 
int i=O; 
int a=O; 
int f_test=O; 
int Ctestl =O; 
char *s; 
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char sc[l2] ; 
s=(char *) calloc(l ,MaxBBname+3); 
if(first_ bb !=NULL) 

{ 
while(bufîi]!=S_BM && bufîi]!=NULLC && i<PIPE_BUF) i++; 
if(bufîi]=S _BM) 

{ 
stmcpy( se, buf,i ); 
if( mem _ client( se)) /* Is there such a client ? * / 

f testl=I · - ' 
else 

f testl=0· - , 
if(buf[i]=S BM) 

{ 
a=1; 
while(bufîi]!=S_BS && bufîi]!=NULLC && i<PIPE_BUF) i++; 
if(bufîi]=S_BS) 

} 

{ 
stmcpy(s,&bufîa],i-a); 
f_test=l; 
} 

else 
f_test=0; 

} 
} 

read _ blackboard(buf); 
if(f_testl) 

rem ove_ blackboard( s ); 
else 

{ 
if(f_test) 

send _ error _to _ client(sc,E _ NOB); 
error _log( 1, "Can't rem ove blackboard "); 
} 

free(s); 
} 

void read _ blackboard( char *but) 
{ 
struct list_bb * aux; 
struct list_bb * x; 
int i=0; 
int a=0; 
int f_test=0; 
int found=0; 

Stage Thesis 

- 130-



Appendix D - Server functions 

char *s; 
s=(char *) calloc(l ,MaxBBname+3); 
aux=first_bb; 
x=NULL; 
if( first _ bb ! = NULL) 

{ 
while(bufli]!=S_BM && bufli]!=NULLC && i<PIPE_BUF) i++; 
if(bufli]=S _ BM) 

{ 
stmcpy( s,buf,i); 
if(mem_client(s)) /* Is there such a client?*/ 

f test=l · 
- ' 

else 
f test=0· - ' 

} 
a=++i; 
while(f_test && bufli]!=S_BS && bufli]!=NULLC && i<PIPE_BUF) i++; 
if(bufli]=S_BS) 

} 

{ 
while(aux->bkbName!=NULL && found=0) 

{ 
if(stmcmp(&bufla],aux->bkbName,i-a)=0) 

{ 
if( cmp _ structure( aux->auxd,&bufl ++i])) 

{ 
x=aux; 
f_test= l ; 
} 

else 
{ 
error_log(0,"Structure not equal"); 
send _ error _ to _ client( s,E _ NOB ); 
f_test=0; 
} 

found= l ; 
} 

else 
aux=aux->next bb· - ' 

} 

else 
f test=0· 
- ' 

} 

if(f_test) 
sendb _ client( s,x ); 

free(s); 
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} 

void sendb_client(char *cname, struct list_bb *pt) 
{ 
struct list_cli *p; 
p=first _ cli; 
while(p!=NULL) 

{ 
if( strcmp( cname,p->cli _ name )=O) 

{ 
put _answer _in_ fifo(p->fdc,pt); 
retum; 
} 

p=p->next _ cli; 
} 

} 

void put_answer_in_fifo(int fdc, struct list_bb *pt) 
{ 
struct aux * x; 
size_t n=O; 
size_t scale; 
size_t sz=O; 
int i; 
clear _ buffer(); 
memcpy(buffer,&Cim, 1 ); 
n=strlen(pt->bkbN ame ); 
memcpy( &buffer[ ++sz ],pt->bkbN ame,n ); 
sz+=n; 
memcpy( &buffer[ sz ],&Cbd, 1 ); 
sz++; 
n=get_ nelem(pt->auxd); 
memcpy( &buffer[ sz ],&n,sizeof( size _ t) ); 
sz+=sizeo:ft size _ t ); 
x=pt->auxd; 
scale=O; 
do { 

memcpy( &buffer[ sz ],&Cbs, 1 ); 
sz++; 
memcpy( &buffer[ sz ],&(x->type ),sizeof( char)); 
sz++; 
memcpy( &buffer[ sz ],&( x->ts ), sizeo:ft size _ t) ); 
sz+=sizeof( size _ t ); 
memcpy( &buffer[ sz ],&Cds, 1 ); 
sz++; 
memcpy( &buffer[ sz ],(pt->dt )+scale,x->ts ); 
scale+=(x->ts); 
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sz+=(x->ts); 
x=x->next; 

} while(x!=NULL); 
memcpy( &buffer[ sz++ ],&Ced, 1 ); 
memcpy( &buffer[ sz++ ],&Cend, 1 ); 
if(write(fdc,buffer,sz)!=sz) 

error _log( 1, "Can't write to client's fifo "); 
} 

size_t get_nelem(struct aux *p) 
{ 
int count; 
count=O; 
while(p !=NULL) 

{ 
p=p->next; 
count++; 
} 

retum count; 
} 

int cmp_structure(struct aux *p,char *but) 
{ 
int r=O; 
int ok=l ; 
size_t t=O; 
if(p--NULL) 

retum(O); 
while(p!=NULL && ok && bufir]!=S EM) 

{ 
if( stmcmp( &bufI r ],&(p->type ), 1 )=O) 

{ 
ok=l ; 
if(p->type=S _ lNT) 

{ 
r++; 
memcpy( &t,&bufI r ],sizeof(p->ts) ); 
if( t=p->ts) 

{ 
ok=l ; 
r+=sizeof(p->ts ); 
} 

else 
ok=O; 

} 
else 

r++-, 
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if(bufir]=S BS) 
r++; 

if(ok) 
p=p->next; 

} 
else 

ok=O; 
} 

if(p NULL && ok && bufI r ]=S _ EM) 
retum(l); 

else 
retum(O); 

} 

void send_error_to_client(char *s, char error) 
{ 
struct list _ cli *b; 
char c[2]; 
c[O]=error; 
c[l]=S_END; 
b=first _ cli; 
while(b !=NULL) 

} 

{ 
if( strcmp(b->cli_ name,s )==O) 

{ 
write(b->fdc, c,2); 
retum; 
} 

b=b->next _ cli; 
} 

void rem ove_ blackboard( char *nclient) 
{ 
struct list _ bb *b; 
struct list_bb *a; 
b=first _ bb; 
while(b!=NULL && nclient!=NULL && strlen(nclient)!=O) 

{ 
a=b; 
if( strcmp( nclient, b->bkbN ame )=O) 

{ 
if(b fo st_ bb) 

first_ bb=NULL; 
else 

a->next_bb=b->next_bb; 
free(b->dt); 
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} 

remove _ all_ aux(b->auxd); 
free(b ); 
retum; 
} 

else 
b=b->next _ bb; 

} 

/* Appends a new client to the client's list * / 

void create _ client( char *but) 
{ 
char s[50]; 
int fda; 
struct list_cli *p; 

strcpy( s, CNT _ D IR); 
strcat( s, but); 
if(mkfifo(s,S_IRUSR I S_IROTH I S_IRGRP I S_IWUSR)=0) 

