
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A Blackboard Approach to Concurrent Constraint Programming

Pires da Costa, João Manuel

Award date:
1996

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/a-blackboard-approach-to-concurrent-constraint-programming(bab08c6e-abda-4f21-9286-890bcff4bb43).html

Erasmus Stage Thesis in Logic Programming

presented at

Fajcultés Universitaires Notre-Dame de la Paix
Namur - Belgium

A Blacl<board Approach
to

Concurrent Constraint Programming

in the academical year

95 / 96

supervised by

Jean-Marie Jacquet

+."1/,4'1.tY /'V
1' u~

enbt41011q1e

UOWYN
XIYd Y1 aa ·a··N
S3Ul'tl.lSU3AINO

sa.a.,n:>v.:1

Table of Contents

PARTI 5

PREFACE 5
ABSTRACT 5
ÜRGANIZATION OF TIIE THESIS 5

A CKNOWLEDG-MENTS 6
CHAPTER 1 -- INTRODUCTION 7

1. 1 Introduction 7
1.2 Contributions 8
1.3 Conventions 8
1.4 Credits 9

PART II 10

CHAPTER 2 -- LOGIC PROGRAMMING 10
2.1 Syntax 10
2.2 Declarative Semantic 19
2.3 Operational Semantic 24
2.4 Relation between the semantics 28
2.5 W AM hnplementation 29

CHAPTER 3 -- CONSTRAINT LOGIC PROGRAMMING 44
3.1 Introduction to CLP 44
3.2 Language 45
3.3 Semantics of the X in r constraint48
3.4 Constraint Systems 52
3.4 Clp(FD) Implementation 53

CHAPTER 4 -- CONCURRENT PROGRAMMING 62
4.1 Introduction 62
4. 2 Language 64
4.3 Operational Semantics 65
4.4 Declarative Semantics 69
4 .5 Relating the Operational and Declarative Semantics 73

PART ID 74

CHAPTER 5 -- BLACKBOARD CLIENT SERVER APPLICATION 74
5 . 1 Introduction 7 4
5.2 Data structures and data communication 75
5 .3 Integrating the application with user code 79
5. 4 Ending notes 84

PART IV 86

CHAPTER 6 -- CONCLUSION 86
6.1 Summary of the work 86
6.2 Main features 86
6.3 Problems and future work 87

APPENDIX A- WAM INSTRUCTION SET , 88
APPENDIX B - CLP(FD) INSTRUCTION SET 102

APPENDIX C - CLIENT FUNCTIONS 105

APPENDIX D - SER VER FUNCTIONS ··· ··· · ···· ··· ··· · ·· ·· · ··· ·· ··· l25
APPENDIX E - INTERFACE FUNCTlONS 142

APPENDIX F - MlSCELLANEOUS ··· ·· · ············· ······ ··· · · · ·· · ········ · ······· ····················· ·· ···· ·· · ·· · ·· l45
APPENDIX G - THE MAX EXAMPLE 148
APPENDIX H - A CLIENT PROGRAM 153

APPENDIX I - CHANGES IN CLP(FD) ·· · · ··· · ·· 175

REFERENCES 177

BIBLIOGRAPHY 179

INDEX 180

Table of Figures

FIGURE 1 : WAMMEMORYLAYOUT ANDREGISTERS 30
FIGURE 2 : TERM REPRESENTATION IN THE W AM 34
FIGURE 3 : DATA STRUCTURES FOR THE X IN R CONSTRAINT 56
FIGURE 4 : ARGUMENT FRAME 56
FIGURE 5 : CONSTRAINT FRAME 57
FIGURE 6 : REPRESENTATIONS OF A RANGE 58
FIGURE 7 : DF VARIABLE FRAME 59
FIGURE 8 : BLACKBOARD STRUCTURES 75
FIGURE 9 : CLIENT STRUCTURE 76
FIGURE 10 : ENDING STRUCTURE 80
FIGURE 11 : LINKING THE APPLICATION AND CLP(FD) 83
FIGURE 12 : A POSSIBLE EXTENSION TO THE APPLICATION 84

Tables

TABLE 1 : PRECEDENCE OPERATORS 11
TABLE 2 : EXAMPLES 12
TABLE 3: TRUTH TABLES FORLOGICAL CONNECTIVES 20
TABLE 4 : DEFINITION OF TERMS 33
TABLE 5 : DEFINITION OF SETS 46
TABLE 6 : DEFINITION OF INDEXICAL RANGES 47
TABLE 7 : SYNT AX OF THE X IN R CONSTRAINT 48
TABLE 8 : DENOTATIONAL SEMANTICS OF THE TELL OPERATION 49
TABLE 9 : FD UNIFIABLE ELEMENTS 54
TABLE 10 : DEPENDENCY X CONSTRAINTS POINTERS 59
TABLE 11 : CLP(FD) REGISTERS 60
TABLE 12 : CLP(FD) INSTRUCTIONS TYPE 60
TABLE 13 : µLOG SETS 64

Table ofExamples

EXAMPLE 1 10
EXAMPLE 2 11
EXAMPLE 3 12
EXAMPLE 4 13
EXAMPLE 5 13
EXAMPLE 6 13
EXAMPLE 7 14
EXAMPLE 8 15
EXAMPLE 9 26
EXAMPLE 10 31
EXAMPLE 11 31
EXAMPLE 12 38
EXAMPLE 13 38
EXAMPLE 14 42
EXAMPLE 15 43
EXAMPLE 16 45
EXAMPLE 17 45
EXAMPLE 18 45
EXAMPLE 19 47
EXAMPLE 20 52
EXAMPLE 21 58
EXAMPLE 22 81
EXAMPLE 23 82
EXAMPLE 24 82

Part 1

Preface

It's always bard to put on paper ones experience in a foreign country doing something
new and exciting as logic programming. My previous interest in this particular field
was somewhat limited and through this ERASMUS stage, I have gained the sensibility
to the problems and possibilities offered by this dynamic research area.

Despite the fact that almost ail the written code was in the C language, the study
of the W AM allows me to better understand the process of logic programming, which
I believe is an add-on for the future.

Abstract

This thesis is about a client server application using the concepts of logic, constraint
and concurrency. lts main goal is to built a framework to exchange data using
blackboards in concurrent constraint programming.

Organization of the Thesis

The thesis is devised in four logical parts:

-❖- Introduction, states the author forewords about the thesis;

-❖- Background, where an insight is given into the foundations ofLogic
Programming, Constraint Logic Programming and
Concurrent Programming;

-❖- W ork Report, states the work done during the stage;

-❖- Summary, where the conclusion, bibliography, index and other
information of the sort is putted.

The thesis is also organized by chapters:

• Chapter One, introduces the thesis and it's objectives;

• Chapter Two, gives a background on Logic Programrning;

• Chapter Three, Constraint Logic Programrning is explained;

• Chapter Four, is about Concurrent Programrning;

• Chapter Five, states the work done by the author;

• Chapter Six, draws conclusions.

Acknowledgments

The author would like to thank those people who, directly or indirectly, made
this work possible.

I am particularly grateful to Jean-Marie Jacquet, my thesis supervisor, who
patiently answered so many endless questions.

I want to thank Koenraad De Bosschere who give me some valuable information
about the W AM.

I also would like to acknowledge the F.U.N.D.P.1 where this work was
developed.

1 Fa cuités Universitaires Notre-Dame de la Paix

Chapter 1 -- Introduction

1.1 Introduction

One of the interesting features of logic programming is probably its appeal to first­
order logic. Hence in contrast with imperative languages such as Pascal, C or Fortran,
the programmer is not faced with assignments and loops but with logic formulae . This
declarative appeal turns the programming task in specifying the problem to be solved
as opposed to expliciting how to solve it. This has lead to an easy yet efficient way of
solving many complex problems.

A generalization of unification to constraint solving has pushed this idea
further, with the result that nowadays constraint programming is employed in the
industry to selve such problems as scheduling for factories and for computer
instructions sets; options and portfolio analysis, modeling water usage, DNA and
electrical circuits analysis.

The development of parallel architectures for computers and networks of
computers have evidenced, if need still be, the interest of parallel computations. One
natural next step is thus to parallelize constraint logic programming. Our thesis takes
place in this context; we shall indeed propose a new model based on blackboards.

Understanding the differents concepts used in the thesis is important to better
understand the work performed during the stage. The background knowledge is given
in part II and is divided in chapters in which logic programming, constraint
programming and concurrent programming are explained.

The chapter dedicated to logic programming presents its three components:
syntax, operational semantics and declarative semantics. Syntax introduces the reader
to the construction of well formed formulas and to the heart of logic programming -
the unification mechanism. Operational semantics presents how formulas are
processed, the model of execution of programs and the possible states. Declarative
semantics deals with true values, with models and logical consequences in regard to
formulas . The implementation section was written to explain the breakthrough that
occurred in LP (Prelog) - the definition of the Warren' s Abstract Machine.

The constraint logic programming chapter off ers a view of this very active field .
The main idea of CLP is to replace the unification mechanism of LP with a solver of
constraint in a particular demain. The solver can be seen as a "black box" responsible
to test the satisfiability of the constraints and to possibly reduce them to a normal form.
A different approach is presented there called "glass box", which uses a constraint X in
r over finite demains.

Chapter 1 - Introduction - 8 -

Parallel systems requires concurrent programming which is the subject discussed
in chapter four. The chapter presents a new interesting framework (µLog) using logic
programming to achieve concurrency through blackboards. Using blackboards avoids
problems like for instance the synchronization and mutual exclusion. Two categories of
abjects are described as well as the operations that can be performed on them.
Processes are also differentiated.

1.2 Contributions

The differents concepts explained in part II are putted into practice in part III through
the development of a client server application using blackboards. In chapter five, the
application development steps are stated.

The inclusion in a program of the client functions created, makes it a client
program capable of communicate with the server. To exemplify the use of clients
functions on different programming languages, the Wamcc(fd) is changed. Moreover
functions interfacing the code generated by Wamcc(fd) for a given program and the
functions on the client side, are added.

To allow a better debugging of any errors occurring during the execution of the
daemons server, the system logger is used.

An attempt was made to make the code as much as possible POSIX 1 compliant,
which gives us some guaranties that it will run on most machines. Making the code
more portable has its backsides, namely when a FIFO 1 was chosen instead of a more
efficient solution (for instance shared memory which would speed up the process of
reading / writing the blackboard).

Finally, for ending the continuous reading in the several fifos either by the server
and client, a signal solution was found so that when a client has send a request (or the
answer by the server) a signal is sent to make the corresponding sleepy process active.

1.3 Conventions

The following symbols are used throughout the thesis to denote a particular class of
textual expression (i. e. definition, proposition, question, enumeration) :

o,e, .. . ,CD,0 , ... , The first symbols denotes an enumeration of items, if
there is a sub-numeration than the seconds are used;

~ , • When there is no need for an enumeration of items, this symbol is used.

1 Also called named pipes.

Stage Thesis

Chapter 1 - Introduction - 9 -

• Denotes a question;

✓ Denotes a definition or a proposition;

□ Used in the beginning of definitions, propositions and questions;

W Introduces a note, a remark or a comment.

r&I Gives a warning, when a danger of any sort occurs;

T Capital T - Indicates a theorem

The use of an expression in italic has the purpose of making clear its use.

1.4 Credits

The author acknowledge the sources for the chapters in the thesis, as the following:

❖ Chapter two - the authors and books referenced in [4], [5], [6] ;

❖ Chapter three - [4], [10], [l l], [12] ;

❖ Chapter four - [7] ;

❖ Chapter five - [2], [3], [10].

All the numbered references belong to the bibliography.

Stage Thesis

Part Il

Chapter 2 -- Logic Programming

This chapter is dedicated to the introduction of logic programming to pro vide
background knowledge to understand in what context this work was achieved.
Logic programming has three components: syntax, operational semantics and
declarative semantics.

2.1 Syntax

Syntax specifies the wellformedformulae.

Logic programming uses first-order logic, but from a programmer point of view
this means first-order formulae . These are built from variables and from atomic
formulae. Variables must be quantified either existentially or universally (using the
quantifier 3 or V, respectively). An atomic formulae is composed of an atom.

Example 1

m

VX VY (grand_son(X,Y) <=> (32 (son(X,Z) /\ (son(Z,Y)))

X, Y ,Z are variables;
grand_ son(X, Y), son(_,_) are atoms;
grand_ son, son are predicates.

Chapter 2 - Logic Programming - 11 -

Atoms may be linked together by logical connectives,

-, (negation), A (conjonction), v (disjonction) , ⇒ and ç (implication) and <=> (equivalence) .

For grouping formulas we canuse the quantifiers (V,:3) and brackets, but to
avoid their intricate use, an association rule is used, with the usual left to right and
top to bottom precedence.

-.,V,:3
V

/\

<=, ⇒ , <=>

Table 1 : Precedence Operators

After introducing the logical connectives and quantifiers the definition of the well
formed formulae is the next step.

✓ Weil formed formulae

0 Well formed formulae or wff, for short, are inductively defined as follow:

G) atomic formulae are wff' s;

(2) if F and Gare wff's, then -.F, (F), F AG, Fv G, F<:=G, F⇒G, F<=:>G
are wff 's;

(3) if X is a variable and F is a wff, then VX(F) and :3X(F) are wff' s.
The scope of VX and :3X in the above formulae is the wff F.
An occurrence of X is said to be bound if it is under the scope of a
quantifier; otherwise it ' s free.

0 A closed wffis a wffwith no free occurrences of any variable. For
notation convenience, we shall use V(F) and :3(F) to denote the universal
closure ofF and the existential closure of F, respectively, that is the wff
obtained by respectively adding a universal or an existential quantifier for
every variable having a free occurrence in F.

Example 2

Weil formed formulae

VX(p(X,Z))<=>(q(Y)Aa)

Using the Edinburgh Syntax several concepts are now explained.

Stage Thesis

1

Chapter 2 - Logic Programming - 13 -

The atoms and their negation are important in logic programming as we shall see
below.

✓ Literai

□ A literai is an atom or the negation of an atom. The first is called positive
literai and the last negative literai.

7

Full first-order logic is limited to wff composed of definitive and normal clauses for
efficiency purposes. The following definitions are first required.

✓ Clauses

□ A clause is a wff of the form VX1 ... Xn (L, v ... v Lm), where Li is a literai
and X 1, .. . ,Xn are ail variables.

Example 4

VXVY (odd(X) v even(Y))

✓ Horn Clauses

□ A Horn clause is a clause with at most one positive literai.

Example 5

VXVY(-,even(X) v -,odd(Y))1

✓ Definite Clauses

□ A definite clause is a clause containing exactly one positive literai.
They are normally denoted as follows in the view of the equivalence between
the formula -,Av B and A⇒B:

His called the head of the clause and B1, ... ,Bn the body of the clause.
Note that the atom His the positive literai of the clause and the atoms
B1, ... ,Bn are the conjunction of the positive literais associated with the
negatives literais of the clause.

Example 6

odd(3) ~even(2), even(O)

1 In this particular case there is no positive literai.

Stage Thesis

8

9

10

Chapter 2 - Logic Programming - 15 -

Any computation in logic programming consists essentially of proving that the
variables of a given goal can be replaced by terms such, that the goal becomes a logical
consequence of a given logic program and, of actually delivering only the most general
terms to variables. To that end, the computation attempts to progressively transform
the given goal to empty goal □ . Each step of the transformation consists of
substituting the variables of the current goal and of a program clause by terms such
that the head of the clause identifies with an atom of the goal. In this case a atom is
replaced by the body of the clause.

Example 8

Goal: ~ a,b,c.

Clause: b~d,f,g .

Result 1: ~ a,d,f,g,c.

The substitutions are the classical way of reporting values for variables.
The process of identifying an atom and the head of a clause is called unification.

Substitutions

Substitutions may be presented in three ways:

0 Set of bindings

8 Functions

8 Solutions of Equations

The first approach is the usual one in the logic programming community, so it is
also adopted here.

✓ Substitution

0 A substitution is a (possibly empty) finite set of the form {X1/t1, .. . ,Xn/tm}
where X1 , ... ,Xm are distinct variables and t1, ... ,tm are terms respectively
distinct from their corresponding variables. Each element X/ti is called a
binding or an instantiation for X . The empty set of bindings is called the
identity substitution1

.

1 Represented by the letter e. Substitutions are typically denoted by Greek letters.

Stage Thesis

15

Chapter 2 - Logic Programming - 16 -

m

The set of variables appearing in a term, a literai, a wff or
more generally in any construct C is represented by var(C).
The set of variables of a substitution 8 = {X1/t1, ... ,Xrn/tm} is
referred by dom(8); the set of terms of the substitution e,
{t1, ... ,tm} is named cod(8). The set of variables appearing
in t 1, ... ,tm is designated by varcod(0) .

In the computation process, generally, auxiliary variables are calculated but whose
values are irrelevant to the final result; so a restriction of substitutions to the given
set of variables must be defined.

✓ Restriction of Substitutions

0 The restriction of substitution 8 = { X1/t1, ... ,Xrn/tm} to the set of variables S,
denoted by 81s is the substitution obtained from e by deleting ail the
bindings X/ti for which Xi rt. S.

Substitutions take their essential meaning through their application to expressions.

✓ Expression

0 An expression is a term, a literai, a disjunction of literais or a conjunction of
literais.

✓ Instance

w

0 Let 0 = { X1/t1 , ... ,Xrn/tm} be a substitution and E an expression.
The construct E0 denotes the expression obtained from E by simultaneously
replacing in E each occurrence of the variable Xi by the corresponding term
ti (1 ~ i ~ n). lt is called an instance ofE.
This situation is also referred to as 8 being applied to E .
After such an operation, Xi is said to be bound or instantiated to t; .

Let cr and 't be two substitutions. The following propositions are equivalent:
CD the substitutions cr and 't are identical;
0 for any expression E, the expression Ecr and E -r are identical;
(3) for any variable X of dom(cr)u dom(-r), the terms Xcr and X-r are identical.

Stage Thesis

16

17

18

Chapter 2 - Logic Programming - 17 -

Substitutions can be composed.

✓ Composition of Substitutions

m

0 The composition of the substitutions cr= {X1/ti, .. . ,Xn/tm} and -c = {Yi/u1, ... ,
Y Jun}, denoted by cro-c, or cr -c for short, is the substitution obtained from
the set {Xi/ti-c, ... ,Xmltm -c, Y i/u1, ... , Y Jtn} by deleting any binding X/ti't for
which Xi = ti-c (1::; i ::; m) as well as any binding Y/uj for which Yj E

X1, ... ,Xm.

Three elementary properties of the composition of substitutions:
CD 0E = e = E0;
0 for every expression E, (Ecr)-c = E(cr -c);
(3) (0cr)-c = 0(cr -c).

Closely related to equations, the idempotent substitutions, which form a particular
class of substitutions bas some interesting properties.

✓ Idempotent Substitution

0 A substitution 0 is idempotent if, and only if, 0 = 0 o 0 .

✓ Properties of the Idempotent Substitution

0 A substitution e is idempotent if, and only if, dom(0) n varcod(0) = 0;

8 Let cr and -c be substitutions. Suppose -c is idempotent. Then cr 2 -c if, and
only if, cr= -c ocr;

e Let cr and -c be substitutions. If cr c -c then cr::; -c .

Unification

Since the structures of atoms and terms are similar, in the unification process
they have a common behavior. That is the reason of the next definitions.

✓ E-term

0 An e-term is either a term or an atom.

Stage Thesis

19

20

21

22

Chapter 2 - Logic Programming - 18 -

✓ Most General Unifier

0 A substitution 0 unifies 2 e-terms E and F if, and only if, the instances ofE0
and F0 are syntactically identical. If so, E and F are said to be unifiable and
0 is called a unifier ofE and F. If 0 is more general than ail unifiers ofF and
E it is called a most general unifier1 .

The unification mechanism is the core of first-order logic. Severa! algorithms
have been proposed2

, the one presented here is due to Herbrand ([Her67]) .

Trying to unify E and F is trying to solve the equation E=F (or solving systems
of equations).

23

Let S be a system of equations. Repeat the following actions as long as possible.
Choose an equation Eq non-deterministically from S in one of the following forms and
perform the associated action.

EQUATION

Eq is.f(t1 , ... ,tm) = g(u1, ... ,un)
with m,n 2'. 0, and f syntactically different from g

Eq is.f(ti, ... ,tm) = g(u1, ... ,Un)
with m,n 2'. 0, and mt=n

Eq is.f(t1 , ... ,tm) = g(u1, ... ,Um)
with m 2'. 0

Eq is X = X
with X a variable

Eq is t = X
with X a variable and t a non-variable term

Eq is X= t
with X a variable appearing in another equation
and t a term containing no occurrence of X

Eq is X = t
with X a variable appearing in another equation
and t a term different from X but containing an
occurrence of X

1 Or mgu, for short.
2 See for instance [R 1, R 4, R 6, R 10).

Stage Thesis

ACTION

Hait with failure

Hait with failure

Replace Eq by the equations
t1=u1, ... ,tm=um

Remove the equation

Replace Eq by the equation
X = t

Replace X by t in every other
equation than Eq

Hait with failure

Chapter 2 - Logic Programming - 19 -

• How to recognize a solved system of equations ?

0 A system of equations is in solved form if it has the form

{
where the Xi' s are distinct variables that do not appear in any of the tj , s.

• How to unify an atom and a normal clause ?

0 An atom A and a normal clause C unify with most general unifier 0 if, and
only if, 0 is a most general unifier of A and of the head of C. It is assumed
that, ifnecessary, variables of C have been renamed so that no variable of
A appears in C.

2.2 Declarative Semantic

Declarative Semantics de.fines the meaning of formulas in terms of true values, of
models and of logical consequences.

The following notions of interpretation and model are essentially addressed to
definite programs.

✓ Interpretation

0 An interpretation consists of four parts:

0 a nom empty set D, called the domain of the interpretation;

8 for each constant, the assignment of an element in D ;

t) for each n-ary function, the assignment of a mapping from D n to D;

e for each n-ary predicate, the assignment of a mapping from D n to
{ true, false} .

Stage Thesis

24

Chapter 2 - Logic Programming - 20 -

✓ Variable assignment

✓

0 Let I be an interpretation. A variable assignment with respect to I is an
assignment to each variable of an element in the domain of I.

F G -,F FAG FvG F⇒G F<=G F<:::>G
true true false true true true true true
true · false false false true false true false
false true true false true true false false
false false true false false true true true

Table 3 : Truth tables for logical connectives

Term assignment

0 Let I be an interpretation and V be a variable assignment. The term
assignment with respect to I and V of the terms is defined as follows:

0 each variable is given its assignment according to V;

8 each constant is given its assignment according to / ;

8 ift1 , ... ,În are the term assignments ofti, .. . ,tn with respect to I and
V and 7 is the assignment off with respect to I, then f (t 1 , ... , Î n)
is the term assignment of./lti, ... ,tn) with respect to I and V

✓ True value of a wff

0 Let I be an interpretation with domain D and let V be a variable assignment.
Then a wff is given a truth value, true or false, with respect to I and V as
follows.

0 If the wff is an atom p(ti, .. -,tn) then the truth value is obtained by
calculating the value P(t1 , .•• ,În) where i' is the mapping assigned
top by / and t 1 , ... , Î n are the term assignment of t1, ... ,tn with respect
to I and V

8 If the wffhas the form--, F, F AG, FvG, F<=G, F⇒G, F<:::>G, then the
truth value of the wff is given by the usual truth values for the logical
connectives, listed in table 1.

e If the wff bas the form :lX(F), then the truth value of the wff is true
if there is some d in D such that F bas as truth value with respect to /
and vlX/d], where vlX/d] is V except that X is assigned to d;
otherwise, its truth value is false.

Stage Thesis

25

26

27

Chapter 2 - Logic Programrning - 21 -

e If the wff has the form VX(F), then the truth value of the wff is true
if, for ail d in D, the truth value of F with respect to I and J/[X/d]
is true; otherwise, the truth value is false .

As we can deduct frorn the last two items frorn definition 26, the truth value of a
closed wff does not depend on a variable assignrnent.

✓ Model

0 Let S be a set of closed wff 's. An interpretation J is a rnodel for S if the
truth value of any formula of S with respect to I is true.

With all this concepts we can define the declarative sernantics oflogic prograrnrning.

✓ Logical Consequence

0 Let S be the set of closed wff 's. A closed wff is a logical consequence of
S if, and only if, every rnodel for Sis a rnodel for F too. This situation is
denoted by S I= F, for any unclosed wffF, to really rnean S I= V(F).

✓ Declarative Semantics

28

29

30

0 The function V : Sdprog➔Sgoal➔Ssubst, for any prograrn P E Sdprog, any

goal G E Sgoal, defines the following declarative sernantics:

Z>(P)(G) = {0 E Ssubst : P i= G0 }

The basic problern frorn the declarative point of view is to deterrnine whether
P I= G holds for sorne given prograrn P and goal G. The following propositions allows

to reduce this problern to the problern of checking that P u {-,G} has no rnodel.

m

Let S be a set of wff 's and F be a closed wff.
Then F is a logical consequence of S, if and only
if, Su {-,F} has no rnodel.

Using Herbrand interpretations, a particular interpretation, sirnplify the checking of
rnodels. Before defining Herbrand interpretation a few prelirninary notions are
necessary.

✓ Ground Term 31

0 A ground term is a term containing no variables.

Stage Thesis

Chapter 2 - Logic Programming - 22 -

✓ Ground Atom 32

0 A ground atom is an atom containing no variables.

✓ Ground Instance 33

0 A ground instance of a clause C is a clause obtained from C by removing the
universal quantifiers and by replacing each variable of C by a ground term.
The set of ground instances of the clauses of the pro gram P is subsequently
denoted by ground(P).

✓ Herb rand U niverse

0 Set of all ground terms.

✓ Herbrand Base

0 Set of all ground atoms.

✓ Herbrand Interpretation

0 An interpretation is an Herbrand interpretation if the following conditions
are satisfied:

0 the domain of the interpretation is the Herbrand universe UH;

8 constants are assigned to themselves in UH;

9 if f is an n-ary function, then f is assigned to the mapping 7 from
(UH)" into UH defined by 7 (ti, ... ,tn) = ./(t1, ... ,tn)-

34

35

36

It is possible to identify an Herbrand interpretation by a set of ground atoms since the
assignments of constants and functions is fixed . These atoms are considered to be true
with respect to the interpretation

✓ Herbrand Model

0 Let S be a set of closed wff 's. An Herbrand model for S is an Herbrand
interpretation which is a model for S.

✓ Proposition

0 A set of clauses S has no model, if and only if, it has no Herbrand model.

The least Herbrand model is a particular model that is used to reduce the
checking of Herbrand models.

Stage Thesis

37

38

Chapter 2 - Logic Programming - 23 -

✓ Least Herbrand Model

0 Let P be a definite program and {Mi}i e I be the set of Herbrand models.

T

Then rîï e 1 {Mi} is an Herbrand model, called the least Herbrand model.
It is denoted by Mp.

The least Herbrand model Mp of a definite program
P satisfies the equality Mp = { A E BH : P ~ A} .

39

It is possible to further characterize the least Herbrand model with the help of the
immediate consequence operator, denoted by Tp.

✓ Definition

0 Let P be a Horn clause program. The mapping Tp: P (BH) ➔ P (BH) is
defined as follows, for any Herbrand interpretation I.

Tp = {A E BH : (A~ A1, ... ,Am) E ground(P), {A1, ... ,Am} c I}

The following auxiliary notions are needed to characterize the operator Tp.

Notation

Let A be a set and let T:P (A)➔ P (A) be a function from P (A) to P (A).
We define:

ex:

Tt O = 0; Tt n = T(Tt(n-1)); Ttco = U Ttn.
n = O

40

For any set of interpretations S c P (BH), the least upper bound is the union and
the greater lower bound is the intersection of the interpretations of S. The least
Herbrand model can be linked to the immediate consequence operator as follows .

T Let P be a Horn clause program. Then,
Mp = lfp(Tp) = Tp Îco

where lfp(Tp) is the least fixed point of Tp.

Stage Thesis

Chapter 2 - Logic Programming - 24 -

2.3 Operational Semantic

Operational Semantics refers to a mode! of execution and states, in a abstract way,
how formulae are processed

There are many methods of computing logic programs, each of them defining a
logic programming language. The refutation proof procedure from Robinson I and
Kowalski procedural interpretation, which is a specialized version (of the first) adapted
to the context of Hom clauses is the source for most methods.

We will show how it applies to definite and normal programs.

Definite Programs

A computation in logic programming consists in trying to solve, in a sense to be
made precise in a moment, a given conjunction of atoms ~A1, ... ,Am with respect to a
given definite program. More specifically, it consists of trying to find instantiations for
the variables appearing in A1, .. . ,Am that conjointly solve these atoms. This can Iead to
two opposite results: success or failure. In the first case, the values assigned to the
variables constitute the output of the computation. In the later case, no output is
generated. Note that several successful computations may exist, each resulting in a
different output.

The computation steps are non-deterministic.

Reduction steps

Given ~G1, .. . ,Gj, .. . ,Gn (n2: 1) and a clause H~B1, ... ,Bk.

0 Select an arbitrary Gi;

8 Let 0 be the most general unifier of Gi and H.
Try to unify Gi with the clause H~B1, ... ,Bk;
If needed, the variables of the clause are previously renamed to avoid their
appearance in the computation and specially in G.

8 Transform the conjunction:

~G1, ... ,Gi, • .. ,Gn
into

~G1, ... ,B1, ... ,Bk,Gi+J, ... ,Gn
Reduction / Deduction step

0 End the reduction when the current conjunction is empty or when
no further reduction can be made.

1 ln [R 5) .

Stage Thesis

41

Chapter 2 - Logic Programming - 25 -

Be aware that infinite reduction processes may exist.
~ They correspond to imperative infinite loops and do

not produce any result .

Any sequence of the above transformation steps is called a SLD1
- derivation.

A complete SLD-derivation is successfuI2 when it ends with the empty goal. It
is qualified as a failure, otherwise.

The computation terrninates successfully if the conjunction +-A1, ... ,Am can be reduced
to the empty conjunction. It faits if whatever atom and clause are selected at each step,
the reduction process ends with a non-empty conjunction of goals.

The operational semantics may be defined using the following concepts:

✓ Computed Answer Substitution

0 Let 01, ... ,en be the successive mgu's involved in a (successful) SLD -
- refutation for the query +-A1, .. . ,Am and let S be the set of variables of this
query. The restriction of the substitution 01 o ... o 0n is called a computed
answer substitution for +-A1, ... ,Am.

✓ Derivation relation

0 Let P be a definite program, G a goal and 0 a substitution.
The expression P f- G[0] means that there is a SLD-refutation of G with
respect to P giving as result the computed answer substitution 0 . In other
words, G is successful completed after n steps using the definite clauses
of program P, yielding 0 as a set of instantiated variables.

The derivation relation itself is defined by rules of the form:

Assumptions
Conclusion

if Conditions

that states that a Conclusion is reached if the Assumptions and the Conditions hold.

The derivation relation can be express by:

0 (no Assumptions, no Conditions)
Pf- D [e]

which states that the empty conjunction D is derivable from any program
with the empty substitution E as a computed answer substitution.

1 for Selection Linear Derivation.
2 Also called a SLD-refutation.

Stage Thesis

42

43

Chapter 2 - Logic Prograrnming - 26 -

f) PC: (A1 Ai-1,B 1, ... ,Bk. Ar+1 Am)0 [cr]

P ~ A1, ... ,Am [(0cr)1 vars ({A, ,A.n})]

If (H~B1, ... ,B0 is a fresh renaming of the clause P) AND (Ai and H unify with mgu 0)

which express the reduction step explained in 37.

Example 9

Program

p(3)~q(Y).
q(4).

Goal: p(X)

Resolution

Unification ofp(X) and p(3) giving 0 = {X/3} .
Unification of q(Y) and q(4) giving cr = {Y/4} .
Restriction to the composition (0cr) = [{X/3 }{Y/4}] 1 {X} giving {X/3} .

✓ Operational Semantics

0 The operational semantics can be define as the following function 0 :
Sdprog1 ➔ Sgoai2 ➔ 'P (Ssubst3

) : for any program P E Sdprog, any

goal G E Sgoal,

O(P)(G) = {0 E Ssubst : P ~ [0]}

Normal Programs

Many proposai have been made to treat normal clauses4
. An early proposa!

([R 81) which is simple and easy to implement consists in the reduction of atoms (as
describe above) and of reducing negative literais by reducing the associated positive
litera! and by inverting the computation results, thus reporting success if failure and
vice-versa. In the reduction of atoms the empty conjunction is reported as the
computed answer substitution.

1 Set of definite programs.
2 Set of goals.
3 Set of substitutions.
4 See for instance [R 2, R 3, R 7, R 9, R 11, R 13, R 14].

Stage Thesis

44

Chapter 2 - Logic Programrning - 27 -

The type of negation described here is know as negation as failure.

not(p(a)) q p(a) q not(false/true)
D,

True/False

Negation as failure is not, in general, the real logical negation except when no
variables appear in the negative literai, so it is usual programming practice to make
sure that reduction progresses in such a way that, when they are selected for reduction,
negative literais do not contain any variables. Altematively, some logic programming
languages delay the reduction of negative literais until they do not embody variables.

Search Tree

Prolog uses what is call a search tree. A search tree is defined by the following
concepts.

✓ Search state

0 A search state is defined as:

< n, 0, C > where
• n is the number of the clause;
• 0 is a substitution;
• c is the continuation atoms B1, ... ,BP.

✓ Search Tree

0 A standard search tree having Q1, ... ,Qm as initial goals, is a finite or infinite
tree, where each node is an instance of a search state.

The root is an instance of <O, {} , Q1, ... ,Qm>.

A instance node of < n, 0, c > where c is empty is called a success leaf

For every other instance node v of < n, 0, c > and for every v' (son of v),

instance of < n', 0', c' > then:

• The mapping v' ➔ n' is a one-to-one mapping from the set of nodes
sons of v to the set of numbers of clause n' such that, B 1 is unifiable
with the head of the clause numbered n' (Cn');

• v is a failure leaf if there is no n';

• V v' :l ~ , ~ A1 ', ... ,An' a variant of Cn' (clause renaming) without
common variables with the goals of nodes states prior to v';

• 0 ' is the mgu of B1 and~', c' is the result of the replacement in

Stage Thesis

45

46

Chapter 2 - Logic Programming - 29 -

2. 5 W AM Implementation

The W AM is an abstract machine consisting in a memory architecture and instruction
set tailored to Prolog1 .

This words from D. Warren are certainly the best description of what is know as
the Warren' s Abstract Machine, or for short, the W AM. To understand why the W AM
is so important we must realize that Prolog programming language was built using the
concepts of logic prograrnming set by Kowalski, and before Warren' s report2 in 83,
writing compilers for Prolog was, at least, a hard task.

The W AM is certain/y a good starting point for studying Prolog implementation
technology1

•

w

Alain Colmerauer and colleagues conceived Prolog in the
beginning of the seventies at the University of Marseille.

One of the features that distinguishes the W AM is its memory architecture map, which
is presented in figure 1.

There is, as we can see in the memory map, a Code Area, a Heap, a Stack, a
Trail and a Push Down List. The purpose of the code area is, like the name suggest,
the storage area for code; the Heap is used as a global stack to store any permanent
information3

; the Stack is where variable data are putted; the Trail supports Prolog's
mechanism of backtracking and finally the Push Down List is a global dynamic area
used as unification stack.

The registers arguments Al , ... ,An are used (in a query or body goal) as auxiliary
and temporary storage areas for passing information between the calier and the called,
like arguments to a function. The same registers are used to store the contents of
temporary variables in which case a different notation X 1, . . . ,Xn is used to differentiate
the use. These registers also exist in the choice point frame as a backup to allow a full
restoration of an early state of the computation.

Opposed to the temporary and auxiliary registers there are others which are local
and permanent (Yl , ... ,Yn), in the environment frame. Facts uses the temporary
registers and rules uses the permanents.
T o understand the utility of the choice point and environment frames we must first
explain how Prolog search is done, with an example.

1 Quoted from David H. D. Harren, forewords in [5].
2 In which the principles of the W AM are set.
3 Namely, variables and structures.

Stage Thesis

Chapter 2 - Logic Programming - 30 -

High

PDL
Argument registers

!Al \A2 \ -·· \An \

'V'
1Î'

Environment Frame

Registers Trail

TR

'1r' E I,·

,,/ /,,,'// ,'

CE cont. environrnent
CP cont. code
YI 1st local variable

Environment Yn nth local variable ----------- ------
B

1 Choice Point
-

BO - Choice Point Frame ---
n arity

H Stack ;
A 1 1 st argument

. .
HB .

'1r' s
An nth argument
CE cont. Environrnent
CP cont. code

CP - t---

B previous choice pt.

p - - -
Heap

1Î'

BP next clause
TR trail pointer

\\ H heap pointer
BO eut pointer

-

- CODEArea

Low

Figure 1 : W AM memory layout and registers

Stage Thesis

Chapter 2 - Logic Programming - 31 -

Example 10

Let :-q(X) be a query1
, q(Y):- p(Y,Z),t(Z) be a rule and p(3 ,6), t(6) be facts .

Prolog will try to find an answer for the query in a tree like search.
q(X)

/
q(Y):-p(Y,Z),t(Z)

/ "" p(3,6) t(6)

In the example above we must make a choice in the rule, what goal do we try
first p(Y,Z) or t(Z) ? Prolog always tries the left one first, continuing as deep as
possible and proceed with the others (in the example t(Z)) . Since the variable Z
appears in more than one goal it must be made permanent, because it must outlive the
goal in which it was first created (i. e. p(Y,Z)). The storage is done in the environment
frame, for each variable appearing in more than one body goal, the head atom is
considered as part of the first body goaI2 for this purpose.

An environment frame is created by the first body goal and removed by the last goaI3 .

Environment frames are also called AND-stack since each environment is created for a
body goal and as we know they are all linked by the logical connective AND.

The previous example will be changed to explain choice point frames .

Example 11

q(X)

/
q(A):-p(A),t(Z)

/ "" -------p(B):-g(C) p(D):-f(E) t(6)

1 1
g(3,4) f(5)

1 A query is a rule with no head.
2 That's why Y, in the example, is nota permanent variable.
3 In reality, for efficiency purposes, the environment is destroyed before the call to the last goal.

Stage Thesis

- Chapter 2 - Logic Pregramming - 32 -

Now there are two rules for the definition of clause p. Since Prelog tries the left
one first and goes as deep as possible to find a match1

, the sequence q(X), q(A):-p(A),
p(B):-g(C), g(3 ,4) is first tried, but since the unification fails at this point (in the goal
g(C) and g(3,4)), Prelog must clime in the search tree so that the clause p(D):-f{E) can
be explored downwards. The preblem here is that if the computation state at q(A):­
p(A),t(Z) is not saved, it's impossible to go back when there is a failure in the
unification precess. For this purpose, when more than one definition of a clause exist it
is necessary to create a choice point to save the current state and restore it upon failure
using backtracking (return to a previous state where a choice, of what clause definition
to try, was made).

Choice point frames have also another name: OR-stack, given by the fact that the
different alternatives are logically or-alternatives, since if one fails the next is tried and
so on until one succeeds or the last one fails, in this way succeeding the goal or failing
otherwise.

A choice point frame is created by the first alternative, updated by intermediate2

alternatives (as far as which alternatives to try next) and finally discarded by the last
alternative.

A closer look to the choice point frame and envirenrnent frame, in fig. 1, will call
the attention to the cells named B and CE, pointer to last choice point and pointer to
last envirenrnent respectively, forming in this manner a linked list of frames of the same
type; furthermore both kinds of frames are mixed.

An explanation of the others components of the W AM follows .

The need for choice points is to restore a previous state with everything that defines
that state: contents of variables, registers, integers, and so on. Our concern is with
unbound variables that are instantiated with values or memory references in one
alternative and upon backtracking they need to be set to unbound again, to allow a full
reposition of a previous state; as in the last example , where the variable A is unified
with B in the first alternative and when backtracking is performed, due to unification
failure of g(C) with g(3,4), p(D):-f(E) is tried, but a preblem occurs since A can not be
tied to D sin ce it is already tied with B. What to do ?
The best way to handle this situation is to store the location of the variable A in a heap
called Trail.

When a variable previous to the last choice point must be tied, its address is
putted in the trail. To make this arrangement work we must put, in the choice point
frame, the location of the top of the trail. When backtracking it ' s only necessary to set

1 A successful unification between a query or body goal and a atom (i.e. fact or head atom of a rule).
2 But not ultimate alternatives.

Stage Thesis

Chapter 2 - Logic Programming - 33 -

to unbound all memory cells referenced in the trail, between the previous top (stored in
the last choice point frame) and the current top pointed by the register TR.

When two variables are tied, as in the last example, A and B, the variable that
will contain the reference to the other must be the one that belongs to the current
clause, so B+--A, avoiding in this way the storage of the location of variable A in the
trail.

As seen before, variables are either stored in temporary registers or in environment
frames, but where to store the terms specially those whose arity is greater than one ?
They must be stored in the Heap, whose top is given by the base register H1

. Upon
backtracking, ail the terms created after the last choice point are removed like a
garbage collector. To allow this, each point frame has a cell named H that points to a
previous top of the heap, everything between the current top and the previous, 1s
disposed.

W e now know where terms are stored, but how are they built ?

Term representation

There are several term types to store so the need arises to represent them with the help
of a tag to identify each term type.

TERM TAG
Variable REF
Integer INT
Constant CST
Empty list
Non empty list LST

Structure STR

1 Pointer to nex1 free cell.
2 The Head of the list.
3 The remainder of the list.

VALUE
Pointer to an address in the Heap
Integer
Pointer to a table of constants
Represented by the constant '[] '
Pointer to an Heap cell containing the CAR2

. Next cell will
always be the CDR3

.

Pointer to an Heap cell containing the functor4 and arity.
Next to them cornes the n sub-term elements.

Table 4 : Definition of Terms

4 More precisely, a pointer to hash-code table of constants.

Stage Thesis

Chapter 2 - Logic Programming

The representation of terms is as follows:

J Argument CDRI
_I L_ST_I ___ -_ __._1.._ _____ , Argument CAR_

1 INT I integer 1

Argument n-1

Argument 0

STR Functor / arity

1 CST -------------
Heap

1
I ________ ____ 1

Table of Constants

Figure 2 : Term representation in the WAM

An unbound variable points, by convention, to itself
The operation of following linked variables until one
unbound variable or a term different from a variable
is found is called dereferentiation.

Unification of structured terms

- 34 -

Suppose that we have a program p, a query q that bas build a term on the heap and a
register Xl to contain the term' s address. Thus unifying p to q can proceed by
following the term structure already present in X 1 as long as it matches functor for
functor the structure of p . The only complication is that when an unbound REF cell is
encountered in the query term in the heap, then it is to be bound to a new term that is
built on the heap, as an example of the corresponding sub-term in p .

Stage Thesis

Chapter 2 - Logic Programming - 35 -

As we can see, two different modes are used in the unification process:

-❖- Read mode, in which data on the heap is matched against. The base
register S is set to contain at all times the heap address of the next
term to be matched.

-❖- Write mode, in which a term is copied to a new location in the heap.

To avoid the use of another register to identify the mode, the register S is used
since in write mode Sis set to Null (i.e. if S>O then mode is read, otherwise it's write).

lndexing

Each time choice points are created variables must be put in the Trail; to save memory
it would be useful to reduce their number. The principle of indexing is to <livide the set
of clauses of the same predicate using the possible values of certain arguments as keys
and to generate the instructions for the management of choice points, for each sub-set
separately. Since there is only a concem with one part of the set, the probability of
creating choice points is reduced.

In the W AM, the key for indexing is the main functor of the first argument of the
head, which can be:

-❖- a Variable,

-❖- a List (not empty),

-❖- an Integer,

-❖- a Constant (including the constant for the empty list),

-❖- a Structure.

In the last three items, another division is made using their value.

Instruction Set

A predicate may be compiled independently of any context as a result of using the
register arguments for exchanging data and there is no need for a predicate clause to be
aware of the others; only the instructions who manage choice points needs to know ail
clauses. Studying predicates at compile time allows the W AM to produce code more
efficient, faster and that saves memory. As an example, choice point management is
done by specialized instructions as is the unification that is decomposed according to
the arguments of the head of the clause to avoid using the general unification
algorithm.

Stage Thesis

Chapter 2 - Logic Programming - 36 -

The W AM instruction set may be grouped in four categories:

-❖- Registers recovery instructions,

-❖- Registers setting instructions,

-❖- Control instructions,

-❖- Indexing1 instructions.

Registers recovery instructions

These instructions are produced by the compilation of the head of clauses. For reasons
of performance they are decomposed; their type, comments and respective instruction
follows .

Let V be a temporary or permanent variable and A a register argument .

First occurrence of a variable Makes a copy from V to A.
get_ variable V,A

Other occurrence of a variable Unify V with A.
get_ value V,A

constant C Checks that A is tied to C or to an unbound
get_constant C,A variable, in which case this variable is tied to C.

The instruction for the integers, get _integer N,A is like get _ constant.

_em__.__pty......._l_is_t _______ ~1 Abbreviation of get _ constant ' [] ',A.
get_nil A

The recovery of a structured term uses the unify instructions. The unification of a
composed term behaves in two different ways depending upon the type of argument
being unified with the term:

- If the term has the same functor and the same arity then a real unification
takes place regarding the sub-terms (Read mode).

- If it is an unbound variable then the term is created in the Heap and the
variable is tied to it.

1 Choice point management.

Stage Thesis

Chapter 2 - Logic Programming - 37 -

list not em t These instructions dereference A; if the dereference ----~....._ _____ _
get_list A word is an unbound variable, it is tied to a list created

unify _.. . (Car) in the Heap; if the word is a list, the instructions
unify_ ... (Cdr) unify_ ... will unify the head and the rest of the list.

structure FIN These instructions dereference A; if the dereference ------------g et_ structure F/N,A word is an unbound variable, it is tied to a structure
unify _... created in the Heap; if the word is a structure the

instructions unify _ ... will unify the sub-terms.
unify_ ...

The code produced in the compilation of a sub-term depends of its nature, as follows:

first occurrence of variable V This instruction ties V to the cell pointed by S ----------,-------
If V is not singleton 1

: unify _ variable in Read mode and ties V to an unbound variable
else K2 :unify _ void(K) putted in the Heap, in Write mode.

The instruction unify _ void allows to optimize the singleton variables in the
structures. In Read mode, adds K to Sand in Write mode puts K unbound variables in
the Heap.

T o use the instruction unify _local_ value we
must first be sure that a connection will not

other occurrence of V occur from the Heap to the Stack. --------------
If it is possible to know if in the first In Read mode: unify _local_ value behaves

occurrence V was tied with the exactly as the instruction unify_value. In Write
Heap3 : mode : if the dereference word of V is an

unify _ value(V) unbound permanent variable do a globalization
else: unify_local_value(V) of the last, else put the word in the Heap.

constant C In Read mode this instruction behaves like ------------i
unify _ constant C get _ constant, but instead of S is the word pointed by S. In

write mode, puts a constant in the Heap.

The instruction for the integers is like the one for constants

_e_m_p'-ty-"---h_· s_t ------------11 A shortcut to unify _ constant '[] ' .
unify_nil

As we can see, there are no unification instructions for recovering composed terms,
they are unified with temporary variables X using the instruction unify _ variable X,
these instructions are decomposed by the get _ ... X instructions.

1 A variable occurring only once in the clause.
2 Number of successive singleton variables.
3 First occurrence of V in a structure, or iftemporary, first occurrence in the body.

Stage Thesis

Chapter 2 - Logic Programming - 38 -

Example 12

A[i] ➔ f(h(b,Y)) becomes A[i] ➔ f(X) and X ➔ h(b,Y)

In the registers setting, the new temporary variables are set by the put_ ... X
instructions before being unified by unify _ value X

Ex.ample 13

A[i] +- f(h(b,Y)) becomes X+- h(b,Y) and A[i] +- f(X)

Registers setting instructions

Here there are also different instructions depending of the argument to set. As before,
A references A[i] and V a temporary or permanent variable.

first occurrence of V If V is permanent then sets V and A with an --------------
put_ variable V,A unbound variable else V and A are tied to an

unbound variable putted in the Heap.

The instruction put_ value copies V to A. If is in
the last goal, we must confirm that the copy will
not link A to the current environment.

other occurrence of V The instructionput_unsafe_value takes care of
-----------------1 If V is a safe variable and the current the dangling references. If the dereferenced

goal is not the last: put_ value V,A word of V belongs to the current environment
else : put_unsafe_value V,A then the variable is made global, else copy the

word to A.

An unsafe variable with n occurrences in the last goal will need n
put_unsafe_value instructions. The first will make the probable globalization and the
others will copy the dereferenced word.

_c_o_n_s_ta_n_t_C _________ ----11 Put the constant C in A.
put_ constant C,A

The instruction put _integer is similar to the constant instruction.

_e_m""""p,__t-=--y_li_st _________ --11 Abbreviation of put_ constant '[] ',A.
put_nil A

list not em t ____,.___ _______ ----1
put_list A

Sets A with <LST,H> and having set the
mode to Write so that the unify instructions
that follows may copy again the Car and Cdr.

Stage Thesis

Chapter 2 - Logic Programming - 39 -

The instructionput_structure F/N,A works also in this way.

Control instructions

The control instructions manages the call and return from procedures as well as the
environments. The call to the last goal bas a different instruction since it must do the
return. Coming next are the prototypes for facts and rules.

• for a fact p(...).

1

registers recovery
proceed

• for a clause p(...):-q(...).

1

registers recovery
registers setting for q
execute(q)

• for a clause p(. . .):-q1 (...), q2(...J, ... , qn (. ..).
allocate(N)
registers recovery
registers setting for the
call(qi)
registers setting for the
call ((!2)

goal q1

goal q2

registers setting for the goal qn
deallocate
execute (~)

The instruction allocate (N) creates an environment for N variables and the
deallocate removes it from memory.

The instruction cal 1 (P /N) sets the base register CP to the code address that
follows the call and gives control1 to the predicate PIN. The instruction
execute (P/N) does the same but without changing the register CP.

The return from a procedure is done by the instruction proceed that only sets the
register P to the value of register PC.
Indexing instructions

These instructions are used to group the code for the each clause of a predicate and
because of this they are the top level instructions. They manage the choice points. They

1 By setting the register P to the address of the first instruction of predicate PIN.

Stage Thesis

Chapter 2 - Logic Programming - 40 -

may create up two choice points in the beginning of a predicate, that ' s why we can
speak of two levels of indexing. The two levels exist because a variable that appears in
the heads first argument can not be used as a key type in the indexing.

For the clauses C1, .. . ,Cn several groups (Go, .. . ,Gm) are created. If the first
argument of the head is a variable then a level 1 type code is generated, otherwise a
level 2 code is produced. In level one, each group contains only the code for a clause.

• Level 1

ifm=O

else

code for Go

try_me_else Li
c ode f o r Go

retry_me_else L2
c ode f o r G1

Lm: trust me else fail
code fo r Gm

The instruction try_me_else L..1se has the mission of creating the choice
points where L..1se is the next clause code address. The retry _me_ el se Leise

instruction resets the base registers, as the previous instruction it sets the next
altemative' s code. The final instruction resets the base registers and removes the
choice point.

• Level 2

In level two, each group contains the following instructions:

switch_on_term(Lvar , Lcte , Lint , List , Lst r l

Accordingly to the argument type a L alternative is chosen.

For instance, if there are no constants then Lcte = fail, else

Lcte : switch_on_constant(N,[(cte1,Lctel), ... , (cteN,LcteNi])

For each constant ctej (j = 1,2, ... ,N) the code produced is the following:

if there is only a clause which has the constant ctej as first argument then

Stage Thesis

Chapter 2 - Logic Programming - 41 -

Lc1e-=Lj1 (beingj; the number of the clause having ctej as first argument),
J

else:

Lcte- :
J

try (L jl)
retry (L j2)

The integers and structures produce the same code.

If there is no list List = fail else the following code is generated:

List : try (L j1)
retry (L j2)

where ji is the clause number I .

If Gi has only one clause then Lvar = L,, else :

Lvar

Lvar : p

Lp

try_me_else (Lvar)
code for clause 1

retry_me_else (Lvar
3

)

code for clause 2

trust me else fail
code for clause p

The instruction switch on term(Lvar , Lcte , Lint , List , Lstr l
gives control to the L address according to which word type is register A[O] tied.

The swi tch_on_constant (N, [(cte1, Lcr:e il , ... , (cteN, LcteN i])

instruction associates to a constant, using a table, an address L. L is the address of the
clause in which it' s first argument is cte or to a level 2 code1 when several clauses
have cte as the first argument of the head. The same holds for the integers and
structures.

1 Try, retry and trust.

Stage Thesis

Chapter 2 - Logic Programming - 42 -

The instructions try(L), retry(L) and trust(L) behave like try _me_ else(Le1se),
retry_me_else(Leise) and trust_me_else_fail respectively; the only difference is that in
the cell of the choice points, it is the next instruction and not the Le1se that is stored
there. The next code to be executed is the one lying at Laddress-

Memory release and savings

Saving memory in Prolog is essential due to the enormous memory needed, since the
solutions choice is made at runtime. There are several ways of releasing memory, for
instance, in the process of backtracking a part of the Heap is released when the top is
reset to it's former position; Stack frames are also released through this process.

Other processes are used to save memory, for instance, facts and rules with only
a body goal do not need environrnents 1 . Rules with more than a body goal need an
environrnent until the end of the clause.

Example 14

Rule with more than a body goal

p(A,B):-q(B,A),r(A,B).

is transformed into

p/2: allocate 2
get _ variable Y 2,A1
get_variable Y1,A2
put_ value Y1,A1
put_ value Y 2,A2
call q/2
put_value Y2,A1
put_ value Y 1 ,A2
deallocate
execute r/2.

As we can see, the deallocate instruction (that releases the environrnent) is put before
those of the continuation (i.e. proceed, execute) since the argument registers are
already loaded, no further references to the environrnent will be made. Obviously, the
release of an environrnent has only an interest as long as no choice points have been
created above it, in which case the environrnent will only be released after the disposai
of the choice point.

[gJ If a reference to the released environrnent exist it is a potential danger.

1 Since putting the { allocate 0, ... , deallocate} instructions is useless.

Stage Thesis

Chapter 2 - Logic Programrning - 43 -

T o prevent situations of this kind, some rules are imposed:

W AM Binding Rules

0 Always make the variable of higher address reference that of lower address;

8 Heap variables must never be set to a reference into the Stack.

e The Stack must be allocated at higher addresses than the Heap, in the same
global address space.

W AM binding rule number 3 is a logical consequence of the first two. The rules
mentioned above cover two possibilities of variable bindings, namely heap-heap and
heap-stack, but unfortunately this rules are not sufficient to prevent dangling references
in a stack-stack binding, so unsafe variables appear.

Unsafe variables

Any permanent variables initialized with a put_ variable instruction are called unsafe
variables. The explanation for this, is that since the variable is permanent it must be in
the Stack (environment frames) but to spare space the environment is released before
the call to the last goal in which the permanent variable may appear and the danger is
that the predicate may reference that variable.