{ 
if((fda=open(s,O_WRONLY I O_CREAT I O_TRUNC))=-1) 

{ 
strcpy(s,"Can't create file for client - "); 
strcat(s,buf); 
error _log(2,s ); 
} 

else 
{ 
if(first_cli--NULL) /* First client?*/ 

{ 
first_cli=(struct Iist_cli *) calloc(l,sizeof(struct list_cli)); 
p=first _ cli; 
} 

else /* There are others * / 
{ 
p=first _ cli; 
while(p->next _ cli !=NULL) 

p=(p->next_ cli); 
p->next _ cli=( struct list _ cli *) calloc( l ,sizeof( struct list _ cli) ); . 
p=p->next _ cli; 
} 

strcpy(p->cli_name,buf); /* copy client's name to client's list */ 
p->fdc=fda; /* same thing for file descriptor * / 
} 

} 
else 

Stage Thesis 

- 135 -



Appendix D - Server functions 

error_log{l ,"Can't make fifo for client"); 
} 

/* Search memory to see if a client bas already been created * / 

int mem _ client( char *buf) /* Is client in memory ? * / 
{ 
struct list_ cli *p; 
p=first _ cli; 
while(p!=NULL) 

{ 
if( strcmp(buf, p->cli _ name )=O) 

retum(l); 
p=p->next _ cli; 
} 

retum(O); 
} 

void destroy _ client( char *buf) 
{ 
struct list _ cli *p; 
struct list_cli *a; 
char s[SO]; 

p=first _ cli; 
a=NULL; 
while(p!=NULL) 

{ 
if( strcmp(buf, p->cli _ name )=O) 

{ 
error _log(O, "Found Client, removing ... "); 
strcpy( s, CNT _ D IR); 
strcat( s,p->cli _ name ); 
if(p füst_cli) 

{ 
free(p ); 
first_cli=NULL; 
} 

else 
{ 
a->next_ cli=p->next_ cli; 
free(p); 
} 

if( unlink( s )<O) 
{ 
strcpy(s, "Can't remove file of client "); 
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strcat( s,buf); 
error _log(l ,s ); 
} 

retum; 
} 

a=p; 
p=p->next _ cli; 
} 

error _log(O, "Can't find client"); 
} 

void create _ blackboard( char *buf) 
{ 
if( decode(buf)=O) 

error_log(l ,"Can't create blackboard"); 

} 

int decode( char *buf) 
{ 
struct list _ bb * aux; 
int i=O; 
int a=O; 
int scale; 
size_t t_size; 
size _ t bb _ size; 
int f_test=O; 
size_t auxdata=O; 
struct aux * ax; 
struct aux * bx; 
aux=first _ bb; 
bx=NULL; 
first_bb=(struct list_bb *) calloc(l ,sizeof(struct list_bb)); 
if( first _ bb ! = NULL) 

{ 
f_test= l ; 
while(bufii]!=S_BM && bufii]!=NULLC && i<PIPE_BUF) i++; 
if(bufii]=S _ BM) 

{ 
if(i+ l >MaxBBname) 

stmcpy(first_ bb->bkbName,buf,MaxBBname ); 
else 

stmcpy(first_ bb->bkbName,buf,i); 
f_test=l; 
a=++i; 
while(bufii]!=S_BS && i<PIPE_BUF) i++; 
if(bufii]= S_BS) /* Get blackboard size */ 
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{ 
memcpy( &bb _ size,&bufl a], sizeof( size _ t)); 
first _ bb->dt=calloc( l ,bb _ size ); 
if(first_bb->dt NULL) 

f test=O· 
- ' 

} 
else 

f test=O· - ' 
scale=O; 
bx=NULL; 
while(bufli]!=S_EM && f_test && i<PIPE_BUF) 

{ 
a=++i; 
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while(bufli]!=S_DS && bufli]! =S_BS && bufli]!=S_EM && i<PIPE_BUF) 
i++; 

} 
} 

} 

if(bufli]=S_BS 11 bufli]=S_EM) /* String to copy */ 
{ 
ax=(struct aux *) calloc(l,sizeof(struct aux)); 
memcpy((first_bb->dt+scale),(void *) (&bufla]),i-a); 
ax->ts=i-a; 
ax->type=S _ STR; 
scale=scale+i-a; 
if(first_bb->auxd NULL) 

first _ bb->auxd=ax; 
else 

bx->next=ax; 
bx=ax; 
} 

if(bufli]=S_DS) /* Number to copy */ 
{ 
ax=(struct aux*) calloc(l ,sizeof(struct aux)); 
memcpy(&t_size,&bufla],sizeof(size_t)); 
ax->type=S_INT; 
ax->ts=t _ size; 
memcpy((first_bb->dt+scale),(void *) (&bufl++i]),t_size); 
scale+=t_size;i=i+ ((int) t_size); 
if( first _ bb->auxd=NULL) 

first _ bb->auxd=ax; 
else 

bx->next=ax; 
bx=ax; 
} 

if(i= PIPE _ BUF) 
f test=O· - ' 
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else 
f test=O· - , 

if(!f_test) 
{ 
free( first _ bb->dt ); 
remove _ all_ aux(first_ bb->auxd); 
free(first_ bb ); 
first _ bb=aux; 
} 

else 
{ 
first _ bb->dsz=bb _ size; 
first _ bb->next _ bb=aux; 
} 

retum(f _test); 
} 

void remove_all_aux(struct aux *p) 
{ 
struct aux * x; 
x=NULL; 
while(p!=NULL) 

} 

{ 
x=p; 
p=p->next; 
free(x); 
} 

void clear _ buffer( void) 
{ 
int i; 
for(i=O;i<PIPE _ BUF;i++) 

buffer[i]=NULLC; 
} 

static void sig_ usr(int signum) 
{ 
if(signum= SIGUSRI && first_bb!=NULL) 

{ 
error _log(O,first _ bb->bkbN ame ); 
} 

if(signum= SIGUSR2) 
read _ fifo(&buffer[O]); 

} 
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static void sig_term(int signum) 
{ 
struct list_ cli *p; 
struct list_bb *b; 
void *v; 
char s[S0]; 

if( unlink( SVR _FF)<0) 
error_log(l,"Can't unlink FIFO"); 

if( unlink(SVR _ ID )<0) 
error_log(l,"Can't unlink file with PID"); 

p=first_ cli; 
if(p=NULL) 

error _log(0, "No clients to remove"); 
while(p!=NULL) 

{ 
strcpy( s, CNT _ D IR); 
strcat( s,p->cli _ name ); 
if( unlink( s )<0) 