Example 15

p/1: allocate n

put_ variable Yi,A1

deallocate
execute r/2

r/2: allocate m
get _ variable Y k,A 1

If the predicate p/1 is executed first, the register A1 will have the reference to
the permanent variable Yi and let suppose that nothing changes Yi or A1, then the
environment is deallocate and r/2 is called; Y; will be set with the contents of register
Ai, in other words, there will be in the environment of r/2 an reference to another
environment that as already been disposed off. T o prevent it, the variable of Y; is put
if necessary in the Heap, which has the effect of making the value of Y; global so as to
guarantee that it may be discarded without leaving a nonsensical reference in A1. To
accomplish this the instruction put _unsafe _ value is used at the place of put_ value in
the.first occurrence of the variable in the Last goal.

Another source of danger is when a permanent variable appears in the last goal
nested in a structure whether or not it is also an argument. T o solve it, it is only
necessary to set the permanent variable to point to an unbound variable created in the
Heap.

Stage Thesis

Chapter 3 -- Constraint Logic Programming

The basic idea of CLP is ta replace unification by constraint solving over a particular
domain of interest1 .

3 .1 Introduction to CLP

The declarative nature of Logic Programming combined with the ability to reason and
compute with partial information on specific domains allows Constraint Logic
Programming to be used in a wide range of real life applications. One usual class of
domains found in CLP are finite domains which where first introduced by Pascal van
Hentenryck at the end of the eighties.

Finite domains are simply a set of values containing numbers or symbols with a
fini te cardinality, like for instance { 1,2,3 ,20, 100} , { sun, moon, earth} or 1 .. 100.

The constraints to be used on finite domains are arithmetic constraints
(equations, inequations, disequations) between linear terms, as well as symbolic
constraints. For instance the relation atmost(N, [X1, .. ,,Xm}, J1 means that at most N
variables X, are equal to the integer V. In finite domains, constraint solving is done by
propagation and consistency techniques belonging to Artificial Intelligence originated
from Constraint Satisfaction Problems.

The general idea is to build a network of constraints between a finite number of
variables, each with a number in a finite domain. It is usual to represent this scheme as
a graph where variables are represented by nodes and constraints by arcs. The
satisfiability of the set of constraints is assured by the propagation from neighbors
nodes (local propagation), the possible values of the variables between the connected
constraints.

The resolution of the constraints is done by several techniques, like for instance,
the broadcast of the domains of variables through the network (arc consistency) or by
a more general technique, the propagation of the relations between variables
(k-consistency).

The responsability for checking the consistency of a set of constraints and,
possibly for reducing it into some normal form is done by the constraint solver
considered as a ''black box". The black box approach does not give any control to
programmers about the execution of the constraints.

A "glass box" approach was proposed2 to give programmers a better control of
the complexity of the methods needed to ensure the consistency of the constraints. It is
based in a limited number of simple primitive constraints. The basic idea is to have a
single constraint X in r, where Xis the finite domain variable and r is a set of integers.

1 Quoted from [11]
2 In [R 12) .

Chapter 3 - Constraint Logic Programming - 45 -

Complex constraints are translated at the compilation time in a set of primitive
constraints.

The semantic ofthis constraint enforcesXto belong to the domain denoted by r.
The constraint X in r can be seen as a way of specifying the propagation mechanism.
More precisely, it allows to specify what is to be propagated.

Any modification in a constraint is propagated in one of two ways through the
network of constraints, by partial lookahead or by full lookahead. Partial lookahead
occurs when the changed limits of variables are propagated; if a hole occurs in the
middle of the domain, the hole is not propagated. Full lookahead occurs when any
modification in the domain of the variables are propagated.

Example 16

The equation X=Y+C is define in CLP as:

'x=y+c' (X, Y,Z):- X in min(Y)+C .. max(Y)+C,
Y in min(X)-C .. max(X)-C.

Example 17

The equation Z= X+ Y is define as:

'x+y=z' (X, Y,Z):- X in min(Z)-max(Y) .. max(Z)-min(Y),
Y in min(Z)-max(X) .. max(Z)-min(X),
Z in min(X)+min(Y) .. max(X)+max(Y).

The last example is a full lookahead example. The equation X=Y+C which is
defined in partial lookahead can be also define in full lookahead.

Example 18

'x=y+c' (X, Y,Z):- X in dom(Y)+C,
Y in dom(X)-C.

An extension to the W AM for finite domains based in the X in r constraint is
developed subsequently without touching the W AM' s architecture and data structures.
The constraint solving is done by the language X in r .

3 .2 Language

The notions of finite demains and constraints are first formally defined. The
syntax of this constraint system (X in r) follows.

Stage Thesis

Chapter 3 - Constraint Logic Programming -46 -

✓ Finite Domains

0 A finite domain is a (non empty) set of natural numbers (i .e. a range) .
A range is a subset of {0,1, ... ,infinity} where infinity denotes the greatest
integer that a variable can take.

49

We use the interval notation k1, ... ,k2 as a shorthand for the set {K1,K1+ l, ... ,K2}. In
a ranger, min(r) (resp. max(r)) is defined as the lower (resp. upper) bound of r.

Dom is the set of ail domains. Vd is the set of FD variables.

As usual all the standard operations on sets (e.g. union, intersection, etc.) are
defined as well as the following pointwise operations.

✓ Pointwise operations on sets 50

0 A pointwise operation (+,-, * ,/) between a ranger and an integer i is defined
as the set obtained by applying the corresponding operation on each element
of d i.e. develop for+, -, *, /.

Being r a range and ; an integer, then the range of r • i with • E { +, -, *}
is defined as r • i ={k = k'• i, k'E r} . The special case r/i is equal to
{k=Lk'/iJ E r} 1

.

Syntax of the X in r Constraint

In the FD (finite domain) constraint system, there are three kind of syntactic objects:

~ constraints;
~ ranges;
~ arithmetic terms.

The following sets are also define.

Constr
SynDom
S Term

Set of syntactic constraints
Set of syntactic domains
Set of s tactic terms

Table 5 : Definition of Sets

1 An integer i resulting from a division is surrow1ded by the symbols L J, which indicates a lower
rowiding.

Stage Thesis

Chapter 3 - Constraint Logic Programming

The definition of the constraints cornes next.

✓ Constraint

- 47 -

51

0 A constraint is a formula of the form X in r where XE Vi and r E SynDom.

The notation X=n is a shorthand for X in n .. n. A range r can have a constant
range (e.g. 1..10) or an indexical range as those listed in the next table:

dom(Y)
min(Y)
max Y

represents the current domain of Y
represents the minimal value of the current do main of Y
re resents the maximal value of the current do main of Y

Table 6: Definition of Indexical ranges

A check must be made each time the domain of a variable Y is updated if a
constraint X in ruses an indexical of such variable Y (e.g. X in dom(Y)) . A reason for
the necessity of the checking is given by the next example.

Example 19

The constraint X:t:Y is define in CLP as:

'x:t:y'(X,Y):- X in -dom(Y),
Y in -dom(X).

The dornain given by -dom(Y) grows according to the domain of Y; when
the domain of Y decreases the complement -dom(Y) grows accordingly. A
problem arises in the implementation since an inconsistent value of X (i.e. not
belonging to the complement of the domain of Y) may became consistent if Y is
reduced. Such constraints (X in -dom(Y)) must wait then for Y to be instantiated.
The process that checks if a domain of a variable must be updated is named
forward checking.

In addition to the indexical range, a constraint can also use run-time constant
values as parameters. The constraint -X in ris just X in -r, due to the fact that the FD
system is closed under negation.

The following definitions are important to the FD constraint system.

✓ store 52

0 A store is a finite set of constraints.

✓ Normal form of a store 53

0 A store is in normal form if, and only if, it contains at most one constraint X
in r for each variable X EVa.

Stage Thesis

Chapter 3 - Constraint Logic Programming - 48 -

c: := X in r

r::= t1 .. t2 interval
{t} singleton
R range parameter
dom(Y) indexical domain
r1 : r2 uruon
r1 & r2 intersection
-r complementation
r + et pointwise addition
r - et pointwise subtraction
r * et pointwise multiplication
r / et pointwise division

t::= min(Y) indexical term min
max(Y) indexical term max
et constant term
t1 + h I t1 - h I t1 * h I t1 /< h I t1 /> h integer operations

ct: :=C term parameter
Il I infinity greatest value
cti + ch I ct1 - cti I ct1 * cti I ct1 /< ch I ct1 /> ch

Table 7 : Syntax of the X in r constraint

Any store Sis transformed into its normal form when all constraints X in r 1, X
in r2, ... , X in rn on X are replaced by a single constraint of the form X in r1 & r2 & rn .
The resulting set is equivalent to the others since they have the same tuples of
solutions. All the stores that wil1 be used from this point forward are considered to
be in normal form. F urthermore, the expression Su { c} is use to express the addition
of the constraint c to the store S.

m

The set of all stores is: Store.

3 .3 Semantics of the X in r constraint

An important aspect of the semantics X in r is the tell operation

Stage Thesis

Chapter 3 - Constraint Logie Programming

SynDom
SynTerm
Dom
N
Constr

Syntaetie domain
Syntaetie terms
Domains
N atural numbers
X in r eonstraints

Store stores

T : Constr ➔ Store ➔ Store
T' : Constr ➔ Store ➔ Store

t r : DomSyn ➔ Store ➔ Dom

€ 1 : TermSyn ➔ Store ➔ N

T[e] s = fix(Â. S . Uc' e S v {c} T' [e'] s)

T' [x in r] s = let d = [Er [t1 .. h] s] insu {x in d} u{x in r}

tr [t1 .. h] s = t1 [ti] s .. t1 [h] s

tr [{t}] s = {t1 [t] s}

t r [R] s = lookup _range(R)

tr [dom(Y)] s

tr[r1:r2]s

tr[r1&r2]s

t r [-r] s

tr[r + ct]s

Er[r-et]s

Er[r*et] s

Er[r/et] s

E1 [n] s

E 1 [ilif,nity] s

E1 [C] s

E 1 [rnin(Y)] s

E 1 [max(Y)] s

E1 [t1 + t2] s

E1 [t1 - h] s

E 1 [t1 * t2] s

E1 [t1 /< h] s

E1 [t1 /> h] s

= eur_domain(X,s)

=Er[ri]suEr[r2]s

= Er [ri] s n tr [r2] s

= 0 . . infini ty \ E r [r] s

= E r [r] s + E 1 [et] s

= Er [r] s - E 1 [et] s

= E r [r] s * E 1 [et] s

= t r [r] S / t t [et] S

= n

= infinity

= lookup_term(C)

= rnin(eur_domain(X,s))

= max(eur_domain(X,s)

= E 1 [r] s + E 1 [et] s

=E1[r]s-E1[et]s

= €1[r]s*t1[et]s

=E1 [r] s/Et[ct] s

= Er [r] s / t1 [et] s

eur_domain(X,s) = Er lookup_store(X,s)

lookup_store(X,s) = if 3 X in r then r else O .. infinity
lookup _range(R) returns the domain bound of R
lookup term(C) returns the integer bound to C

Table 8 : Denotational Semantics of the Tell operation

Stage Thesis

- 49 -

Chapter 3 - Constraint Logic Programming - 50 -

✓ Tell operation

0 A tell operation results in the addition of its argument (constraint) in the
current store.

54

The semantics of a tell operation is expressed in table 8 by the function T[X in r] S
which adds a constraint X in r to the store S. The tell operation updates X, with respect
to r evaluated in S and reactivates all the constraints depending on X through the
propagation mechanism. X is updated by intermediary function T ' [X in r] and the
propagation is done using a fix point operator on the result of T[X in r] that
reevaluates all the constraints in Su{X in r} until a stable state is reached.

The function T' [X in r] adds two versions of the constraint X in r to the given
store which allows to take care of the indexical constraints. The versions are:

0 r is evaluated in S;

6 ris unchanged to allow future reconsideration ofthis constraint in
presence of an indexical range.

An indexical range can only be evaluated thanks to the current domain of a
variable. So it is possible with the help of the first version to obtain the constraint X in r
associated to X; and to evaluate r in an empty store (to avoid the evaluation of the
indexicals of r) .

The following notations are used.

• Xs = cur_domain(X,S) (i.e. the value of the domain of Xin S).
• rnin(X)s = rnin(Xs).
• max(X)s = max(Xs).

• rs = Er [r] S (i.e. domain denoted by r in S).

• ts = E1 [r] S (i.e. integer denoted by tin S).

Sorne important definitions follows.

✓ Consistency of a store

0 A store S is consistent if, and only if, does not contain any empty domain
(i.e. vx E vd Xs -:t:- 0).

✓ Instance of a variable

0 A variable Xis instantiated to n in the store S if, and only if, Xs = { n} .

Stage Thesis

55

56

Chapter 3 - Constraint Logic Programming - 51 -

✓ The relation stronger

0 Let Sand S' be two sets of constraints, S' is stronger than S (S'c S) if, and
only if, VX E Vi Xs· ç Xs.

57

The tell operation needs to be a monotone operation. This ensures the existence
of a fix-point because ail domains are finite . So it is possible to remove impossible
values as soon as they appear and when performing the operation tell the
reconsideration of accumulated information is avoided.

The operation tell of a constraint X in r is monotone if the range denoted by r is
monotone. In other words, the range can only decrease when there is an addition of
more constraints.

✓ Monotone in a range

0 A ranger is monotone (resp. anti-monotone) if, and only if, VS,S'
S'c S ⇒ rs• c rs (resp. rs c rs,).

✓ Monotone in a constraint

0 A constraint c = X in r is (anti-)monotone if, and only if, r is
(anti-)monotone.

58

59

The removal of impossible values of X which do not belong to r in a tell
operation, is accomplished by the intersection operation between X and r . This is
schematized in the next figure .

domain of X

inconsistent
values for X

range denoted
by r (monotone)

T o ensure that r is monotone it is necessary that a tell operation in a constraint
containing an incorrect indexical term on X be delayed until Xis instantiated (see next
example). In clp(FD) this is done using a new index.ical term val(X) which delays the
activation of a constraint until is instantiated.

Stage Thesis

Chapter 3 - Constraint Logic Programming

Example 20

' x:t:y'(X,Y):- X in -{val(Y)},
Y in - { val(X)} .

3 .4 Constraint Systems

- 52 -

A recent formalization bas been proposed by V. Saraswat1 to define constraints. It can
be seen as a first-order generalization of Scott's information systems. The emphasis is
put on the definition of an entailment relation between constraints, which is enough to
define ail the constraint system .. This allows to define the constraint system ex nihilo by
verifying some properties as well the entailment relationship.

Entailment is a rule based relation that mak:es possible to define a kind of
operational semantics of the entailment between constraints.

✓ Constraint System

0 A constraint system is a pair (D, r) satisfying the following conditions:

0 Dis a set of first-order formulas closed under conjunction and
existential quantification.

8 r is a entailment relation between a finite set of formulas and a
single formula satisfying the following inference rules:

S,d rd (Struct) S1 t d S2,d te (Cut)
S1,S2 r e

S, d, et f
S,d A e r f
S,d te

S, :3X.d r e

(A r) S t d S t e (r A)
Srd A e

(=l r) srd(t/XJ <r:3)
Sr :3X.d

In (:3 r), X is assumed not free in S,e.

8 ris generic: that is S[t/X] r d[t/X] whenever Sr d, for any term t .

60

A definition of a pre-constraint system (D, r) satisfying only Struct, eut and the
genericity condition, when existential quantification and conjunction are added, is
enough to build constraint systems.

1 In [R 15].

Stage Thesis

Chapter 3 - Constraint Logic Programming - 53 -

T Let (D ' , r') be a pre-constraint system. Let D be the closure of
D' under existential quantification and conjunction, and of r '
under basic inference rules. Then (D, r) is a constraint system.

The entailment relation is defined next, which proves that Finite Domains is a
Constraint System.

✓ Entailment Relation

0 A store S entails a constraint c = X in r if, and only if c is true in any store S'
stronger than S, i.e.

s r C if, and only if, VS' S' Cs ⇒ Xs· ç rs•

A store S disentails a constraint c = X in r if, and only if, S entails -,c,
i.e. S r X in-r.

(Constr, r) is a pre-constraint system due to the following proposition.

✓ Proposition

0 r satisfies (Struct), (Cut) and is generic.

If D is defined as the existential closure and conjunction of Constr and using
the basic inference rules, r is defined as the closure of the entailment relation, then
FD=(D, r) is a constraint system.

61

62

The next proposition proves that two constraints are equivalent when they share
the same tuples of solutions.

✓ Equivalence between constraints 63

□ Two constraints C1 and C2 are equivalent if, and only if, VS Sr C1 <=>Sr C2.

3 .4 Clp(FD) lmplementation

Implementing clp(FD) requires to study all the alterations to the W AM (in this
particular case W AMCC) as well as the introduction of a new data type: FD variables.
This type of variables is capable of storing a set of integers. FD variables will be stored

Stage Thesis

Chapter 3 - Constraint Logic Programming - 54 -

in the heap and are distinguished from other data types by a new tag (FDV). The
necessary changes to the W AM will slightly affect data manipulation, unification,
indexing and trailing instructions.

Data manipulation

The duplication process of a variable to a register for constants is done by
copying the constant to the register; whereas unbound variables are bind to the register.
A problem occurs in the loading of registers since FD variables can not be duplicated.
There are two solutions to solve it:

• Using the same loading process of the W AM (i.e. same copy instruction +
self reference); but this scheme has the disadvantage of slowing down the
dereferentiation algorithm since it has to deal with a new tag word <FDV,a>,
where a is the word' s self address.

• In the second solution the algorithm is not modify. So FD variables are not
copied; instead a binding is made from the destination word to the FD word.

In clp(FD), the second alternative was chosen since dereferentiation is an
operation performed very often. A FD variable< FDV, a> is self referenced because
the value a is used to obtain the address of the variable. The associated information
with the FD variable follows the tagged word ..

Unification

A FD variable X can be unified with the elements present in the next table.

Indexing

Element
unbound variable Z
integer n
FD variable Y

Comment
Z is just bound to X
equivalent to X in n..n
e uivalent to X in dom and Y in dom X .

Table 9 : FD unifiable elements

FD variables are managed like unbound variables. So ail clauses are tried. A more
complex indexing could be used based on the current value of the domain.

Trailing

A single entry trail is used in the W AM for unbound variables; however in
clp(FD) a multiple entry trail is required to restore some values (min, max, etc.) of the
FD variable. Trait frames are a composition ofthree form types, as shown next.

Stage Thesis

Chapter 3 - Constraint Logic Programming - 55 -

address I Trail Unbound Variable ~--~----~ TUV

value 1

TOV I addre~

value n

value 1 Trail Multiple Values
n

TMV 1 address

Applying the W AM standard criterion when trailing FD variables leads to useless
trailing everytime a domain is reduced; instead in each choice point only a trailing is
required for each FD variable. This requires the creation of a register (ST AMP) that
gives the number of the current choice points. Each time a choice point is created, the
register increases by one and when it is removed the register is decreased. For each FD
variable in the choice point, a record is used to store the number of the choice point
where the variable was last put in the trail. A FD variable X_is trailed (inclusive the
stamp record) if Stamp(X):t=STAMP.

• How are the X in r constraints implemented ?

- The X in r constraints are implemented thanks to a new data structure
coupled with an instruction set to compile the constraints.

An execution of the X in r constraint is achieved by three operations, which are:

• Evaluation of r - computing the range r.

To achieve this, the address of the compiled code responsible for the
evaluation is stored. It is also necessary to record the context in which r
must be evaluated since the range depends on some arguments (i.e.
index:ical terms or parameters). The context is called an environment
where argument values, that need to be used by the code that computes
the range r, are recorded.

• Modification of X.

This operation updates X from the previous evaluation operation. The
address of the variable X needs to be stored.

• Propagation of the changes - reexecute ail constraints depending on X

A list of constraints depending on X as well as the its domain must be
kept for that purpose.

Stage Thesis

Chapter 3 - Constraint Logic Prograrnrning - 56 -

Constroints (X in r)
r_: _____________ ___ _______________ __ : !

'
PTT to code

ptr to variable X
' '

ptr to envlronment _r-·
Environments
: :

' c;=~~;;~:i· ·· 1 •

integer
or

ptr to ronge

Argument O

---- ------------------------------' ' ,-.J-------- ------------ -------- -- , :

' ! i
~I cstr(] U
evol(r);
Tell(X,r) :
}

FDVorlobles
------------------------------------ --
' ' ' ' --.J--------------------------------- 1

' ' ' ' ' '

Dependency lists

Domain information , ,

FDV
_ _r--·

Figure 3 : Data Structures for the X in r constraint

Environments

An environment in which constraints are called are represented by an argument
frame (A_Frame) where the address of the FD variables and parameter values are
stored. Ail the constraints defined in a clause share the same A Frame. The new
register AF points to the current frame.

AF ►

Argument n-1

Argument n-2

. .
Argument 0

Pointer to FD variable
or

integer
or

pointer to range

Figure 4 : Argument Frame

Stage Thesis

Chapter 3 - Constraint Logic Programrning - 57 -

Constraints

A constraint frame (C_Frame) is created for each constraint. The following
information is recorded inside a C frame:

• pointer to the associated A _Frame;

• the address of the constrained FD variable;

• the address of the associated code.

The new register CF references the current C _Frame.

CF ►

Ranges

Cstr Address -
Tell Fdv Adr -
AF Pointer -

Pointer to associated code

Pointer to constrained variable

Pointer to the A Frame

Figure 5 : Constraint Frame

Two structures may be used to represent ranges.

• Min-Max. Thanks to the recorded min and max, intervals (included in a
O . .infinity) are encoded.

• Sparse. Each value of the range can be record in a bit-vector from O to
vector-max1

, where vector _ max is redefined through an
environment variable or through a built-in predicate.

A hole in an interval forces the initial representation (Min-Max) to switch to a
sparse representation. In the transformation process from interval to sparse, values can
be lost since vector _ max is Jess than infinity. So a flag (extra_ cstr) for a range exist to
indicate that information has been lost due to the constrained operation done by the
solver (via an imaginary constraint operation X in O .. vector _max) . The user is informed,
thanks to the flag, when there is an incompleteness in the solutions due to a variable
that has been extra-constrained.

1 Vector_max is by default 127.

Stage Thesis

Chapter 3 - Constraint Logic Programming

empty range
(min> max)

,; .. •.
Pointett -- ' . - . -~-

Max

Min

Extra constraine d?

interval range
(bit-vector unused)

~ -

10010001111010110

:

10001110101000110

01110011010100111

bit-vector

Pointer to bit-vector

Max

Min

Extra constrained?

sparse range
(bit-vector allocated)

Figure 6 : Representations of a range

An empty range is represented by min> max.

- 58 -

Using the above notation it is possible to perform the intersection operation

between two ranges because the result returned is min > max when R1 or R2 is empty.

Example 21

0 if for instance R1 = 0 and R2 = { 1 .. 5} then

max(0,1) .. min(0 .. 5) is {1..0} (min> max).

Stage Thesis

Chapter 3 - Constraint Logic Programming - 59 -

Dependency Part

Domain Part

FD Variables

Chain Val
Chain Dom
Chain Min Max - -
Chain Max
Chain Min
Chain Mask
Chain_ Stamp

Vector
Max
Min
Extra Cstr

Nb Elem
Range_ Stamp

FDV

FDVariable

Lists of constraints
depending on the variable

Mask of non empty lists
Time stamp

Range

Size of the Domain
Time stamp

Figure 7 : DF variable frame

A FD variable frame has two main parts:

• the domain recording the range together with the number of elements
present in the range;

• the dependency X constraints pointers to lists of constraints.

The domain is modified during execution whereas the lists of dependent
constraints are created during the installation phase of the compilation. Both parts have
their own stamps and it is possible to trail them independently. Several lists of
constraints (see table below) are separated to avoid useless propagation.

Name Definition
Chain Min list of constraints depending on min(X) and not on max(X)
Chain Max list of constraints depending on max(X) and not on min(X)
Chain Min Max list of constraints depending on min(){) and on max(){) - -
Chain Dom list of constraints depending on dom(X)
Chain Val list of constraints depending on val(X)

Table 10 : Dependency X constraints pointers

Stage Thesis

Chapter 3 - Constraint Logic Programming - 60 -

Propagation Queue

Awaking and executing a set of constraints, in the propagation phase, adds new
constraints to the set. For flexibility reasons, an explicit propagation queue is
introduced which is feasible since the order of execution of the constraints is irrelevant.
T o manage the queue two new registers BP and TP (pointing to the base and top of the
queue, respectively) are added to the system.

Instead of enqueuing all the constraints, a pair < X, mask > is just required; with
X the variable that is updated and mask a bit-mask of the dependency lists to awake.

Registers

New registers are created to handle ail the required DF data structures.

Remarks 1

Re ·sters
BP
TP
AF
CF
cc

STAMP
T(t)
R r)

Definition
Base Pointer to the propagation queue
Top Pointer to the propagation queue
Pointer to the current A Frame
Pointer to the current C Frame
Continuation after Constraint
Choice Point number
T erm registers
Ran e re · sters

Table 11 : Clp(FD) Registers

The CC register points to the next instruction to execute after the call constraint.
T(t) and R(r) are bank registers that contain the min, max and bit-vector.

Compilation scheme

The compilation of any clause having at least one X in r constraint creates the
three groups of instructions found in the next table.

Group Name Purpose
Interface with Prolog clauses Create and load the A Frame
Installation code Install a Constraint
Constraint Code Generate a procedure for each X in r constraint

Table 12 : Clp(FD) instructions type

Stage Thesis

Chapter 3 - Constraint Logic Programming - 61 -

Remarks 1

The necessary space for the A_Frame is reserved in the heap and the parameters
values are loaded into the frame.
Code is produced to create and load the C_Frame. Ail the dependent list of
constraints are initialized.
The procedure is composed of four parts:

• loading parameters, indexical tenns and ranges into the appropriate
registers.

• evaluating the ranger through a syntactical tree. For each leaf and each
node a instruction is created.

• Telling the constraint X in r.
• Returning.

Telling the constraint X in r

A constraint is told by the following algorithm.

If Xis an integer, there are two possibilities:
0 X E r c:::> success
8 X rl r c:::> failure

else (Xis an FD variable whose range is rx) let r' be r nrx :

• r' = 0 c:::> failure
• r'=rx (i.e. rx c r) c:::> success
• otherwise

The domain of X is replaced by r' (X possibly becomes instantiated)
and some propagation occurs. Since the demain has been modified,
some constraints are required to be reexecuted. The current CC must
be pushed into the stack to restore it after propagation.

A compiler implementing clp(FD) was developed at INRIA ([4] [10] [11])) in
1991 using the X in r language. It translates Prelog to C functions via the W AM.
Predicates are translated to C macros. An extension to clp(FD) takes care of Boolean
values by making C Boolean functions for the X in r constraints.

Stage Thesis

Chapter 4 -- Concurrent Programming

4 .1 Introduction

In response to the great computational power needed to solve some problems, like for
instance the n-queens problem, parallel systems are used. Parallel systems are grouped
in two categories:

~ Distributed systems, with a great number of processors interconnected;

~ Centralized systems, with a limited number of processors (normally 2 to 4)
sharing the same memory space and having for communication a common
bus.

In distributed architectures at the software level, the communication mechanism
used is message passing; instead centralized architectures use semaphores and shared
variables for the same purpose.

Concurrent programming languages are needed to fully exploit the power offered
by parallel systems. Logic programming languages are natural well suited for
parallelism since the goals to succeed can be resolved independently. Our attention will
be focused on the shared memory systems because they are easier to implement .

There are several frameworks whose aim is to make shared memory visible in a
structured and safe way; the most popular of them all is certainly Linda which covers
imperative, functional and logic programming languages. An instantiation of Linda to
logic programming was proposed in [7], a combination of blackboards and logic
programming which includes a description of basic control mechanisms. lts name:
µLog 1

.

The µLog framework

The µLog framework contain two categories:

~ Active objects - logic programming goals - the resolution of each goal
being interpreted as the behavior of a process.

~ Passive objects - logic programming terms - they act as usual data.

1 Pronounced as 'myülôg' according to the Webster dictionary ofpronunciation.

Chapter 4 - Concurrent Programrning - 63 -

Three operations can be perfonned on them:

~ Tell - puts objects on the blackboard;

~ Get - removes objects from blackboard;

~ Read - tests the presence of an object on the blackboard.

The above operations are the only possible communication mechanisms.
Moreover, processes can not share variables and thus objects are first renamed before
performing the operations.

In Active objects, two sorts of processes exist:

~ F oreground pro cesses - created at start up time - that correspond to the
parallel resolution of some list of logic programrning queries sharing no
variables.

~ Background processes - created at run time - that act as daemons on
the blackboard.

The whole computation is successful when a successful termination is reached by
all foreground processes.

Advantages of Blackboards

The main advantage ofblackboards is the modular approach which allows the creation
and testing of programs independently, but that will work together depending on the
infonnation existing in the blackboards. A common problem in parallel systems is the
synchronization and mutual exclusion which can be avoid using blackboards since the
get and read operations suspends execution avoiding in this manner the use of
suspension rules. Moreover, mutual exclusion is obtained by the access to blackboards.
Furthennore, variables may be shared by arguments regardless of their input and
output positions.

In µLog, process goals and clause bodies may involve
sequential and parallel composition operators denoted
by ; and Il respectively.

This framework (µLog) was conceived to be as general as possible so that would be
possible to instantiate it with any logic programming language and any language using
constraints.

Stage Thesis

Chapter 4 - Concurrent Programming - 64 -

4.2 Language

The µLog language contains the sets introduced in chapter 2:

Svar Set of variables
Sfunct Set of functions
Spred Set of predicates
Sterm Set of terms
Satom Set of atoms
Ssubst Set of substitutions

Table 13 : µLog sets

Several blackboard concepts are explain below.

✓ Blackboard primitives and goals

0 Blackboard primitives and goals are inductively defined as follows:

0 blackboard primitives are constructs of the form:
• tellt(t), readt(t), gett(t)
• tellp(p), readp(p), getp(p)

where t is a term and p a atom;

6 any atom and any blackboard primitive is a goal;

8 ~ is the empty goal;

0 If G1 and G2 are goals, then G1;G2 is a goal and GdlG2 is also a goal.

The initial goals1 or igoats, for short, are non-empty lists of goals [G1, .. . ,Gm]
sharing no variables. Programs are set of clauses of the form H:-G, where is an atom
and Ga goal. As seen before, the set of programs is called Sprog.

✓ Foreground and background processes

• F oreground and background pro cesses are constructs of the form ~G and
.JG, respectively, where Gis a goal.

• A process is either a foreground or a background process. When there is no
concern of the qualification of the process it is represented by the arrow <=
followed by the goal.

• The set of processes is subsequently denoted by Sproc.
• The set { ~ ,.J} of background and foreground process arrows is referred

to as Sarrow.

1 The set of goals and the set of initial goals are referred as Sgoal and Sigoal, respectively.

Stage Thesis

64

65

Chapter 4 - Concurrent Prograrnming

✓ Other definitions

• lproc - non-empty lists of processes.
• Slproc - Set of non-empty list of processes.
• Sbg - Set of possibly empty processes.

By convention, we denote an initial goal: ig
and the associated list of processes: 1g,
considering all of ig as foreground processes.

4. 3 Operational Semantics

- 65 -

66

As seen in chapter 2, the operational semantics can be expressed by rules of the form:

Assumptions if Conditions
Conclusion

In this transition system the configurations are in the form of triplets.

< bt, 1,0 > where :

• bt is a list of terms representing the terms on the blackboard;
• l is a lproc representing the (background and foreground)

processes currently running in the blackboard;
• 0 is a substitution representing the values computed so far.

Sorne remarks are due.

Despite the fact that l is a list there is no order in the selection of processes. The
notation /[] denotes a list of processes where a place holder has been introduced at
some places. So /[cG] is a list of processes G obtained from l[J by replacing the
place holder by cG.

The notation /1+/2 represents the concatenation of two lists.
Sbt represents the set oflists bt.

Stage Thesis

Chapter 4 - Concurrent Programming - 66 -

In µLog, transitions occur as a result of the reduction of atoms and blackboard
primitives. These reductions are called transitions rules. The reduction of compound
goals is made by the use of classical rules of composition. The classical rules here can
also be expressed by the transition rules thanks to the notion of contexts.

A context is a reduction of atoms or blackboard primitives selected thanks to the
place holder o. The reduced goal is obtained from the goal under consideration by the
atoms and blackboard primitives by their corresponding subgoals according to their
reduction.

✓ Contexts

a The contexts are functions inductively defined on the goals by the following
rules. They are typically represented by the letter c, possibly subscripted.

0 A nullary context is associated with any goal. It is represented by the
goal and is defined as the constant mapping from Sgoal0 to the goal
with the goal as value.

e Dis a unary context that rnaps any goal to itself For any goal G, this

application is subsequently referred to as o[G] .

e If c is a n-ary context and if G is a goal, then (c;G) is a n-ary
context. Its application is defined as follows, for any goal G1, ... ,Gn:

0 If c1 and c2 are rn-ary and n-ary contexts respectively, then c1llc2 is
an (rn+n)-ary context. Its application is defined as follows, for any
goal G1 , ... ,Gn:

✓ Transition relation

a Define the transition relation ➔ as the srnallest relation of (Sbt x Slproc x
Ssubst) x (Sbt x Slproc x Ssubst) satisfying the following rules. As usual,

for the ease of reading, the more suggestive notation < bt, l, 0 > ➔ < bt' ,

l', 0' > is subsequently employed instead of (bt, 1, 0, bt', l' , 0 ').

Stage Thesis

67

68

Chapter 4 - Concurrent Programming - 67 -

Atom reduction
Rule A

< bt,l <=[A]],e > ➔ < bt,l <=[B)],e y> if

{
(H:-B) is a fresh renaming of a clause of P
H and AB uni with m

Comments

Tell reduction 1

Rule Tt

{

Comments

Tell reduction 1

Rule Tp

{

Comments

Read reduction
Rule Rt

{
Comments

Read reduction
Rule Rp

{
Comments

The atom A is reduced to the body goal B, inside a process, if A0
unifies with H with m 1 .

< bt,1[<=c[tellt(t))],e > ➔ < bt+[u],1[<=c[~)],e > if

u is a fresh renaming of t0
A term u is putted in the blackboard bt. t0 is renamed to u to
ensure that the processes communicate only via the writing and
reading of terms on the blackboard and not implicitly by means of
shared variables.

< bt, If <=c[tellp(p)]], 0 > ➔ < bt, If <=c[~)]+[.Jq], 0 > if

q is a fresh renaming ofp0
A background process p is putted in the list of processes with the
computed variables 0. The renaming is needed to prevent the
appearance of shared variables.

1

< bt, 1[<=c[readt(t)]], 0 > ➔ < bt, 1[<=c[~]], 0y > if

:3 v E bt: any fresh renaming of v' of v unifies with t0.
y is the mgu corresponding to the unification of t0 and some fresh
renaming of such a term v.
The process readt(t) checks for the presence of a term t with 0,
leaving the blackboard and the list of processes unchanged.

1

< bt, If <=c(readp(p)]], 0 > ➔ < bt, If <=c[~]], 0y > if

:3 (.JA) Et[<=c[readp(p))]e : any fresh renamingA 'of A unifies
withp0.
y is the mgu corresponding to the unification of p0 and some fresh
renaming of such a process A.
The process readp(p) checks for the presence of a process p with 0
in the list of processes /.

Stage Thesis

Chapter 4 - Concurrent Programming - 68 -

Get reduction 1

Rule Gt < bt, If ç:c[gett(t)]], 0 > ➔ < bt', 1[ç:c[Li]], 0y > if

{
:l v E bt: any fresh renaming of v' of v unifies with t0.
u is such a term vin bt.
y is the mgu corresponding to the unification of t 0 and of some
fresh renaming u.
bt' is bt where u has been removed
If the blackboard bt contains a term which unifies with t0, then the

Comments term is removed, leaving the blackboard with a new configuration

Read reduction
Rule Rp

bt'.

< bt, 1 ç:c[getp(p))], 0 > ➔ < bt, l' ç:c[Li]], 0y > if

:l (.JA) E ![ec[readp(p)]le: any fresh renamingA 'of A unifies

withp0 .

.JG is such a process .JA in t[ec[readp(p))]e.
y is the mgu corresponding to the unification of p0 and some fresh
renaming of G.
l' is / where the rocess corres ondin to .JG has been removed.

Comments
If the list of processes / contains a background process A which
unifies with p0 , then the process is removed from the list of

rocesses, resultin in this wa a new list / '_

The rules (Li;G), (LillG) and (GIILi) are interpreted as G. In any rule, if an
occurrence of the arrow "e" exista replacement must be made by the arrow ".J" or by
the arrow "~"-

A successful computation is one for which ail foreground processes have been
reduced to the empty conjunction, white some background processes are possibly
running on the background.

A derivation relation can be derived directly from the transition system.

✓ Derivation relation

0 Define the derivation relation P r ig with 0 as the following relation
on Sprog x Sigoal x Ssubst: for any P E Sprog, any ig E Sigoal, any 0 E

Ssubst, P r ig with 0 holds if, and only if, there exist m 2: 0, bt0, ... ,btrn E

Sbt, lo, -.. ,lm E Slproc and 00, ... , 0m E Ssubst such that:

0 < bto, lo, 0o > ➔ · · · ➔ < btm, lm, 0m >
8 < bto, lo, 0o > = < [],ig;E >

Stage Thesis

69

Chapter 4 - Concurrent Programming - 69 -

0 lm is successful terminated

0 h, .. .,lm-1 are not successful terminated.

✓ Operational semantics

0 Define the operational semantics as the following function ô: Sprog ➔

Sigoal ➔ P (Ssubst): for any P E Sprog, any ig E Sigoal, ô (P)(ig) = {0Jig :

P r ig with 0} .

4. 4 Declarative Semantics

70

Declarative semantics is concerned with truth, but truth in µlog depends, in general, of
the current state of the blackboard. The actions performed in the blackboards are
called events. There are three types of events: addition, removal and check (for the
presence) of objects; where objects may be either terms or goals. The history of
blackboard actions is modeled by sequences of events called blackboard traces.

✓ Events

0 The set of blackboard events is defined as (Sterm u Sgoal) x { +, -, *}.
Each of them is associated to a partial function which modifies the
blackboard (composed ofterms and goals) in the above associated way. A
blackboard trace is a possibly empty sequence ofblackboard events. The
empty sequence is referred to as A. The set ofblackboard traces is referred
to as Str.

✓ Validity of traces

0 A trace a1. ·· ·.amis valid if, and only if, it is either empty (m=O) or the

composition of functions am o · · · o a1 is defined on the empty blackboard.

Let t1 , h be two traces. Their concatenation is
represented by t1 œ h and their merge by t1 ® h.

71

72

An interpretation, in µLog, depends on the status of the blackboard and consists
of a set of triplets of the form (trace, goal, goal). These triplets describe the transition
traces between the first goal to the second.

Stage Thesis

Chapter 4 - Concurrent Programming - 70 -

The set of all interpretations is called µhase .

✓ µbase

0 The µbase set is defined as the set P (ground(Str) x (ground(Sgoal) x
(ground(Sgoal)), where for any set S, ground(S) denotes the set of all
ground instances of S. An interpretation is a member of µbase .

Truth is defined with respect to an interpretation and a trace.

✓ Definition

0 Given a trace t, an interpretation / and a formula/, the fact that/ is true
with respect to t and/, denoted by t F 1/, is defined by the cases below.

• Formula: t Fr/ if, and only if, t° F r/0
, for any ground instance (t0

, f 0)

of (t, t) .

• Ground Goal: t Fr Gif, and only if, (t, G, ~) E I.

• Ground Clause: t F 1 (H:-B) if, and only if, t Fr H whenever t Fr B.

• Ground initial goals: t Fr [G1, ... ,Gm] if, and only if, there exist t1, ... ,tm
and U1, . . . ,Um E ground(Str); Pi,---,Pn, r1, .. . ,rn E

ground(Sgoal) such that:

0 t fr Gi, i=l , ... ,m;

8 (ui, Pi, ri) E I, i= l , ... ,m;

73

74

Thanks to the previous definition, truth can be directly defined for an interpretation.

✓ Definition

0 Given an interpretation / and a formula/, the fact that/ is true with respect
to 1, denoted by Fr/, is defined by the cases below.

• Set offormulae: Fr {f1, ... ,fn} if, and only if, for any J;, F 1J;.

• Clauses: Fr (H:-B) if, and only if, for any t E Str, t F 1 (H:-B).

Stage Thesis

75

Chapter 4 - Concurrent Programming - 71 -

• Initial Goals: I= 1 [G1, ... ,Gm] if, and only if, there is t valid such that

t f I [G1, ... ,Gm].

The next definition presents the concept of satisfiability of an interpretation.

✓ Satisfiability of an interpretation

0 Let Sg be the set of atoms and blackboard primitives occurring in the bodies
of the ground instances of the clauses of P. The interpretation J satisfies the
program P if, and only if, the following properties hold.

• Empty trace: (A, G, G) E I for any G E ground(Sgoal).

• Transitive closure: if (t1, G1, G2) E I and (h, G2, G3) E I, then
(t1 EB h, G1, Ü3) .

• Ground atom: if (A:-B) is a ground instance of a clause of P such that
(t, B, G) E I, then (t, A, G) E I.

• Ground tells, reads, gets: for any tellt(t), tellp(p), readt(t), readp(p),
gett(t), getp(p) of Sg,

((, tellt(t), d) E I

(p\ tellp(p), d) E I

(t*, readt(t), d) E I

(p*, readp(p), d) E I
(t-, gett(t), d) E I

, ,1 E I

• Ground sequential composition:

0 if(t, G1, G1') E I, then (t, (G1;G2), (G1' ;Gi')) E I, for
any G2 E Sgoal;

@ if (t1, G1, d) E I, and (h, G2, Gi') E I, then
(t1 + t2, (G1;G2), Gi').

• Ground parallel composition:

0 if (t, G1, Gi') E I, then (t, (Gd!G2), (Gi'IIG2)) E I, for
any G2 E Sgoal;

@ if (t, G2, Gi') E I, then (t, (Gd!G2), (G1IIGi')) E I, for
any G1 E Sgoal.

Next cornes the notion of model and logic consequence.

✓ Model

0 A model of a set of formulae S is an interpretation J such that I= 1 S.

Stage Thesis

76

77

Part Ill

Chapter 5 -- Blackboard Client Server Application

5 .1 Introduction

Using backboards in a client-server application has only one goal: sharing data among
several clients. The blackboard concepts discussed in chapter four were adapted to
fulfill this mission thanks to data encapsulation. Each blackboard has its own name and
structure. The three classical operations, seen in the previous chapter, can be
performed on them: Tell, Get and Read. Since blackboards are just an abstraction for
data lying in the server, they are well suited to implement concurrency between
programs. Complex programs may be written in more simple programs to take
advantage of blackboards. Data calculated in one program is at hand for others that
may require it, to continue their own calculations.

Implementing this kind of application requires a communication mechanism -
InterProcessing Communication - capable of e:fficiently handling huge amounts of data
since the server must be able to deal with a great number of client requests. From the
different mechanisms available only the FIFO was su:fficiently spread through the
different operating systems and POSIX 1 compliant. Moreover, a typical use for FIFOs
is to send data between a client and a server. The usual way to work with FIFOs and
that was used in this application, was to use special files created by the server to listen
to requests and another for each client. The special files, also called named pipes, have
a know name and pathname to both server and clients; for example, the server can
create a FIFO with the name ltmplserv 1 to listen to requests and others with
ltmp/clientxxx, where xxx is the process ID of the client.

To prevent the continuous reading of the FIFO in the server, a signal (SIGUSR2)
is sent from the client to awake the server.

Chapter 5 - Blackboard Client Server Application - 75 -

Since the server must be implemented as a background process and due to the
fact that it may live for a long time, the best way to code it is as a daemon. Daemons
do not have access to controlling terminais, so when errors or when the need for
information arises the system log must be used to report it.

5 .2 Data structures and data communication

The storage of blackboards is done in the server after a tell operation performed in the
client. This type of action requires several data types in both the client and server. The
data structures are described next.

Data structures in the Server

The first structure of data present in the server is obviously needed to store
blackboards. It contains the blackboard name, its data size, the type of each component
of the blackboard along with its size. They are represented in figure 8.

1 □H-1-_,,-/-_/ ... ~I,_ -----1 oJ-------._ , •:~ ~

Blackboard data ···-... __ _

bkbName dt dsz auxd next bb

Data cells

l 000 1111 000

'

1111 0011 0 11

Aux. data

next 1

Figure 8 : Blackboard structures

The blackboard data are connected as a linked list containing pointers to both the
next element in the list as well as a pointer to the first data cells and another to an
auxiliary list. The auxiliary list contains the type and size of each element present in the
data cells. The full description of all elements of the blackboard data structure follows.

Stage Thesis

Chapter 5 - Blackboard Client Server Application

Data name
bkbName
dt
dsz
auxd
next bb

Data name

Blackboard data
Descri tion

Blackboard name.
Pointer to the memory zone containing the Blackboard data.
Blackboard data size.
Pointer to first element of the auxiliary list.
Pointer to the next element in the blackboard list.

Auxili

- 76 -

type
ts
next

Type (Number/String) of the corresponding element in the data cells.
Size of the corresponding element in the data cells.
Pointer to the next element in the list.

Another structure, show in figure 9, is needed when managing clients since the
server must know where to send the answers back to a given request.

~----~la_.e1-I --_-,/-.i~-1 _____ laf--+-__ •••

'

' Client data

1 fdc cli _ name I next_ cli 1

Figure 9 : Client Structure

This simple list contains all necessary information to contact the clients. The
structure is composed of three records.

Data name
fdc
cli name
next cli

Client data
Descri tion

Client file descriptor.
Name of Client.
Next element of the client list.

To support both data structures a few records are needed.

Stage Thesis

1

Chapter 5 - Blackboard Client Server Application - 77 -

Data name
fd
fdp
buffer[]

proc id

Global data
Description

Server descriptor
Server auxiliar file descriptor
FIFO' s buffer

ServerPID

Comment
U sed to listen to requests.
The aux. file holds server's PID.
Holds the read, write information of the
server and client, respectively.

Data structure in the Client

The client data structure is similar to the server, only the record names in
blackboard changes. Their names are, respectively: bname, bbf, bcsz, bst and bnext.

The blackboard list in the client allows the building of several blackboards inside
the client (private blackboards) and when necessary they can be sent to the server; they
will be globalized so as to be disponible to any other client. From the list only one is
send each time and any blackboard can be send.

There is no counterpart to the client structure of the server. T o support the client
structures the following records were added to the program.

Data name
buffer[]

pid

pids

cli name
size str
GP

Client Global Data
Description Comments

Array of characters for FIFO Buffer to send and receive data to server

Client PID

ServerPID

Name of client
Size of buffer
Global Pointer

and from server, respectively.
PID used in the creation by the server of
client's FIFO.
PID used when a signal is send to the
server.

Client buffer current size.
If needed, points to a memory zone
containing the unformated data as well as
its atributes: type and size.

Data communication

The communication between server and client requires some communication protocols
to be understood by bath server and client. The differents protocols are a reflexion of
the different purpose aimed by the communication data, as we can see later. Ali the
above operations can succeed or fail; when they succeed the required information is
returned whereas the failing returns an error code to the client. The protocol for all
operations as well as the returned error code are presented next.

Stage Thesis

1

1

Chapter 5 - Blackboard Client Server Application

Client Message Format

• Creating Clients

@narne_of_client_pid_of_client.

• Destroying Clients

#narne_of_client_pid_of client.

• Creating Blackboards

$narne_of_blackboard[size_of_blackboard;data).

where da ta may be either:

- Numbers

... ;size of number_in_bytes,number; ...

- Strings

... ;string; ...

• Reading blackboards

?narne of client[narne of blackboard;blackboard structure]. - - - - -

• Getting blackboards

*narne _of_ client(narne _ of _blackboard;blackboard_ structure).

where blackboard structure is composed oftwo connect fields:

... Type I Size ...

- 78 -

being Type the type of element (number or string) and being Size the size
of the element in bytes.

Both data and blackboard_structure may have more than one recorded in
which case they are separated by a semicolon.

Stage Thesis

Chapter 5 - Blackboard Client Server Application - 79 -

Server Message Format

The server only sends information when there is a request to read or to get a
blackboard. The message has the following format:

?name_of_blackboard{numbe r_of_e lements ;Element,

first _ element; .. . ;Element,last _ el ement}.

where Element is composed oftwo connected fields :

Type of elementjsize of element - - - -

The server can also send error messages with the following format :

Er ror code.

Error codes and all other messages identifiers can be customized in the defs.h
header file .

5 .3 Integrating the application with user code

The client-server application can be used by any C program or by a program that can
call C code. The principle of this application is to integrate the client functions into a
user program. Each program is them a client of the server.

T o make less dificult using the client functions inside a user pro gram, several
macros were added. They are explained next.

• EXPORT

Macro used to obtain the name of the program (client) .

• CREATE CLIENT

Sends a request for client creation to the server.

• ADDB(x, y, w, z)

Macro used to create a blackboard with some information or if the
blackboard already exists, then simply add information to it. The
macro parameters have the following meaning:

Parameter Descri tion
x Blackboard name;
y Data to put in the blackboard;
w Type of data (number or string);
z Size of data to add.

Stage Thesis

Chapter 5 - Blackboard Client Server Application - 80 -

• SEND_BLACKBOARD(name)

Sends the blackboard name to the server.

A blackboard may be read by the client that creates it or by another client. The
first case usually uses the next macro and the second case must use the next function.

• READB(n, t, w, p)

The meaning of the macro parameters is as follows .

Parameter Descri tion
n Name ofblackboard.
t Type of action to perform - read or get.
w Does the reading (getting) of the blackboard suspends the

program or not?
p Address of the pointer that contains the adress of the

array of pointers that point to the individual elements of
the blackboard.

The action read, get (parameter t) uses the symbol T _ NORMAL and
T _ KILL, respectively. Parameter w requires either T _ W AIT or
T _ NOW AIT. Parameter p is used by the client functions to store inside
a pointer the address of the structure created. Figure 10 is a scheme of
the final structure obtained after a read or get operation.

User ointer Arra of Pointers Strin

5 Namur
Global Pointer

Inte cr

4 5000
NULL

Figure 10 : Ending structure

It is possible to use the last macro with parameter p being NULL. A global
pointer GP is used instead to store the location of the array of pointers.

The following function is used whenever we wish to read or get a blackboard. It is
defined in uppercase so as to be used like a macro.

• DEF _STR(n, b, t, structure);

Stage Thesis

Chapter 5 - Blackboard Client Server Application

where:

- 11 is the number of arguments of the function 1
;

- b is the name of the blackboard;

- t indicates if this action will suspend the pro gram until the
server retums an answer;

- structure is a set of argument parameters in the form:

... , S_INT or S_STR, ...

• GET_DATA(p, i, d).

The meaning of the macro parameters follows .

Parameter Descri tion
p Pointer to array of pointers to data.
1 Number of requested element.
d Pointer to re uested data.

T o better understand how all macros work two examples are given.

Example 22

Sending a blackboard

include "client.c"

int main(int argc, char *argv[])
{
int i=007;
EXPORT
CREATE CLIENT
ADDB("SS", "James", S_STR, strlen("James"))
ADDB("SS", &i, S_INT, sizeof{i))
ADDB("SS", ' 'Bond", S_STR, strlen(' 'Bond"))
SEND _ BLACKBOARD("SS")
KILL CLIENT
retum(0);
}

1 The number of arguments are needed bccause tlùs is a function with a variable number of
arguments.

Stage Thesis

- 81 -

Chapter 5 - Blackboard Client Server Application

Example 23

Reading and printing a blackboard

include "client.c"

int main(int argc, char *argv[])
{
void ** p;
void * dt;
EXPORT
CREATE CLIENT
DEF_STR(6, "SS", T_NORMAL, S_STR, S_INT, S_STR);
READ _ BLACKBOARD(&p, T _ W AIT)
GET_DATA(p, 1, dt)
printf("\n ¾s", dt);
GET_DATA(p, 2, dt)
printf("\n ¾d", Ri1 (dt));
GET_DATA(p, 3, dt)
printf("\n ¾s", dt);
KILL CLIENT
retum(0);
}

- 82 -

Through the C macros it is possible to use the client-server application in
constraint logic prograrnming thanks to clp(FD) which transforms Prolog code into C
code. This allows to edit the C code to make the necessary changes to use the client­
server application. To support this scheme it was necessary to slightly change two
clp(FD) header files by adding new code. Interface functions were created to be called
from the clp(FD) C code originated ftom Prolog code. Figure 11 presents this scheme.

The changes needed to be made in the C code are only two. The first is done
inside the main function: insert in, the macro EXPORT as the first instruction. The
second is made after the line of code that deals with putting values, lists or constants in
the heap.

Example 24

allocate(1)
put_y _ variable(0,0)
call(...)
put_y _ value(0,0)
put_ in_ server("Example")
call(...)
deallocate
proceed

1 Ri() is one of the created functions to get numbers through the pointer dt; the others are named: Rs,
RI, Rf, Rd, Rld for the types short, long, float, double and long double, respectively.

Stage Thesis

Chapter 5 - Blackboard Client Server Application

libclp _fd.a

Header files *

gcc clp_fd

C files*

libclp _fd _pp.a

* lncluding the changed files: wam _ engine.c and wam _ engine.h

libclp _ fd.a

Prolog
code

libclp _ fd _pp .a

Edited
Ccode

Interface
functions

Client
functions

clp_fd C code

gcc
Client · · · · · ., Server
Pro gram Pro gram

Figure 11 : Linking the Application and clp(FD)

- 83 -

The macro put _in_ server("Example '') puts the value of argument register AO in
the blackboard and sends the blackboard to the server.

Stage Thesis

Chapter 5 - Blackboard Client Server Application - 84 -

5. 4 En ding notes

Despite the fact that the application works well in a reliable way several points are
worth observing. Due to the nature of the communication channel (FIFO) the overall
speed of the application is a:ffected. To increase the performance, other forms of
communication are best suited like for instance shared memory, messages queues and
semaphores. T o increase the power of the application, the clients could be anywhere in
the local network requesting information from the server in there machine and if, there
were no requested blackboards, then the server could contact the other servers present
in the network as seen in figure 12.

First Machine

Daemon Server

Second Machine

Daemon Server

Client

clp_fd

Interface
funclions

Client
functions

clp_fd

Interface
fonctions

Client
functions

Client

Figure 12 : A possible extension to the application

Stage Thesis

•
Chapter 5 - Blackboard Client Server Application - 85 -

A powerfull communication mechanism to explore is Remote Procedure Calling
(RPC, for short). Another way to improve the application is to increase the data types
currently supported by the interface routines.

There is plenty of possibilities to explore in the course of a future work ...

Stage Thesis

Part IV

Chapter 6 -- Conclusion

6.1 Summary of the work

The end of this type of paper is not complete without a reference to the main aspects
that make up the thesis. After the overview on logic programming, with its unification
mechanism, the constraint programming is explained. Its main features are the
introduction of a new language X in r that makes the constraint solver more
transparent to programmers. The next presentation step is a new framework - µLog -
in concurrent programming. It is caracterized by the use of blackboards as a new
communication mechanism for parallel systems.

6.2 Main f eatures

The simplicity in the use of the application, namely when manipulating blackboards,
through the use of macros makes the Client Server Application a powerful one.
Moreover, there is a real possibility in extending the application into the area of
constraint logic programming. To exemplify, functions were created with the purpose
of allowing Prolog language, when transformed in C code, to send blackboards to the
server. The client-server design of the application centralizes the information, making
more easily accessible to any client that may request it.

To prevent the possibility of slowing down other applications, due to the
continuous reading of the FIFO by the server, a signal system was implemented. Each
time a client has a request, it sends a signal to awake the server.