{ 
strcpy( s, "Can't unlink file "); 
strcat( s,p->cli _name ); 
error_log(l,s); 
} 

p=p->next _ cli; 
free(first_ cli); 
first_cli=p; 
} 

b=first_bb; 
if(b--NULL) 

error_log(0,"No Blackboards to remove"); 
while(b!=NULL) 

{ 
free(b->dt); 
b=b->next bb· - , 
remove _ all_ aux(first_ bb->auxd); 
free(first_ bb ); 
first_bb=b; 
} 

closelog(); 

exit(0); 
} 

void daemon _install( void) 
{ 
int ff; 
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if((ff=open(SVR_ID,O _RDONL Y))!=-1) 
{ 

} 

printf("\nDaemon already in memory. Exit ... \n"); 
exit(0); 
} 

static void sig_pipe(int signum) 
{ 
error_log(l ,"Client is now longer active"); 
error _log(l, "It didn't read back the answer"); 
} 

void main(void) 
{ 
daemon _install(); 
if( daemon _init() ! =0) 

exit(l); 
creat fifo(); 

if(signal(SIGUSRl ,sig_usr)=SIG_ERR) 
{ 
error_log(2,"Can't catch SIGUSRl "); 
exit( 1 ); 
} 

if(signal(SIGUSR2,sig_ usr)=SIG _ ERR) 
{ 
error_log(2,"Can't catch SIGUSR2"); 
exit(l); 
} 

if(signal(SIGTERM,sig_term)=SIG_ERR) 
{ 
error_log(2,"Can't catch SIGTERM"); 
exit(l ); 
} 

if( signal(SIGPIPE,sig_pipe )=SIG_ ERR) 
{ 
error_log(2,"Can't catch SIGPIPE"); 
exit(l); 
} 

while(l) { } 
} 

Stage Thesis 

- 141 -



Appendix E - Interface functions 

These are intermediary fonctions between the clp(FD) program and the client 
functions. 

Interf ace.h 

void * SuPointer; 
size_t SuSize; 
int SuType; 
unsigned long var_ ulong; 
Atomlnf * atom; 

Interf ace.c 

/* This is the interface C file that must be included in the first line * / 
/* of the progam. usr that is generated by clp _ fd for every program.pl file * / 

#include "cliente" 

/* Functions definition * / 

void put_int_in_server(char *, int); 
void put_string_in_server(char *,char*); 

/* GLOBAL DATA*/ 

/* Extemal data * / 

extem void * SuPointer; 
extem size_t SuSize; 
extem int SuType; 
extem unsigned long var_ ulong; 
extem Atomlnf * atom; 

/* Local data * / 

unsigned long vt; /* Var Tag */ 
char* sp; 
void * Car; 
unsigned int si; 
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/* Constants definition * / 

#define CONSTANT 1 
#define LIST 2 
#define VALUE 3 
#define ATOMINF (Atomlnf *) 

/* Macros definition * / 

#define put_ constant_ in_ server(N ame) 
{ 
sp=atom->name; 
sp=atom->name; 
} 

#define put_ value _in_ server(N ame) 
{ 
memcpy((void *) &var_ulong,SuPointer,SuSize); 
vt=var_ulong & 7; 
var_ ulong=var _ ulong/8; 
si=(int) var_ ulong; 
switch(vt) 

{ 
case 0: /* INT */ 

put_int_in_server(Name,si); 
break; 

case 3: /* CST */ 
atom=ATOMINF var_ulong; 
sp=atom->name; 
put_ string_ in_ server(Name,sp ); 
break; 

} 
} 

#define put_in_server(Name) 
{ 
switch(SuType) 

{ 
case CONSTANT:put_constant_in_server(Name) 

break; 
case V ALUE:put_value_in_server(Name) 

break; 
} 

} 

/* Local Functions */ 
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void put_int_in_server(char * name,int a) 
{ 
if(name! =NULL) 

} 

{ 
CREA TE CLIENT 
ADDB(name,&a,S _ INT,sizeof(int)) 
SEND _ BLACKBOARD(name) 
KILL CLIENT 
} 

void put_string_in_server(char * name, char* str) 
{ 
if(name!=NULL && str! =NULL) 

{ 

} 

CREATE CLIENT 
ADDB(name,str,S_STR,strlen(str)) 
SEND _BLACKBOARD(name) 
KILL CLIENT 
} 
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These header files are needed to convert values, to handle signais and to define the 
symbols used in the communication protocols as well as the pathname and name, of 
both server and client program. 

defs.h 

#define NULLC 0 
#define S STR 0 
#define S INT 1 

/* Symbols used in FIFO's messages*/ 

#define S CC 64 /* Create client 
#define S KC 35 /* Destroy client 
#define S CB 36 /* Create blackboard 

*/ 
*/ 

*/ 
#define S KB 42 /* Read and kill blackboard * / 
#define S RB 63 /* Read blackboard 
#define S BM 91 /* Begin message 
#define S EM 93 /* End message 
#define S BD 123 /* Begin data 
#define S ED 125 /* End data 
#define S BS 59 /* Block separator 
#define S DS 44 /* decimal separator 
#define S END 46 /* End fifo message 

/* Constant Error's */ 

#define E NOB 92 
#define E CNT 4 7 

/* Contants used in macros * / 

#define T W AIT 0 
#define T NOW AIT 1 
#define T NORMAL 0 
#define T KILL 1 

*/ 
*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

*/ 
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/* Other Constants * / 

#define MaxBBname 12 
#define CNT_DIR "/tmp/" /* Client's directory for fifo */ 
#define SVR_ID "/tmp/wdaemon" /* Server's path where is stored the ID */ 
#define SVR_FF "/tmp/wd" /* Server's path for fifo */ 

conv.h 

#include <stdio.h> 
void itoa(int,char s[]); 
void rvs( char s[]); 

void itoa(int n,char s[]) 
{ 
int i, sign; 
if((sign=n)<0) 

n=-n; 
i=0; 

do { 

} 

s[i++ ]=n % 10 + '0'; 
} while((n/= 1 0)>0); 

if(sign<0) 
s[i++ ]='-'; 

s[i]='\0'; 
rvs(s); 

void rvs( char s[]) 
{ 
int c,i,j; 

for(i=0,j=strlen(s)-1 ;i<j;i++,j--) 
{ 
c=s[i] ; 
s[i]=s[j] ; 
s[j]=c; 
} 

} 
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m_signal.h 

#include <signal.h> 

typedef void Sigfunc(int ); 

Sigfunc * signal(int, Sigfunc *); 

Sigfunc * signal(int signo, Sigfunc *func) 
{ 
struct sigaction act, oact; 

act. sa_ handler=func; 
sigemptyset( &act. sa_ mask); 
act. sa_ flags=0; 
if(signo= SIGALRM) 

{ 
#ifdef SA INTERRUPT 

act.sa_flagsl= SA_INTERRUPT; /* SunOS */ 
#endif 
} 

else 
{ 
#ifdef SA REST ART 

act.sa_flagsl= SA_RESTART; 
#endif 
} 

if( sigaction( signo,&act,&oact )<0) 
retum(SIG _ ERR); 

retum( oact. sa_ handler); 

} 
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An example is presented next to exemplify the use of the client functions altogether 
with the interface functions and c/p(FD). 