Flexibility is given by the structure built each time a requested blackboard arrives
to the client since each data element can them be treated separately. More flexibility is

Chapter 6 - Conclusion - 87 -

provided when the need arises to change both the path and name of the server FIFO
and the path of the client FIFO. They can both be changed in a header file.

An effort was put in making the application portable, capable of running on
different machines with different operating systems.

6.3 Problems and future work

Problems may arise when the communication protocols and clients are using the same
codes; to overcome this situation it is possible to change them in a header file. The
application problems are reported in the file created by the system log to that purpose.

Future versions of the application could include a multi-machine system capable
of delivering to clients the answers to their requests, independently of the machine in
which clients and servers are running.

Stage Thesis

Appendix A - W AM instruction set

A brief reference to the complete set is given here. The algorithms used by the
instructions goes next. The notation Vn represents either a temporary or permanent
variable indifferently.

Put instructions

put_ variable Xn,Ai
put_ variable Y n,Ai
put_ value V n, Ai
put_ unsafe _ value Y n,Ai
put_ structure f,Ai
put_list Ai
put_ constant c,Ai

Set instructions

set variable Vn
set value Vn
set local value V n - -
set constant Vn
set void n

Control instructions

allocate
deallocate
call P,N
execute P
proceed

Indexing instructions

switch_on_term V,C,L,S
switch _on_ constant N, T
switch_on_structure N,T

Get instructions

get_variable Vn,Ai
get_value Vn,Ai
get _ structure f,Ai
get_list Ai
get_constant c,Ai

Unify instructions

unify _ variable V n
unify _ value Vn
unify _local_ value V n
unify _ constant c
unify _ void n

Choice instructions

try_me_else L
retry _me_ else L
trust me
tryL
retryL
trust L

Cut instructions

neck eut
get _level Y n
eut Yn

Appendix A - W AM Instruction Set

Put instructions

put variable Xn,Ai 1

Push a new unbound REF cell onto the HEAP[H] ~ <REF ,H>
heap and copy it into both register Xn and Xn ~ HEAP[H]
register Ai. Continue execution with Ai~ HEAP[H]
following instruction. H ~ H + 1

put variable Y n,Ai 1

Initialize the n-th stack variable in the
current environment to 'unbound' and let
Ai point to it. Continue execution with the
following instruction.

put value Vn,Ai 1

Place the contents ofVn into register Ai.
Continue execution with the following
instruction.

put unsafe value Y n,Ai 1

P ~ P + instruction size(P)

addr ~E +n +1
STACK[addr] ~ <lŒF,addr>
Ai ~ ST ACK[addr]
P ~ P + instrnction size(P)

Ai~Vn
P ~ P + instrnction _size(P)

addr ~ deref(E+n+l)
if addr < E

If the dereference value of Yn is not an then Ai~ STORE[addr]
unbound stack variable in the current
environment, set Ai to that value.
Otherwise, bind the referenced stack
variable to a new unbound variable cell
pushed on the heap, and set Ai to point to
that cell. Continue execution with the
following instruction.

put structure f,Ai 1

else
begin

end

HEAP[H] ~ <lŒF,H>
bind(addr,H)
Ai~HEAP[H]
H ~ H +l

P ~ P + instrnction size(P)

Push a new functor cell containing f onto HEAP[H] ~ fin
the heap and set register Ai to an STR cell Ai~ <STR,H>
pointing to that functor cell. Continue H ~ H + 1
execution with the following instruction. p ~ p + instruction size(P)

put list Ai 1

Set register Ai to contain a LIS cell
pointing to the current top of the heap. Ai ~ <l.JS,H>
Continue execution with the following P ~ P + instruction _size(P)
instruction.

Stage Thesis

- 89 -

Appendix A - W AM Instruction Set - 90 -

put constant c,Ai l
Place a constant cell containing c into Ai ~ <CON,H>
register Ai. Continue execution with the P ~ P + instruction_ size(P)
following instruction.

Get instructions

get variable Vn,Ai 1

Place the contents of register Ai into Vn ~ Ai
variable Vn. Continue execution with the P ~ P + instruction_size(P)
following instruction.

get value V n,Ai l
Unify variable Vn and register Ai. unify(Vn,Ai)
Backtrack on failure, otherwise continue if fail
execution with following instructions. then backtrack

get structure /,Ai 1

If the dereferenced value of register Ai is
an unbound variable, then bind that
variable to a new STR cell pointing to f
pushed on the heap and set mode to write;
otherwise, if it is a STR cell pointing to
functor J, then set register S to the heap
address following that functor cell's and
set mode to read. If it is not a STR cell or
if the functor is different than J, fail.
Backtrack on failure, otherwise continue
execution with the following instruction.

else P ~ P + instruction size(P)

addr ~ deref(Ai)
case STORE[addr] of

<REF,_> : HEAP[H]~ <STR,H+l>
HEAP[H+ 1] ~ /
bind(addr,H)
H~H +2
mode~ write

<STR,a>: ifHEAP[a] = f
then

begin
S~a+l
mode ~ read

end
else /ail~ true

other : /ail ~ true
endcase
if /ail then backtrack

else P ~ P + instruction size(P)

Stage Thesis

Appendix A - W AM Instruction Set

get list Ai 1

If the dereferenced value of register Ai is
an unbound variable, then bind that
variable to a new LIS cell pushed on the
heap and set mode to write; otherwise, if
it is a LIS cell, then set register S to the
heap address it contains and set mode to
read. If it is not a LIS cell, fail. Bactrack
on failure, otherwise continue execution
with the following instruction.

get constant c,Ai l

If the dereferenced value of register Ai is
an unbound variable, bind that variable to
constant c. Otherwise, fail if it is not the
constant c. Bactrack on failure, otherwise
continue execution with the following
instruction.

Set instructions

set variable Vn l

addr ~ deref(Ai)
case STORE[addr] of

- 91 -

<REF,_> : HEAP[H]~ <LIS,H+ 1>
bind(addr,H)
H~H+ 1
mode~ write

<LIS,a> : S ~ a
mode~ read

other : fait ~ true
endcase
if fai l then backtrack

else P ~ P + instruction size(P)

addr ~ deref(Ai)
case STORE[addr] of

<REF,_> :STORE[addr]~<CON,c>
trail(addr)

<CON,c '> : fait~ (c -::f::. c')
other : fail ~ true

endcase
if f ail then backtrack

else P ~ P + instruction size(P)

Push a new unbound REF cell onto the HEAP[H] ~ <REF, H>
heap and copy it into variable Vn. Vn ~ HEAP[H]
Continue execution with the following H ~ H + 1
instruction. P ~ P + instruction size(P)

set value V n l
Push Vn's value onto the heap. Continue HEAP[H] ~ Vn
execution with the following instruction. H ~ H + 1

P ~ P + instruction size(P)

Stage Thesis

Appendix A - W AM Instruction Set

set local value V n 1

If the dereferenced value of Vn is an
unbound heap variable, push a copy of it
onto the heap. If the dereferenced value is
an unbound stack address, push a new
unbound REF cell onto the heap and bind
the stack variable to it. Continue
execution with the following instruction.

set constant c 1

addr +-- deref(Vn)
if addr < H
then HEAP[H] +-- HEAP[addr]
else

begin

end

HEAP[H] +-- <lŒF,H>
bind(addr,H)

H+.--H+l
P +-- P + instruction size(P)

Push the constant c onto the heap. HEAP[H] +-- <CON, c>
Continue execution with the following H +-- H + 1
instruction. P +-- P + instruction size(P)

set void 11 1

Push n new unbound REF cells onto the for i +-- H + n - 1 do
heap. Continue execution with the HEAP[H] +-- <lŒF, i>
following instruction. H +-- H + 1

P +-- P + instruction size(P)

Unify instructions

unifv variable Vn 1

case mode of
read : Vn +-- HEAP[S]

- 92 -

In read mode, place the contents of heap
address S into variable Vn; in write mode,
push a new unbound REF cell onto the
heap and copy it into Xi.
In either mode, increment S by one.
Continue execution with the following
instruction.

write : HEAP[H] +-- <lŒF,H>
Vn +.--HEAP[H]
H+.--H + 1

endcase
S+.--S+l
P +-- P + instruction size(P)

Stage Thesis

Appendix A - W AM Instruction Set

unify value V n 1

In read mode, unify variable Vn and heap
address S; in write mode, push the value
of Vn onto the heap. In either mode,
increment S by one. Baclctrack on failure,
otherwise continue execution with the
following instruction.

unify local value Vn 1

case mode of
read : uni f y(Vn, S)
write : HEAP[H] ~ Vn

H~H+l
endcase
s~s+ 1
iffail

then backtrack
else P ~ P + instruction size(P)

case mode of
read : uni f y(Vn, S)
write : addr ~ deref(Vn)

- 93 -

In read mode, unify variable Vn and heap
address S. In write mode, if the
dereferenced value of Vn is an unbound
heap variable, push a copy of it onto the
heap. If the dereferenced value is an
unbound stack address, push a new
unbound REF cell onto the heap and bind
the stack variable to it. In either mode,
increment S by one. Baclctrack on failure,
otherwise continue execution with the
following instruction.

if addr < H then
HEAP[H]~HEAP[addr]

else

unify constant c 1

In read mode, dereference the
heap address S. If the result is
an unbound variable, bind
that variable to the constant
c; otherwise, fail if the result
is different than constant c. ln
write mode, push the constant
c onto the heap. Baclctrack on
failure, otherwise continue
execution with the following
instruction.

begin
HEAP[H] ~ <lŒF,H>

end
H~H +l

endcase
S ~ S+ 1
iffail

then backtrack
else P ~ P + instruction size(P)

case mode of
read: addr ~ deref(S)

case STORE[addr] of
<lŒF,_>: STORE[addr]~<CON,c>

trail(addr)
<CON,c '> : fail ~ (c :/:- c')
other : fail ~ true

endcase
write : HEAP[H] ~ <CON, c>

H~H + l
endcase
iffail

then backtrack
else P ~ P + instruction size(P)

Stage Thesis

Appendix A - W AM Instruction Set

unify void n 1

In write mode, push n new unbound REF
cells onto the heap. In read mode, skip
the next n heap cells starting at location S.
Continue execution with the following
instruction.

Control instructions

allocate 1

Allocate a new environment on the stade,
setting its continuation environment and
continuation point fields to current E and
CP, respectively. Continue execution
with the following instruction.

deallocate 1

- 94 -

case mode of
read : S ~ S + n
write : for i ~ H to H + n -1 do

HEAP[i] ~ <IŒF, i>
H~H+n

endcase
P ~ P + instruction size(P)

if E > B then
newE~E+CODE [STACK[E+l]-1]+2

else newB ~ B + STACK[B] + 8
STACK[newE] ~E
STACK[newE + l] ~CP
E~newE
P ~ P + instruction size(P)

Remove the environment frame at stack location
E from the stack by resetting E to the value of its CP ~ ST ACK[E + 1]
CE field and the continuation pointer CP to the E ~ ST ACK[E]
value of its CP field . Continue execution with the p ~ p + instruction_ size(P)
following instruction.

call P,N 1

If P is defined, then save the current
choice point' s address in BO and the value
of current continuation in CP, and
continue execution with instruction
labeled P, with N stack variables
remaining in the current environment;
otherwise backtrack.

if defined(P) then
begin

CP ~ P + instruction _size(P)
num_of_args ~ arity(P)
B0~B
P~@(P)

end
else backtrack

Stage Thesis

Appendix A - W AM Instruction Set

execute P 1

If P is defined, then save the current
choice point's address in BO and continue
execution with instruction labeled P;
otherwise backtrack.

proceed 1

Continue execution at instruction whose

if defined(P) then
begin

num_of_args ~ arily(P)
B0~B
p ~ @(P)

end
else backtrack

address is indicated by the continuation P ~ CP
register CP.

Choice instructions

try me else L I
if E > B then

- 95 -

newB ~ E + CODE[ST ACK[E + 1] -1]+2
else newB ~ B + STACK[B] + 8
STACK[newB] ~ num_args

Allocate a new choice point frame
on the stack setting its next clause
field to L and the other fields
according to the current context,
and set B to point to it. Continue
execution with the following
instruction.

n ~ STACK[newB]
for i ~Iton do STACK[newB + i] ~ Ai
STACK[newB + n + I] ~ E
STACK[newB + n + 2] ~ CP
STACK[newB + n + 3] ~ B
STACK[newB + n + 4] ~ L
STACK[newB + n + 5] ~ TR
STACK[newB + n + 6] ~ H
STACK[newB + n + 7] ~ BO
B~newB
HB~H
P ~ P + instruction size(P)

Stage Thesis

Appendix A - W AM Instruction Set

retrv me else L 1

Having backtracked to the current
choice point, reset all the
necessary information from it and
update its next clause field to L.
Continue execution with the
following instruction.

trust me 1

Having backtracked to the current
choice point, reset ail the
necessary information from it,
then discard it by resetting B to its
predecessor. Continue execution
with the following instruction.

try L 1

Allocate a new choice point frame
on the stack setting its next clause
field to the following instruction
and the other fields according to
the current context, and set B to
point to it. Continue execution
with instruction labeled L.

- 96 -

n~ STACK[B]
for i ~Iton do Ai~ STACK[B + i]
E ~ ST ACK[B + n + I]
CP~ STACK[B + n + 2]
STACK[B+n+4]~L
unwind_ trail(STACK[B + n + 5], TR)
TR ~ STACK[B + n + 5]
H ~ STACK[B +n+ 6]
HB~H
P ~ P + instruction size(P)

n ~ STACK[B]
for i ~Iton do Ai~ STACK[B + i]
E ~ ST ACK[B + n + I]
CP~ STACK[B + n + 2]
unwind_trail(STACK[B + n + 5], TR)
TR ~ STACK[B + n + 5]
H ~ STACK[B +n+ 6]
B ~ STACK[B + n + 3]
HB ~ STACK[B + n + 6]
P ~ P + instruction size(P)

if E > B then
newB ~ E + CODE[STACK[E + l] -1]+2

else newB ~ B + STACK[B] + 8
STACK[newB] ~ num_args
n ~ STACK[newB]
for i ~ 1 ton do STACK[newB + i] ~ Ai
STACK[newB + n + 1) ~ E
ST ACK[newB + n + 2] ~ CP
STACK[newB + n + 3] ~ B
STACK[newB + 11 + 4] ~ P +instruction_size(P)
STACK[newB + n + 5] ~ TR
STACK[newB + n + 6] ~ H
STACK[newB + n + 7] ~ BO
B ~newB
HB~H
P~L

Stage Thesis

Appendix A - W AM Instruction Set

retrv L 1

n ~ STACK[B]
for ; ~ 0 to n -1 do Ai ~ STACK[B + i]
E ~ STACK[B + n + 1]
CP~ STACK[B + n + 2]

- 97 -

Having backtracked to the
current choice point, reset ail the
necessary information from it
and update its next clause field
to the following instruction.
Continue execution with
instruction labeled L.

STACK[B + n + 4] ~ P + i11struction_size(P)
unwind _ trail(STACK[B + 11 + 5], TR)
TR ~ STACK[B + n + 5]

trust L 1

Having backtracked to the current
choice point, reset ail the
necessary information from it,
then discard it by resetting B to its
predecessor. Continue execution
with instruction labeled L.

Indexing instructions

switch on term V,C,L,S 1

H ~ STACK[B + n + 6]
HB~H
P~L

n~ STACK[B]
for i ~ 1 to n do Ai ~ STACK[B + i]
E ~ STACK[B + n + 1]
CP~ STACK[B + n + 2]
unwind _ trail(STACK[B + 11 + 5], TR)
TR ~ STACK[B + 11 + 5]
H ~ STACK[B + n + 6]
B ~ STACK[B + n + 3]
HB ~ STACK[B + n + 6]
P~L

Jump to instruction labeled, respectively,
V, C, L or S, depending on whether the
dereferenced value of argument register
Al is variable, a constant, a non-empty
list, or a structure, respectively.

case STORE[deref(Al)] of
<lŒF, _> : P ~ V
<CON,_:> : P~C
<LIS, _> : P ~ L
<STR, _> : P ~ S

endcase

switch on constant N,T 1

The dereferenced value of register Al < tag, val>~ STORE[deref(Al)]
being a constant, jump to the instruction < found, inst > ~ get_hash(val,T, N)
associated to it in hash-table T of size N. if found
If the constant found in A 1 is not one in
the table, backtrack.

then P ~ inst
else backtrack

Stage Thesis

Appendix A - W AM Instruction Set - 98 -

switch on structure N,T 1

The dereferenced value of register Al <tag, val>~ STORE[deref(Al)]
being a constant, jump to the instruction < found, inst > ~ get_hash(val,T, N)
associated to it in hash-table T of size N. if found
If the functor of the structure found in Al then p ~ inst
is not one in the table, backtrack. else backtrack

Cut instructions

neck eut 1

If there is a choice point after that
indicated by BO, discard it and tidy the
trail up to that point. Continue execution
with following instruction.

get level Y n 1

If B > BO then
begin

B~BO
tidy_trail

end
P ~ P + instruction size(P)

Set Yn to the current value of BO. STACK[B + n + 2] ~ BO
Continue execution with following P ~ P + instruction _size(P)
instruction.

eut Yn 1

Discard all (if any) choice points after that
indicated by Yn, and tidy the trail up to
that point. Continue execution with
following instruction.

If B > STACK[B + n + 2] then
begin

B ~ STACK[B + n + 2]
tidy_trail

end
P ~ P + instruction size(P)

Stage Thesis

Appendix A - W AM Instruction Set

W AM ancillary operations

procedure backtrack
if B = bottom of stack

then fail _and_ exit _pro gram
else

begin
BO~ STACK[B + STACK[B] + 7]
P ~ STACK[B + ST ACK[B] + 7]

end
end backtrack

fonction derefta : address) : address
begin

< tag, value > ~ STORE[a]
if (tag = REF) /\ (value -:1; a)

then return deref(value)
else return a

end deref

procedure bind(a1, a2 : address)
< t1 , _ > ~ STORE[ai]
< h , _ > ~ STORE[a2]
if (t1 = REF) /\ ((h = REF) v (a2 < a1)) then

begin
STORE[a1] ~ STORE[a2]
trail(a1)

end
else

begin
STORE[a2] ~ STORE[ai]

trail
end

end bind

Stage Thesis

- 99 -

Appendix A - W AM Instruction Set

c::
0

-~
QJ

o.
0

procedure trail(a :address)
if (a< HB) v ((H < a)/\ (a < B)) then

begin
TRAIL[TR] ~ a

TR~TR+ 1
end

end trail

procedure unwind_trail(a1 , a2: address)
for i ~ a1 to a2 -1 do

STORE[TRAIL[i]] ~ < REF, TRAIL[i] >
end unwind trail

procedure tidy _trail
i ~ ST ACK[B + ST ACK[B] + 5]
while i < TR do

if (TRAIL[i] < HB) v ((H < TRAIL[i]) /\ (TRAIL[i] < B))
then i ~ i + 1
else

begin

end

TRAIL[i] ~ TRAIL[TR + 1]
TR~TR-1

end tidy _ trail

Stage Thesis

- 100 -

Appendix A - W AM Instruction Set

procedure unify(a1 , a2 : address)
push(a1 , PDL)
push(a2, PDL)
f ail ~ false
while -,(empty(PDL) v /ail) do

begin
d1 ~ deref(pop(PDL))
d2 ~ deref(pop(PDL))
if d1 -:t: d2 then

begin
< ti , V1 > ~ STORE[di]
< ti, V2 > ~ STORE[d2]

else
case t2 of

REF : bind(d1 , d2)
CON : fait~ (t1 -:t: CON) v (v1 -:t: v2)
LIS : if t1 -:t: LIS thenfail ~ true

else
begin

push(v1, PDL)
push(v2, PDL)
push(v1 + 1, PDL)
push(v2 + 1, PDL)

end
STR : if t1 -:t: STR thenfai/ ~ true

else

endcase

begin
f1/n1 ~ STORE[vi]
.filn2 ~ STORE[v2]

end

if (/1 -:t: j 2) v (n1 -:t: n2) thenfail ~ true
else

for i ~ 1 to n1 do
begin

end

push(v1 + i , PDL)
push(v2 + i, PDL)

end

end
end

end unify

Stage Thesis

- 101 -

Appendix B - clp(FD) instruction set

lnterfacing with Prolog Clause

These instructions are responsible for creating and loading the A _Frame. Mainly, the
space is reserved at the top of the heap, the addresses of FD variables and values of
parameters are loaded into this new frame.

I t f ns rue 10n p urpose
Reserves space on the top of the heap, for

fd_set_AF(nb_arg, Vi) A_Frame, whose size is nb_arg. AF and the Vi
variable point to the start of the A Frame.
Binds Vj to an FD variable created on top of

fd _ variable _in_ A_ frame(Vj) the heap (whose range is 0 . .infinite). Puts its
address into the cell pointed by AF. AF is
incremented.
Let w be the dereferenced word ofVj, if it is:

• an unbound variable: similar to
fd _ variable _in_ A_ frame(w).

• an integer: it is pushed on the heap and
fd value in A frame its address is stored into the cell pointed - - -

by AF. AF is incremented.
• an FD variable: its address is stored

into the cell pointed by AF. AF is
incremented.

The dereferenced of Vj must be a list of
fd _range _parameter _in_ A_ frame(Vj) integers and a corresponding range is created

on top of the heap whose address is copied
into the cell pointed by AF. AF is incremented.

fd _term _parameter _in_ A_ frame(Vj) The dereferenced of Vj must be an integer and
its value is copied into the cell pointed by AF.
AF is incremented.
Restores AF with Vi, sets CC to the next

fd _install _ constraint(install _proc, Vi) instruction and gives control to the install
procedure.
Sets CC to the next instruction and gives

fd call constraint control to the code of the constraint pointed by -
CF.

The last two instructions are produced for every constraint.

Appendix B - Clp(FD) Instruction Set - 103 -

Installing Constraints

For every constraint, an installation procedure is generated. It is responsible for
creating and loading the C _Frame. It also initializes the appropriate chain lists for ail
FD variables used by this constraint.

Instruction
fd create C frame - - -

(constraint _proc, tell_ fv)

fd _ install _ind _ min(fv)
fd install ind max - - -

fd _ install _ ind _min_ max(fv)
fd _ install _ind _ dom(fv)
fd install dly val(fv)

fd oroceed

Computing Constraint

Purpose
Creates, on top of the heap, a C _Frame associated to
the constraint whose code is located at the address
constraint _yroc and whose constrained variable is
tell fv. CF points to this C Frame.

These are used when the constraint (currently pointed
by CF) uses the min(or max, or both the min and max,
etc) of the fvth variable.

Gives control to the address pointed by CC.

For every constraint X in r a constraint procedure is generated which is decomposed
into four parts:

• loading parameters, indexical terms and ranges into appropriate registers;
• computing the range r;
• telling the constraint X in r;
• retuming.

Loading parameters, indexical terms and ranges

Instruction

Loads the min and the max of the fvth variable in
T ti and T tz.

fd _ind _ dom(R(r), fv) Loads the domain (a range) of the fvth variable into
R(r .

fd_dly_val(T(t),fv, lab_else) If thefv variable is an integer, it is copied in T(t),
or else the control is iven to the label /ab else.

Stage Thesis

Appendix B - Clp(FD) Instruction Set

Computing the range

Instruction

fd_union(R(r), R(r1))
fd_union(R(r) , R(r1))

fd_compl(R(r))
fd_compl_of_singleton(R(r), T(t))

fd_add(R(r), T(t))
fd_sub(R(r), T(t))
fd_mul(R(r), T(t))

fd_floor_div(R(r), T(t))

fd_range_copy(R(r), R(r1))
fd_integer(T(t), n)

fd_add(T(t), T(t1))
fd_sub(T(t), T(t1))
fd_mul(T(t), T(t1))

fd_floor_div(T(t), T(t1))
fd_ceil_div(T(t) , T(t1))

fd_term_copy(T(t), T(t1))

Telling the constraint X in r

- 104 -

Pur ose

Execute R(r) +- R(r) u R(r1).

Execute R(r) +- R(r) +pointwise T(t).
Execute R(r) +- R(r) - pointwise T(t).
Execute R(r) +- R(r) * pointwise T(t).
Execute R r +- R r / ointwise T t .

Execute T(t) +- T(t) + T(t1).
Execute T(t) +- T(t) - T(t1).
Execute T(t) +- T(t) * T(t1).
Execute T(t) +- T(t) L;J T(t1) .
Execute Tt +-Tt 1/l T t1 .

The current constraint is pointed by CF and X can be reached from the C_Frame. So
only r must be provided to tell. In order to optimize the execution two particular cases
can be distinguish: X in t1 .. tz and X in r. The complete description of the tell operation
has already been given in chapter 3.

Instruction

Tells X in t1 •• t2 i.e. ris an interval .

Stage Thesis

Appendix C - Client functions

The following fonctions can be used by any client program to communicate with the
server.