An implementation in Prolog1 of the greatest of two numbers is as follows: 

max.pl 

:-mam. 

max:-write('First number:'), 
read(X),nl, 
write('Second number: '), 
read(Y),nl, 
max(X, Y,Max), 
write('The greatest number is '), 
write(Max),nl. 

max(X, Y,X):- X>=Y. 

max(X,Y,Y):- X<Y. 

This is translated by clp(FD) to the following C files2
: 

max.usr 

/*The following instruction must be added to use the Blackboard Application*/ 

#include "interface.c" 

/* Above this line, put your first macros ( these included by pragma _ c) * / 

#undef fail 
#define fail F ail Like Bool - -

/* Below this line, put your others macros and your functions * / 

static void Initialize _ U sr( void) 

1 Using clp(FD) : 
2 The instructions in bold are those that must be putted there when editing the C code. 
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{ 
} 

/* end of user file * / 

#undef fail 
#define fail F ail Like W am - -

max.h 

#define NB OF PRIV ATE PREDS 3 

static char 
static int 

- - -

*module name="max" · 
- ' 

module_nb; 

static Atomlnf *X5B5D; 
static Atomlnf *X6D6178; 
static Atomlnf *X46697273 74206E756D6265723A; 
static Atomlnf *X5365636F6E64206E756D6265723A; 
static Atomlnf *X5468652067726561746572206E756D62657220697320; 
static Atomlnf *X246578655F31; 
static Atomlnf *X74727565; 

max.c 

#define DEBUG LEVEL 0 

#include "wam _ engine.h" 
#include "fd _ engine.h" 

#include "max.h" 
#include "max.usr" 

#define ASCII PRED "max" 
#define PRED X6D61 78 
#define ARITY 0 

Begin _Private _Pred 
allocate(3) 
put_constant(X4669727374206E756D6265723A,0,"First number:") 
call(Pred_Name(X7772697465,1),0, l ,"write",l) /* begin sub 1 */ 
put_y _ variable(2,0) 
call(Pred_Name(X72656164,1),0,2,"read",l) /* begin sub 2 */ 
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call(Pred_Name(X6E6C,0),0,3,"nl",0) /* begin sub 3 */ 
put_ constant(X5365636F6E64206E756D6265723A,0," Second number: ") 
call(Pred_Name(X7772697465, l),0,4,"write",1) /* begin sub 4 */ 
put__y _ variable(l ,0) 
call(Pred_Name(X72656164, 1),0,5,"read", 1) /* begin sub 5 */ 
call(Pred_Name(X6E6C,0),0,6,"nl",0) /* begin sub 6 */ 
put__y _ value(2,0) 
put _y_ value( 1, 1) 
put _y_ variable(0,2) 
call(Pred_Name(X6D6178,3),1,7,"max",3) /* begin sub 7 */ 
put_constant(X546865206772656174657374206E756D62657220697320,0,"The 

greatest number is ") 
call(Pred_Name(X7772697465,1),0,8,"write",l) /* begin sub 8 */ 
put__y _ value(0,0) 
put_in _server("max") 
call(Pred _ Name(X7772697465, 1 ),0,9, "write", 1) 
deallocate 
execute(Pred_Name(X6E6C,0),0,"nl",0) 

End Pred 

#undef ASCII PRED 
#undefPRED 
#undef ARITY 

#define ASCII PRED "max" 
#define PRED X6D6178 
#define ARITY 3 

Begin _Private _Pred 
try _me_ else(l) 
get_ x _ value(0,2) 
math Joad_ x _ value(0,0) 
mathJoad_x_ value(l , 1) 
builtin _ 2(gte, 0, 1) 
proceed 

label(l) 
trust me else fail - - -
get _ x _ value(l ,2) 
math _load _ x _ value(0,0) 
math Joad_ x _ value( 1, 1) 
builtin _2(lt,0, 1) 
proceed 
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End Pred 

#undef ASCII PRED 
#undefPRED 
#undef ARITY 

#define ASCII PRED "$exe l" - -
#define PRED X246578655F31 
#define ARITY 0 

Begin _Private _Pred 
put_constant(X74727565,0,"true") 
put_ constant(X74727565, 1,"true") 
execute(Pred_Name(X746F705F6C6576656C,2),0,"top_level",2) 

End Pred 

#undef ASCII PRED 
#undefPRED 
#undef ARITY 

Begin_ lnit_ Tables(max) 

Define _ Atom(X5B5D, "[]") 
Define _ Atom(X6D61 78, "max") 
Define _ Atom(X 466972 73 7 4 206E 7 5 6D6265 723 A, "First number: ") 
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Define _ Atom(X5365636F6E64206E756D6265723A, "Second number: ") 
Define_Atom(X546865206772656174657374206E756D62657220697320,"The 

greatest number is ") 
Define Atom(X246578655F3 l ,"$exe l ") - -
Define_Atom(X74727565,"true") 

Define_Pred(X6D6178,0,0) 

Define_Pred(X6D6178,3,0) 

Define_Pred(X246578655F31 ,0,0) 

Init U sr File 

End Init Tables 
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Begin_ Exec _ Directives( max) 

Exec_Directive(l ,Pred_Name(X246578655F3 l ,0)) 

End Exec Directives - -

/***MAIN***/ 

int main(int argc,char *argv[]) 

{ 
EXPORT 
urux _ argc=argc; 
urux _ argv=argv; 

Init_ Wam_Engine(); 

!nit_ Tables_ Of_ Module(Builtin) 
Init _Tables_ Of_ Module( max) 

Exec _Directives_ Of_ Module(Builtin) 
Exec _Directives_ Of_ Module( max) 

Term_ Wam_Engine(); 

return 0; 
} 
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A client program using the client functions was developed to help users, to send 
blackboards to the server more easily. 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <ncurses/curses.h> 
#include "cliente" 

/* Pseudo functions * / 

#define put_menu_elem(a~b,c,d) put_string(a,b,c,d); 

/* Functions Prototype * / 

void main_menu(void); 
void mmenu(void); 
void cmenu(void); 
void put_string(int, int, chtype, char *); 
void put_integer(int, int, chtype, int *); 
void cblackboard(void); 
void dblackboard(void); 
void sblackboard(void); 
void rblackboard(void); 
void gblackboard(void); 
void test_ color(void); 
void col_mmenu(void); 
char* get_string(int); 
int * get_integer(int); 
char * get_bb_name(void); 
void get _ bb _ data(int ); 
void clear _lines(int, int ); 
void clear _area(int, int, int, int); 
void put_ empty _line( void); 
char* change_bb_name(char *); 
void insert_record( char *str); 
void delete_record(void); 
void change _record( void); 
char get_record_type(void); 
void tmenu(void); 
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void def_ menu(void); 
void define_structure(char, char*); 
void send _request( void); 
void add_int_to_struct(void); 
void add _ str _ to _ struct( void); 
void add_struct(void); 
void forget_choice(void) ; 
void restart _ over( char); 
void put_info_in_buffer(void); 
void present_data(void); 
char get _data_ type( void * * ,int); 

/* Global Vars * / 
char fcol=0; 
char fbname=0; 
char fir=0; 
chtype attrib[4] ; 
void **mp; 
void *dt; 

struct 
{ 
char *bbname; 
char tp; /* Type of data */ 
size _ t size; /* Size of data * / 
void * bdata; /* Blackboard data * / 

} bbs; 

struct 
{ 
char fis; 
size_t ne; 
char lt; 
size_t lsz; 
} ls; 

int main(int argc,char **argv) 
{ 
EXPORT 
CREATE CLIENT 
initscr(); 
cbreak(); 
noecho(); 
test_ col or(); 
col_ mmenu(); 
erase(); 
refresh(); 
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main_ menu(); 
echo(); 
KILL CLIENT 
retum(0); 
} 

void col_mmenu(void) 
{ 
init_pair(l ,COLOR _ BLUE,COLOR _BLACK); 
init_pair(2,COLOR _ RED,COLOR _ BLACK); 
init_pair(3 ,COLOR _ YELLOW,COLOR _ BLACK); 
init_pair( 4,COLOR _ GREEN,COLOR _ BLACK); 
if(fcol) 

{ 
attrib[0]=COLOR _P AlR(2); 
attrib[l]=COLOR_PAlR(l) j A_BOLD; 
attrib[2]=COLOR_PA1R(3) j A_BOLD; 
attrib[3]=COLOR_PA1R(4); 
} 

else 

} 

{ 
attrib[0]=A_BOLD; 
attrib[ 1 ]=A_ NORMAL; 
attrib[2]=A _ NORMAL; 
attrib[3 ]=A_ BLINK; 
} 

void main_ menu( void) 
{ 
char option= 1; 
char lop=0; 
char ext=0; 
int ch=0; 

mmenu(); 
refresh(); 
do { 

if(ext) 
{ 
switch(ch) 

{ 
case 65 :lop=option--; 

break; 
case 66:lop=option++; 
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} 
} 

if( option=O) 
option=6; 

else 

break; 

if( option=7) 
option= l ; 

refresh(); 

switch(lop) 
{ 
case 1: 

put_menu_elem(l0,31 ,attrib[l],"Create Blackboard"); 
break; 

case 2: 
put_ menu_ elem(l 1,31 ,attrib[ 1 ], "Delete Blackboard "); 
break; 

case 3: 
put_ menu_ elem( 12,31 ,attrib[ 1 ], "Send Blackboard "); 
break; 

case 4: 
put_menu_elem(13,31 ,attrib[l],"Read Blackboard"); 
break; 

case 5: 
put_menu_elem(14,31 ,attrib[l],"Get Blackboard"); 
break; 

case 6: 

} 

put_ menu_ elem( 16,3 8,attrib[ 1 ], "Exit"); 
break; 

switch( option) 
{ 
case 1: 

put_menu_elem(l 0,31 ,attrib[2],"Create Blackboard"); 
break; 

case 2: 
put_menu_elem(l 1,31 ,attrib[2],"Delete Blackboard"); 
break; 

case 3: 
put_menu_elem(12,3 l ,attrib[2],"Send Blackboard"); 
break; 

case 4: 
put_ menu_ elem( 13 ,31 ,attrib[2], "Read Blackboard "); 
break; 

case 5: 
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put_menu_elem(l4,3 l ,attrib[2],"Get Blackboard"); 
break; 

case 6: 
put_ menu_ elem( 16,3 8,attrib[2], "Exit"); 
break; 

} 
if( ( ch=getch() )=2 7) 

if(getch()=9 l) 
{ 
ch=getch(); 
ext=l ; 
} 

else 
ext=O; 

else 
{ 
refresh(); 
ext= l ; 
if(ch=IO) 

{ 
refresh(); 
switch( option) 

{ 
case 1 : if(! fbname) 

cblackboard(); 
break; 

case 2:dblackboard(); 
break; 

case 3: sblackboard(); 
break; 

case 4:rblackboard(); 
break; 

case 5:gblackboard(); 
break; 

case 6:clear();refresh();retum; 
} 

mmenu(); 
} 

} 

}while(ch!=27 && ext); 
clear(); 
refresh(); 
} 
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void put_string(int y, int x,chtype atr,char * str) 
{ 
move(y,x); 
attron(atr); 
waddstr( stdscr, str); 
attroff( atr); 
refresh(); 
} 

void put_integer(int y, int x, chtype atr, int * i) 
{ 
char s[20]; 
int a; 
move(y,x); 
attron( atr ); 
memcpy((void *) &a,(void *) i,sizeof(int)); 
itoa(a,s); 
waddstr(stdscr,s); 
attroff(atr); 
refresh(); 
} 

void cblackboard(void) 
{ 
char option= 1; 
char lop=O; 
int ch=O; 

clear(); 
move(8,0); 
hline(95,80); 
move(16,0); 
hline(95,80); 
put_ menu_ elem(7 ,3 2,attrib[ 0 ], "Create Blackboard "); 
do { 
bbs. bbname=get _ bb _ name(); 
} while(bbs.bbname NULL); 
cmenu(); 
refresh(); 
do { 

switch(ch) 
{ 
case 65 :lop=option--; 

break; 
case 66:lop=option++; 

break; 
} 
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if( option=O) 
option=5; 

else 
if( option= 6) 

option=l ; 

switch(lop) 
{ 
case 1: 

put_ menu_ elem(l 0,29 ,attrib[ 1 ], "Change Blackboard Name"); 
break; 

case 2: 
put_menu_elem(l 1,29,attrib[l],"Insert Blackboard Record"); 
break; 

case 3: 
put_ menu_ elem( 12,29 ,attrib[ 1 ], "Delete Blackboard Record"); 
break; 

case 4: 
put_ menu_ elem( 13 ,29 ,attrib[ 1 ], "Change Blackboard Record"); 
break; 

case 5: 

} 

put_ menu_ elem( 15,38,attrib[ 1 ], "Exit"); 
break; 

switch( option) 
{ 
case 1: 

put_menu_elem(10,29,attrib[2],"Change Blackboard Name"); 
break; 

case 2: 
put_menu_elem(l 1,29,attrib[2],"Insert Blackboard Record"); 
break; 

case 3: 
put_ menu_ elem( 12,29 ,attrib[2], "Delete Blackboard Record"); 
break; 

case 4: 
put_menu_elem(13 ,29,attrib[2],"Change Blackboard Record"); 
break; 

case 5: 
put_ menu_ elem(l 5,38,attrib[2], "Exit"); 
break; 