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include "conv.h"
#include "defs.h"

/* Macros definition * /
#define EXPORT strcpy(cli_name,argv[0]);
#define CREATE _ CLIENT create _ client();
#define KILL _ CLIENT kill _ client();
#define ADDB(x,y, w,z) add _to _ blackboard(x,y, w,z);
#define SEND _ BLACKBOARD(n) send _ blackboard(n);
#define FREE_BB(b) free_blackboard(n);
#define READB(n,t,w,p) (t?(read_and_kill_bb(n,w,(void ***) p)):

read_bb(n,w,(void ***) p));
#define READ _BLACKBOARD(p,w) (w?(nowaiting_read((void ***) p)):

waiting_read((void ***) p));
#define GET _DATA(p,i,d) get_data(p,i,&d);

#define POINT ".\0"
#define USCR " \0"
#define AT "@\0"
#define CS "#\0"
#define MONEY "$\0"
#define LSB "[\0"
#define RSB "]\0"
#define IMS "?\0"
#define AST "*\0"
#define BFSZ size_str=strlen(buffer)
#define BUF &buffer[size_str]
#define CB(x) BFSZ;strcpy(BUF,x)
#define SZT sizeof(size_t)

Appendix C - Client functions

/* Aux. data * /

struct aux
{
char type;
int ts;
struct aux * next;

};

/* Blackboard Representation * /

struct bkb
{
char bname[l2];
void * bbf;
size t bcsz;
struct aux * bst;
struct bkb * bnext;
};

struct bkb * first_ out,first_in;

const char Cts=S_BS; /* Constant type separator */
const char Cds=S_DS; /* Constant dec. separator */

/* Functions prototype * /

void DEF _STR(int, ...);
static void sig_usr(int);
pid_t get_server_pid(void);
void tell_server(size_t);
void open_ server(void);
int open_client(void); /* Open client to check it was create by server */
void open_clientl(void); /* Open client to unblock server when it opens ... */

/* .. . client's FIFO. * /
void create _ client(void);
void kill_ client(void);
void send _ blackboard(char *);
void read_and_kill_bb(char *,char, void ***);
void read_bb(char *,char, void ***);
void create_bbint(void *,size_t);
void create_bbstring(void * ,size_t);
void add_to_blackboard(char * ,void * ,char ,size_t);
void adds_bb(void *,struct bkb *,size_t);
void addi_bb(void *,struct bkb *,size_t);

Stage Thesis

- 106 -

Appendix C - Client functions

void clear _ buffer(void);
void remove_bkb(struct bkb *);
void remove _ aux(struct aux *);
void remove _ail_ bkb(void);
void put_info(struct bkb *);
void putf _ info(char * ,char *);
void waiting_read(void ***);
void nowaiting_read(void ***);
int get _ info(int);
void decode_info(void ***);
void put_bkb(char *, void ***);
size_t get_nelem(char *, struct aux**);

/* Functions that retum an number of special type (int, float ...) */

short int Rs(void *);
int Ri(void *);
long int RI(void *);
float Rftvoid *);
double Rd(void *);
long double Rld(void *);

/* Global Data * /

void ** GP;
char buffer[PIPE_BUF];
int fd=-1 ;
pid _ t pid,pids;
char cli_name[256] ;
size _ t size _ str;

pid _ t get _ server _pid(void)
{
int fdp;
if((fdp=open(SVR _ ID, 0 _ RDONL Y))!=-1)

{
read(fdp,&pids,sizeof(pid));
close(fdp);
retum(pids);
}

else
retum(-1);

}

void tell_server(size_t sz)
{
if(fd>-1)

Stage Thesis

- 107 -

Appendix C - Client functions

{
if((write(fd,buffer,sz))!=sz)

printf("Error while writing to server FIFO\n");
sleep(2);
kill(pids,SIGUSR2);
}

}

void open_ server(void)
{
pids=get _ server _pid();
if(pids>0)

{
fd=open(SVR_FF, O_WRONLY I O_APPEND I O_NONBLOCK);
}

}

int open_ client(void)
{
int fda=-1 ;
char s[256];
char sa[20];
if(pid>0 && fd>-1)

{
strcpy(s, CNT _ D IR);
strcat(s,cli_name);
strcat(s, USCR);
itoa(pid,sa);
strcat(s,sa);
if((fda=open(s,O_RDONLY I O_NONBLOCK))!=-1)

{
close(fda);
retum(l);
}

}
retum(0);
}

void open_ client 1 (void)
{
int fda=-1 ;
char s[256];
char sa[20];
if(pid>0 && fd>-1)

{
strcpy(s, CNT _ D IR);
strcat(s,cli _ name);

Stage Thesis

- 108 -

Appendix C - Client functions

}

strcat(s, USCR);
itoa(pid,sa);
strcat(s,sa);

while((fda=open(s,O_RDONL Y))=-1) {}
close(fda);
}

void create _ client(void)
{
char s[20];

pid=(int) getpid();
pids=get _ server _pid();
strcpy(buffer,AT);
CB(cli_name);
CB(USCR);
itoa(pid,s);

/* Copy to current location in buffer array, cli_name */
/* same thing for underscore * /

/* put pid of this process in string s * /
/* put string s in current buffer location * / CB(s);

CB(POINT);
open_ server();
BFSZ;

/* same thing for a . (point) * /
/* Is server runing ? * /

tell_server(size_str); /* tell server that this client has a request
open_ client 1 ();
}

void kill _ client(void)
{
char s[20];
if(open_ client())

{
strcpy(buffer, CS);
CB(cli_name);
CB(USCR);
itoa(pid,s);
CB(s);
CB(POINT);
BFSZ;
tell_ server(size _ str);
remove _ all_ bkb();
}

}

void create_bbint(void *pt,size_t sz)
{
size_t a;
if(pt!=NULL && sz!=0)

Stage Thesis

*/

- 109 -

Appendix C - Client functions

}

{
a=sz+(2*sizeof(size_t))+2;
first_out->bbf=(void *) calloc(l ,a);
first_out->bst=(struct aux*) calloc(l,sizeof(struct aux));
memcpy(first _ out->bbf:&sz,sizeof(size _ t));
memcpy(first _ out->bbf+SZT ,&Cts, 1);
memcpy(first _ out->bbf+SZT + 1,&sz,sizeof(size _ t));
memcpy(first_ out->bbf+(2 * SZT)+ l ,&Cds, 1);
memcpy(first_out->bbf+(2*SZT)+2,pt,sz);
(first _ out->bst)->type=S _INT;
(first _ out->bst)->ts=sz;
(first _ out->bst)->next= NULL;
first out->bcsz=a· - '
}

void create_bbstring(void *pt,size_t sz)
{
size_t a;
if(pt!=NULL && sz!=O)

{
a=sz+ 1 +SZT;
first_out->bbf=(void *) calloc(l ,a);
first_ out->bst=(struct aux *) calloc(l ,sizeof(struct aux));
memcpy(first _ out->bbf:&sz, SZT);
memcpy(first _ out->bbf+SZT ,&Cts, 1);
memcpy(first_out->bbf+SZT+l,pt,sz);
(first _ out->bst)->type=S _ S TR;
(first _ out->bst)->ts=sz;
(first _ out->bst)->next= NULL;
first _ out->bcsz=a;
}

}

void add_to_blackboard(char *np,void *bp,char t,size_t sz)
{
struct bkb *bkp;
int found;
if(first _ out= NULL)

{
first_out=(struct bkb *) calloc(l ,sizeof(struct bkb));
if(first_out!=NULL && strlen(np)!=O)

{
strcpy(first _ out->bname,np);
if(t)

create _ bbint(bp,sz);
else

Stage Thesis

- 110 -

Appendix C - Client functions

}
}

else
{

create _ bbstring(bp,sz);

bkp=first _ out;
found=O;
while(bkp!=NULL && found=O)

{
if{ strcmp(np,bkp->bname)=O)

{
if{t)

addi_ bb(bp,bkp,sz);
else

adds _ bb(bp,bkp,sz);
found=l ;
}

else
bkp=bkp->bnext;

}
if(bkp NULL) /* or found is false * /

{
bkp=first_ out;
first_out=(struct bkb *) calloc(l ,sizeof{struct bkb));
if(first _out!= NULL && strlen(np) ! =O)

}

{
first _ out->bnext=bkp;
if{t)

create _ bbint(bp,sz);
else

create _ bbstring(bp,sz);
}

else

}
}

first_ out=bkp;

void adds_bb(void *bp,struct bkb *bkp,size_t sz)
{
void *nb;
size t t;
struct aux * f;

if(bkp->bbf!=NULL && bp!=NULL && sz!=O)
{
f=first _ out->bst;

Stage Thesis

- 111 -

Appendix C - Client functions

while(f->next!=NULL)
f=f->next;

f->next=(struct aux*) calloc(l ,sizeof(struct aux));
f=f->next;
f->type=S _ STR;
f->ts=sz;
f->next=NULL;
memcpy(&t,bkp->bbf,SZT);
t+=sz;
memcpy(bkp->bbf,&t, SZT);
nb=(void *) calloc(l ,(bkp->bcsz)+sz+ 1);

- 112 -

memcpy(nb,bkp->bbf,bkp->bcsz); /* copy the previous contents to new location*/
memcpy(nb+(bkp->bcsz),&Cts,l); /* add a; to new location*/
memcpy(nb+(bkp->bcsz)+ l,bp,sz); /* add string to new location*/
bkp->bcsz+=sz+ 1;
free(bkp->bbf);
bkp->bbf=nb;
}

}

void addi_bb(void *bp,struct bkb *bkp,size_t sz)
{
void *nb;
size_t t;
struct aux *f;
if(bkp->bbf!=NULL && bp!=NULL && sz!=O)

{
f=first out->bst· - '
while(f->next !=NULL)

f=f->next;
f->next=(struct aux *) calloc(l ,sizeof(struct aux));
f=f->next;
f->type=S _ INT;
f->ts=sz;
f->next=NULL;
memcpy(&t,bkp->bbf,sizeof(t));
t+=sz;
memcpy(bkp->bbf,&t, SZT);
nb=(void *) calloc(l ,(bkp->bcsz)+SZT+2+sz);
memcpy(nb,bkp->bbf, bkp->bcsz);
memcpy(nb+(bkp->bcsz),&Cts, 1);
memcpy(nb+(bkp->bcsz)+ l ,&sz,SZT);
memcpy(nb+(bkp->bcsz)+SZT + l ,&Cds, 1);
memcpy(nb+(bkp->bcsz)+SZT +2,bp,sz);
bkp->bcsz+=sz+2+SZT;
free(bkp->bbf);
bkp->bbf=nb;

Stage Thesis

Appendix C - Client functions

}
}

void send _ blackboard(char *np)
{
struct bkb *p;
char found;
if{strlen(np)!=O)

}

{
found=O;
p=first _ out;
while(p!=NULL && found=O)

{
if{strcmp(np,p->bname)=O && p->bbf1=NULL)

{
clear _ buffer();
CB(MONEY);
CB(p->bname);
CB(LSB);
BFSZ;
size _ str=strlen(np)+ 2;
memcpy(&buffer[size _ str],p->bbf,p->bcsz);
strcpy(&buffer[p->bcsz+strlen(np)+2],RSB);
strcpy(&buffer[p->bcsz+strlen(np)+ 3],POINT);
found=l ;
size _ str=p->bcsz+strlen(np)+4;
tell_ server(size _ str);
free(p->bbt);
}

else
p=p->bnext;

}
}

void read_and_kill_bb(char *n, char t, void *** mp)
{
if{n!=NULL && strlen(n)!=O && open_client())

{
if(t=T _ W AIT)

{
putf _info(n,AST);
tell_ server(size _ str);
waiting_read(mp);
}

else
{

Stage Thesis

- 113 -

Appendix C - Client functions

}
}

putf _ info(n,AST);
tell_ server(size _ str);
nowaiting_read(mp);
}

void read_bb(char *n, chart, void *** mp)
{
struct bkb *p;
char found;

if(n!=NULL && strlen(n)!=0 && open_client())
{

}

if(t=T _ W AIT)
{
putf _info(n,IMS);
tell_ server(size _ str);
waiting_read(mp);
}

else
{
putf_info(n,IMS);
tell_ server(size _ str);
nowaiting_read(mp);
}

}

void waiting_read(void * * * mp)
{
int fdc=-1;
char s[256];
char sa[20];
strcpy(s, CNT _ D IR);
strcat(s,cli_ name);
strcat(s, USCR);
itoa(pid,sa);
strcat(s,sa);
if((fdc=open(s,O_RDONLY I O_NONBLOCK))>-1)

{
sleep(20);
get_info(fdc);
decode_info(mp);
close(fdc);
}

else

Stage Thesis

- 114 -

Appendix C - Client functions

fprintf(stderr, "Can't open client's fifo\n");
}

void nowaiting_read(void *** mp)
{
int fdc=-1 ;
char s[256];
char sa[20];
strcpy(s, CNT _ D IR);
strcat(s, cli _ name);
strcat(s, USCR);
itoa(pid,sa);
strcat(s, sa);
if((fdc=open(s, 0 _ RDONL Y I O _ NONBLOCK))>-1)

{
errno=0;
sleep(20);
get_info(fdc);
if(errno= 0)

decode_info(mp);
else

fprintf(stderr, "Error number: ¾d\n" ,errno);
close(fdc);
}

else
fprintf(stderr,"Can't open client's fifo\n") ;

}

int get_info(int fdc)
{
char c;
ssize_t n=0;
int i=0;
clear _ buffer();
do {

n=read(fdc,&c, 1);
if(n>0)

{
buffer[i]=c;
i++· ,
}

} while(c!=S_END && n>-1 && i<PIPE_BUF);
if(n= -1)

fprintf(stderr, "Error while reading fifo\n") ;
if(c= S _ END && n>0)

{
buffer[i-1]=NULLC;

Stage Thesis

- 115 -

Appendix C - Client functions

}

return(l);
}

else
{
buffer[0]=NULLC;
return(0);
}

void decode _info(void * * * mp)
{
switch(buffer[0])

{
case S_RB:put_bkb(&buffer[l],mp);

break;
case S_KB:put_bkb(&buffer[l],mp);

break;
case E_NOB:fprinttrstderr,"The blackboard does not exist\n");

break;
case E_CNT:fprintf(stderr,"The client does not exist\n");

break;
}

}

void put_bkb(char *buf,void *** mp)
{
int i,a;
size_t sz=0;
char *sa;
size _ t tam=0;
char ch;
size_t nb=0;
size_t count=0;
void ** pt;
i=a=0;
while(buf:Ii]!=S_BD && i<PIPE_BUF) i++;
i±rbuf:Ii]= S _ BD)

{
sa=(char *) calloc(1,i-a+ 1);
memcpy(sa,buf,i-a);
memcpy(&sa[i-a+ 1], "\0", 1);
free(sa);
i++;
memcpy(&nb,&buf:Ii], SZT);
i+=SZT;
pt=(void **) calloc(nb+ l ,sizeo±rvoid *));
*(pt+nb)=NULL;

Stage Thesis

- 116 -

Appendix C - Client functions

i~bufii)=S_BS)
{
count=O;
while(bufii)!=S_ED && i<PIPE_BUF)

{

}

i++;
memcpy(&ch,&bufii],sizeo~char));
i++;
memcpy(&tam,&bufii],SZT);
i+=SZT;
~bufii)=S_DS)

}

{
a=++i;
while(bufii)!=S_BS && bufii]!=S_ED && i<PIPE_BUF)

i++;
i~bufii]=S _ BS Il bufii]=S _ ED)

{

}

*(pt+count)=(void *) calloc(tam+SZT +sizeo~ char), 1);
i~*(pt+count)!=NULL)

{
memcpy(*(pt+count),&ch,sizeo~char));
memcpy((*(pt+count))+sizeo~ char),&tam,SZT);
memcpy((*(pt+count))+SZT +sizeo~ char),&bufI a],i-a);
count++;
}

}

i~bufii]=S _ ED)
{
if(mp!=NULL)

*mp=pt;
else

GP=pt;
}

else

}

{
i=O;
while(i<=nb)

{
free(*(pt+i));
i++;
}

free(pt);
}

Stage Thesis

- 117 -

Appendix C - Client functions

}

size_t get_nelem(char * sa,struct aux** pdt)
{
struct bkb *p;
struct aux *ap;
size_t sz=O;
int found=O;
p=first_ out;
while(p!=NULL && found=O)

{

}

if(strcmp(sa,p->bname)=O)
{
found= l ;
*pdt=p->bst;
ap=p->bst;
while(ap!=NULL)

{
sz++;
ap=ap->next;
}

}
else

p=p->bnext;

retum(sz);
}

void putf_info(char *np,char *c)
{
struct bkb *p;
char found;
found=O;
p=first _ out;
while(p!=NULL && found=O)

{
if(strcmp(np,p->bname)=O && p->bst!=NULL)

{
clear _ buffer();
strcpy(buff er, c);
put_ info(p);
found= l ;
}

else
p=p->bnext;

}
}

Stage Thesis

- 118 -

Appendix C - Client functions

void put_info(struct bkb *p)
{
struct aux *a;
char s[20];
strcat(buffer,cli_ name);
strcat(buffer, USCR);
itoa(pid,s);
strcat(buff er ,s);
strcat(buffer,LSB);
strcat(buffer ,p->bname);
BFSZ;
memcpy(BUF,&Cts,sizeof(Cts));
size_str++;
a=p->bst;
BFSZ;
while(a!=NULL)

{
if(a->type S_STR Il a->type S_INT)

{
memcpy(BUF ,&(a->type),sizeof(a->type));
size _str++;
memcpy(BUF ,&(a->ts),sizeof(a->ts));
size _ str+=sizeof(a->ts);
}

a=a->next;
}

strcpy(BUF ,RSB);
size _ str++;
strcpy(BUF ,POINT);
size _ str++;
}

/* rem oves one blackboard and the needed structures * /

void remove_bkb(struct bkb *p)
{
struct bkb *ax;

ax=first_ out;
while(ax->bnext! =NULL && ax->bnext!=p)

ax=ax->bnext;

if(p= ax->bnext)
{
ax->bnext=p->bnext;
remove _ aux(p->bst);
free(p->bbf);

Stage Thesis

- 119 -

Appendix C - Client functions

}

free(p) ;
}

void remove_aux(struct aux *x)
{
struct aux *a;
a=x;
while(a!=NlJLL)

{
x=x->next;
free(a);
a=x;
}

}

void remove _ail_ bkb(void)
{
struct bkb *a;
a=first_ out;
while(a!=NlJLL)

{
free(a->bbf);
rem ove_ aux(a->bst);
a=first out->bnext;
free(first_ out);
}

first _ out= NlJLL;
}

void clear _ buffer(void)
{
int i;
for(i=O;i<PIPE _ BUF;i++)

buffer[i]=NULLC;
}

void DEF _STR(int n, ...)
{
int w,i;
size_t vi;
char * s;
char t,c,spid[20];
va_list vl;

va_start(vl,n);
s=va_arg(vl,char *);

- 120 -

Stage Thesis

Appendix C - Client functions

t=va _ arg(vl, char);
clear _ buffer();
if{t=T_KILL)

buffer[O]=S _ KB;
else

buffer[O]=S _ RB;
strcat(buffer ,cli_ name);
strcat(buffer, USCR);
itoa(pid,spid);
strcat(buffer ,spid);
BFSZ;
buffer[size _ str]=S _ BM;
strcat(buff er, s);
BFSZ;
for(i=3 ;i<=n;i++)

{
memcpy(&buffer[size _ str],&Cts, 1);
size _ str++;
c=va _ arg(vl,char);
memcpy(&buffer[size _ str++],&c, 1);
if(c= S _ INT)

{
vi=(size _ t) va_ arg(vl,int);
memcpy(&buffer[size _str],&vi,sizeof(size _ t));
size _ str+=sizeof(size _ t);
i++;
}

}
buffer[size _ str++]=S _ EM;
buffer[size _ str++]=S _ END;
tell_ server(size _ str);
va_end(vl);
}

void get_data(void ** mp, size_t ind, void ** data)
{
static char cr;
static short int si;
static int it;
static long int li;
static float ft ;
static double de;
static long double Id;
static char * sg;

char tp;
size t ts=O·

- '

Stage Thesis

- 121 -

Appendix C - Client functions

ind--;
iftmp!=NULL && ind >=O)

{
memcpy(&tp, *(mp+ind),sizeoft char));
memcpy(&ts, *(mp+ind)+sizeof(char),sizeof(size _t));
ifttp=S_STR && ts>O)

{
if(ts=l)

{
memcpy(&cr, *(mp+ind)+sizeoft char)+sizeoftsize _t),sizeoft char));
*data=(void *) (&cr);

}
else

}

{
if(ts> 1)

{
sg=(char *) ((*(mp+ind))+sizeoft char)+sizeoft size _ t));
*data=(void *) sg;
}

else
*data=(void *) NULL;

}

else
{
ifttp=S_INT && ts>O)

{
switch(ts)

{
case sizeoftshort int):

memcpy(&si,*(mp+ind)+sizeof(char)+SZT ,sizeoftint));
*data=(void *) (&si);
break;

case sizeoftint):
memcpy(&it, *(mp+ind)+sizeoft char)+SZT ,sizeoftint));
*data=(void *) (&it);
break;

/* case sizeoftlong int):

*/

memcpy(&li, *(mp+ind)+sizeof(char)+SZT ,sizeoftlong int));
*data=(void *) (&li);
break;

case sizeoftfloat):
memcpy(&ft, *(mp+ind)+sizeoft char)+SZT ,sizeoftfloat));
*data=(void *) (&ft);
break;

Stage Thesis

- 122 -

Appendix C - Client functions

case sizeo:ft double):
memcpy(&de,*(mp+ind)+sizeo:ft char)+SZT ,sizeo:ft double));
*data=(void *) (&de);
break;

case sizeof(long double):
memcpy(&Id, *(mp+ind)+sizeo:ft char)+SZT ,sizeo:ftlong double));
*data=(void *) (&Id);

}
}

else

break;

*data=(void *) NULL;

}

}
}

short int Rs(void * pt)
{
short int s;
memcpy(&s,pt,sizeof(short int));
retum(s);
}

int Ri(void * pt)
{
inti;
memcpy(&i,pt,sizeo:ftint));
retum(i);
}

long int Rl(void * pt)
{
long int I;
memcpy(&l,pt,sizeof(long int));
retum(l);
}

float R:ft void * pt)
{
float f;
memcpy(&f,pt,sizeo:f{float));
retum(t);
}

double Rd(void * pt)
{

Stage Thesis

- 123 -

Appendix C - Client functions

int d;
memcpy(&d,pt,sizeof(double));
return(d);
}

long double Rld(void * pt)
{
int Id;
memcpy(&ld,pt,sizeof(long double));
return(ld);
}

- 124 -

Stage Thesis

Appendix D - Server functions

The follawing functions are responsible for the management of clients and
blackboards.

/* Needed header files*/

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib. h>
#include <syslog.h>
#include <limits.h>
#include <string.h>
#include "m_signal.h"
#include "conv.h"
#include "defs.h"

/* Functions prototype*/

int daemon _init(void);
void error _log(int ,char *);
void error _logint(int);
static void sig_usr(int);
static void sig_term(int);
void creat_fifo(void);
void read_fifo(char *);
void daemon _install(void);
void create _ client(char *);
void decode _ info(char *);
int decode(char *);
int mem_client(char *);
void destroy _ client(char *);
void create_blackboard(char *);
void read_kill_blackboard(char *);
void read _ blackboard(char *);
void clear _ buffer();
void remove _ blackboard(char *);
void send _ error _ to _ client(char *, char);

Appendix D - Server functions

/* Global data definition */

int fd; /* File server's descriptor witch is used to listen to resquest * /
int fdp; /* File holding daemon's pid */
char buffer[PIPE_BUF]; /* Buffer for FIFO */
pid _ t proc _id;

/* Constant data * /

const char Cbs=S_BS;
const char Cds=S _ DS;
const char Cim=S _ RB;
const char Cbd=S BD;
const char Cend=S _ END;
const char Ced=S _ ED;

/* List of clients * /

struct list cli
{
int fdc;
char cli_name[MaxBBname+3];
struct list _ cli * next _ cli;

};

struct list_cli *first_cli; /* pointer to first client list member */

/* Aux. data * /

struct aux
{
char type;
int ts;
struct aux * next;
};

/* Blackboard Data Representation */

struct list bb
{
char bkbName[12];
void * dt;
size_t dsz;
struct aux * auxd;
struct list_bb * next_bb;
};

Stage Thesis

- 126 -

Appendix D - Server functions

struct list_bb * first_bb ; /* pointer to first backboard list member */

void remove_all_aux(struct aux*);
int cmp_structure(struct aux *,char*);
void sendb_client(char *, struct list_bb *);
void put_answer_in_fifo(int, struct list_bb *);
size_t get_nelem(struct aux*);

/* Daemon self installation function * /

int daemon _init(void)
{
pid_t pid;

if((pid=fork())<0)
retum(-1);

else
if(pid!=0)

exit(0); /* The father exits*/

/* The son goes on * /

setsid();

if((pid=fork())<0)
retum(-1);

else
if(pid!=0)

exit(0); /* The son exits */

/* The son's son continues * /

proc _id=getpid();
if((fdp=open(SVR_ID, O_WRONLY j O_CREAT j O_TRUNC,
S _ IWUSRjS _ IRUSR))=-1)

{
error_log(2,"Can't create file with Daemon's Pid");
exit(l);
}

else
{
if(write(fdp,&proc _id,sizeof(proc _id))=-1)

{

}

error _log(2, "Can't write PID to file");
exit(0);
}

Stage Thesis

- 127 -

Appendix D - Server functions

openlog("wd" ,LOG_ ND ELA Y,LOG _ USER);
chdir("/");
umask(0);
return(0);
}

/* Error handling routine * /

void error _log(int priority,char * error _message)
{
switch(priority)

{
case 0: /* Information */

syslog(LOG_INFO,"Information message - ¾s. ",error_message);
break;

case 1 : /* Warning * /
syslog(LOG_ W ARNING,"Warning message - ¾s. ",error_message);
break;

case 2: /* Error */
syslog(LOG _ ERR, "Error message - ¾s. ",error _message);
break;

}
}

void error _logint(int i)
{
char s[20];
itoa(i,s);
error _log(0,s);
}

void creat_ fifo(void)
{
if(mkfifo(SVR_FF, S_IRUSR I S_IWOTH I S_IWGRP I S_IWUSR)=0)

{
if((fd=open(SVR _FF, 0 _ RDONL Y))= -1)

error _log(2, "Can't open fifo file");
}

else
error _log(2, "Can't make fifo file") ;

}

void read _ fifo(char * buf)
{
char c;
ssize _ t n=0;
int i=0;

Stage Thesis

- 128 -

Appendix D - Server functions

}

do {
n=read(fd,&c, 1);
if(n=-1)

error _log(1, "Error while reading");
else

{
bufti]=c;
i++·

'
}

} while(c!='.' && n>O && i<PIPE_BUF);
if(c='.' && n>O && i<PIPE_BUF)

{
bufti-1]='\O';
decode _info(buf);
clear _ buffer();
i=O;
}

else
buftü]='\O';

void decode _info(char *buf)
{
switch(buft O])

{
case S _CC: if(! mem _ client(&buft 1])) create _ client(&bufl)]);

else error_log(O,"Client is already know to server");
break;

case S _ KC: destroy _ client(&buft 1]);
break;

case S _ CB: create _ blackboard(&buft 1]);
break;

case S _ KB: read _ kill _ blackboard(&buft 1]);
break;

case S_RB:read_blackboard(&buftl]);
break;

}
}

void read _ kill_ blackboard(char *buf)
{
int i=O;
int a=O;
int f_test=O;
int Ctestl =O;
char *s;

Stage Thesis

- 129 -

Appendix D - Server functions

char sc[l2] ;
s=(char *) calloc(l ,MaxBBname+3);
if(first_ bb !=NULL)

{
while(bufîi]!=S_BM && bufîi]!=NULLC && i<PIPE_BUF) i++;
if(bufîi]=S _BM)

{
stmcpy(se, buf,i);
if(mem _ client(se)) /* Is there such a client ? * /

f testl=I · - '
else

f testl=0· - ,
if(buf[i]=S BM)

{
a=1;
while(bufîi]!=S_BS && bufîi]!=NULLC && i<PIPE_BUF) i++;
if(bufîi]=S_BS)

}

{
stmcpy(s,&bufîa],i-a);
f_test=l;
}

else
f_test=0;

}
}

read _ blackboard(buf);
if(f_testl)

rem ove_ blackboard(s);
else

{
if(f_test)

send _ error _to _ client(sc,E _ NOB);
error _log(1, "Can't rem ove blackboard ");
}

free(s);
}

void read _ blackboard(char *but)
{
struct list_bb * aux;
struct list_bb * x;
int i=0;
int a=0;
int f_test=0;
int found=0;

Stage Thesis

- 130-

Appendix D - Server functions

char *s;
s=(char *) calloc(l ,MaxBBname+3);
aux=first_bb;
x=NULL;
if(first _ bb ! = NULL)

{
while(bufli]!=S_BM && bufli]!=NULLC && i<PIPE_BUF) i++;
if(bufli]=S _ BM)

{
stmcpy(s,buf,i);
if(mem_client(s)) /* Is there such a client?*/

f test=l ·
- '

else
f test=0· - '

}
a=++i;
while(f_test && bufli]!=S_BS && bufli]!=NULLC && i<PIPE_BUF) i++;
if(bufli]=S_BS)

}

{
while(aux->bkbName!=NULL && found=0)

{
if(stmcmp(&bufla],aux->bkbName,i-a)=0)

{
if(cmp _ structure(aux->auxd,&bufl ++i]))

{
x=aux;
f_test= l ;
}

else
{
error_log(0,"Structure not equal");
send _ error _ to _ client(s,E _ NOB);
f_test=0;
}

found= l ;
}

else
aux=aux->next bb· - '

}

else
f test=0·
- '

}

if(f_test)
sendb _ client(s,x);

free(s);

Stage Thesis

- 131 -

Appendix D - Server functions

}

void sendb_client(char *cname, struct list_bb *pt)
{
struct list_cli *p;
p=first _ cli;
while(p!=NULL)

{
if(strcmp(cname,p->cli _ name)=O)

{
put _answer _in_ fifo(p->fdc,pt);
retum;
}

p=p->next _ cli;
}

}

void put_answer_in_fifo(int fdc, struct list_bb *pt)
{
struct aux * x;
size_t n=O;
size_t scale;
size_t sz=O;
int i;
clear _ buffer();
memcpy(buffer,&Cim, 1);
n=strlen(pt->bkbN ame);
memcpy(&buffer[++sz],pt->bkbN ame,n);
sz+=n;
memcpy(&buffer[sz],&Cbd, 1);
sz++;
n=get_ nelem(pt->auxd);
memcpy(&buffer[sz],&n,sizeof(size _ t));
sz+=sizeo:ft size _ t);
x=pt->auxd;
scale=O;
do {

memcpy(&buffer[sz],&Cbs, 1);
sz++;
memcpy(&buffer[sz],&(x->type),sizeof(char));
sz++;
memcpy(&buffer[sz],&(x->ts), sizeo:ft size _ t));
sz+=sizeof(size _ t);
memcpy(&buffer[sz],&Cds, 1);
sz++;
memcpy(&buffer[sz],(pt->dt)+scale,x->ts);
scale+=(x->ts);