} 
if( ( ch=getch() )=2 7) 

{ 
if(getch()=91) 

ch=getch(); 
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} 
else 

{ 
refresh(); 
if(ch=lO) 

{ 
switch( option) 

{ 
case 1: bbs. bbname=change _ bb _ name(bbs. bbname ); 

break; 
case 2:insert_record(bbs.bbname); 

break; 
case 3: delete _record(); 

break; 
case 4: change _record(); 

break; 
case 5: clear();refresh();return; 
} 

cmenu(); 
} 

} 
refresh(); 

}while(l); 
} 

void dblackboard(void) 
{ 
if(fbname) 

{ 
clear _ buffer(); 
bbs.bbname=NULL; 
bbs.size=O; 
bbs.tp=O; 
bbs. bdata=NULL; 
fbname=O; 
} 

else 
{ 
put_string(19,25,A_BLINK,"The blackboard must be first created!"); 
sleep(3); 

} 

clear _lines( 18, 18); 
} 

void sblackboard(void) 
{ 
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. int r; 
if(fbname && fir) 

{ 
ADDB(bbs.bbname,bbs.bdata,bbs.tp,bbs.size) 
SEND _BLACKBOARD(bbs.bbname) 
} 

else 
{ 
put_string(19,25,A_BLINK,"The blackboard must be first created!"); 
sleep(3); 

} 

clear _lines(l 8, 18); 
} 

void rblackboard(void) 
{ 
clear _ buffer(); 
define _ structure(S _ RB, "Read Blackboard "); 
send _request(); 
} 

void gblackboard( void) 
{ 
clear _ buffer(); 
define _ structure(S _ KB, "Get Blackboard "); 
send _request(); 
} 

void mmenu(void) 
{ 
clear(); 
move(8,0); 
hline(95,80); 
move(l 7,0); 
hline(95,80); 
put_menu_elem(7,35,attrib[0],"Main Menu"); 
put_ menu_elem(l 0,31,attrib[l ],"Create Blackboard"); 
put_ menu_ elem( 11 ,31 ,attrib[ 1 ], "Delete Blackboard "); 
put_ menu_ elem( 12,3 l ,attrib[ 1 ], "Send Blackboard" ); 
put_ menu_ elem( 13 ,31 ,attrib[ 1 ], "Read Blackboard "); 
put_ menu_ elem(l 4,31,attrib[ 1 ], "Get Blackboard "); 
put_ menu_ elem(l 6,38,attrib[l ], "Exit"); 
refresh(); 
} 

void cmenu( void) 
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{ 
put_menu_elem{l0,29,attrib[l],"Change Blackboard Name"); 
put_menu_elem(l l ,29,attrib[l],"Insert Blackboard Record"); 
put_ menu_ elem(12,29,attrib[l ], "Delete Blackboard Record"); 
put_ menu_ elem( 13 ,29 ,attrib[ 1 ], "Change Blackboard Record"); 
put_ menu_ elem( 15,38,attrib[ 1 ], "Exit"); 
refresh(); 
} 

void test_ col or( void) 
{ 
fcol=( char) has _ colors(); 
if(fcol) 

start_ color(); 
} 

char* get_bb_name(void) 
{ 
char *s; 
put_string(l l,25,attrib[2],"Chose a name to the blackboard"); 
move(13,0); 
attron( A_ REVERSE); 
put_ empty _line(); 
move(13,0); 
s=get_string(80); 
if(s!=NULL) fbname=TRUE; 
attroff( A_ REVERSE); 
clear _lines(l l , 14 ); 
retum(s); 
} 

char * change_bb_name(char *str) 
{ 
char *s; 
clear _lines( 10, 15); 
put_string(l l ,24,attrib[2],"Chose a new name to the blackboard"); 
move(13,0); 
attron( A_ REVERSE); 
put_ empty _ line(); 
move(13,0); 
s=get_ string(80); 
attroff( A_ REVERSE); 
if(s--NULL) 

s=str; 
else 

free(str) ; 
clear _lines( 11 , 14 ); 
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return(s); 
} 

void insert_record(char *str) 
{ 
if(fbname) 

{ 
if(fir) 

ADDB(str,bbs.bdata,bbs.tp,(size_t) bbs.size); 
get_record_type(); 
} 

} 

void delete_record(void) 
{ 
char ch; 
if(fbname && fir) 

{ 
put_string(l8,20,attrib[2],"Do you wish to delete last record (YIN) ?"); 
attron(A _ REVERSE); 
if( ( ch=getchar()='y') 11 ch='Y') 

{ 
free(bbs. bdata ); 
bbs.bdata=NULL; 
bbs.size=O; 
bbs.tp=O; 
fir=O; 
} 

attroff(A _REVERSE); 
clear _lines( 18,21 ); 
} 

else 
{ 
put_ string( 18,25 ,A_ BLINK, "There is no inserted record."); 
sleep(3); 

} 

clear _lin es( 18, 18); 
} 

void change _record( void) 
{ 
char *s; 
int *pi; 
if(fbname && fir) 

{ 
clear _lines(l 0, 15); 
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put_string(18,30,attrib[2],"Current data in record"); 
put_string(l 1,32,attrib[2] ,"New data to store"); 
if(bbs.tp) /* Integer */ 

{ 
put _integer(20,3 8,attrib[3 ],(int *) bbs. bdata); 
attron(A _ REVERSE); 
clear _area(13,38, 13,42); 
attroff(A _ REVERSE); 
move(13 ,38); 
refresh(); 
pi=get_integer( 5); 
if(pi!=NULL) 

bbs.bdata=(void *) pi; 
} 

else /* String * / 
{ 
put_string(20,0,attrib[3],(char *) bbs.bdata); 
move(13,0); 
attron( A_ REVERSE); 
put_ empty _ line(); 
attroff(A _ REVERSE); 
move(13 ,0); 
s=get _ string(80); 
if(s!=NULL) 

bbs.bdata=(void *) s; 
} 

clear _ lines(l 0, 15); 
clear _lines(l 8,20); 
} 

else 
{ 
put_ string( 18,25,A _ BLINK, "There is no inserted record."); 
sleep(3); 

} 

clear _lines( 18, 18); 
} 

char get_record_type(void) 
{ 
int ch=0; 
int cop=0; 
tmenu(); 
do { 

if( ch==65 && cop= 1) 
{ 
put_ menu_ elem( 14, 63 ,attrib[ 1], "lnteger"); 
put_ menu_ elem( 13,63 ,attrib[2]," String"); 
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cop=O; 
ch=O; 
} 

if( ch=65 && cop=O) 
{ 
put_ menu_ elem( 13,63,attrib[ 1 ], "String"); 
put_ menu_ elem( l 4,63,attrib[2], "Integer"); 
cop=l ; 
ch=O; 
} 

ift ch=66 && cop= 1) 
{ 
put_ menu_ elem(l 4,63 ,attrib[ 1 ], "Integer"); 
put_ menu_ elem(l 3,63,attrib[2], "String"); 
cop=O; 
ch=O; 
} 

ift ch=66 && cop=O) 
{ 
put_ menu_ elem( 13,63,attrib[ 1 ], "String"); 
put_ menu_ elem(l 4,63,attrib[2], "Integer"); 
cop=l ; 
} 

ch=getch(); 
if(ch=27) 

{ 
iftgetch()=9 l) 

ch=getch(); 
} 

else 
{ 
if(ch=IO) 

{ 
get _ bb _ data( cop ); 
clear _ area(l 1,53 , 14, 73); 
fir=l ; 
break; 
} 

} 
} while( ch!= 1 O); 

} 

void tmenu(void) 
{ 
put_ string( 11 ,53 ,attrib[3 ], "------>"); 
put_menu_elem(l l,60,attrib[O],"Type of Record"); 
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put_ menu_ elem( l 3,63 ,attrib[2], "String"); 
put_ menu_ elem( 14,63,attrib[ 1 ], "Integer"); 
} 

void get_bb_data(int t) 
{ 
switch(t) 

{ 
case 0: /* A string was chosen */ 

put_string(l8,32,attrib[2],"String to Record"); 
move(20,0); 
attron(A _ REVERSE); 
put_ empty _line(); 
move(20,0); 
bbs.bdata=(void *) get_string(80); 
bbs.size=strlen((char *) bbs.bdata); 
bbs. tp=S _ STR; 
attroff(A _ REVERSE); 
break; 

case 1 : /* An integer was chosen * / 
put_string(l8,32,attrib[2],"lnteger to Record"); 
attron( A_ REVERSE); 

} 

clear _ area(20,38,20,42); 
move(20,38); 
refresh(); 
bbs.bdata=(void *) get_integer(6); 
bbs.tp=S_INT; 
bbs. size=sizeof(int ); 
move(l,l); 
attroff( A_ REVERSE); 
break; 

clear _lines(l 8,21 ); 
} 

int * get_integer(int n) 
{ 
char *s; 
int i; 
int *pi; 
s=get_string(n); 
if(s!=NULL) 

{ 
pi=(int *) calloc( sizeof(int ), 1 ); 
i=strtol(s,(char **)NULL,10); 
memcpy((void *) pi,(void *) &i,sizeof(int)); 
} 
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else 
pi=NULL; 

free(s); 
retum(pi); 
} 

char * get_string(int n) 
{ 
char *s; 
char ch; 
int z=O; 
s=NULL; 
echo(); 
ch=getchar(); 
if(ch!=27 && n>O) 

{ 
s=( char *) calloc(sizeof( char),n+ l); 
*s=ch; 
fgets(s+ l ,n-1 ,stdin); 
z=strlen(s); 
move( 5,S);refresh(); 
*(s+z-l)=NULLC; 
} 

else 
flushinp(); 

noecho(); 
retum(s); 
} 

void define _ structure( char c, char * str) 
{ 
char option= 1; 
char lop=O; 
int ch=O; 

clear(); 
ls.ne=O; 
ls.lt=O; 
ls.lsz=O; 
ls.fis=O; 
mp=NULL; 
dt=NULL; 
move(8,0); 
hline(95,80); 
move(l6,0); 
hline(95,80); 
put_ menu_ elem(7,32,attrib[O],str); 
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do { 
bbs. bbname=get_ bb _ name(); 
} while(bbs.bbname NULL); 
buffer[ 0 ]=c; 
put_ info _in_ buffer(); 
def _ menu(); 
refresh(); 
do{ 

switch(ch) 
{ 
case 65:lop=option--; 

break; 
case 66:lop=option++; 

break; 
} 

if( option=0) 
option=S; 

else 
if( option=6) 

option=l ; 

switch(lop) 
{ 
case 1: 

put_ menu_ elem( 10,3 7,attrib[ 1 ], "String"); 
break; 

case 2: 
put_ menu_ elem( 11 ,3 7,attrib[ 1 ], "Integer"); 
break; 

case 3: 
put_menu_elem(l2,3 l ,attrib[l],"Forget last choice"); 
break; 

case 4: 
put_menu_elem(l3,3 l,attrib[l],"Restart over again"); 
break; 

case 5: 

} 

put_ menu_ elem(l 6,38,attrib[l ], "Exit"); 
break; 

switch( option) 
{ 
case 1: 

put_ menu_ elem( 10,3 7,attrib[2], "String"); 
break; 

case 2: 
put_ menu_ elem(l 1,3 7,attrib[2], "lnteger"); 
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break; 
case 3: 

put_menu_elem(12,31 ,attrib[2],"Forget last choice"); 
break; 

case 4: 
put_ menu_ elem( 13 ,31 ,attrib[2], "Restart over again "); 
break; 

case 5: 
put_ menu_ elem( 16,3 8,attrib[2], "Exit"); 
break; 

} 
if( ( ch=getch() )=2 7) 

{ 
if(getch()=9 l) 

ch=getch(); 
} 

else 
{ 
refresh(); 
if(ch= IO) 

{ 
switch( option) 

{ 
case 1: add _ str _ to _ struct(); 

break; 
case 2:add_int_to_struct(); 

break; 
case 3 :forget_choice(); 

break; 
case 4: restart _ over( c); 

break; 
case 5: clear();refresh();free(bbs. bbname );fbname=F ALSE;retum; 
} 

def _ menu(); 
} 

} 
refresh(); 
}while(l); 

clear _lines( 1, 7); 
} 

void send _request( void) 
{ 
if(bbs. bbname!=NULL) 

{ 
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if{ls.fis) 
add _ struct(); 

buffer[ size _ str++ ]=S _ EM; 
buffer[size_str++]=S_END; 
tell_ server( size _ str); 
READ _ BLACKBOARD(&mp, T _ W AIT); 
if{mp!=NULL) 

present_ data(); 
else 
{ 
put_ string( 18,25 ,A_ BLINK, "There is no blackboard with that structure."); 
sleep(3); 

} 
} 

clear _ lines(l 8, 18); 
} 

void add _int _ to _ struct( void) 
{ 
int x,y; 
getyx(stdscr,y,x); 
if{ls.fis) 

add _ struct(); 
ls.fis= l ; 
ls. lsz=sizeof(int ); 
ls.lt=S _ INT; 
move(y,x); 
refresh(); 
} 

void add_struct(void) 
{ 
switch(ls. lt) 