Stage Thesis

- 132 -

Appendix D - Server functions

sz+=(x->ts);
x=x->next;

} while(x!=NULL);
memcpy(&buffer[sz++],&Ced, 1);
memcpy(&buffer[sz++],&Cend, 1);
if(write(fdc,buffer,sz)!=sz)

error _log(1, "Can't write to client's fifo ");
}

size_t get_nelem(struct aux *p)
{
int count;
count=O;
while(p !=NULL)

{
p=p->next;
count++;
}

retum count;
}

int cmp_structure(struct aux *p,char *but)
{
int r=O;
int ok=l ;
size_t t=O;
if(p--NULL)

retum(O);
while(p!=NULL && ok && bufir]!=S EM)

{
if(stmcmp(&bufI r],&(p->type), 1)=O)

{
ok=l ;
if(p->type=S _ lNT)

{
r++;
memcpy(&t,&bufI r],sizeof(p->ts));
if(t=p->ts)

{
ok=l ;
r+=sizeof(p->ts);
}

else
ok=O;

}
else

r++-,

Stage Thesis

- 133 -

Appendix D - Server functions

if(bufir]=S BS)
r++;

if(ok)
p=p->next;

}
else

ok=O;
}

if(p NULL && ok && bufI r]=S _ EM)
retum(l);

else
retum(O);

}

void send_error_to_client(char *s, char error)
{
struct list _ cli *b;
char c[2];
c[O]=error;
c[l]=S_END;
b=first _ cli;
while(b !=NULL)

}

{
if(strcmp(b->cli_ name,s)==O)

{
write(b->fdc, c,2);
retum;
}

b=b->next _ cli;
}

void rem ove_ blackboard(char *nclient)
{
struct list _ bb *b;
struct list_bb *a;
b=first _ bb;
while(b!=NULL && nclient!=NULL && strlen(nclient)!=O)

{
a=b;
if(strcmp(nclient, b->bkbN ame)=O)

{
if(b fo st_ bb)

first_ bb=NULL;
else

a->next_bb=b->next_bb;
free(b->dt);

Stage Thesis

- 134 -

Appendix D - Server functions

}

remove _ all_ aux(b->auxd);
free(b);
retum;
}

else
b=b->next _ bb;

}

/* Appends a new client to the client's list * /

void create _ client(char *but)
{
char s[50];
int fda;
struct list_cli *p;

strcpy(s, CNT _ D IR);
strcat(s, but);
if(mkfifo(s,S_IRUSR I S_IROTH I S_IRGRP I S_IWUSR)=0)

{
if((fda=open(s,O_WRONLY I O_CREAT I O_TRUNC))=-1)

{
strcpy(s,"Can't create file for client - ");
strcat(s,buf);
error _log(2,s);
}

else
{
if(first_cli--NULL) /* First client?*/

{
first_cli=(struct Iist_cli *) calloc(l,sizeof(struct list_cli));
p=first _ cli;
}

else /* There are others * /
{
p=first _ cli;
while(p->next _ cli !=NULL)

p=(p->next_ cli);
p->next _ cli=(struct list _ cli *) calloc(l ,sizeof(struct list _ cli)); .
p=p->next _ cli;
}

strcpy(p->cli_name,buf); /* copy client's name to client's list */
p->fdc=fda; /* same thing for file descriptor * /
}

}
else

Stage Thesis

- 135 -

Appendix D - Server functions

error_log{l ,"Can't make fifo for client");
}

/* Search memory to see if a client bas already been created * /

int mem _ client(char *buf) /* Is client in memory ? * /
{
struct list_ cli *p;
p=first _ cli;
while(p!=NULL)

{
if(strcmp(buf, p->cli _ name)=O)

retum(l);
p=p->next _ cli;
}

retum(O);
}

void destroy _ client(char *buf)
{
struct list _ cli *p;
struct list_cli *a;
char s[SO];

p=first _ cli;
a=NULL;
while(p!=NULL)

{
if(strcmp(buf, p->cli _ name)=O)

{
error _log(O, "Found Client, removing ... ");
strcpy(s, CNT _ D IR);
strcat(s,p->cli _ name);
if(p füst_cli)

{
free(p);
first_cli=NULL;
}

else
{
a->next_ cli=p->next_ cli;
free(p);
}

if(unlink(s)<O)
{
strcpy(s, "Can't remove file of client ");

Stage Thesis

- 136 -

Appendix D - Server functions

strcat(s,buf);
error _log(l ,s);
}

retum;
}

a=p;
p=p->next _ cli;
}

error _log(O, "Can't find client");
}

void create _ blackboard(char *buf)
{
if(decode(buf)=O)

error_log(l ,"Can't create blackboard");

}

int decode(char *buf)
{
struct list _ bb * aux;
int i=O;
int a=O;
int scale;
size_t t_size;
size _ t bb _ size;
int f_test=O;
size_t auxdata=O;
struct aux * ax;
struct aux * bx;
aux=first _ bb;
bx=NULL;
first_bb=(struct list_bb *) calloc(l ,sizeof(struct list_bb));
if(first _ bb ! = NULL)

{
f_test= l ;
while(bufii]!=S_BM && bufii]!=NULLC && i<PIPE_BUF) i++;
if(bufii]=S _ BM)

{
if(i+ l >MaxBBname)

stmcpy(first_ bb->bkbName,buf,MaxBBname);
else

stmcpy(first_ bb->bkbName,buf,i);
f_test=l;
a=++i;
while(bufii]!=S_BS && i<PIPE_BUF) i++;
if(bufii]= S_BS) /* Get blackboard size */

Stage Thesis

- 137 -

Appendix D - Server functions

{
memcpy(&bb _ size,&bufl a], sizeof(size _ t));
first _ bb->dt=calloc(l ,bb _ size);
if(first_bb->dt NULL)

f test=O·
- '

}
else

f test=O· - '
scale=O;
bx=NULL;
while(bufli]!=S_EM && f_test && i<PIPE_BUF)

{
a=++i;

- 138 -

while(bufli]!=S_DS && bufli]! =S_BS && bufli]!=S_EM && i<PIPE_BUF)
i++;

}
}

}

if(bufli]=S_BS 11 bufli]=S_EM) /* String to copy */
{
ax=(struct aux *) calloc(l,sizeof(struct aux));
memcpy((first_bb->dt+scale),(void *) (&bufla]),i-a);
ax->ts=i-a;
ax->type=S _ STR;
scale=scale+i-a;
if(first_bb->auxd NULL)

first _ bb->auxd=ax;
else

bx->next=ax;
bx=ax;
}

if(bufli]=S_DS) /* Number to copy */
{
ax=(struct aux*) calloc(l ,sizeof(struct aux));
memcpy(&t_size,&bufla],sizeof(size_t));
ax->type=S_INT;
ax->ts=t _ size;
memcpy((first_bb->dt+scale),(void *) (&bufl++i]),t_size);
scale+=t_size;i=i+ ((int) t_size);
if(first _ bb->auxd=NULL)

first _ bb->auxd=ax;
else

bx->next=ax;
bx=ax;
}

if(i= PIPE _ BUF)
f test=O· - '

Stage Thesis

Appendix D - Server functions

else
f test=O· - ,

if(!f_test)
{
free(first _ bb->dt);
remove _ all_ aux(first_ bb->auxd);
free(first_ bb);
first _ bb=aux;
}

else
{
first _ bb->dsz=bb _ size;
first _ bb->next _ bb=aux;
}

retum(f _test);
}

void remove_all_aux(struct aux *p)
{
struct aux * x;
x=NULL;
while(p!=NULL)

}

{
x=p;
p=p->next;
free(x);
}

void clear _ buffer(void)
{
int i;
for(i=O;i<PIPE _ BUF;i++)

buffer[i]=NULLC;
}

static void sig_ usr(int signum)
{
if(signum= SIGUSRI && first_bb!=NULL)

{
error _log(O,first _ bb->bkbN ame);
}

if(signum= SIGUSR2)
read _ fifo(&buffer[O]);

}

Stage Thesis

- 139 -

Appendix D - Server functions

static void sig_term(int signum)
{
struct list_ cli *p;
struct list_bb *b;
void *v;
char s[S0];

if(unlink(SVR _FF)<0)
error_log(l,"Can't unlink FIFO");

if(unlink(SVR _ ID)<0)
error_log(l,"Can't unlink file with PID");

p=first_ cli;
if(p=NULL)

error _log(0, "No clients to remove");
while(p!=NULL)

{
strcpy(s, CNT _ D IR);
strcat(s,p->cli _ name);
if(unlink(s)<0)

{
strcpy(s, "Can't unlink file ");
strcat(s,p->cli _name);
error_log(l,s);
}

p=p->next _ cli;
free(first_ cli);
first_cli=p;
}

b=first_bb;
if(b--NULL)

error_log(0,"No Blackboards to remove");
while(b!=NULL)

{
free(b->dt);
b=b->next bb· - ,
remove _ all_ aux(first_ bb->auxd);
free(first_ bb);
first_bb=b;
}

closelog();

exit(0);
}

void daemon _install(void)
{
int ff;

Stage Thesis

- 140 -

Appendix D - Server functions

if((ff=open(SVR_ID,O _RDONL Y))!=-1)
{

}

printf("\nDaemon already in memory. Exit ... \n");
exit(0);
}

static void sig_pipe(int signum)
{
error_log(l ,"Client is now longer active");
error _log(l, "It didn't read back the answer");
}

void main(void)
{
daemon _install();
if(daemon _init() ! =0)

exit(l);
creat fifo();

if(signal(SIGUSRl ,sig_usr)=SIG_ERR)
{
error_log(2,"Can't catch SIGUSRl ");
exit(1);
}

if(signal(SIGUSR2,sig_ usr)=SIG _ ERR)
{
error_log(2,"Can't catch SIGUSR2");
exit(l);
}

if(signal(SIGTERM,sig_term)=SIG_ERR)
{
error_log(2,"Can't catch SIGTERM");
exit(l);
}

if(signal(SIGPIPE,sig_pipe)=SIG_ ERR)
{
error_log(2,"Can't catch SIGPIPE");
exit(l);
}

while(l) { }
}

Stage Thesis

- 141 -

Appendix E - Interface functions

These are intermediary fonctions between the clp(FD) program and the client
functions.

Interf ace.h

void * SuPointer;
size_t SuSize;
int SuType;
unsigned long var_ ulong;
Atomlnf * atom;

Interf ace.c

/* This is the interface C file that must be included in the first line * /
/* of the progam. usr that is generated by clp _ fd for every program.pl file * /

#include "cliente"

/* Functions definition * /

void put_int_in_server(char *, int);
void put_string_in_server(char *,char*);

/* GLOBAL DATA*/

/* Extemal data * /

extem void * SuPointer;
extem size_t SuSize;
extem int SuType;
extem unsigned long var_ ulong;
extem Atomlnf * atom;

/* Local data * /

unsigned long vt; /* Var Tag */
char* sp;
void * Car;
unsigned int si;

Appendix E - Interface functions

/* Constants definition * /

#define CONSTANT 1
#define LIST 2
#define VALUE 3
#define ATOMINF (Atomlnf *)

/* Macros definition * /

#define put_ constant_ in_ server(N ame)
{
sp=atom->name;
sp=atom->name;
}

#define put_ value _in_ server(N ame)
{
memcpy((void *) &var_ulong,SuPointer,SuSize);
vt=var_ulong & 7;
var_ ulong=var _ ulong/8;
si=(int) var_ ulong;
switch(vt)

{
case 0: /* INT */

put_int_in_server(Name,si);
break;

case 3: /* CST */
atom=ATOMINF var_ulong;
sp=atom->name;
put_ string_ in_ server(Name,sp);
break;

}
}

#define put_in_server(Name)
{
switch(SuType)

{
case CONSTANT:put_constant_in_server(Name)

break;
case V ALUE:put_value_in_server(Name)

break;
}

}

/* Local Functions */

Stage Thesis

\
\
\
\

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\

- 143 -

Appendix E - Interface functions

void put_int_in_server(char * name,int a)
{
if(name! =NULL)

}

{
CREA TE CLIENT
ADDB(name,&a,S _ INT,sizeof(int))
SEND _ BLACKBOARD(name)
KILL CLIENT
}

void put_string_in_server(char * name, char* str)
{
if(name!=NULL && str! =NULL)

{

}

CREATE CLIENT
ADDB(name,str,S_STR,strlen(str))
SEND _BLACKBOARD(name)
KILL CLIENT
}

Stage Thesis

- 144 -

Appendix F - Miscellaneous

These header files are needed to convert values, to handle signais and to define the
symbols used in the communication protocols as well as the pathname and name, of
both server and client program.

defs.h

#define NULLC 0
#define S STR 0
#define S INT 1

/* Symbols used in FIFO's messages*/

#define S CC 64 /* Create client
#define S KC 35 /* Destroy client
#define S CB 36 /* Create blackboard

*/
*/

*/
#define S KB 42 /* Read and kill blackboard * /
#define S RB 63 /* Read blackboard
#define S BM 91 /* Begin message
#define S EM 93 /* End message
#define S BD 123 /* Begin data
#define S ED 125 /* End data
#define S BS 59 /* Block separator
#define S DS 44 /* decimal separator
#define S END 46 /* End fifo message

/* Constant Error's */

#define E NOB 92
#define E CNT 4 7

/* Contants used in macros * /

#define T W AIT 0
#define T NOW AIT 1
#define T NORMAL 0
#define T KILL 1

*/
*/
*/

*/
*/

*/
*/

*/

Appendix F - Miscellaneous

/* Other Constants * /

#define MaxBBname 12
#define CNT_DIR "/tmp/" /* Client's directory for fifo */
#define SVR_ID "/tmp/wdaemon" /* Server's path where is stored the ID */
#define SVR_FF "/tmp/wd" /* Server's path for fifo */

conv.h

#include <stdio.h>
void itoa(int,char s[]);
void rvs(char s[]);

void itoa(int n,char s[])
{
int i, sign;
if((sign=n)<0)

n=-n;
i=0;

do {

}

s[i++]=n % 10 + '0';
} while((n/= 1 0)>0);

if(sign<0)
s[i++]='-';

s[i]='\0';
rvs(s);

void rvs(char s[])
{
int c,i,j;

for(i=0,j=strlen(s)-1 ;i<j;i++,j--)
{
c=s[i] ;
s[i]=s[j] ;
s[j]=c;
}

}

Stage Thesis

- 146 -

Appendix F - Miscellaneous

m_signal.h

#include <signal.h>

typedef void Sigfunc(int);

Sigfunc * signal(int, Sigfunc *);

Sigfunc * signal(int signo, Sigfunc *func)
{
struct sigaction act, oact;

act. sa_ handler=func;
sigemptyset(&act. sa_ mask);
act. sa_ flags=0;
if(signo= SIGALRM)

{
#ifdef SA INTERRUPT

act.sa_flagsl= SA_INTERRUPT; /* SunOS */
#endif
}

else
{
#ifdef SA REST ART

act.sa_flagsl= SA_RESTART;
#endif
}

if(sigaction(signo,&act,&oact)<0)
retum(SIG _ ERR);

retum(oact. sa_ handler);

}

Stage Thesis

- 147 -

Appendix G - The max Example

An example is presented next to exemplify the use of the client functions altogether
with the interface functions and c/p(FD).

An implementation in Prolog1 of the greatest of two numbers is as follows:

max.pl

:-mam.

max:-write('First number:'),
read(X),nl,
write('Second number: '),
read(Y),nl,
max(X, Y,Max),
write('The greatest number is '),
write(Max),nl.

max(X, Y,X):- X>=Y.

max(X,Y,Y):- X<Y.

This is translated by clp(FD) to the following C files2
:

max.usr

/*The following instruction must be added to use the Blackboard Application*/

#include "interface.c"

/* Above this line, put your first macros (these included by pragma _ c) * /

#undef fail
#define fail F ail Like Bool - -

/* Below this line, put your others macros and your functions * /

static void Initialize _ U sr(void)

1 Using clp(FD) :
2 The instructions in bold are those that must be putted there when editing the C code.

Appendix G - The max Example

{
}

/* end of user file * /

#undef fail
#define fail F ail Like W am - -

max.h

#define NB OF PRIV ATE PREDS 3

static char
static int

- - -

*module name="max" ·
- '

module_nb;

static Atomlnf *X5B5D;
static Atomlnf *X6D6178;
static Atomlnf *X46697273 74206E756D6265723A;
static Atomlnf *X5365636F6E64206E756D6265723A;
static Atomlnf *X5468652067726561746572206E756D62657220697320;
static Atomlnf *X246578655F31;
static Atomlnf *X74727565;

max.c

#define DEBUG LEVEL 0

#include "wam _ engine.h"
#include "fd _ engine.h"

#include "max.h"
#include "max.usr"

#define ASCII PRED "max"
#define PRED X6D61 78
#define ARITY 0

Begin _Private _Pred
allocate(3)
put_constant(X4669727374206E756D6265723A,0,"First number:")
call(Pred_Name(X7772697465,1),0, l ,"write",l) /* begin sub 1 */
put_y _ variable(2,0)
call(Pred_Name(X72656164,1),0,2,"read",l) /* begin sub 2 */

Stage Thesis

- 149 -

Appendix G - The max Example - 150 -

call(Pred_Name(X6E6C,0),0,3,"nl",0) /* begin sub 3 */
put_ constant(X5365636F6E64206E756D6265723A,0," Second number: ")
call(Pred_Name(X7772697465, l),0,4,"write",1) /* begin sub 4 */
put__y _ variable(l ,0)
call(Pred_Name(X72656164, 1),0,5,"read", 1) /* begin sub 5 */
call(Pred_Name(X6E6C,0),0,6,"nl",0) /* begin sub 6 */
put__y _ value(2,0)
put _y_ value(1, 1)
put _y_ variable(0,2)
call(Pred_Name(X6D6178,3),1,7,"max",3) /* begin sub 7 */
put_constant(X546865206772656174657374206E756D62657220697320,0,"The

greatest number is ")
call(Pred_Name(X7772697465,1),0,8,"write",l) /* begin sub 8 */
put__y _ value(0,0)
put_in _server("max")
call(Pred _ Name(X7772697465, 1),0,9, "write", 1)
deallocate
execute(Pred_Name(X6E6C,0),0,"nl",0)

End Pred

#undef ASCII PRED
#undefPRED
#undef ARITY

#define ASCII PRED "max"
#define PRED X6D6178
#define ARITY 3

Begin _Private _Pred
try _me_ else(l)
get_ x _ value(0,2)
math Joad_ x _ value(0,0)
mathJoad_x_ value(l , 1)
builtin _ 2(gte, 0, 1)
proceed

label(l)
trust me else fail - - -
get _ x _ value(l ,2)
math _load _ x _ value(0,0)
math Joad_ x _ value(1, 1)
builtin _2(lt,0, 1)
proceed

Stage Thesis

/* begin sub 9 * /

Appendix G - The max Example

End Pred

#undef ASCII PRED
#undefPRED
#undef ARITY

#define ASCII PRED "$exe l" - -
#define PRED X246578655F31
#define ARITY 0

Begin _Private _Pred
put_constant(X74727565,0,"true")
put_ constant(X74727565, 1,"true")
execute(Pred_Name(X746F705F6C6576656C,2),0,"top_level",2)

End Pred

#undef ASCII PRED
#undefPRED
#undef ARITY

Begin_ lnit_ Tables(max)

Define _ Atom(X5B5D, "[]")
Define _ Atom(X6D61 78, "max")
Define _ Atom(X 466972 73 7 4 206E 7 5 6D6265 723 A, "First number: ")

- 151 -

Define _ Atom(X5365636F6E64206E756D6265723A, "Second number: ")
Define_Atom(X546865206772656174657374206E756D62657220697320,"The

greatest number is ")
Define Atom(X246578655F3 l ,"$exe l ") - -
Define_Atom(X74727565,"true")

Define_Pred(X6D6178,0,0)

Define_Pred(X6D6178,3,0)

Define_Pred(X246578655F31 ,0,0)

Init U sr File

End Init Tables

Stage Thesis

Appendix G - The max Example

Begin_ Exec _ Directives(max)

Exec_Directive(l ,Pred_Name(X246578655F3 l ,0))

End Exec Directives - -

/***MAIN***/

int main(int argc,char *argv[])

{
EXPORT
urux _ argc=argc;
urux _ argv=argv;

Init_ Wam_Engine();

!nit_ Tables_ Of_ Module(Builtin)
Init _Tables_ Of_ Module(max)

Exec _Directives_ Of_ Module(Builtin)
Exec _Directives_ Of_ Module(max)

Term_ Wam_Engine();

return 0;
}

Stage Thesis

- 152 -

Appendix H - A Client program

A client program using the client functions was developed to help users, to send
blackboards to the server more easily.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ncurses/curses.h>
#include "cliente"

/* Pseudo functions * /

#define put_menu_elem(a~b,c,d) put_string(a,b,c,d);

/* Functions Prototype * /

void main_menu(void);
void mmenu(void);
void cmenu(void);
void put_string(int, int, chtype, char *);
void put_integer(int, int, chtype, int *);
void cblackboard(void);
void dblackboard(void);
void sblackboard(void);
void rblackboard(void);
void gblackboard(void);
void test_ color(void);
void col_mmenu(void);
char* get_string(int);
int * get_integer(int);
char * get_bb_name(void);
void get _ bb _ data(int);
void clear _lines(int, int);
void clear _area(int, int, int, int);
void put_ empty _line(void);
char* change_bb_name(char *);
void insert_record(char *str);
void delete_record(void);
void change _record(void);
char get_record_type(void);
void tmenu(void);

Appendix H - A Client program

void def_ menu(void);
void define_structure(char, char*);
void send _request(void);
void add_int_to_struct(void);
void add _ str _ to _ struct(void);
void add_struct(void);
void forget_choice(void) ;
void restart _ over(char);
void put_info_in_buffer(void);
void present_data(void);
char get _data_ type(void * * ,int);

/* Global Vars * /
char fcol=0;
char fbname=0;
char fir=0;
chtype attrib[4] ;
void **mp;
void *dt;

struct
{
char *bbname;
char tp; /* Type of data */
size _ t size; /* Size of data * /
void * bdata; /* Blackboard data * /

} bbs;

struct
{
char fis;
size_t ne;
char lt;
size_t lsz;
} ls;

int main(int argc,char **argv)
{
EXPORT
CREATE CLIENT
initscr();
cbreak();
noecho();
test_ col or();
col_ mmenu();
erase();
refresh();

- 154 -

Stage Thesis

Appendix H - A Client program

main_ menu();
echo();
KILL CLIENT
retum(0);
}

void col_mmenu(void)
{
init_pair(l ,COLOR _ BLUE,COLOR _BLACK);
init_pair(2,COLOR _ RED,COLOR _ BLACK);
init_pair(3 ,COLOR _ YELLOW,COLOR _ BLACK);
init_pair(4,COLOR _ GREEN,COLOR _ BLACK);
if(fcol)

{
attrib[0]=COLOR _P AlR(2);
attrib[l]=COLOR_PAlR(l) j A_BOLD;
attrib[2]=COLOR_PA1R(3) j A_BOLD;
attrib[3]=COLOR_PA1R(4);
}

else

}

{
attrib[0]=A_BOLD;
attrib[1]=A_ NORMAL;
attrib[2]=A _ NORMAL;
attrib[3]=A_ BLINK;
}

void main_ menu(void)
{
char option= 1;
char lop=0;
char ext=0;
int ch=0;

mmenu();
refresh();
do {

if(ext)
{
switch(ch)

{
case 65 :lop=option--;

break;
case 66:lop=option++;

Stage Thesis

- 155 -

Appendix H - A Client program

}
}

if(option=O)
option=6;

else

break;

if(option=7)
option= l ;

refresh();

switch(lop)
{
case 1:

put_menu_elem(l0,31 ,attrib[l],"Create Blackboard");
break;

case 2:
put_ menu_ elem(l 1,31 ,attrib[1], "Delete Blackboard ");
break;

case 3:
put_ menu_ elem(12,31 ,attrib[1], "Send Blackboard ");
break;

case 4:
put_menu_elem(13,31 ,attrib[l],"Read Blackboard");
break;

case 5:
put_menu_elem(14,31 ,attrib[l],"Get Blackboard");
break;

case 6:

}

put_ menu_ elem(16,3 8,attrib[1], "Exit");
break;

switch(option)
{
case 1:

put_menu_elem(l 0,31 ,attrib[2],"Create Blackboard");
break;

case 2:
put_menu_elem(l 1,31 ,attrib[2],"Delete Blackboard");
break;

case 3:
put_menu_elem(12,3 l ,attrib[2],"Send Blackboard");
break;

case 4:
put_ menu_ elem(13 ,31 ,attrib[2], "Read Blackboard ");
break;

case 5:

Stage Thesis

- 156 -

Appendix H - A Client program

put_menu_elem(l4,3 l ,attrib[2],"Get Blackboard");
break;

case 6:
put_ menu_ elem(16,3 8,attrib[2], "Exit");
break;

}
if((ch=getch())=2 7)

if(getch()=9 l)
{
ch=getch();
ext=l ;
}

else
ext=O;

else
{
refresh();
ext= l ;
if(ch=IO)

{
refresh();
switch(option)

{
case 1 : if(! fbname)

cblackboard();
break;

case 2:dblackboard();
break;

case 3: sblackboard();
break;

case 4:rblackboard();
break;

case 5:gblackboard();
break;

case 6:clear();refresh();retum;
}

mmenu();
}

}

}while(ch!=27 && ext);
clear();
refresh();
}

Stage Thesis

- 157 -

Appendix H - A Client program

void put_string(int y, int x,chtype atr,char * str)
{
move(y,x);
attron(atr);
waddstr(stdscr, str);
attroff(atr);
refresh();
}

void put_integer(int y, int x, chtype atr, int * i)
{
char s[20];
int a;
move(y,x);
attron(atr);
memcpy((void *) &a,(void *) i,sizeof(int));
itoa(a,s);
waddstr(stdscr,s);
attroff(atr);
refresh();
}

void cblackboard(void)
{
char option= 1;
char lop=O;
int ch=O;

clear();
move(8,0);
hline(95,80);
move(16,0);
hline(95,80);
put_ menu_ elem(7 ,3 2,attrib[0], "Create Blackboard ");
do {
bbs. bbname=get _ bb _ name();
} while(bbs.bbname NULL);
cmenu();
refresh();
do {

switch(ch)
{
case 65 :lop=option--;

break;
case 66:lop=option++;

break;
}

Stage Thesis

- 158 -

Appendix H - A Client program

if(option=O)
option=5;

else
if(option= 6)

option=l ;

switch(lop)
{
case 1:

put_ menu_ elem(l 0,29 ,attrib[1], "Change Blackboard Name");
break;

case 2:
put_menu_elem(l 1,29,attrib[l],"Insert Blackboard Record");
break;

case 3:
put_ menu_ elem(12,29 ,attrib[1], "Delete Blackboard Record");
break;

case 4:
put_ menu_ elem(13 ,29 ,attrib[1], "Change Blackboard Record");
break;

case 5:

}

put_ menu_ elem(15,38,attrib[1], "Exit");
break;

switch(option)
{
case 1:

put_menu_elem(10,29,attrib[2],"Change Blackboard Name");
break;

case 2:
put_menu_elem(l 1,29,attrib[2],"Insert Blackboard Record");
break;

case 3:
put_ menu_ elem(12,29 ,attrib[2], "Delete Blackboard Record");
break;

case 4:
put_menu_elem(13 ,29,attrib[2],"Change Blackboard Record");
break;

case 5:
put_ menu_ elem(l 5,38,attrib[2], "Exit");
break;

}
if((ch=getch())=2 7)

{
if(getch()=91)

ch=getch();

Stage Thesis

- 159 -

Appendix H - A Client program

}
else

{
refresh();
if(ch=lO)

{
switch(option)

{
case 1: bbs. bbname=change _ bb _ name(bbs. bbname);

break;
case 2:insert_record(bbs.bbname);

break;
case 3: delete _record();

break;
case 4: change _record();

break;
case 5: clear();refresh();return;
}

cmenu();
}

}
refresh();

}while(l);
}

void dblackboard(void)
{
if(fbname)

{
clear _ buffer();
bbs.bbname=NULL;
bbs.size=O;
bbs.tp=O;
bbs. bdata=NULL;
fbname=O;
}

else
{
put_string(19,25,A_BLINK,"The blackboard must be first created!");
sleep(3);

}

clear _lines(18, 18);
}

void sblackboard(void)
{

Stage Thesis

- 160 -

Appendix H - A Client program

. int r;
if(fbname && fir)

{
ADDB(bbs.bbname,bbs.bdata,bbs.tp,bbs.size)
SEND _BLACKBOARD(bbs.bbname)
}

else
{
put_string(19,25,A_BLINK,"The blackboard must be first created!");
sleep(3);

}

clear _lines(l 8, 18);
}

void rblackboard(void)
{
clear _ buffer();
define _ structure(S _ RB, "Read Blackboard ");
send _request();
}

void gblackboard(void)
{
clear _ buffer();
define _ structure(S _ KB, "Get Blackboard ");
send _request();
}

void mmenu(void)
{
clear();
move(8,0);
hline(95,80);
move(l 7,0);
hline(95,80);
put_menu_elem(7,35,attrib[0],"Main Menu");
put_ menu_elem(l 0,31,attrib[l],"Create Blackboard");
put_ menu_ elem(11 ,31 ,attrib[1], "Delete Blackboard ");
put_ menu_ elem(12,3 l ,attrib[1], "Send Blackboard");
put_ menu_ elem(13 ,31 ,attrib[1], "Read Blackboard ");
put_ menu_ elem(l 4,31,attrib[1], "Get Blackboard ");
put_ menu_ elem(l 6,38,attrib[l], "Exit");
refresh();
}

void cmenu(void)

Stage Thesis

- 161 -

Appendix H - A Client program

{
put_menu_elem{l0,29,attrib[l],"Change Blackboard Name");
put_menu_elem(l l ,29,attrib[l],"Insert Blackboard Record");
put_ menu_ elem(12,29,attrib[l], "Delete Blackboard Record");
put_ menu_ elem(13 ,29 ,attrib[1], "Change Blackboard Record");
put_ menu_ elem(15,38,attrib[1], "Exit");
refresh();
}

void test_ col or(void)
{
fcol=(char) has _ colors();
if(fcol)

start_ color();
}

char* get_bb_name(void)
{
char *s;
put_string(l l,25,attrib[2],"Chose a name to the blackboard");
move(13,0);
attron(A_ REVERSE);
put_ empty _line();
move(13,0);
s=get_string(80);
if(s!=NULL) fbname=TRUE;
attroff(A_ REVERSE);
clear _lines(l l , 14);
retum(s);
}

char * change_bb_name(char *str)
{
char *s;
clear _lines(10, 15);
put_string(l l ,24,attrib[2],"Chose a new name to the blackboard");
move(13,0);
attron(A_ REVERSE);
put_ empty _ line();
move(13,0);
s=get_ string(80);
attroff(A_ REVERSE);
if(s--NULL)

s=str;
else

free(str) ;
clear _lines(11 , 14);

Stage Thesis

- 162 -

Appendix H - A Client program

return(s);
}

void insert_record(char *str)
{
if(fbname)

{
if(fir)

ADDB(str,bbs.bdata,bbs.tp,(size_t) bbs.size);
get_record_type();
}

}

void delete_record(void)
{
char ch;
if(fbname && fir)

{
put_string(l8,20,attrib[2],"Do you wish to delete last record (YIN) ?");
attron(A _ REVERSE);
if((ch=getchar()='y') 11 ch='Y')

{
free(bbs. bdata);
bbs.bdata=NULL;
bbs.size=O;
bbs.tp=O;
fir=O;
}

attroff(A _REVERSE);
clear _lines(18,21);
}

else
{
put_ string(18,25 ,A_ BLINK, "There is no inserted record.");
sleep(3);

}

clear _lin es(18, 18);
}

void change _record(void)
{
char *s;
int *pi;
if(fbname && fir)

{
clear _lines(l 0, 15);

Stage Thesis

- 163 -

Appendix H - A Client program

put_string(18,30,attrib[2],"Current data in record");
put_string(l 1,32,attrib[2] ,"New data to store");
if(bbs.tp) /* Integer */

{
put _integer(20,3 8,attrib[3],(int *) bbs. bdata);
attron(A _ REVERSE);
clear _area(13,38, 13,42);
attroff(A _ REVERSE);
move(13 ,38);
refresh();
pi=get_integer(5);
if(pi!=NULL)

bbs.bdata=(void *) pi;
}

else /* String * /
{
put_string(20,0,attrib[3],(char *) bbs.bdata);
move(13,0);
attron(A_ REVERSE);
put_ empty _ line();
attroff(A _ REVERSE);
move(13 ,0);
s=get _ string(80);
if(s!=NULL)

bbs.bdata=(void *) s;
}

clear _ lines(l 0, 15);
clear _lines(l 8,20);
}

else
{
put_ string(18,25,A _ BLINK, "There is no inserted record.");
sleep(3);

}

clear _lines(18, 18);
}

char get_record_type(void)
{
int ch=0;
int cop=0;
tmenu();
do {

if(ch==65 && cop= 1)
{
put_ menu_ elem(14, 63 ,attrib[1], "lnteger");
put_ menu_ elem(13,63 ,attrib[2]," String");

Stage Thesis

- 164 -

Appendix H - A Client program

cop=O;
ch=O;
}

if(ch=65 && cop=O)
{
put_ menu_ elem(13,63,attrib[1], "String");
put_ menu_ elem(l 4,63,attrib[2], "Integer");
cop=l ;
ch=O;
}

ift ch=66 && cop= 1)
{
put_ menu_ elem(l 4,63 ,attrib[1], "Integer");
put_ menu_ elem(l 3,63,attrib[2], "String");
cop=O;
ch=O;
}

ift ch=66 && cop=O)
{
put_ menu_ elem(13,63,attrib[1], "String");
put_ menu_ elem(l 4,63,attrib[2], "Integer");
cop=l ;
}

ch=getch();
if(ch=27)

{
iftgetch()=9 l)

ch=getch();
}

else
{
if(ch=IO)

{
get _ bb _ data(cop);
clear _ area(l 1,53 , 14, 73);
fir=l ;
break;
}

}
} while(ch!= 1 O);

}

void tmenu(void)
{
put_ string(11 ,53 ,attrib[3], "------>");
put_menu_elem(l l,60,attrib[O],"Type of Record");

Stage Thesis

- 165 -

Appendix H - A Client program

put_ menu_ elem(l 3,63 ,attrib[2], "String");
put_ menu_ elem(14,63,attrib[1], "Integer");
}

void get_bb_data(int t)
{
switch(t)

{
case 0: /* A string was chosen */

put_string(l8,32,attrib[2],"String to Record");
move(20,0);
attron(A _ REVERSE);
put_ empty _line();
move(20,0);
bbs.bdata=(void *) get_string(80);
bbs.size=strlen((char *) bbs.bdata);
bbs. tp=S _ STR;
attroff(A _ REVERSE);
break;

case 1 : /* An integer was chosen * /
put_string(l8,32,attrib[2],"lnteger to Record");
attron(A_ REVERSE);

}

clear _ area(20,38,20,42);
move(20,38);
refresh();
bbs.bdata=(void *) get_integer(6);
bbs.tp=S_INT;
bbs. size=sizeof(int);
move(l,l);
attroff(A_ REVERSE);
break;

clear _lines(l 8,21);
}

int * get_integer(int n)
{
char *s;
int i;
int *pi;
s=get_string(n);
if(s!=NULL)

{
pi=(int *) calloc(sizeof(int), 1);
i=strtol(s,(char **)NULL,10);
memcpy((void *) pi,(void *) &i,sizeof(int));
}

Stage Thesis

- 166 -

Appendix H - A Client program

else
pi=NULL;

free(s);
retum(pi);
}

char * get_string(int n)
{
char *s;
char ch;
int z=O;
s=NULL;
echo();
ch=getchar();
if(ch!=27 && n>O)

{
s=(char *) calloc(sizeof(char),n+ l);
*s=ch;
fgets(s+ l ,n-1 ,stdin);
z=strlen(s);
move(5,S);refresh();
*(s+z-l)=NULLC;
}

else
flushinp();

noecho();
retum(s);
}

void define _ structure(char c, char * str)
{
char option= 1;
char lop=O;
int ch=O;

clear();
ls.ne=O;
ls.lt=O;
ls.lsz=O;
ls.fis=O;
mp=NULL;
dt=NULL;
move(8,0);
hline(95,80);
move(l6,0);
hline(95,80);
put_ menu_ elem(7,32,attrib[O],str);

Stage Thesis

- 167 -

Appendix H - A Client program

do {
bbs. bbname=get_ bb _ name();
} while(bbs.bbname NULL);
buffer[0]=c;
put_ info _in_ buffer();
def _ menu();
refresh();
do{

switch(ch)
{
case 65:lop=option--;

break;
case 66:lop=option++;

break;
}

if(option=0)
option=S;

else
if(option=6)

option=l ;

switch(lop)
{
case 1:

put_ menu_ elem(10,3 7,attrib[1], "String");
break;

case 2:
put_ menu_ elem(11 ,3 7,attrib[1], "Integer");
break;

case 3:
put_menu_elem(l2,3 l ,attrib[l],"Forget last choice");
break;

case 4:
put_menu_elem(l3,3 l,attrib[l],"Restart over again");
break;

case 5:

}

put_ menu_ elem(l 6,38,attrib[l], "Exit");
break;

switch(option)
{
case 1:

put_ menu_ elem(10,3 7,attrib[2], "String");
break;

case 2:
put_ menu_ elem(l 1,3 7,attrib[2], "lnteger");

Stage Thesis

- 168 -

Appendix H - A Client program

break;
case 3:

put_menu_elem(12,31 ,attrib[2],"Forget last choice");
break;

case 4:
put_ menu_ elem(13 ,31 ,attrib[2], "Restart over again ");
break;

case 5:
put_ menu_ elem(16,3 8,attrib[2], "Exit");
break;

}
if((ch=getch())=2 7)

{
if(getch()=9 l)

ch=getch();
}

else
{
refresh();
if(ch= IO)

{
switch(option)

{
case 1: add _ str _ to _ struct();

break;
case 2:add_int_to_struct();

break;
case 3 :forget_choice();

break;
case 4: restart _ over(c);

break;
case 5: clear();refresh();free(bbs. bbname);fbname=F ALSE;retum;
}

def _ menu();
}

}
refresh();
}while(l);

clear _lines(1, 7);
}

void send _request(void)
{
if(bbs. bbname!=NULL)

{

Stage Thesis

- 169 -

Appendix H - A Client program

if{ls.fis)
add _ struct();

buffer[size _ str++]=S _ EM;
buffer[size_str++]=S_END;
tell_ server(size _ str);
READ _ BLACKBOARD(&mp, T _ W AIT);
if{mp!=NULL)

present_ data();
else
{
put_ string(18,25 ,A_ BLINK, "There is no blackboard with that structure.");
sleep(3);

}
}

clear _ lines(l 8, 18);
}

void add _int _ to _ struct(void)
{
int x,y;
getyx(stdscr,y,x);
if{ls.fis)

add _ struct();
ls.fis= l ;
ls. lsz=sizeof(int);
ls.lt=S _ INT;
move(y,x);
refresh();
}

void add_struct(void)
{
switch(ls. lt)

{
case 0: /* Add string to buffer * /

memcpy(&buffer[size _ str++],&Cts, 1);
memcpy(BUF,&(ls.lt),sizeof(ls.lt));
size _ str+=sizeof{ls.It);
ls.ne++;
break;

case 1 : /* Add int to buffer * /
memcpy(&buffer[size _ str++],&Cts, 1);
memcpy(BUF,&(ls.lt),sizeof{ls.lt));
size _ str+=sizeof{ls.It);
memcpy(BUF,&(ls.lsz),sizeof{ls.lsz));
size _str+=sizeof{ls.lsz);
ls.ne++;

Stage Thesis

- 170 -

Appendix H - A Client program

break;
}

}

void add_str_to_struct(void)
{
int x,y;
getyx(stdscr,y ,x);
if(ls.fis)

add _ struct();
ls.fis= l ;
ls.lsz=O;
ls.lt=S _ STR;
move(y,x);
refresh();
}

void forget_choice(void)
{
ls.fis=O;
ls.lsz=O;
ls.lt=O;
}

void restart _ over(char c)
{
clear _ buffer();
clear _lines(l, 7);
put _info _in_ buffer();
ls.fis=O;
ls.lsz=O;
ls.lt=O;
}

void put_ info _in_ buffer(void)
{
char spid[20] ;

strcat(buffer,cli name);
strcat(buffer,USCR);
itoa(pid,spid);
strcat(buffer,spid);
BFSZ;
buffer[size _ str++]=S _ BM;
strcat(buffer,bbs. bbname);
BFSZ;
}

- 171 -

Stage Thesis

Appendix H - A Client program

void present _ data(void)
{
int i,a,integ;
char dtype;
dtype=0;
clear();
put_string(l ,20,attrib[0],"Data received from the Blackboard");
put_string(2,20,A_NORMAL," _____________ ");
put_string(24,20,attrib[l],"Press ESC to retum to main menu");
a= l ;
for(i= 1 ;i<=ls.ne;i++)

{
put_integer(3+a, l ,A_ BOLD,&i);
GET_DATA(mp,i,dt);
dtype=get _data_ type(mp,i);
switch(dtype)

{
case S STR:

put_string(3+a,3,attrib[3],(char *) dt);
break;

case S_INT:integ=Ri(dt);
put_ integer(3+a,3 ,attrib[3],&integ);
break;

}
if(a=23)

{
clear _lines(3 ,23);
a=l ;
}

else
a++·

'
}

while(getch() ! =2 7);
}

char get_data_type(void ** mp,int i)
{
int a=0;
char c;
while((*(mp+a))!=NULL && a!=(i-1))

a++;
if((*(mp+a))!=NULL && a==i-1)

memcpy(&c,(*(mp+a)),sizeof(char));
else

c=2;
retum(c);

Stage Thesis

- 172 -

•

Appendix H - A Client program

}

void def _ menu(void)
{
clear();
move(8,0);
hline(95,80);
move(17,0);
hline(95,80);
put_menu_elem(7,32,attrib[0],"Define Structure");
put_ menu_ elem(l 0,3 7,attrib[1], "String");
put_ menu_ elem(11 ,3 7 ,attrib[1], "Integer");
put_menu_elem(l2,3 l ,attrib[l],"Forget last choice");
put_menu_elem(13,3 l ,attrib[l] ,"Restart over again");
put_ menu_ elem(l 6,38,attrib[1], "Exit");
refresh();
}

void clear_lines(int yl ,int y2)
{
int i,a;
int x,y;

getyx(stdscr,y,x);
if(y2<yl)

{
a=yl ;
y l =y2;
y2=yl ;
}

for(i=y 1 ;i<=y2;i++)
{
move(i,0);
clrtoeol();
}

move(y,x);
refresh();
}

void clear _ area(int y 1, int x 1, int y2, int x2)
{
int i,r,a;
int x,y;

getyx(stdscr,y,x);
if(y2<yl)

{

Stage Thesis

- 173 -

Appendix H - A Client program

a=yl ;
yl=y2;
y2=yl;
}

if(x2<xl)
{
a=xl ;
xl=x2;
x2=xl;
}

for(i=y 1 ;i<=y2;i++)
{
for(r=x 1 ;r<=x2;r++)

}

{
move(i,r);
waddstr(stdscr," ");
}

move(y,x);
refresh();
}

void put_ empty _line(void)
{
inti;

int x,y;

getyx(stdscr,y,x);
for(i= 1 ;i<=80;i++)

waddstr(stdscr," ");
move(y,x);
refresh();
}

- 174 -

Stage Thesis

Appendix 1 - Changes in Clp(FD)

On/y two header files were changed to handle blackboards. Next cornes the portion of
code of the changed parts. Changes are written in bold

wam _ engine.b

/*--*/
/* Global Variables * /
/* (lncludes the global variables * /
/* added to support the Blackboard * /
/* Application) * /
/*---------------------------------------*/

#include "/home/jpc/proj/interface.h"

#define put_y _ value(y,a)
{
DBG_INST("put_y_value(" #y"," #a")")
A(a)=Y(E,y);
SuType=3;
SuPointer=(void *) &A(a);
SuSize=sizeof(A(a));
}

wam _ engine.c

/*---------------------------------------*/
/* PUT Y UNSAFE VALUE */
/* Changed version * /

/*---------------------------------------*/

void Put_Y_Unsafe_ Value(int y,int a)
{

WamWord word,tag, *adr;

Deref(Y (E,y), word, tag,adr)

\
\
\
\
\
\
\

Appendix I - Changes in clp(FD)

if(tag=REF && adr>=(WamWord *) EE(E))
{
A(a)=Tag_ Value(REF,H);
Globalize _Local_ Unbound _ Var(adr)
SuType=O;
}

else
{
A(a)=(Global_UnMove(tag))? Tag_ Value(REF,adr) : word;
SuPointer=(void *) &A(a);
SuSize=sizeof(A(a));
SuType=3;
}

}

/*-----------------------------*/
/* PUT CONSTANT */
/* Changed version * /
/*-----------------------------*/
void Put_ Constant(Atomlnf *atom,int a)

{
A(a)=Tag_ Value(CST,atom);
SuType=l;
SuPointer=(void *)&A(a);
SuSize=sizeof(A(a));
}

/*--------------------------*/
/* PUT LIST */
/* Changed version * /
/*--------------------------*/
void Put_ List(int a)

{
A(a)=Tag_ Value(LST,H);
SuType=2;
SuPointer=(void *)&A(a);
SuSize=sizeof(A(a));
S=WRITE MODE· - ,
}

Stage Thesis

- 176 -

[R 1]

[R2]

[R 3]

[R4]

[R 5]

[R 6]

[R 7]

[R 8]

[R 9]

[R 10]

References

A. Martelli and U. Montanari. An Efficient Unification Algorithm.
ACM Transactions on Programming Languages and Systems,
4(2):258-282, 1982.

D . Chan Constructing Negation based on the Completed Database. In
R.A. Symposium on Logic Programming., Series in LP, pages
111-125, Seattle, USA, August 1988. The MIT Press.

D . Lugiez. A Deduction Procedure For First Order Programs. In G.
Levi and M. Martelli, editors, Proc Sixth International Conference on
Logic Programming, Series in Logic Programming, pages 585-876,
Lisbon, Portugal, July 1989. The MIT Press.

G. Huet. Résolution d'equations dans les langages d' ordre 1,2, ... ,ro.
PhD thesis, Université Paris VII, France, September 1976.

J. A. Robinson. A Machine-oriented Logic based on the Resolution
Principle. Journal of the ACM, 12(1):23-41 , 1965.

J. Herbrand. Researches in the Theory ofDemonstration. In J. van
Heijenoort, editor, From Frege to Godel: a Source Book in
Mathematical Logic 1879-1931 , pages 525-581. Harvard University
Press, Cambridge, MA, USA, 1967.

J. Maluszynski and T. Naslund. Fail Substitutions for Negation as
Failure. In E . L. Lusk and R. Overbeek, editors, Proc. North American
Conference on Logic Programming, Series in Logic Programming,
pages 461-476, Cleveland, USA, October 1989. The MIT Press.

K. Clark. Negation as Failure. In H . Gallaire and J. Minker, editors,
Logic and Databases, pages 293-322. Plenum Press, New York, USA,
1978.

L. Naish. Negation and Control in Prolog, volume 238 of Lecture
Notes in Computer Science. Springer-Verlag, Heidelberg, Germany,
1986.

M . S. Paterson and M. N . Wegman. Linear Unification. Journal of
Computer and System Sciences, 16(2): 158-167, 1978.

References

[R 11]

[R 12]

[R 13]

[R 14]

[R 15]

- 178 -

N . Wallace. Negation by Constraints: a Sound and Efficient
Implementation ofNegation in Deductive Databases. In S. Haridi,
editor, Proc. Fourth Symposium on Logic Programming, pages
253-263, San Francisco, USA, August - September 1987. The IEEE
Computer Society Press.
P . Van Henteryck, V. Saraswat and Y. Deville. Constraint Processing
in cc(FD). Draft, 1991 .

R. Barbuti, P. Mancarella, D. Pedreschi, F. Turini. A Transformational
Approach to Negation in Logic Programming. Journal ofLogic
Programming, 8(3):201-228, 1990.

T. Khabaza. Negation as Failure and Parallelism. In S. Tarnlund,
editor, Proc. Second International Conference on Logic Programming,
pages 70-75, Uppsala, Sweden, July 1984. Upsala University Press.

V. Saraswat. The Category ofConstraint Systems is Cartesian-Closed.
In Logic in Computer Science, IEEE Press. 1992.

Stage Thesis

Bibliography

[1] Brian W. Kernighan and Dennis M. Ritchie. The C programming
language. Prentice Hall, 1988.

[2] Daniel Diaz. Wamcc 2.21 User' s Manual.
INRIA, Le Chesnay, France, 1994.

[3] Daniel Diaz. Clp(FD) 2.21 User' s Manual .
INRIA, Le Chesnay, France, 1994.

[4] Daniel Diaz. Étude de la compilation des langages logiques
de programmation par contraintes sur les domaines finis:
Le systeme clp(FD). PhD thesis, Orleans University, France,
January 1995.

[5] H. Aït-Kaci . Warren' s Abstract Machine: A Tutorial Reconstruction.
Series in Logic Programming. The MIT Press, Cambridge, USA, 1991 .

[6] Jean-Marie Jacquet. Constructing Logic Programs.
In J-M Jacquet (ed). John Wiley & Sons, Lda, !993 .

[7] Jean-Marie Jacquet and Koenraad De Bosschere.
On the semantics of µLog . Future Generations Computer Systems,
n° 10 (1994) pp. 93-135.

[8] Matt Welsh. Linux Installation and Getting Started.
Linux Documentation Project, 1995.

[9] Peter Van Linden. Expert C programming.
Prentice Hall, 1994

[10] Philippe Codognet and Daniel Diaz. Wamcc: Compiling Prolog to C.
In 1th International Conference on Logic Programming, Tokyo,
Japan, Mit Press, 1995.

[11] Philippe Codognet and Daniel Diaz. Compiling Constraints in clp(FD).
The Journal ofLogic Programming, 27 (3), pp. 185-226, June, 1196.

[12] Philippe Codognet and Daniel Diaz. Local Propagation Methods
for Soving Boolean Constraints in constraints Logic Programming.

[13] W. Richard Stevens. Advanced Programming in the Unix Environment.
Addison-Wesley Publishing Company, 1992.

INDEX

constraint 44;47
Constraint Logic Programming 5; 44

constraintprograrruning 86
Constraint Satisfaction Problems 44

:3 1 0; 11
constraint solver 86
constraint system 52; 53

µbase 70 constraint X in r 44

µlog 62; 86 telling 61
constraints

µlog language 64 equivalence 53
contexts 66
control instructions 39

12 D

daemon 75
A data encapsulation 74

Data manipulation 54
Active objects 62 declarative fixed point semantics 73
algorithm 61 declarative mode! semantics 72
algorithms 18 Declarative Semanlics 19; 21 ; 69
Artificial Intelligence 44 defmite procedure 14
atom 10; 12 defmite program 14
atomic formulae 10 dereferentiation 34

derivation relation 25;68
disjunction 11

B distributed architectures 62

background processes 63; 64
E blackboard data 75

blackboard primitives 64
blackboard traces 69 Edinburgh syntax 11
black boards 62 empty conjunction 14

empty goal 25
entailment relation 52;53

C environment 55;56
enviromnent frame 29

centralized architectures 62 Equations 15; 19

choice point frame 29 equivalence 11

clause 13 ERASMUS 5

client data structure 77 e-term 17

Client Message Format 78 events 69

client-server application 74 cxistential closure 11

closed wwf 11 expression 16

Code Area 29
commwùcation protocols 77; 87

F compiler 61
completeness 28; 73
composition of the substitutions 17 FIFO 8; 74
computed answer substitution 25 final structure 80
Concurrent Programm.ing 5; 86 faute clauses 13
Concurrent programming languages 62 fmite domain 46
conjw1ction 11 faute domains 44
Constants 12 first-order formulae 10

Index - 181 -

first-order logic 10 Logic Prograrnming 5;86
fix point operator 50 logic programs 14
foregroW1d processes 63; 64 logical cormectives 11
forward checking 47 logical consequence 21 ; 72
frame

argument 56
constraint 57 M
FD variable 59

full lookahead 45 macros 79
fonctions 12; 15 main functor 35
fW1ctor 12 messages queues 84

m.i.tùrual model 72
model 21 ; 71

G monotone operation 51
most general unifier 18

goals 14 mutual exclusion 63
groundatom 22
ground instance 22
ground term 21 N

namedpipes 8; 74
H negation 11

negation as failure 27
Heap 29; 33 Normal clauses 14
Herbrand 18 normal procedure 14
Herbrand Base 22 normal program 14
Herbrand interpretation 22
Herbrand interpretations 21
Hcrbrand model 22 0
Herbrand Uni.verse 22
Hom clause 13 operating systems 87

Operational Semantics 24; 26; 52; 65;69

I
p

idempotent substitution 17
identity substitution 15 parallel composition operators 63
immediate consequence operator 23; 72 parallel systems 62; 86
implication 11 parameters 55
indexing 35; 54 partial lookahead 45
Indexing instructions 39 Pascal van Hentenryck 44
INRIA 61 Passive objects 62
instance 16 POSIX 1 74
interface functions 82 precedence 11
interpretalion 19 predicate 12
InterProcessing Communication 74 predicates 10
intersection opcration 51 ; 58 process ID 74

programminglanguage 24
Prolog 29

K propagation queue 60
properties 17

Kowalski 29 Push Down List 29
Kowalski procedural interpretation 24

L
Q

quantifier 10
least Herbrand mode! 22
Linda 62
list constructor 12

Stage Thesis

Index - 182 -

R T

range 46 tell operation 48
constant 47 tenu assignment 20
empty 58 ternis 12
indexical 47 indexical 55

Readmode 35 Trail 29; 32
reduction of atoms 26 Trailing 54
refutatiou proof procedure 24 transition relation 66
register trdllSition system 65

STAMP 55 truth value of a wff 20
registers 60
Registers recovery instructions 36
Registers setting instructions 38 u
Remote Procedure Calling 85
representation of tenus 34 unbound variable 34
restriction of substitution 16 unification 17; 54
Robinson 24 unification mechanism 86

Unification of structured tenus 34

s universal closure 11
unsafe variables 43

semaphores 62; 84
sequential composition operalors 63 V
Server Message Fonnat 79
Set of bindings 15 variable assignment 20
shared memory 84 variables 12
shared variables 62 Finite Domain 53
signal 8
SIGUSR2 74
SLD-derivation 25 w soundness 28; 73
Slack 29
store 47 WAM 5; 6

normal form 47 WAM Binding Rules 43
Substitutions 15 W AM instruction set 36
Syntax 10 WAMMCC(FD) 8
system log 87 we/l formed formu/ae 10; 11

Writemode 35

Stage Thesis