{ 
case 0: /* Add string to buffer * / 

memcpy( &buffer[ size _ str++ ],&Cts, 1 ); 
memcpy(BUF,&(ls.lt),sizeof(ls.lt)); 
size _ str+=sizeof{ls.It ); 
ls.ne++; 
break; 

case 1 : /* Add int to buffer * / 
memcpy( &buffer[ size _ str++ ],&Cts, 1 ); 
memcpy(BUF,&(ls.lt),sizeof{ls.lt)); 
size _ str+=sizeof{ls.It ); 
memcpy(BUF,&(ls.lsz),sizeof{ls.lsz)); 
size _str+=sizeof{ls.lsz); 
ls.ne++; 

Stage Thesis 

- 170 -



Appendix H - A Client program 

break; 
} 

} 

void add_str_to_struct(void) 
{ 
int x,y; 
getyx( stdscr,y ,x); 
if(ls.fis) 

add _ struct(); 
ls.fis= l ; 
ls.lsz=O; 
ls.lt=S _ STR; 
move(y,x); 
refresh(); 
} 

void forget_choice(void) 
{ 
ls.fis=O; 
ls.lsz=O; 
ls.lt=O; 
} 

void restart _ over( char c) 
{ 
clear _ buffer(); 
clear _lines(l, 7); 
put _info _in_ buffer(); 
ls.fis=O; 
ls.lsz=O; 
ls.lt=O; 
} 

void put_ info _in_ buffer(void) 
{ 
char spid[20] ; 

strcat(buffer,cli name ); 
strcat(buffer,USCR); 
itoa(pid,spid); 
strcat(buffer,spid); 
BFSZ; 
buffer[ size _ str++ ]=S _ BM; 
strcat(buffer,bbs. bbname ); 
BFSZ; 
} 
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void present _ data( void) 
{ 
int i,a,integ; 
char dtype; 
dtype=0; 
clear(); 
put_string(l ,20,attrib[0],"Data received from the Blackboard"); 
put_string(2,20,A_NORMAL," _____________ "); 
put_string(24,20,attrib[l],"Press ESC to retum to main menu"); 
a= l ; 
for(i= 1 ;i<=ls.ne;i++) 

{ 
put_integer(3+a, l ,A_ BOLD,&i); 
GET_DATA(mp,i,dt); 
dtype=get _data_ type(mp,i); 
switch( dtype) 

{ 
case S STR: 

put_string(3+a,3,attrib[3],(char *) dt); 
break; 

case S_INT:integ=Ri(dt); 
put_ integer(3+a,3 ,attrib[3 ],&integ); 
break; 

} 
if(a=23) 

{ 
clear _lines(3 ,23); 
a=l ; 
} 

else 
a++· 

' 
} 

while(getch() ! =2 7); 
} 

char get_data_type(void ** mp,int i) 
{ 
int a=0; 
char c; 
while((*(mp+a))!=NULL && a!=(i-1 )) 

a++; 
if((*(mp+a))!=NULL && a==i-1) 

memcpy(&c,(*(mp+a)),sizeof(char)); 
else 

c=2; 
retum(c); 
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} 

void def _ menu( void) 
{ 
clear(); 
move(8,0); 
hline(95,80); 
move(17,0); 
hline(95,80); 
put_menu_elem(7,32,attrib[0],"Define Structure"); 
put_ menu_ elem(l 0,3 7,attrib[ 1 ], "String"); 
put_ menu_ elem( 11 ,3 7 ,attrib[ 1 ], "Integer"); 
put_menu_elem(l2,3 l ,attrib[l],"Forget last choice"); 
put_menu_elem(13,3 l ,attrib[l] ,"Restart over again"); 
put_ menu_ elem(l 6,38,attrib[ 1 ], "Exit"); 
refresh(); 
} 

void clear_lines(int yl ,int y2) 
{ 
int i,a; 
int x,y; 

getyx(stdscr,y,x); 
if(y2<yl) 

{ 
a=yl ; 
y l =y2; 
y2=yl ; 
} 

for(i=y 1 ;i<=y2;i++) 
{ 
move(i,0); 
clrtoeol(); 
} 

move(y,x); 
refresh(); 
} 

void clear _ area(int y 1, int x 1, int y2, int x2) 
{ 
int i,r,a; 
int x,y; 

getyx(stdscr,y,x); 
if(y2<yl) 

{ 
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a=yl ; 
yl=y2; 
y2=yl; 
} 

if(x2<xl) 
{ 
a=xl ; 
xl=x2; 
x2=xl; 
} 

for(i=y 1 ;i<=y2;i++) 
{ 
for(r=x 1 ;r<=x2;r++) 

} 

{ 
move(i,r); 
waddstr(stdscr," "); 
} 

move(y,x); 
refresh(); 
} 

void put_ empty _line( void) 
{ 
inti; 

int x,y; 

getyx(stdscr,y,x); 
for(i= 1 ;i<=80;i++) 

waddstr(stdscr," "); 
move(y,x); 
refresh(); 
} 
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On/y two header files were changed to handle blackboards. Next cornes the portion of 
code of the changed parts. Changes are written in bold 

wam _ engine.b 

/*----------------------------------------*/ 
/* Global Variables * / 
/* ( lncludes the global variables * / 
/* added to support the Blackboard * / 
/* Application ) * / 
/*---------------------------------------*/ 

#include "/home/jpc/proj/interface.h" 

#define put_y _ value(y,a) 
{ 
DBG_INST("put_y_value(" #y"," #a")") 
A(a)=Y(E,y); 
SuType=3; 
SuPointer=(void *) &A(a); 
SuSize=sizeof(A(a)); 
} 

wam _ engine.c 

/*---------------------------------------*/ 
/* PUT Y UNSAFE VALUE */ 
/* Changed version * / 

/*---------------------------------------*/ 

void Put_Y_Unsafe_ Value(int y,int a) 
{ 

WamWord word,tag, *adr; 

Deref(Y (E,y ), word, tag,adr) 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
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if(tag=REF && adr>=(WamWord *) EE(E)) 
{ 
A(a)=Tag_ Value(REF,H); 
Globalize _Local_ Unbound _ Var( adr) 
SuType=O; 
} 

else 
{ 
A(a)=(Global_UnMove(tag))? Tag_ Value(REF,adr) : word; 
SuPointer=(void *) &A(a); 
SuSize=sizeof(A(a)); 
SuType=3; 
} 

} 

/*-----------------------------*/ 
/* PUT CONSTANT */ 
/* Changed version * / 
/*-----------------------------*/ 
void Put_ Constant(Atomlnf *atom,int a) 

{ 
A(a)=Tag_ Value(CST,atom); 
SuType=l; 
SuPointer=(void *)&A(a); 
SuSize=sizeof(A(a)); 
} 

/*--------------------------*/ 
/* PUT LIST */ 
/* Changed version * / 
/*--------------------------*/ 
void Put_ List(int a) 

{ 
A(a)=Tag_ Value(LST,H); 
SuType=2; 
SuPointer=(void *)&A(a); 
SuSize=sizeof(A( a)); 
S=WRITE MODE· - , 
} 
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